
ar
X

iv
:2

50
1.

02
93

3v
2

 [
cs

.C
R

]
 7

 J
an

 2
02

5

Echomix: a Strong Anonymity System with Messaging

Ewa J. Infeld David Stainton Leif Ryge Threebit Hacker

Abstract—Echomix is a practical mix network framework

and a suite of associated protocols providing strong metadata

privacy against realistic modern adversaries. It is distin-

guished from other anonymity systems by a resistance to

traffic analysis by global adversaries, compromised con-

tacts and network infrastructure, quantum decryption, and

statistical and confirmation attacks typical for multi-client

messaging setting. It is implemented as Katzenpost, a robust

software project, and used in multiple deployed systems, and

features relatively low latency and bandwidth overhead.

The contributions of this paper are: (1) Improvements

on leading mix network designs, supported by rigorous

analysis. These include solutions to crucial vulnerabilities

to traffic analysis, malicious servers and active attacks.

(2) A cryptographic group messaging protocol with strong

metadata protection guarantees and reliability. (3) Hybrid

post-quantum nested packet encryption.

1. Introduction

Protecting metadata is as crucial a concern for privacy
as protecting the content of communications. They are a
primary stock of data brokers [1] and qualifier in large
dataset analysis. Surveillance actors take advantage of
metadata [2]–[4] even to exert lethal force. [5], [6]

Anonymity systems in use today offer incomplete
protections against the most powerful class of surveillance
adversaries. The research field of anonymity is robust,
yet many academic designs disregard real-world Internet
conditions, or explicitly declare as non-goals the resistance
to a wide variety of practical attacks on user data and
metadata. Second-party anonymity is seldom considered.

We describe a novel, implemented, practical and re-
liable mix network design, with a threat model that al-
lows for sophisticated, global, active adversaries who may
compromise network elements and a user’s contacts, have
access to a quantum computer, and do powerful crypt-
analysis. We overcome weaknesses of leading anonymity
systems, and introduce protocols which provide strong
security guarantees even in the case of persistent mes-
saging between users. The design and software is used in
a growing number of deployed systems, [7], [8] as well
as our own chat client. [9]

This is in contrast to systems such as Tor [10], which
does not protect against a global adversary [11]–[13] and
is vulnerable to an array of confirmation and traffic attacks
[14], [15], some of which have been exploited by surveil-
lance actors [16]. The leading mix network model today
is Loopix [17], which is a basis of Nym’s system [18].
Our design eliminates its many shortcomings, including
vulnerability to traffic analysis, receiver observability, and
vulnerability to malicious service providers. We support
these claims with rigorous analysis.

We additionally introduce a messaging protocol which
is suitable for anonymous group messaging with a realis-
tic threat model, and provides reliability without forcing
interactivity. We then present a quantum resistant packet
format appropriate for mix networks. Finally, we provide
latency and bandwidth overhead evaluation, to demon-
strate that this system is practical.

2. Threat model

We consider a realistic modern adversary, such as a
government surveillance agency, a large technology cor-
poration, or a criminal organization. The adversary is:

Global. The adversary can see all or a significant portion
of connections of the entire global internet and is capable
of statistical analysis of gathered data. For many attacks
that are typically attributed to a global adversary, it is
enough if the adversary has a view of a target population
of users of the network.

Active. The adversary can disable parts of the network,
and plant or take over some devices in the network to
inject malicious code and gain access to the information
available to them. This can happen by technical means,
exercising legal or extralegal forms of coercion, or sub-
terfuge. The adversary can compromise a client’s contacts’
devices, resulting in a need for second-party anonymity

in the system. We refer to a compromised contact as a
second-party adversary, or 2PA. We minimize metadata
shared with contacts and avoid various forms of forced
interactivity such as automatic delivery and read receipts.

Many attacks typically attributed to an active adversary
are also a concern with a passive adversary able to observe
network disruption events. If a user’s microwave oven
turns on and causes a brief connection disruption for their
WiFi, that event can be visible to various unrelated internet
services which know the user’s identity. In particular,
connection disruptions must not be revealed to contacts.1

Echomix is not secure against an active adversary who
compromises the entire system, or close to the entire
system, such as a majority of directory authorities or a
critical combination of node types on the client’s path, as
described in section 6.

Sophisticated. The adversary has large computational
resources, and is capable of cryptanalysis on par with
frontier research. The adversary has access to a quantum
computer, or will have access to one in the near future.

Has context. The adversary can supplement collected
data with rich context of already gathered data on all users
from other sources.

1. These network disruption confirmation attacks have been used by
surveillance actors. [19], [16] In particular, [19] is an example of a 2PA.

http://arxiv.org/abs/2501.02933v2

We will define strong anonymity for classification pur-
poses as an ability to withstand a sophisticated, global
passive adversary (GPA). As demonstrated, the Echomix
threat model goes further to include active adversaries of
significant, but not absolute, power.

We define metadata broadly, to include all observable
distinguishing characteristics of a user’s activity. This
can be sender and receiver identity, timing information,
volume and type of communication, social network etc.

2.1. Anonymity systems in light of the threat

Several existing types of communication systems offer
anonymity protections. We survey these briefly and note
weaknesses with respect to our stated threat model.

2.1.1. VPNs. VPNs relay a user’s connection while mini-
mizing latency and maximizing bandwidth. Traffic can be
correlated by a passive adversary observing network traffic
at the the VPN, or the source and destination traffic.

Some VPNs are overlayed on mix networks and/or
employ decoy traffic [20], [21]. The strongest of these
designs attempt to transport VPN traffic with uniform
bandwidth by clients, necessitating both a large bandwidth
overhead and an upper bandwidth limit. However, Inter-
net protocols facilitated by VPNs allow for confirmation
attacks through forced interactivity, and so interruptions
to client traffic can be correlated, either by passive obser-
vation or active interruptions of clients.

2.1.2. Tor. Tor is much more sophisticated than a VPN,
and does not rely on a single or few points of failure.
In the absence of a GPA, we consider Tor to be state-
of-the-art for practical anonymous communication and it
is able to provide users with an experience of browsing
the Internet comfortably. However, a passive observer able
to see two endpoints can correlate connections [11]–[13],
[16]. As with VPNs, because Tor is a general purpose
tool used to transport protocols which force interactivity,
we consider it impossible to extend Tor’s threat model to
include protection against a GPA. [14], [15]

2.1.3. Mix networks. Mix networks, or mixnets, are
an anonymous communications network paradigm distin-
guished by striking a balance between practicality and pro-
tection from strong adversaries. A mix network consists
of network devices, typically referred to as mix nodes,
that relay messages between clients in such a way that an
adversary is unable to determine which clients are com-
municating with each other. This is done by reordering or
mixing multiple indistinguishable messages.

There must be some trade-off in latency - packets must
not be forwarded from a node immediately, in order to be
mixed with other packets, and some trade-off in bandwidth
- packets must be padded to a common size. They also
have to be re-encrypted at each hop. [22] The notion
that both latency and bandwidth overhead must be non-
zero was formalized in [23]. Additional trade-offs occur
with adding common anonymity strategies, such as decoy
traffic. It is thanks to these combined strategies and trade-
offs that carefully constructed mix networks can offer
protection against global adversaries. Because of these
trade-offs mix networks are not able to simulate browsing

the Internet comfortably as a VPN might, and are typically
considered for use with some services, such as messaging.

Many mix network designs and protocols have been
published, starting in 1979 [22], and we observe a rise
in commercial efforts to build mixnets [7], [18], [24].
Much of the focus of these efforts is in incentivisation
mechanisms for mix node operators, and financial privacy.
The largest of these, Nym [18], is based on the Loopix
model. [17] Due to a subtle oversight in design, Loopix is
vulnerable to a GPA as described in subsubsection 3.4.3.
It also has a single point of failure in a user’s Service
Provider, making it easy for an active adversary to com-
promise a target user.

2.1.4. Non-mixnet theoretical systems with strong
anonymity. There exist theoretical designs providing
strong anonymity, some of which have information-
theoretic guarantees, which Echomix does not. They all
carry significant overheads which have so far made them
impractical for real world deployment at a scale. These
include DC-nets and other k-anonymity-based systems
[25]–[28], as well as PIR [29] designs.

3. The Echomix design

The Echomix system contains three server node types:
gateways, mix nodes and services. None of these has
a persistent relationship with clients. Service nodes are
positioned on the far side of the network, and, in contrast
to leading mix network designs, every interaction with
them is a round trip - an echo. When a client connects
to a random gateway, the Sphinx [30] packets sent by the
client are relayed through the three layers of mix nodes,
and then to a service. A reply is sent, which can confirm
delivery or contain send query results. A service can send
this reply without knowing the location of the client thanks
to a Sphinx Single-Use Reply Block (SURB).

CLIENTS

GATEWAY

NODES
MIX NODES

SERVICE

NODES

Figure 1: A client’s interaction with the service node is a
round-trip, with a packet’s forward route marked in purple,
and service’s confirmation in green. The intermediate node
layers are pictured from top to bottom.

In the context of a messaging application, a message
travelling from Alice to Bob requires two echos to the far
side of the network, one from Alice to write a message
to a service, and a second initiated by Bob to retrieve
it. This symmetry and a careful construction of protocols,
allows us to out-perform other anonymous communication
systems in resisting traffic analysis, malicious providers,
and confirmation attacks.

The clients generate a stream of echos to uniformly
random, or pseudorandom - in the case of some applica-
tions, including message streams - services, independently
of whether a client requests a service or not. Most of
these packets will be decoy traffic. The stream is a single
Poisson process, with delays at each hop sampled from an
exponential distribution, as in [31] and [17]. The advan-
tages of this strategy are described in section 3.4.1. Unlike
in Loopix [17], the amount of sent and received traffic is
fully independent of whether the packets are application
traffic or decoys.

From the point of view of network architecture,
Echomix, and its implementation - Katzenpost [32], is an
Internet overlay mix network atop TCP/IP or QUIC/IP.
The subsequent layers are governed by the following
protocols.

1) PQ Noise [33] transport protocol.
2) Sphinx [30] or PQ-Sphinx routing protocol.
3) Application layer, such as Pigeonhole messaging.

Katzenpost is the first software implementation of the
PQ Noise. As a transport protocol it enforces the network
topology, e.g. mix nodes in layer 1 are only allowed to
downstream-connect to the mix nodes in layer 2. All PQ
Noise messages are padded to a uniform size.

Since all application protocols are built based on
packet round-trips to services positioned on the far side
of the network, the Sphinx ability for the service to send
a reply without knowing the location of the client is used
throughout the design. This is done with Single Use Reply
Blocks (SURBs). We describe our post quantum updates
to the Sphinx format in section 7.

The Katzenpost PKI is an adjacent protocol at the root
of authority within the mix network. Directory authorities
publish PKI documents every epoch, distributing network
connection information and public key materials to the
nodes. This system is similar to Tor’s. [34] Providing all
nodes and clients with a uniform view of the network
allows us to resist epistemic attacks. [35] An adversary
who compromises a majority of directory authorities com-
promises the entire mix network. We therefore employ a
decentralised PKI design, relying on multiple independent
directory authority operators. The consensus producing the
PKI document uses the post quantum hybrid signature
scheme of Ed25519 [36] combined with Sphincs+ [37].

3.1. Gateway nodes

In contrast to [17], we believe that the nodes on the
edge of the network should have as little information
on the client behavior as possible, as they are the ones
that can identify the client. Gateways have no persistent
relationship with the client, and no knowledge of whether
any of the client’s packets are decoys or not.

If the client traffic crossing the node is low, the gate-
ways additionally generate decoy traffic. We propose a
new heuristic, the Coupon Collector’s bound in order to
ensure that all links of the network are active, resulting in
a reliable mixing of packets.

Coupon Collector’s Bound. If packets released from a

node are directed to one of the nodes in the next layer

uniformly at random, the expected number of messages

that node has to release before at least one message

has been directed to each node in the subsequent layer

behaves like Θ(n log(n)).

Proof: This is a direct consequence of the Coupon Col-

lector’s Problem. �

Let:

• µ = 1/λ be the mean time that a packet lingers in a
node due to memoryless mixing,

• n be the maximum number of nodes in a layer,
• g be the number of gateways.

We aim to achieve a high probability that during each
period µ, there is at least one packet crossing a given
link in the network. The Coupon Collector’s Problem
tells us how many packets we need to cover links from
the gateways to the first layer of mixes. In order for all
links between two layers of size n to be reliably active,
we should additionally multiply the desired output of a
gateway by n/g. Therefore in order for all links to be
active with high probability, and therefore for best mixing
of the packets in the network, each gateway should be
outputting at least an average of Θ(n2 log(n)/g) packets
in the time µ. In practice, this bound is significantly lower
than the number of packets travelling through the nodes.

3.2. Decoy traffic and application traffic

An echo decoy packet is a Sphinx round-trip through
the mix network to a service node sampled uniformly at
random. A service request to a server sampled in a way
indistinguishable from uniformly random, followed by a
service response sent back with the SURB, is unobserv-
ably coupled to echo decoy traffic.

Traffic coupling. Let sequences A and B be two proba-

bilistic processes on states S = {s1, s2, . . . , sn}. If both

A and B are indistinguishable from uniformly random,

then any process C which selects either A or B to

sample the next state according to any algorithm A is

also indistinguishable from uniformly random.

Proof: Let H be any state history in C, and sj ∈ S be

any state. Then for any values of p = PA](A|H) and p′ =
PA(B|H),the probability of the next element being from

sequence A and sequence B respectively, the probability

of the next sampled state being sj is

p× PA(sj |H) + p′ × PB(sj |H) = (p+ p′)× 1

n
=

1

n
.

A does not have to be independent of history H. �.

If and only if we maintain the correct coupling, the user’s
application traffic is fully unobservable within decoy traf-
fic, and causes no anomalies, avoiding the shortcomings
of leading systems described in subsubsection 3.4.3. For
receiving messages, maintaining unobservability requires
care, since not only are the queries correlated with the
related send requests, but we may have to contend with the
dangers of multiple queries to the same server, which may
be statistically significant and therefore visible to a passive
observer. The introduction of couriers (section 5) allows
us to efficiently maintain unobservably coupled traffic. It
also prevents SURB floods - an attack in which a malicious
service might collect multiple linkable SURBs and send
them in a burst in order to identify a client.

3.3. Service nodes

Service nodes are positioned behind the mix network
and handle functionality requested by the client. This
could be storing messages, publishing information out-
side of the mixnet, interfacing with a blockchain node
etc. They also process and execute the SURBs of decoy
packets. Any application should be constructed so that the
following conditions are met:

1) Separate service requests of a client are unlinkable.
Repeating the same request may be linkable.

2) Services are treated uniformly by the client, with no
persistent relationship.

3) The traffic from a client to the service is correctly
coupled with the decoy traffic.

The last condition means that either the service is
chosen in a way that is independent from traffic history
and indistinguishable from uniformly random for each
query to a service, or the packet will replace a decoy
packet that was meant to go to the specific service. Since
the latter introduces additional latency, we achieve the
former in several ways in sections 4 and 5.

3.4. Iterating on prior research

So far, we described original additions to the field of
mix network design. For the remainder of this section, we
will discuss how we implement and improve upon estab-
lished concepts, and motivate the new design by pointing
out vulnerabilities of preceding systems. Beginning with
section 4, we list remaining original contributions which
allow us to extend our security guarantees to persistent
messaging, and resisting quantum adversaries.

Katzenpost grew out of the Panoramix project [38],
and was previously an evolution of Loopix [17], which
combined ideas of sampling an exponential distribution
(memoryless mixing) to delay at each hop [31], monitor-
ing system health with heartbeat traffic [39], organizing
nodes in a layered topology [40], assigning persistent
Service Providers for each user at the edge of the network,
and wrapping data in Sphinx packets [30], a packet format
designed specifically for mix networks.

3.4.1. Memoryless mixing. Echomix adopts node delays
sampled from an exponential distribution, as introduced
in [31] and used in Loopix [17]. This distribution has the
advantage of being memoryless - at each point in time,
each message sitting in a mix will have the same proba-
bility distribution of the remaining delay, independently of
how long it has already been waiting. This means that for
an external observer the probability distribution of which
message will be sent next is uniform at all times. For a
constant parameter λ > 0 with the mean 1/λ, the delays
approximate the probability distribution function:

f(x≥0, λ) = λe−λx.

However, [31] claims incorrectly that the behavior of a
resulting mix node is Poisson distributed. This is then
reproduced in [17], culminating in nodes of these type
being called Poisson mixes. The behavior of a sum of
multiple Poisson processes is in fact only Poisson if the
set of processes being summed doesn’t change over time.

We propose to call this type of mixing memoryless mixing

instead, while noting that the overall behavior of the node
itself is not memoryless and a node should not be called
a memoryless mix.

3.4.2. Heartbeat packets. All nodes in the mixnet gen-
erate heartbeat packets [39], which are sent through the
system before returning to their origin. This allows each
node to take stock of the functioning of the network - if
any segment of the route is disrupted, packets crossing
through that segment will not come back in the expected
time window. This allows the system to detect an n − 1
attack [41], or any other attack that involves a disruption
of the network. However, heartbeat packets not originating
from the clients are only effective in detecting faulty or
malicious behavior in some mix nodes. Malicious nodes
on the edge of the network can distinguish between mix
heartbeats and user requests and decide to forward any
heartbeat packet that is scheduled to return to a mix node,
while dropping user traffic meant to exit the network.

Additionally, no node or client in the network should
act on these measurements by itself. Such a process could
result in different clients having different views of the net-
work and opening the system to epistemic [35] and com-

pulsion [42] attacks. Instead, nodes in Echomix process
the collected measurements [43] and rate the links’ health,
and then upload the ratings to directory authorities. The
directory authorities establish a consensus and distribute
the updated structure of the network to all parties in the
next PKI document, once per consensus epoch.

Finally, both [39] and [17] describe rating nodes in
the mixnet. It is more helpful to rate links on the route,
rather than nodes. Not only does it provide finer data,
and allow for detection of n − 1 attacks directly, but in
practice many networking problems happen specifically
between two locations. A separate argument in favor of
indexing over links can be found in [44] for batch mixes.

3.4.3. Vulnerability to traffic analysis in Loopix. This
Loopix design vulnerability has not been addressed else-
where. A legitimate message traveling from the last layer
of mixes is sure to go to the receiver’s designated provider,
as opposed to decoy traffic from the last layer of mixes,
which is uniformly distributed among providers. Appli-
cation traffic at the last hop is therefore independently
overlayed on decoy traffic.

PROVIDERS

ALICE

BOB

MIX

LAYER 1

MIX

LAYER 2

MIX

LAYER 3

Figure 2: In Loopix, as Alice communicates with Bob, the
increase in traffic to Bob’s Provider is observable.

This means that application traffic at that hop is ob-
servable to a passive network adversary, as long as it

is statistically significant, and especially if there is any
regularity to it. In this situation, the other traffic at this
hop is not an effective cover, it’s noise, and in many real-
life situations a signal processing analysis could easily
do away with it. This is dangerous even in the short
term, since the low latency between the sender and the
receiver’s Provider opens this system to correlation attacks
and SURB floods, and any advantage that comes from
asynchronicity is lost.

A naive solution if one wanted to retain the rest of the
Loopix design might be to wait until a decoy packet is
going to the right provider, and send the message instead.
This would significantly reduce the available bandwidth
by effectively dividing it by the number of Providers. In
sections 4 and 5, we carefully designe a correct coupling
of decoy and application traffic which does not reduce the
bandwidth.

3.4.4. Providers. Loopix features persistent Service

Providers that the clients connect to directly. The Provider
is a significant point of failure, with access to a trove
of a user’s information, including the message receiving
pattern. It was suggested in [17] that returning heartbeat
traffic may double as decoy traffic for received messages,
but this is incorrect. These streams are independently
overlayed, and can be similarly decoupled as above when
a client is online. When the receiver is not online, loop
traffic is not present at all. In Echomix we only include
gateways on the perimeter of the network, with service
providers positioned behind it, and do not include persis-
tent providers or gateways for a user at all. Interactions
of the same user are unlinkable by the service provider.

3.5. The challenges of persistent multi-client mes-

saging

Persistent messaging between multiple clients comes
with an additional set of statistical and active attacks, and
a need for second party anonymity. The design described
so far is appropriate for a wide array of applications,
including one-to-all anonymous publishing, interfacing
with blockchain nodes, and other sender-only use cases.
It is a significant improvement on the security proper-
ties of previously published mixnet designs. In order to
further extend it to persistent messaging, we introduce
the BACAP and Pigeonhole suite of protocols to allow
for messaging while maintaining our security guarantees.
These are described in sections 4 and 5.

4. BACAP

We have established in subsection 3.3 that we require
services to be accessed by clients uniformly at random,
or in a way indistinguishable from uniformly random. We
also require multiple interactions of the same client to be
unlinkable by a service. But if users are to be able to
exchange messages, they need to know where from and
how to retrieve them. Our goal is therefore to implement
a form of private distributed hash table, wherein users
can leave each other messages in pseudorandom locations,
with servers able to verify the validity of the message,
and read ability, without being able to determine that two
messages belong to the same conversation.

BACAP (Blinding-and-Capability scheme) allows us
to deterministically derive a sequence of key pairs using
blinding, built upon Ed25519 [36], and suitable for un-
linkable messaging. It enables participants to derive box

IDs and corresponding encryption keys for independent,
single-use boxes using shared symmetric keys.

A box consists of an ID, a message payload, and a
signature over the payload. There are two basic capabili-

ties - one that lets a party derive the box IDs and decrypt
the messages, and one that additionally lets the holder
derive private keys to sign the messages. The signatures
are universally verifiable, as the box ID for each box
doubles as the public key for the signatures.

In the context of a messaging system, the protocol is
used by Alice to send an infinite sequence of messages
to Bob, one per box, with Bob using a separate, second
instance of the protocol to send messages to Alice. Alice
will use a root private key to derive a root public key
shared between participants. The root key and a CSPRNG
instantiated from recursive KDF applications are then
used to obtain a sequence of context-specific values for
exercising and verifying a capability. A context value ctx,
which is a hash of a universally public value, will be used
as additional input. It can, for simplicity, be a hash of the
name of the storage network, or can be bound to a specific
period of time, e.g., the long epoch SRV published by the
Echomix directories at regular intervals, similar to how
Tor uses its SRV in [45]. The context value makes it safe
to unlinkably relocate messages to a different network.

All parties (and adversaries) know public constants:

• B the ed25519 base point
• ℓ the prime defined in [36]
• ctx hashed network context

In the section below we will use the syntax B ·x to denote
”scalar multiplication” of the point B and scalar x, and a×
b to denote natural number multiplication. The following
values are generated by Alice and constitute her ”write

capability” for the sequence:

• SR ∈ Zℓ: root private key,
• PR = B · SR: root public key.
• i0 ∈ Z263 : random initial index counter.
• Hi0 ∈ Z2256 : random initial KDF state.

Alice sends the following read capability to Bob out-of-
band:

PR, Hi0 , i0.

Our i will be encoded as an unsigned 64-bit integer,
and serves to define an ordering for boxes and to enable
applications to refer to boxes uniquely. Initializing it with
an upper bound of 263 ensures that a sequence can contain
at least 264 − 263 = 263 boxes. We define no mechanism
for extending sequences to more than 263 boxes, but
applications could use a box to communicate a new read
capability if such an extension were required.

Both Alice and Bob can now derive a sequence of
KDF symmetric keys Hi, location blinding factors Ki,
symmetric payload encryption keys Ei, box IDs Mi, and
increment i → i + 1. The i is used as additional input
in the Hi KDF as control input to reduce the risk of
incorrect implementations generating valid KDF outputs
for incorrect i indices.

Hi, i →
KDF

Hi+1, Ei, Ki.

Both parties generate the message encryption key E ctx
i :

Ei , ctx →
KDF

E ctx
i ,

and the blinding factor K ctx
i , and the blinded public key

M ctx
i which will serve as the box ID:

Ki , ctx →
KDF

K ctx
i ,

M ctx
i = PR ·K ctx

i ,

≡ B · SR ·K ctx
i .

Alice derives a M ctx
i -specific secret scalar S ctx

i , and en-
crypts message mi as ciphertext c ctx

i using key E ctx
i ,

and signs it as s ctx
i using S ctx

i . This signature ensures
unforgeability (EUF-CMA) from adversaries that possess
a read capability for the sequence, enabling the use of
BACAP in group settings with multiple readers:

c ctx
i = AES-256-GCM-SIV-ENCRYPT(mi , E ctx

i),

S ctx
i = SR ×K ctx

i (mod ℓ),

s ctx
i = Ed25519-SIGN(c ctx

i , S ctx
i).

Alice sends her message to the server:

M ctx
i , c ctx

i , s ctx
i .

The server verifies the write capability to ensure it was
sent by a sequence writer, as opposed to a reader.

Ed25519-VERIFY(M ctx
i , cctx

i , sctx
i)

Bob requests M ctx
i from the server, verifies and decrypts:

Ed25519-VERIFY(M ctx
i , cctx

i , sctx
i),

mi = AES-256-GCM-SIV-DECRYPT(cctx
i , E ctx

i).

The original Ed25519 [36] signing algorithm works on
private keys that are not scalars, but SHA-512 hash preim-
ages created as part of the signing operation. We refer to
a modified Ed25519 signing algorithm that skips the hash
step and instead operates directly on private scalars as
Ed25519-SIGN.

4.1. Choice of encrypt/decrypt functions

Using an authenticated symmetric encryption scheme
prevents a third-party quantum adversary from forging
cctx
i , separate from the sctx

i signature, the private key for
which is obtained by the adversary. Such an adversary can
forge signatures over garbled ciphertexts, but not plain-
texts, and can’t authenticate the ciphertexts. We use an au-
thenticated cipher scheme, AEAD AES 256 GCM SIV
[46] (using M ctx

i as nonce), to make implementation less
error-prone, and to enable replacing a ci with a tombstone,
a term we will define in subsubsection 5.4.3.

4.2. Forward-security

BACAP achieves computational post-quantum

forward-security by the irreversibility of the KDF
function. Parties may choose to leverage this by throwing
away state associated with Hi−1 once done with it.
Instead of sending the read capability at i0, Alice may
choose to instead reveal a later {PR, Hin , in} which
would only enable a newcomer Charlie to read the
sequence starting from in. We sample the original i0
randomly instead of starting at 0, to avoid indirectly
revealing to Charlie how many boxes preceded in.

We separate Ei and Ki, as Alice may want to keep Ki

to be able to derive Sctx
i at a later point, for example to sign

a message to delete the box, without being able to decrypt
the message payload encrypted under Ectx

i . Separating the
two permits a protocol instantiation to selectively have
forward-security only for E and the resulting c ciphertexts.

The knowledge of Sctx
i ≡ SR ×Kctx

i (mod ℓ) and the
factor Kctx

i makes it trivial to recover

SR ≡ Sctx
i × (Kctx

i)−1 (mod ℓ).

As a result, sharing the derived signing keys with third-
parties is not safe because the recipient can recover the
effective signing key for the whole sequence.

4.3. Unlinkability

Suppose that an adversary A knows the values in BACAP
available to the server. Let X be the event that box IDs
M and M ′ belong to the same sequence {M ctx

i }i, and X ′

that they don’t. Let XA be the event that the adversary
guesses that they do. Then M and M ′ are unlinkable iff

|P[XA|X]− P[XA|X ′]| ≤ δ,

for some sufficiently small δ ≥ 0.
It is not possible for anyone without read capabilities

to determine whether two messages in different boxes
belong to the same sequence. The symmetric encryption
of mi under key Ectx

i (unknown to adversaries) results in
unlinkability even against chosen-plaintext attacks.

The messages in BACAP remain unlinkable to a
quantum adversary. While the security of the Ed25519
signing scheme, and thus the distinction between BACAP
read and write capabilities, relies on the hardness of the
elliptic curve discrete logarithm problem (ECDLP),2 the
unlinkability does not:

Solving ECDLP for B in Mi = B · SR · Kctx
i yields

a scalar SR × Kctx
i ∈ Fℓ (the effective signing key) for

each box M ctx
i . An adversary who knows SR or a Kctx

i
can trivially compute the modular multiplicative inverse,
but because SR and Kctx

i are independent pseudo-random
elements of Fℓ, there is no unique solution to the equa-
tion M ctx

i = SR × Kctx
i (mod ℓ) that lets the adversary

solve for SR. Such a solution would enable them to link
M ctx

x ,M ctx
y . Therefore, the post-quantum unlinkability of

BACAP relies on:

1) The indistinguishability of K ctx
i (mod ℓ) from uni-

formly random elements of Fℓ with negligible bias.
That is, an assumption that the KDF is secure, and
that the reduction (mod ℓ) has negligible bias.

2. Solved with Shor’s algorithm on a quantum computer.

2) The computational difficulty of enumerating the Kctx
i

(keyspace roughly 2256).
3) The property that for any SR guess, enumeration of

H0, ctx → Kctx
x ,Kctx

y is required to find two Ks such

that M ctx
x = B · SR ·Kctx

x and M ctx
y = B · SR ·Kctx

y .

4.4. Post-compromise security

A basic implementation of BACAP does not pro-
vide post-compromise security. A simple way to achieve
post-compromise security would be to rotate BACAP
sequences frequently. It is worth noting that deriving
new Hn, in from a KDF (without communicating a new
SR/PR) provides post-compromise security with respect to
unlinkability since the adversary would still not be able
to link Kis or obtain Eis.

A quantum adversary can impersonate writes by solv-
ing ECDLP for SR ×Kctx

i (mod ℓ) (but still not obtain
new Kctx

i), so nothing new is learned. In the classical
setting, adversary knowledge of a compromised SR does
not help the adversary obtain the Kctx

i required to compute
SR ×Kctx

i (mod ℓ).

5. Pigeonhole storage

The goal of this section is to extend our system to
provide messaging functionality expected by today’s In-
ternet users without compromising our security goals, and
to futher strengthen our resistance to service nodes being
compromised. This is achieved with Pigeonhole servers,
which provide a time-limited storage capacity to imple-
ment asynchronous, unidirectional, single-writer, multi-
reader BACAP messaging channels with strong metadata
protection for clients against both passive and active ad-
versaries, including authorized readers who are malicious
or compromised. As Alice exchanges messages with Bob,
they rely on pseudorandom shared sequences of BACAP
boxes as storage locations. Boxes in the same sequence
are linkable to users with read or write capabilities for
the sequence, but are cryptographically unlinkable to the
storage servers thanks to the properties of BACAP.

5.1. Additional concerns in interactive messaging

5.1.1. Increased vulnerability to statistical disclosure.
Messaging comes with a number of statistical pitfalls.
These include user behavior being vulnerable to corre-
lation, the number of queries to particular boxes revealing
that they belong to the same BACAP sequence with
the same number of readers, and the difference in time
between writes and reads. In the case of two users being
more likely to be online at the same time if they are talking
to each other, little can be done unless users themselves
are mindful of the correlation potential and able to adjust
their habits. In the case of other correlations, pigeonhole

services employ a number of powerful mitigating tactics.

5.1.2. Reliability vs forced interactivity and lossiness.
A mix network can be expected to drop a small number
of in-flight messages to load-shed [47]. For applications
requiring reliable delivery, this necessitates a reliability
mechanism. There is a tension between reliability and

metadata protection due to the information that is revealed
by sending acknowledgements or retransmitting missing
information. Expecting a user to acknowledge receipt
of messages might make her vulnerable to confirmation
attacks and correlation. Some mixnet-based systems [18]
automatically retransmit unacknowledged messages. This
occurs transparently (to the user/sender) and repeats until
acknowledgement is received. Others, like Karaoke [48]
acknowledge the risk of repeated events, and terminate the
users’ conversation if message loss is detected.

The tension applies not only to the short-term reliabil-
ity needs of ensuring that a write from a user to a service
node was received, but also to the long-term reliability
problem where a writer needs to retransmit older writes
based on the their perception of the reader’s state. In
subsection 5.4 we address both facets of this problem with
couriers, which are aware of retransmits but are not aware
of the box IDs they are associated with, and we’re able to
provide reliability without automatic acknowledgements.

5.1.3. Long-term channel resilience. If a BACAP mes-
sage becomes unavailable before the intended recipient(s)
retrieves it, the recipient may continue trying to read the
message forever. Messages can become unavailable either
due to server failure, or as part of scheduled garbage
collection to make room for new messages to be stored.
To ensure eventual consistency, we will introduce a mech-
anism to redeliver messages with all-or-nothing backfills.

5.2. All-or-Nothing Design Philosophy

Suppose a user sends two or more related messages.
If each message can fail independently, and the adversary
(such as the contact) observes some messages appearing,
it alerts them to the intention of sending additional mes-
sages. The failure of these messages to be observed can be
correlated with a physical connectivity issue. We follow
a principle that actions should either succeed completely

or fail unobservably, and describe our solutions to these
problems in subsection 5.6.

5.3. Replicas and sharding

To further mitigate the risks of service nodes in a
messaging application being compromised, we split their
functionality between storage servers or replicas, and
couriers. Couriers maintain fixed-throughput connections
to replicas, as do replicas with each other.

COURIERS REPLICAS

GATEWAYS AND

MIX NODES

BOB

ALICE

Figure 3: Replication is marked in blue, Alice’s write
operation green, Bob’s read operation red, and Couriers’
fixed-throughput connection to the replicas in purple.

Suppose we have n pigeonhole storage servers, or
replicas, and we want a subset of k of them to store
each box. The storage system is sharded using a consistent
hashing [49] scheme which allows entities with knowledge
of a the box ID (BACAP’s M ctx

i) to deterministically
select the two servers that are currently responsible for
that box. The k servers responsible for storing a given
box are then that box’s replicas.

The consistent hashing method makes this efficient.
For a given box ID, one derives a set of k servers by
sorting the list of servers by a hash of their public key
concatenated with the box ID and use the result to select
a permutation of the set of n servers for each box ID. We
can then choose the first k of them. This results in a set of
k designated replicas indistinguishable from being chosen
uniformly at random. When a storage server goes offline,
or a new server joins only proportion of k/n boxes need
to be retransmitted.

5.4. Couriers

The second type of service, couriers, can be seen
as a mix network service layer and are responsible for
acknowledging the client’s requests, but do not learn the
box ID. They communicate with the replicas over fixed-
throughput direct connections outside the mix network and
avoid revealing the existence of a retransmission to the
storage server.

Commands sent through couriers are encrypted by
the client to the target replicas’ NIKE keys, which are
published in the PKI and rotated each epoch to pro-
vide forward secrecy. This encryption can optionally be
post-quantum if the NIKE key is a hybrid NIKE as is
used in our PQ NIKE Sphinx construction described in
subsubsection 7.1.1.

5.4.1. Writing messages. To store a BACAP message
in the network, Alice first generates an ephemeral NIKE
keypair which will be used for the envelope, and a sym-
metric encryption key (”envelope key”) which will be used
to hide the envelope contents from the courier. She then
randomly picks a courier, and two intermediate replicas

that will receive write operation from the courier. The
intermediate replica that receives an envelope decrypts
it, commits it to disk, and acknowledges to the courier
that the replica takes responsibility for delivering the
message to the final replicas. The courier then sends an
acknowledgement to the client.

These intermediate replicas are chosen independently
of the two final replicas for that box ID which are derived
using the sharding scheme. The reason Alice designates
intermediate replicas, as opposed to addressing the final

replicas directly, is to avoid revealing to the courier which
shard the box falls into. In a system with many replicas,
this partitioning would otherwise allow a courier to col-
lude with one of Alice’s contacts to execute SURB floods.

5.4.2. Reading messages. To read from a box for the first
time, a client generates an ephemeral keypair for a new
read envelope. It selects one of the replicas responsible
for that box according to the sharding scheme, and creates
a read request containing the ephemeral public key, the
replica ID, the box ID encrypted with the ephemeral

private key and the replica’s public key. It chooses a
random courier, and sends it the read request.

Upon receiving a read request, the courier forwards the
read envelope to the designated replica. who decrypts the
envelope, and checks if it has an entry in its database for
the referenced box ID. If an entry does exist, the replica
encrypts a reply with the BACAP message encrypted to
the envelope public key. It also encrypts a reply encrypted
to the envelope public key, but containing a negative
acknowledgement instead of the desired BACAP message.
The nature of these responses should be indistinguishable
to the courier.

If the box was empty but is written to in the near
future, the replica schedules new replies to each of the
listeners. Each reply is independently delayed, with de-
lays sampled from a uniform distribution to mitigate the
courier’s ability to infer links between responses that
pertain to the same box.

The delay also serves to hide relationships between
writers and readers, to avoid a pending read from being
fulfilled immediately upon the courier sending a write
envelope to a replica. This mitigation is needed to address
the cases where writer/reader or reader/reader pairs are
using the same courier, but ultimately it does not address
all concerns, which we will elaborate on in section 6.
The courier caches a listener response associated with a
particular envelope for a time.

A client that receives a negative acknowledgement
may poll the box again in the near future. To prevent
informing replicas of the precise rate of read requests sent
by a client, which could link client behavior information
with the box ID, the client sends the same read envelope
to the same courier, and the courier will refrain from re-
sending that envelope to the replica more than once. When
the courier sees a duplicate envelope, it uses the new
SURB associated with the recent read request to repeat
the replica’s latest response for that envelope.

Couriers for retried read requests are rotated frequently
to mitigate correlation attacks where the courier could
otherwise link a number of concurrent readers ceasing to
poll at the same time and infer that they were interested
in the same box.

5.4.3. Tombstones. BACAP messages come with a fixed-
size payload ci. To allow users to delete messages after
sending them, we selectively break the unlinkability guar-
antees provided by BACAP with tombstones, which are
BACAP messages with empty ci. When a replica gets a
tombstone for an Mi that it has an existing ci, si for, the
tombstone takes precedence and the replica deletes the old
ci, si pair. Tombstones are also used in subsection 5.6 for
end-to-end reliability.

5.5. Server context and storage duration

BACAP provides for adding blinding contexts used
when deriving keys, and in the Echomix PKI. [43] pro-
vides a Shared Random Value [50] and a set of previous
Weekly Shared Random Values (WSRV). Clients use the
last WSRV as a blinding context so that the box addresses
they are querying rotate, and the period for which a
Pigeonhole server is able to observe query patterns for
a particular box is bounded.

Pigeonhole storage servers collect boxes in per-week
buckets, and discard the oldest bucket upon entering a new
week. A minimum guaranteed storage time can be calcu-
lated from the total storage capacity and the maximum
total possible network throughput.

5.6. End-to-end reliable group channels

Sometimes a reader is offline longer than the replicas’
data retention period, or the two replicas responsible for a
box both fail. We therefore need an end-to-end reliability
mechanism. This requires some form of acknowledgement
from readers to writers and retransmissions from writers
to readers, with a user knowingly disclosing information
to contacts in these rare cases. To make sure a malicious
writer can’t probe whether a reader of their channel is
online, acknowledgements are never sent automatically.
Instead they are sent opportunistically with the next mes-
sage the acknowledging user sends on their own channel.
Likewise, the retransmission operation is never performed
automatically, but only when the user sends a message.

We perform retransmissions in an all-or-nothing fash-
ion by introducing a new courier copy command, to
prevent a malicious reader from learning about network
disruptions which affect a targeted writer while they are
retransmitting a series of messages. To write or rewrite
multiple messages to a channel, the writer creates a new
pigeonhole channel to temporarily store the encrypted
write requests for writing to the boxes which it ultimately
wants to write to. After completing all of the writes
to the temporary channel, it sends a copy command to
a random courier, which contains the write capability
for the temporary channel. The courier derives the read
capability for it, reads the encrypted write commands from
it, and executes each as it would normal write commands.
The new message which the user wanted to send, which
triggered the retransmission operation, will be the last
write operation in the temporary channel.

The courier does not learn the box IDs of the boxes in
the long-term channel it is writing to, because the write
operations are encrypted to the replicas chosen by the
client. The courier uses the temporary channel’s write cap
to write tombstones to delete the copied temporary boxes.

These end-to-end reliable channels can be thought
of as a single extremely resilient multi-writer channel,
which enables group communication applications which
are robust against the loss of all data stored by replicas.
Communication can even be resumed on a whole new
set of Pigeonhole servers without users needing to re-
bootstrap their channels.

5.7. Future work and variations on the design

PIR. Both read and write requests provide replicas with
a rough, probabilistic ordering of the box IDs, and the
guesses get better with each reader. At the cost of effi-
ciency, this could be addressed with a private information
retrieval (PIR) system to protect read operations. PIR
could streamline our reliable channel mechanism: each
channel could have a single recovery box in a PIR system
where they can write one message per SRV to catch read-
ers up to a point where they can find our messages, instead
of writing and reading a large number of tombstones or

old messages to reestablish communication with a contact
who has been offline for a long time.

Push SURBs. Absent a PIR scheme, there are variations
of Pigeonhole where read requests include two SURBs:
one for immediate acknowledgement of the request, and
another to be used later to send the payload after the write
subsequently happens. To preserve receiver unobservabil-
ity with respect to the gateway, this may also necessitate
long echoes: decoy messages containing two SURBs, one
of which is used in the future to provide inbound cover
traffic after the user has disconnected.

SURB burning. Using the echo service to intentionally
invalidate (unreceived) SURBs previously sent to couriers,
to limit exposure to SURB floods.

6. Security properties of Pigeonhole messag-

ing over Echomix

The analysis in this section assumes an Echomix net-
work where each service node is exclusively running a
Pigeonhole courier, and an echo service for echo decoys,
without a use of unrelated services.

We consider several active network roles, and the
effects of collusion between the combinations of two of
them, as well as a GPA. Our goal is that collusion between
any two of these active roles is insufficient to meaningfully
compromise metadata confidentiality. However, an adver-
sary who can compromise some combinations of two or
more of these roles is able to perform some useful attacks.

6.1. Single-role adversary capabilities

Global Passive Adversary. Learns which clients are
connecting to the mixnet, and learns the traffic patterns
between all elements of the network. In all following
adversary descriptions, we assume GPA capabilities

implicitly.

Contact (reader). When they see a message, the reader
can infer that the writer was online within the period of
time defined by the latency parameters of the network.
This can enable an intersection attack, singling out the
clients that were connected around the time of each write.

Gateway. Sees the incoming and outgoing packets, but
can’t distinguish between decoys and pigeonhole mes-
sages.

Replica. Learns which box IDs are being written to the
replica, and when. Learns which box IDs are being read,
and when. Can withhold envelope replies temporarily or
indefinitely. Can lie about having messages (either send-
ing bogus responses or denying having stuff they have
received). Learns which courier was responsible for a read.

Courier. Learns the rate of resends for a given enveloped
write message, and that they come from the same client.
Can withhold responses temporarily or indefinitely. With-
holding a response results in the client eventually retrying
the send. The courier can link these, and could use them

in correlation attacks, but the courier alone does not
know which boxes the envelopes are related to. Can drop
envelopes or reads, denying a client the services they
requested, but cannot target a speciic client.

6.2. Capabilities of colluding pairs of compro-

mised network elements

We assume GPA capabilities. Mixes assumes all three
intermediate mix nodes on the path are compromised.

Gateway + Mixes. Since this adversary cannot distin-
guish echo traffic from courier traffic, and service nodes
are picked at random, this does not yield useful informa-
tion.

Gateway + Courier. A courier receiving a copy request
can accumulate SURBs as the client retries, and send them
in a burst. At the gateway, it can see this burst and link a
user to that copy request. This adversary knows the length
of the backfill operation, but not the destination box IDs.

Gateway + Replica. Although the courier pinning mit-
igates it somewhat, this adversary does get to perform a
long-term intersection attack by observing which clients
are connected when certain boxes are being read.

Gateway + Contact. A gateway and contact can do
a long-term intersection attack, as the contact knows in
which epoch a user sent a message. This adversary can
more efficiently confirm if the user is a client of the
gateway by dropping or delaying users messages and
observing when messages are received by the contact,
when the contact is using the compromised gateway.

Mixes + Courier. Similar to the capabilities of Gateway,

Courier, except they link the operations to a specific
gateway rather than a specific user

Mixes + Replica. No useful attacks.

Mixes + Contact. No useful attacks.

Courier + Replica. Learns which boxes are being written
and read. Coupled with observations of a user popula-
tion and their network disruptions (GPA) can identify
the client writing to, and clients reading from, a specific
box, when both reader and writer pick the compromised
courier+replica combination. Can link box IDs in backfills
involving the compromised replica.

Courier + Contact. No useful attacks.

Replica + Contact. Knows when boxes are read/written.
For 1:1 conversations, they learn when the other party
was online, even though they were just doing a read.
For groups, they learn when someone in the group was
reading, but can’t necessarily distinguish readers from
each other.

7. Post-quantum security

We have added quantum-resistant cryptographic prim-
itives in a hybrid scheme that combines their guarantees
with those of elliptic curve cryptography. These are all
implemented in golang cryptographic libraries which are
generalised and accessible to other projects. [51]

1) The consensus producing the PKI document, uses the
post quantum hybrid signature scheme of Ed25519
[36] combined with Sphincs+3 [37].

2) We use an upgraded Noise protocol [52], [53],
PQNoise, as described in [33]. It uses KEM 4 [54] as
opposed to the EC Diffie-Hellman in Noise. Katzen-
post [32] is the first implementation of PQNoise.

3) We have two hybrid post-quantum updates to the
Sphinx packet format [30]. One that adds crypto-
graphic agility to the classical Sphinx so that it can
use any NIKE 5. We then use the hybrid post quan-
tum NIKE of X25519 [55] combined with CTIDH
[56]. The other is a KEM–based nested encryption
packet format. It can likewise use any KEM. It is
significantly faster, but has larger packet headers.

7.1. Post-quantum mixnet packets

We will now elaborate on the updates to Sphinx.
The Echomix/Katzenpost packet encryption has two in-
terchangeable ways to achieve post quantum security.

7.1.1. Post-quantum NIKE Sphinx. Our implementation
of NIKE Sphinx uses a generic set of NIKE [57] inter-
faces that allow any NIKE, adding cryptographic agility
to classic Sphinx. We use a hybrid NIKE consisting
of CTIDH512 and X25519. This comes at a relatively
high computational cost, and so it is appropriate for
latency-tolerant implementations with a lower messaging
frequency. It preserves the compactness of classic Sphinx
by using its blinding trick [30].

As in classic Sphinx, the body plaintext contains an
integrity tag and is nested encrypted with an SPRP6 as the
payload δ, while the header is composed of three parts:

• α : A NIKE public key,
• β : Symmetrically encrypted routing information

section,
• γ : A MAC.

Suppose we have a mix node n, with private key xn.
It transforms the Sphinx packet by replacing α, β, γ
with α′, β′, γ′. The Sphinx blinding trick lets the client
compose several NIKE public keys where each key is
generated by a node from the last one using the blinding
operation. In particular, we generate α′:

α, xn −→
DH

S,

α, b(S) −→
blind

α′.

A shared secret S is computed using the packet
header’s public key and the mix node’s private key. A

3. Not to be confused with the Sphinx packet format.

4. KEM: key encapsulation mechanism

5. NIKE: non-interactive key exchange

6. SPRP: strong pseudo-random permutation, or a wide-block cipher.

KDF is used to generate several other secrets, including
a blinding factor b(S). α′ is computed by blinding α
with b(S). And so we don’t need to include separate
public keys for different hops, but we are doing additional
calculations.

Other operations performed by the node are as follows:
it will use S to compute a hash of β, and compare it to
γ to verify the integrity of the header. Then it will strip a
layer of encryption from the payload, and obtain β′, γ′ :

β, p(S) −→
⊕

β′, γ′, n′,

where n′ is the identity of the next node. It will then send
off α′, β′, γ′ and the payload to n′.

This is a straightforward implementation of Sphinx
with added cryptographic agility. We will now compare it
to KEM Sphinx.

7.1.2. Post-quantum KEM Sphinx. We will now intro-
duce KEM Sphinx, our KEM-based [54], Sphinx revision
which uses a generic set of KEM interfaces. Similar to
our NIKE Sphinx, KEM Sphinx is meant to be used
with a hybrid post quantum KEM in order to achieve
post quantum security. A good default choice could be
Xwing [58]. However our implementation makes available
a more general purpose way to compose PQ KEMs using
a generic secure KEM combiner that lets one combine an
arbitrary number of KEMs while preserving IND-CCA2
security if at least one of the underlying KEMs has IND-
CCA2 security. [59]

The KEM ciphertexts are stored in the β section of
the header, which makes it significantly larger. They are
nested encrypted, and the original stream cipher xored
padding scheme is obeyed. In the routing slot for each
hop, the first element is always the KEM ciphertext. The
packet still consists of the following parts:

• α : A KEM ciphertext,
• β : Symmetrically encrypted routing information and

KEM public keys,
• γ : A MAC,
• δ : The packet’s payload.

α β γ δ

Payload

Decapsulate
KEM

KDF

Verify
MAC

SPRP
Decrypt

private key
nx

Header

β, routing info ciphertext 0x00 Padding

XOR

cipher stream p(S)

α′ n’ γ′ β′

α′next hop ID n′ β′ γ′ δ′

Figure 4: A circuit diagram of unwrapping a KEM Sphinx
message ((α, β, γ), δ) into ((α′, β′, γ′), δ′) at mix n.

Since we do not use the blinding trick, the header
is less compact than that of classic Sphinx. It is most

appropriate when a given usage is able to compensate for
the header overhead by making the packet payload bigger.

α, xn −→
decap

S,

β, p(S) −→
⊕

α′, β′, γ′, n′,

7.1.3. Speed. Unwrapping KEM Sphinx packets is
roughly twice as fast than the classical NIKE Sphinx since
it involves one public key operation rather than two. We
no longer calculate the group element for the next hop by
blinding the current group element. Instead, we extract the
new KEM ciphertext from the encrypted routing informa-
tion section of the Sphinx packet header. The following
table compares the header size to Sphinx unwrap speed
on a 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz
processor for Sphinx variants.

Sphinx type resistance ns/op header size

X25519 NIKE ECC 151,383 476

X448 NIKE ECC 254,966 500

X25519 KEM ECC 57,611 636

X448 KEM ECC 208,326 780

Xwing KEM hybrid 175,732 7,164

MLKEM768-X25519 KEM hybrid 182,334 7,164

TABLE 1: Sphinx variants speed in nanoseconds per
operation, and header size in Bytes. It should be pointed
out that X25519 KEM Sphinx is nearly three times as fast
as the standard X25519 NIKE Sphinx, but the header is
only one third larger.

7.1.4. Related work. Another approach to using KEM
with nested encryption packets can be found in the re-
cently published EROR packet format [60]. However, this
format assumes doubling the payload overhead. The goal
of this is to add protection from a tagging attack, in
which an adversary who controls both a node on the way
and a service can corrupt the payload ciphertext and link
the packet with a packet that arrives at a service when
it doesn’t decrypt. However, since the adversary learns
nothing else about the packet this way, and the information
gained on other packets from this is negligible, we propose
that in the context of a mixnet like Echomix this is not
a practical trade-off. Since a practical implementation of
KEM nested encryption may benefit from offsetting the
large header size with a large payload size, doubling the
payload size appears to be additionally costly.

8. Latency and bandwidth overhead

If a packet’s journey is comprised of k steps, each
incurring a mean delay µ = 1

λ , then their sum will follow
the Erlang distribution,

fk,λ(x) =
λkxk−1e−λx

(k − 1)!
.

Since a single delay has both mean and standard deviation
equal to µ, the sum will quickly approach a normal dis-

tribution with mean kµ and standard deviation σ =
√
kµ:

lim
k→∞

λkxk−1

(k − 1)!
e−λx =

λ√
k2π

e−
λ
2

2k
((x−1/λ)2 .

In the Echomix design the round trip involves 9 steps
(gateway - 3 mix nodes - service - 3 mix nodes - gateway),
not including the client’s initial sending scheduler, which
is a separate parameter. The round-trip latency obeys the
Erlang distribution for k = 9:

f9,λ(x) =
λ9x8e−λx

8!
,

with cumulative distribution function:

F9,λ(x) = 1−
8∑

n=0

1

n!
e−λx(λx)n.

This means that the total expected round-trip latency is
9µ, and the probability of exceeding 20µ is about 0.002.

For example, in the Echomix deployment by Zero
Knowledge Network [7] the average delay per hop is
µ = 0.2s, resulting in average round-trip latency of 1.8s,
and a 0.2% chance of exceeding 4s.

The client bandwidth use is a function of the packet
size and send frequency, and cryptographic primitives
used, and the size of the PKI document which the clients
download from gateways. Apart from the PKI document,
which is downloaded at most every 20 minutes, the client’s
overhead is independent of the number of nodes in the
mix network. The size of the PKI document is linear in
the number of nodes in the network.

In the example of ∅ Knowledge Network, each
packet’s user payload size is 30kBs, using an X25519
NIKE Sphinx with an additional 1kB of header and SURB
size. With an average of 2.5 packets sent per second, the
clients send and receive about 77kBs, which means that a
client connected continuously will send and receive about
6.7GBs of data per day, with up to 96% of this memory
being usable payloads. These parameters are practical for
messaging, medium bitrate audio transmission and inter-
facing with many internet services such as cryptocurrency
blockchains.

Sphinx type resistance header + SURB size

X25519 NIKE ECC 1,082

X448 NIKE ECC 1,130

CTIDH1024 NIKE post-quantum 2,030

CTIDH1024-X448 NIKE hybrid 3,226

X25519 KEM ECC 1,402

X448 KEM ECC 1,690

Xwing KEM hybrid 14,458

MLKEM768-X25519 KEM hybrid 14,458

MLKEM768-X448 KEM hybrid 14,746

TABLE 2: Per-packet bandwidth overhead in Bytes on
a mix network with a round-trip of 9 hops for different
Sphinx variants. A comprehensive list can be found in
Appendix IV.

The PKI document grows with the size of the network,
since it has to include each node’s public key informa-
tion. This document is typically downloaded once per 20
minute epoch. The directory authorities can also produce
a smaller document detailing changes from the previous
epoch, so that clients only need to download the full PKI
document when they first connect.

Sphinx dirauths nodes replicas size

X25519 3 10 0 159,901

X25519 9 10 0 459,421

X25519 3 500 5 167,076

X25519 9 500 100 1,071,855

CTIDH1024-X448 3 10 0 159,901

CTIDH1024-X448 9 10 0 459,421

CTIDH1024-X448 3 500 5 167,836

CTIDH1024-X448 9 500 100 1,087,055

TABLE 3: Example size of the PKI document in Bytes.
Directory authorities are assumed to use Ed25519 and
Sphincs+ hybrid signatures, and replicas are assumed to
use Xwing.

9. Conclusion

The Echomix mix network design surpasses the state
of the art systems by providing stronger metadata privacy
and resistance to global adversaries who compromise
users and parts of the network infrastructure, and elim-
inating multiple vulnerabilities of previously published
systems. In particular, it uses symmetry and unobserv-
able traffic coupling to meaningffully protect against traf-
fic analysis, avoiding the mistakes of its predecessors.
Echomix is implemented as a robust real-world open
source software project, Katzenpost [32], elements of
which have been used by several systems, including Zero
Knowledge Network, Cloaked Services and our own chat
client, Katzen.

In order to extend rigorous security guarantees to
the difficult case of persistent multi-user messaging, we
introduce the blinding-and-capability (BACAP) crypto-
graphic protocol, which allows users to unlinkably in-
terface with pseudorandom nodes. Pigeonhole storage, in
conjunction with BACAP, provides additional powerful
privacy properties and extends the messaging protocol to
include functionality expected by today’s users, such as
both short and long term reliability and deleting messages,
while maintaining the anonymity-first design philosophy.
Together, and implemented on top of Echomix, they are
suitable for low-latency, interactive group messaging in
the presence of realistic adversaries. It is the first practical
messaging system design with such strong threat model.

We also introduce KEM Sphinx and cryptographic
agility to the Sphinx packet format, achieving hybrid post-
quantum security in both KEM and NIKE Sphinx. KEM
Sphinx is faster than NIKE Sphinx, but carries more
bandwidth overhead.

Finally, we demonstrate that this design is practical, ef-
ficient, with manageable latency and bandwidth overhead
and can yield a comfortable user experience for many of
today’s Internet services.

Acknowledgment

This work was funded by a research grant from
the Wau Holland Foundation and by Zero Knowledge
Network. Echomix/Katzenpost development is funded by
the Wau Holland Foundation, EU Horizon2020 grant ID:
653497, NLNet, Protocol Labs, Zero Knowledge Network.

References

[1] Siri Jodha Singh Khalsa. Data and metadata brokering: Theory and
practice from the bcube project. Data Science Journal, Jan 2017.

[2] Bryce Newell and Joseph Tennis. Me, my metadata, and the nsa:
Privacy and government metadata surveillance programs. 03 2014.

[3] Belarus classifies social media channels as ‘ex-
tremist’. https://www.aljazeera.com/news/2021/10/29/
belarus-classifies-social-media-channels-as-extremist.

[4] Nsa can map your movements, determine your fellow travelers with
cell data. https://shorturl.at/QnPIg.

[5] Lee Ferran. Ex-nsa chief: ’we kill people based on
metadata’. https://abcnews.go.com/blogs/headlines/2014/05/
ex-nsa-chief-we-kill-people-based-on-metadata.

[6] Sam Biddle. This undisclosed whatsapp vulnerability lets govern-
ments see who you message. https://theintercept.com/2024/05/22/
whatsapp-security-vulnerability-meta-israel-palestine/.

[7] https://0kn.io/.

[8] https://www.cloaked.io/.

[9] Masala. https://github.com/katzenpost/katzen.

[10] https://torproject.org.

[11] Alfonso Iacovazzi and Yuval Elovici. Network flow watermarking:
A survey. Commun. Surveys Tuts., 19(1):512–530, jan 2017.

[12] Brian Neil Levine, Michael K. Reiter, Chenxi Wang, and
Matthew K. Wright. Timing attacks in low-latency mix systems
(extended abstract). In Financial Cryptography, 2004.

[13] Yossi Gilad and Amir Herzberg. Spying in the dark: Tcp and tor
traffic analysis. In International Symposium on Privacy Enhancing

Technologies, 2012.

[14] Ishan Karunanayake, Nadeem Ahmed, Robert A. Malaney, Rafiqul
M. D. Islam, and Sanjay Kumar Jha. De-anonymisation attacks
on tor: A survey. IEEE Communications Surveys & Tutorials,
23:2324–2350, 2020.

[15] Florentin Rochet and Olivier Pereira. Dropping on the edge:
Flexibility and traffic confirmation in onion routing protocols.
Proceedings on Privacy Enhancing Technologies, 2018:27 – 46,
2018.

[16] Anonymisierungsdienst tor angreifbar: Snowden-effekt verpufft.
https://www.ndr.de/fernsehen/sendungen/panorama/aktuell/
Anonymisierungsdienst-Tor-angreifbar-Snowden-Effekt-verpufft,
tor192.html.

[17] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser,
and George Danezis. The loopix anonymity system. In 26th

USENIX Security Symposium (USENIX Security 17), pages 1199–
1216, Vancouver, BC, August 2017. USENIX Association.

[18] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. The Nym
Network https://nymtech.net/nym-whitepaper.pdf.

[19] U.S. vs Jeremy Hammond complaint. https://www.
justice.gov/archive/usao/nys/pressreleases/March12/hackers/
hammondjeremycomplaint.pdf.

[20] https://nymvpn.com/.

[21] https://github.com/CloakedServices/CloakedNetworkPoC/tree/
main/katzensocks.

[22] David L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Commun. ACM, 24(2):84–90, feb 1981.

[23] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and
Aniket Kate. Anonymity trilemma: Strong anonymity, low band-
width overhead, low latency—choose two. Cryptology ePrint
Archive, Paper 2017/954, 2017. https://eprint.iacr.org/2017/954.

[24] https://hoprnet.org/.

[25] Luis von Ahn, Andrew Bortz, and Nicholas J. Hopper. k-
anonymous message transmission. In Proceedings of the 10th

ACM Conference on Computer and Communications Security, CCS
’03, page 122–130, New York, NY, USA, 2003. Association for
Computing Machinery.

[26] Gerrit Bleumer. DC Network, pages 313–315. Springer US,
Boston, MA, 2011.

[27] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. Hang with
your buddies to resist intersection attacks. In Proceedings of the

2013 ACM SIGSAC conference on Computer &; communications

security - CCS ’13, CCS ’13. ACM Press, 2013.

[28] Emin Gün Sirer, Sharad Goel, Mark Robson, and Doundefinedan
Engin. Eluding carnivores: file sharing with strong anonymity. In
Proceedings of the 11th Workshop on ACM SIGOPS European

Workshop, EW 11, page 19–es, New York, NY, USA, 2004.
Association for Computing Machinery.

[29] Raymond Cheng, William Scott, Elisaweta Masserova, Irene
Zhang, Vipul Goyal, Thomas Anderson, Arvind Krishnamurthy,
and Bryan Parno. Talek: Private group messaging with hidden
access patterns. Cryptology ePrint Archive, Paper 2020/066, 2020.
https://eprint.iacr.org/2020/066.

[30] George Danezis and Ian Goldberg. Sphinx: A compact and prov-
ably secure mix format. In 2009 30th IEEE Symposium on Security

and Privacy, pages 269–282, 2009.

[31] Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop- and-
go-mixes providing probabilistic anonymity in an open system.
volume 1525, pages 83–98, 04 1998.

[32] https://github.com/katzenpost.

[33] Yawning Angel, Benjamin Dowling, Andreas Hülsing, Peter
Schwabe, and Florian Weber. Post quantum noise. IACR Cryp-

tology ePrint Archive, 2022, 2022.

[34] https://spec.torproject.org/dir-spec/index.html.

[35] George Danezis and Paul Syverson. Bridging and fingerprinting:
Epistemic attacks on route selection. volume 5134, pages 151–166,
07 2008.

[36] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang. High-speed high-security signatures. In Bart
Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware

and Embedded Systems – CHES 2011, pages 124–142, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[37] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja
Lange, Ruben Niederhagen, Louiza Papachristodoulou, Michael
Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn. Sphincs:
Practical stateless hash-based signatures. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT

2015, pages 368–397, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[38] Privacy and accountability in networks via optimized randomized
mix-nets, grant agreement id: 653497. https://cordis.europa.eu/
project/id/653497.

[39] George Danezis and Len Sassaman. Heartbeat traffic to counter
(n-1) attacks: Red-green-black mixes. In Proceedings of the 2003

ACM Workshop on Privacy in the Electronic Society, WPES ’03,
page 89–93, New York, NY, USA, 2003. Association for Comput-
ing Machinery.

[40] Claudia Diaz, Steven J. Murdoch, and Carmela Troncoso. Impact
of network topology on anonymity and overhead in low-latency
anonymity networks. In Mikhail J. Atallah and Nicholas J. Hopper,
editors, Privacy Enhancing Technologies, pages 184–201, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[41] Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a
trickle to a flood: Active attacks on several mix types. volume
2578, 02 2003.

[42] George Danezis and Jolyon Clulow. Compulsion resistant anony-
mous communications. pages 11–25, 06 2005.

[43] David Stainton, Yawning Angel, and Masala, 2022. https://github.
com/katzenpost/katzenpost/blob/main/core/pki/document.go.

[44] Hemi Leibowitz, Ania Piotrowska, George Danezis, and Amir
Herzberg. No right to remain silent: Isolating malicious mixes,
09 2018.

[45] Tor rendezvous specification - version 3. Tor Project,
November 2013. https://github.com/torproject/torspec/blob/main/
rend-spec-v3.txt#L2302-L2307.

 https://www.aljazeera.com/news/2021/10/29/belarus-classifies-social-media-channels-as-extremist
 https://www.aljazeera.com/news/2021/10/29/belarus-classifies-social-media-channels-as-extremist
https://shorturl.at/QnPIg
https://abcnews.go.com/blogs/headlines/2014/05/ex-nsa-chief-we-kill-people-based-on-metadata
https://abcnews.go.com/blogs/headlines/2014/05/ex-nsa-chief-we-kill-people-based-on-metadata
https://theintercept.com/2024/05/22/whatsapp-security-vulnerability-meta-israel-palestine/
https://theintercept.com/2024/05/22/whatsapp-security-vulnerability-meta-israel-palestine/
https://0kn.io/
https://www.cloaked.io/
https://github.com/katzenpost/katzen
https://torproject.org
https://www.ndr.de/fernsehen/sendungen/panorama/aktuell/Anonymisierungsdienst-Tor-angreifbar-Snowden-Effekt-verpufft,tor192.html
https://www.ndr.de/fernsehen/sendungen/panorama/aktuell/Anonymisierungsdienst-Tor-angreifbar-Snowden-Effekt-verpufft,tor192.html
https://www.ndr.de/fernsehen/sendungen/panorama/aktuell/Anonymisierungsdienst-Tor-angreifbar-Snowden-Effekt-verpufft,tor192.html
https://nymtech.net/nym-whitepaper.pdf
https://www.justice.gov/archive/usao/nys/pressreleases/March12/hackers/hammondjeremycomplaint.pdf
https://www.justice.gov/archive/usao/nys/pressreleases/March12/hackers/hammondjeremycomplaint.pdf
https://www.justice.gov/archive/usao/nys/pressreleases/March12/hackers/hammondjeremycomplaint.pdf
https://nymvpn.com/
https://github.com/CloakedServices/CloakedNetworkPoC/tree/main/katzensocks
https://github.com/CloakedServices/CloakedNetworkPoC/tree/main/katzensocks
https://eprint.iacr.org/2017/954
https://hoprnet.org/
https://eprint.iacr.org/2020/066
https://github.com/katzenpost
https://spec.torproject.org/dir-spec/index.html
https://cordis.europa.eu/project/id/653497
https://cordis.europa.eu/project/id/653497
https://github.com/katzenpost/katzenpost/blob/main/core/pki/document.go
https://github.com/katzenpost/katzenpost/blob/main/core/pki/document.go
https://github.com/torproject/torspec/blob/main/rend-spec-v3.txt#L2302-L2307
https://github.com/torproject/torspec/blob/main/rend-spec-v3.txt#L2302-L2307

[46] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV:
Nonce Misuse-Resistant Authenticated Encryption. RFC 8452,
April 2019. https://www.rfc-editor.org/info/rfc8452.

[47] Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture
for well-conditioned, scalable internet services. SIGOPS Oper. Syst.

Rev., 35(5):230–243, oct 2001.

[48] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke:
distributed private messaging immune to passive traffic analysis. In
Proceedings of the 13th USENIX Conference on Operating Systems

Design and Implementation, OSDI’18, page 711–725, USA, 2018.
USENIX Association.

[49] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,
Matthew Levine, and Daniel Lewin. Consistent hashing and
random trees: distributed caching protocols for relieving hot spots
on the world wide web. In Proceedings of the Twenty-Ninth

Annual ACM Symposium on Theory of Computing, STOC ’97, page
654–663, New York, NY, USA, 1997. Association for Computing
Machinery.

[50] David Stainton, Yawning Angel, and Masala, 2022. https://github.
com/katzenpost/katzenpost/blob/main/core/pki/sharedrandom.go.

[51] https://github.com/katzenpost/hpqc.

[52] Trevor Perrin. The noise protocol framework. noiseprotocol,

Protocol Revision, 34, 2018. https://noiseprotocol.org/noise.pdf.

[53] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flexible
authenticated and confidential channel establishment (facce): Ana-
lyzing the noise protocol framework. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-Key

Cryptography – PKC 2020, pages 341–373, Cham, 2020. Springer
International Publishing.

[54] Ronald Cramer and Victor Shoup. Universal hash proofs and
a paradigm for adaptive chosen ciphertext secure public-key en-
cryption. In Lars R. Knudsen, editor, Advances in Cryptology

— EUROCRYPT 2002, pages 45–64, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[55] Daniel J. Bernstein. Curve25519: New diffie-hellman speed
records. In Public Key Cryptography - PKC 2006, 9th International

Conference on Theory and Practice of Public-Key Cryptography,
volume 3958 of Lecture Notes in Computer Science, pages 207–
228. Springer, 2006.

[56] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou,
Tanja Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková.
CTIDH: faster constant-time CSIDH. Cryptology ePrint Archive,
Paper 2021/633, 2021. https://eprint.iacr.org/2021/633.

[57] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G.
Paterson. Non-interactive key exchange. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, Public-Key Cryptography – PKC

2013, pages 254–271, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[58] Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron
Kaiser, Peter Schwabe, Karoline Varner, and Bas Westerbaan. X-
wing: The hybrid KEM you’ve been looking for. Cryptology ePrint
Archive, Paper 2024/039, 2024. https://eprint.iacr.org/2024/039.

[59] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM
combiners. Cryptology ePrint Archive, Paper 2018/024, 2018.
https://eprint.iacr.org/2018/024.

[60] Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe,
and Christiane Weis. EROR: Efficient repliable onion routing
with strong provable privacy. Cryptology ePrint Archive, Paper
2024/020, 2024. https://eprint.iacr.org/2024/020.

Appendix I: Machine-checkable proofs

For the reader’s convenience, we provide the
machine-checkable proofs in their original electronic
format, ready for verification. They can be found at
https://github.com/katzenpost/research/. along with the
full lists of Sphinx geometry overheads and PKI document
sizes.

Appendix II: Structure of courier read/write

requests

A Sphinx [30] payload destined for a courier contains (for
read and write requests):

Shared fields:

1) The sender’s ephemeral hybrid public key:

a) x25519 public key
b) CTIDH-1024 public key

2) for each designated replica:
a) 256-bit DEK encrypted to the replica’s public key

3) enveloped message which the courier can’t decrypt

For write requests, couriers see:
1) (shared fields)
2) SURB for courier to ACK receipt of request once at

least one replica has accepted it
For read requests, couriers see:

1) (shared fields)

2) Immediate-use SURB, for courier to ACK receipt of
the encrypted (to the client) reply from the designated
replica

3) replica/shard id designating each replica to contact

Appendix III: Structure of replica envelopes

Replicas see write requests as:
1) sender’s ephemeral public key
2) envelope DEK encrypted with shared secret between

sender private key and replica public key
3) enveloped message, encrypted with DEK, containing

a BACAP message:
a) BACAP box ID (M ctx

i)
b) BACAP payload (c ctx

i)
c) BACAP signature (s ctx

i)
Replicas see read requests as:

1) sender’s ephemeral public key
2) envelope DEK encrypted with shared secret between

sender private key and replica public key
3) enveloped message, encrypted with DEK, containing

a BACAP box ID:

a) BACAP box ID (M ctx
i)

https://www.rfc-editor.org/info/rfc8452
https://github.com/katzenpost/katzenpost/blob/main/core/pki/sharedrandom.go
https://github.com/katzenpost/katzenpost/blob/main/core/pki/sharedrandom.go
https://github.com/katzenpost/hpqc
https://noiseprotocol.org/noise.pdf
https://eprint.iacr.org/2021/633
https://eprint.iacr.org/2024/039
https://eprint.iacr.org/2018/024
https://eprint.iacr.org/2024/020
https://github.com/katzenpost/research/

	Introduction
	Threat model
	Anonymity systems in light of the threat
	VPNs
	Tor
	Mix networks
	Non-mixnet theoretical systems with strong anonymity

	The Echomix design
	Gateway nodes
	Decoy traffic and application traffic
	Service nodes
	Iterating on prior research
	Memoryless mixing
	Heartbeat packets
	Vulnerability to traffic analysis in Loopix
	Providers

	The challenges of persistent multi-client messaging

	BACAP
	Choice of encrypt/decrypt functions
	Forward-security
	Unlinkability
	Post-compromise security

	Pigeonhole storage
	Additional concerns in interactive messaging
	Increased vulnerability to statistical disclosure
	Reliability vs forced interactivity and lossiness
	Long-term channel resilience

	All-or-Nothing Design Philosophy
	Replicas and sharding
	Couriers
	Writing messages
	Reading messages
	Tombstones

	Server context and storage duration
	End-to-end reliable group channels
	Future work and variations on the design

	Security properties of Pigeonhole messaging over Echomix
	Single-role adversary capabilities
	Capabilities of colluding pairs of compromised network elements

	Post-quantum security
	Post-quantum mixnet packets
	Post-quantum NIKE Sphinx
	Post-quantum KEM Sphinx
	Speed
	Related work

	Latency and bandwidth overhead
	Conclusion
	References

