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Abstract—W:ith the rapid growth of blockchain tech-
nology, smart contracts are now crucial to Decentral-
ized Finance (DeFi) applications. Effective vulnera-
bility detection is vital for securing these contracts
against hackers and enhancing the accuracy and ef-
ficiency of security audits. In this paper, we present
SimilarGPT, a unique vulnerability identification tool
for smart contract, which combines Generative Pre-
trained Transformer (GPT) models with Code-based
similarity checking methods.

The main concept of the SimilarGPT tool is to
measure the similarity between the code under inspec-
tion and the secure code from third-party libraries.
To identify potential vulnerabilities, we connect the
semantic understanding capability of large language
models (LLMs) with Code-based similarity checking
techniques. We propose optimizing the detection se-
quence using topological ordering to enhance logical
coherence and reduce false positives during detection.
Through analysis of code reuse patterns in smart con-
tracts, we compile and process extensive third-party
library code to establish a comprehensive reference
codebase. Then, we utilize LLM to conduct an in-
depth analysis of similar codes to identify and explain
potential vulnerabilities in the codes. The experimental
findings indicate that SimilarGPT excels in detect-
ing vulnerabilities in smart contracts, particularly in
missed detections and minimizing false positives.

Index Terms—Smart Contracts, Vulnerability Detec-
tion, Code Similarity, LLM, DeFi

I. INTRODUCTION

Since the origin of Ethereum [1], smart contracts have
emerged as a fundamental element of blockchain technolo-
gies. Their immutable, transparent, and open-source char-
acteristics have established the foundational Decentralized
Finance (DeFi) application framework. Given that the
DeFi ecology encompasses a multitude of cryptocurrencies
[2], it is imperative to identify and address security vul-
nerabilities in smart contracts. As reported by Defillama
Hacks, hacking incidents have resulted in approximately
$9.06 billion in damages through November 2024 [3]. This
scenario presents a substantial risk to the security of the
entire DeF1i ecosystem and user assets.Smart contract vul-
nerabilities primarily stem from design flaws and coding
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errors within decentralized applications, with logical in-
consistencies representing a key attack vector for malicious
hackers [4]. Existing analysis tools [5]-[8] primarily focus
on detecting vulnerabilities that follow predictable static
patterns in control and data flows, such as reentrancy
issues 9] and integer overflow vulnerabilities |10]. How-
ever, these conventional program analysis approaches have
shown limited effectiveness in practice [11].

The emergence of generative large language models [12],
[13] recently has revealed their significant advantages for
auditing smart contracts. Recent investigations [14]-[1§]
have demonstrated that large language models (LLMs) are
promising in auditing smart contracts. Current research
in LLM-based vulnerability detection primarily examines
smart contracts at the contract or function level, using
structured prompts as LLM inputs. The effectiveness of
using LLMs for smart contract vulnerability identification
is optimized through a two-phase approach that sepa-
rates the initial detection process from the subsequent
analysis of vulnerability root causes. However, this ap-
proach heavily relies on Large Language Models’ inherent
reasoning abilities and their pre-training knowledge base
for detecting vulnerabilities in smart contracts |16]. This
challenge can be mitigated by improving the model’s rea-
soning skills,like fine-tuning. Yet, fine-tuning has limited
scalability, risks overfitting to specific datasets, and cannot
update knowledge in real-time.

Additionally, research by [16] revealed that simply in-
corporating vulnerability knowledge into LLMs is insuffi-
cient for improving their reasoning capabilities. The study
demonstrated that LLMs can effectively reasoning for
vulnerability detection when the vulnerability knowledge
is carefully structured and systematically integrated.

Recent research [19]-[21] has demonstrated that in the
development of Defi, there is a considerable amount of
code reuse due to developing costs, code security, and
developer habits, and other reasons [19]. This trend is
particularly prominent in the development of Solidity
smart contracts. The study [21] analyzed over 350,000
Solidity smart contracts to investigate the present state
of smart contract composition and code reuse. The study
indicated that more than 80% of subcontracts came from
external sources, with Node Package Manager(NPM) as



the largest external source, accounting for more than 72%
of external subcontracts and less than 17.06% of subcon-
tracts being self-developed. This conclusion emphasizes
the dependency on third-party libraries and frameworks
for smart contract development. This shows that smart
contract development is significantly dependent on third-
party package on npm.

Moreover, [21] discovered that approximately 50% of
these self-developed subcontracts have fewer than 10%
unique functions. Code reuse, including self-developed
subcontracts, is common at the function level. This sce-
nario may represent that when confronted with complex
functional requirements; developers prefer to reuse existing
snippets of code rather than writing them from scratch
to save development time and potential security concerns.
The report further indicates that despite Solidity’s built-in
tmport statement for subcontracts, a significant majority
(over 56%) of duplicated subcontracts are sourced from
NPM package rather than direct imports, indicating a
certain amount of uncertainty on dependency management
[21].

Similarity checking for vulnerability detection have been
developed in response to the extremely high rate of code
reuse on Ethernet [22]-[24]. The technique involves ana-
lyzing code patterns and structures to identify potential
security vulnerabilities, such as insecure mathematical
operations and access control vulnerabilities, through com-
prehensive code comparison techniques, including data
flow and control flow analysis, syntactic examination, and
various pattern matching methodologies for smart con-
tract verification |24]. Similarity checking for vulnerability
detection in contracts face significant limitations in cap-
turing comprehensive contract characteristics - including
syntactic elements, semantic meaning, and functional be-
haviors. This inadequate representation often leads to sub-
stantial detection gaps and incorrect vulnerability identi-
fications [24].

To this end, we present SimilarGPT, the first tool
that combines GPT and Code-based similarity check-
ing(CBSC) to find coding flaws in smart contracts. Given
the significant code reuse problem in Ethereum [21], we
use a deep learning model to vectorize the "correct" code
(i.e., generic third-party code with no vulnerabilities) and
the code to be detected. By measuring the similarity,
we can use the "correct' code from related third-party
libraries as a reference and feed it into LLMs with the
code to be detected for detailed semantic-based detection.
This strategy is motivated by the belief that "in school,
students with average grades and love to learn will tend to
compare their answers with those of high-scores students
after completing their after-school homework in order to
find out the shortcomings of their solutions'.

However, LLMs could generate the illusion that "al-
though this function itself is not vulnerable, we believe
that this function is vulnerable because other functions
it calls may be vulnerable, which affects the security of

this function". To overcome this issue, SimilarGPT uses
a topology-based sequence of function calls, effectively
mitigating the impact of the LLM illusion.

To obtain high-quality data for use as similar code,We
refer to [21] to collect samples and use our own data
improvement methods to filter out negative examples. We
collected third-party packages as a dataset, by using [21]
as reference. After processing, this dataset consists of the
top 150 most frequently used npm and GitHub package,
with 35705 files and 357050 functions in total. In the
following steps, we polished each function by removing
comments, whitespace, indentation, and line breaks before
filtering it using hash matching. After those processing
procedures, we have 83,321 selected functions. This strat-
egy not only increases data quality, but it also provides us
with a dependable reference codebase, which serves as a
solid foundation for future code similarity detection and
vulnerability detection.

RoadMap. the rest of this paper is organized as follows.
We first introduce the related background in [[I} and then
present the detailed design of SimilarGPT in [[TIl Then,
we show the experimental setup and results in [[V] After
that, we discuss the related work and limitations in[V]and
[V} respectively. Finally, [VII] summarizes the paper.

II. BACKGROUND
A. Smart Contracts and Their Vulnerabilities

Smart contracts enable decentralized finance (Defi) [25]
in blockchain transactions, eliminating the need for mid-
dleman. According to DeFiLlama [2], the total locked-in
value on the three major blockchain platforms - Ether,
Solana, and Tron - has reached $74 billion by November
2024. Smart contract vulnerabilities can lead to property
loss, as seen in the TheDao event, which cost around
$150 million. However, owing to the characteristic of the
blockchain, The contract cannot be modified once de-
ployed on the blockchain, leaving any vulnerabilities open
to potential exploitation. [26].

B. LLM-driven Formal Vulnerability Detection of Smart
Contracts

Generative pre-trained transformer (GPT) models, such
as GPT-4 [12], are extensive language models (LLMs)
developed using vast datasets. These models possess the
ability to learn from text, comprehend and analyze source
code, and perform zero-shot learning [27], enabling them
to detect security vulnerabilities in code without needing
specific examples.

Despite its promise for code auditing, multiple studies
have demonstrated that GPT models cannot replace hu-
man auditors. David et al. (2023) shows that inputting the
entire project code into a GPT model is both expensive
and difficult for achieving accurate detection outcomes.
Sun et al. [28] studied the effect of different components
(e.g., function calls, external knowledge) on vulnerabil-
ity detection for LLM. Even under optimal conditions,



such as improving GPT-4’s vulnerability knowledge with
Retrieval Augmentation Generation (RAG), the accuracy
in the context of LLM’s vulnerability detection paradigm
remains below 30% when both the decision (i.e., correctly
determining the presence of a vulnerability in the code)
and the argument (i.e., correctly pointing out the type of
vulnerability) are correct.

C. similarity-based code detection

Code-based similarity checking (CBSC) techniques
identify potential vulnerabilities by analyzing and compar-
ing the specific code implementations of different smart
contracts. The core idea of this technique is to perform
code pattern matching for similar structures using various
methods, such as data flow/control flow analysis [22],
semantics analysis [24], and symbolic execution [23|. The
goal is to identify the potential presence of similar code
fragments that may contain known vulnerabilities [24]. For
instance, certain code patterns (e.g., insecure mathemat-
ical operations and access control vulnerabilities) may be
repeated in multiple contracts.

Nevertheless, it is challenging to capture the syntactic,
semantic, and functional information of contracts through
the abstracted characterization of contracts using CBSC
techniques. Therefore, it is likely to result in many false
positives and underreporting [24].

III. DESIGN OF SIMILARGPT

The overall design of SimilarGPT and the primary chal-
lenges of LLM in detecting smart contract vulnerabilities
are depicted in [[IIFA] The three critical components of

SimilarGPT are then introduced in [[TI-B}, [[TI-C}, and [[TI-D},
respectively.

A. overview and challenges

The entire framework of SimilarGPT is illustrated in
Fig. [} The green box represents the LLM-based agent,
while the blue box represents the data processing. The
smart contract code is first preprocessed by breaking it
into distinct functions, ensuring each data segment to
be evaluated is a separate function. The detection order
of these functions is established through topological or-
dering based on their calling relationship. Subsequently,
the detector is provided with similar code from third-
party package to conduct a similarity checking for the
code. The Socrates section receives the detection result
for subsequent evaluation.

Challenge. Despite the concise architecture of Simi-
larGPT in Fig. [I it is challenging to conduct effective
smart contract auditing, which involves enhancing the
detection rate while minimizing the impact of LLMs’
illusions. Several challenges were encountered during the
design and implementation of SimilarGPT, as detailed
below:

o How can SimilarGPT effectively detect smart con-

tract vulnerabilities? While some research has demon-
strated the potential of LLMs for smart contract

vulnerability detection, most existing tools cannot
combat the increasingly difficult hacking event on the
blockchain due to the lack of well-designed knowledge
and the rapid iteration of new smart contract vul-
nerability . This work proposes a GPT-driven Code-
based similarity checking for vulnerability detection
for smart contract. We will first present this in [[II-B}

e How can SimilarGPT effectively handle contextual
information? The previous paper [16] explored how
various factors affect LLMs’ ability to detect wvul-
nerabilities in smart contracts, including the impact
of model hyperparameter configurations [29] and the
integration of external knowledge sources [30]. Ac-
cording to [16],simply providing context info may
not always help LLMs’ reasoning about vulnerabili-
ties. It may also cause diversions, preventing LLMs
from correctly discovering vulnerabilities. So, how to
effectively convey vulnerability-related context will
significantly LLMs’ capacity to detect vulnerabilities.
We combine a sequence of vulnerability detection
functions based on topological ordering into Simi-
larGPT. It is used to deal with the large model’s
contextual information processing during the smart
contract detection procedure. This will be given in
MI-Cl

e How to collect a high quality dataset for code compari-
son? Acquiring a high-quality dataset remains a crit-
ical foundation, both for conventional vulnerability
detection methods that rely on code similarity and for
our SimilarGPT approach. We refer to [21]’s method
to obtain the dataset and use our own data filtering
method to find out the possible negative samples in
the dataset. This will be

e How Can We Reduce False Positive Rate in Large
Model Vulnerability Detection? False positives rate
play a critical role in vulnerability detection. However,
the hallucination of LLMs [31] constantly leads to
false positives for vulnerabilities. As a result, under-
standing how to reduce the impact of the LLMs illu-
sion becomes critical. We will use recent developments
in the Multi-agent Framework in LLMs to connect
this topic. Specific details will be presented in [[TI-E]

B. Code-based similarity checking

Fig. [2| shows the first code sample from [4], which
focuses on vulnerabilities that machines cannot audit. [4]
demonstrates that in Fig. The problem described is
difficult to identify, having passed through several rounds
of manual auditing and tool evaluation without being
discovered. This is because it needs to know the meaning
of _allowances, the purpose of the transferFrom function,
and the business model. Fortunately, an ethical hacker
discovered the vulnerability and reported it to Immunefi
[32], a web3 vulnerability bounty site. The project side
of Redacted Cartel rewarded the hacker with around
$560,000.
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Fig. 1: An overview of SimilarGPT, green blocks indicating GPT works and green blocks suggesting

code similar analysis.

1 function transferFrom(address from, address to,
uint256 amount) onlyAuthorisedOperators

external {
2 _transfer(from, to, amount);
3 _approve(from, msg.sender, allowance(from,
to)amount) ;
4 return true;
5 }

Fig. 2: The Redacted Cartel exploit

1 function transferFrom(address from, address to,
uint256 amount) external{

2 _transfer(from, to, amount);

3 _approve(from, _msgSender(), _allowances
[from] [_msgSender()]-amount);

4 return true;

5 }

Fig. 3: transferFrom function in Openzeppelin’s
ERC20 contract

However, the code was probably a clone from the
Openzeppelin package. The transferFrom function for
openzeppelin’s older versions of ERC20 is shown in Fig.
and the two functions are largely similar, differing
primarily in their modiﬁerﬂ However, the vulnerability
can be discovered easily by means of similarity checking.
However, simply using CBSC for vulnerability detection
makes it hard to capture contracts’ syntactic, semantic,
and functional information.

Inspired by this, We use the similar correct code as
a reference and use GPT attempt to identify potential
vulnerabilities by comparing the differences between the
correct third-party package’s code and the code to be iden-
tified. The difficulty of understanding function semantics
of traditional CBSC is overcome by GPT.

ISimilar to [4], we simplify the actual code to clarify it.

C. Topological Ordering-based Vulnerability Detection Se-
quencing

The detection results of LLM

This code snippet itself does not
have a reentrancy vulnerability, but
there maybe a risk of reentrancy if
the _transfer function calls an
external contract or accesses an
unlocked state

Fig. 4: Detection results of the transferFrom
function in Fig.

In this paper,Fig. [] depicts the outcome of using the
code in Fig. [3]as a direct input to GPT-4 for vulnerability
detection. When conducting vulnerability assessments of
Large Language Models (LLMs), we frequently encounter
scenarios similar to those illustrated in Fig.[d] The function
in Fig. |3| has been audited by some specialists. Thus, we
can presume that it has no vulnerability. Similarly, no ap-
parent vulnerabilities were found when LLM examined the
transferFrom function. However, it indicated that other
functions called by the transferFrom function, such as the
function _ transfer in Fig. [3] are vulnerable. In the end it
was determined that this case was considered vulnerable.
This is particularly prevalent in the detection of reentrant
vulnerabilities. Predictably, there are likely two causes for
this predicament. 1. Insufficient context information. 2.
Incoherent reasoning resulting from the hallucination of
LLMs. We focus on solving the first problem.

It is evident that if LLM thinks that function B, called
by function A, has a vulnerability, we can test function B
first. Then, we can test function B first and then function
A. In the same way, if function B calls function C, then
we test function C first. Then, there will always be a
function at the bottom of the list which does not call any



other function. Following this, a directed acyclic graph
of function calls exists in function calls. Function A is
called function B, and A depends on B. So, at the time of
detection, B was detected first. In this way, we can perform
function-based smart contract detection in the sequence of
topological ordering [33]. Of course, some tools can also be
used [34] for call graph construction.

Let G = (V,E) be a directed acyclic graph where
V' represents the set of functions and modifiers in a
smart contract, and E represents the calling relationships
between them. For any two vertices v;,v; € V, an edge
(vi,vj) € E indicates that function v; calls function v;.

Given that vulnerabilities in called functions can affect
their callers, we propose a systematic detection approach
based on topological ordering. Let f: V' — V be a calling
relationship where f(v;) = v; denotes that v; calls vj.
Then:

e Let S = {v1,v9,...,un} be the set of all functions and

modifiers in the contract.

o For each vertex v; € S, we define:

1) C(v;) = {v; € S| f(vi) = vj} as the set of
functions called by v;
2) For each vj; € C(v;), we add edge (vj,v;) to E
e Let 7 : V — IN be a topological ordering of G such
that for every directed edge (vi,vj) € E, 7(v;) <
7(v5)

This topological ordering 7 provides the optimal se-
quence for vulnerability detection, ensuring that called
functions are always analyzed before their callers. For any
v;,vj € V, if v; calls vj, then 7(vj) < 7(v;), guaranteeing
a bottom-up analysis approach.

As for some possible cases, such as rings in the sequence
of function calls, we plan to optimize those scenarios in
future work.

D. High-quality Data Collection and Filtering

Collecting code from third-party libraries. In or-
der to employ similarity code for checking, obtaining an
extensive amount of code from third-party packages is
necessary. We have collected the most frequently used npm
and GitHub packages in recent years [19]-[21]. For our
data collection methodology, we refer to research from [21],
which analyzed over 350,000 smart contract source codes
gathered from Etherscan, encompassing both Ethereum
mainnet and Goerli testnet deployments between January
2021 and January 2023. A catalog of third-party packages
was subsequently generated from the import statements
of the collated contracts. The 150 most frequently used
third-party libraries will be our third-party library code
for reference. The utilization of each third-party library
between January 2021 and January 2023 was determined
through import statements and clone detection methods.

For these third-party library codes, we implemented the
following approach. Collect the various versions of third-
party libraries; for example, as of November 2024, the

npm package of "@openzeppelin/contracts" [35] has 87
distinct versions, which equate to 87 gzip package files. For
each third-party library we collect all the different versions
of its gzip package. After collecting 150 distinct versions
of third-party libraries, we gathered around 10,000 gzip
package files. We collect all of the .sol files in those gzip
packages. Then, we have gathered around 46918 .sol files.
Moreover, we extract each function in the file and calculate
its hash; this allows us to filter out most of the identical
code, particularly for multiple versions of the same third-
party library with just minor code differences. This way,
the vulnerable code that has been modified will be stored.
There are 766,505 functions before the hash match and
only 35,709 functions following the hash-based filtering.

After hash matching, we use the all-MiniLM-L6-v2
[36] model based on sentence-transformers [37] to con-
vert the code into vectors. all-MiniLM-L6-v2 model maps
sentences and paragraphs to a 384-dimensional dense
vector space and can be used for tasks like clustering
or semantic search. The model is based on pre-trained
nreimers/MiniLM-L6-H384-uncased model and fine-tuned
in on a 1B sentence pairs dataset. The all-MiniLM-L6-
v2 model is one of the best models based on Sentence
Transformers [38]. Compared to other models, [39]-[41]
exhibits higher efficiency, and the encoding pace is also
fast.

Similarity calculation. Refer to [24], we compute the
Euclidean distance to assess code similarity. Specifically,
we define the semantic distance and similarity between
two code fragments C] and Cq, as well as their related
code embeddings e; and eg, as:

Euclidean(ey, e2)
llex]l + llez]|

Distance(Cq,Cs) =

Similarity is defined as follows:
Similarity (C1, C2) = 1 — Distance(C1, C2)

Two code snippets C; and C; are considered to be
clones if their similarity scores above a certain similarity
threshold §. Based on our observations, 0.65 can be utilized
as a similarity threshold. Above 0.65, we may consider the
two codes just similar; below 0.65, the two codes maybe
different in semantically, structurally, or functionally dis-
tinct.

In this method, we can group the code into three
categories: code with similarity 1, code with similarity less
than 1 but greater than 0.65, and code with similarity less
than 0.65.

1) similarity = 1.As expected, the code with a similarity
of 1 is cloned by the developer from third-party
libraries such as openzeppelin [35]. we will directly
determine if there is a vulnerability in the code.

2) 0.65 < similarity < 1. For codes with similarity less
than 1 and more than 0.65, which is the main focus of
our research, we incorporate those similar codes into
the GPT as part of the prompt.



3) similarity < 0.65. For codes with a similarity of less
than 0.65, no knowledge augmentation is performed,
and they are inserted into the prompt as input to the
GPT.

Filter vulnerability code. In the case that these
third-party libraries contain potential vulnerability code.
We employ the current vulnerability datasets for smart
contract that have been collected from frequently used
public datasets, including defihacks [42], slowmist [43],
and github’s issues [44], according to [16]. For the current
top 150 third-party libraries, we attempt to gather the
historical vulnerabilities that have occurred in those third-
party libraries. Subsequently, we refer to the GPT-4-based
method outlined in [16] to extract relevant vulnerability
knowledge from the vulnerability descriptions. We attempt
to annotate the corresponding original code by labeling
it as a function with a vulnerability after carefully ver-
ifying the vulnerability’s existence. Nevertheless, we do
not abandon such vulnerable functions; they are employed
as illustrations of vulnerabilities for subsequent testing.
This is precisely the function of traditional code similarity-
based vulnerability detection.

E. Socratic method

Previous research [15], [16], [18] discovered that vulner-
ability detection based on LLMs generates a substantial
number of false positives, especially when the context
is not given correctly |16]. Several issues contribute to
these false positives, including knowledge mismatch and
poor LLM reasoning ability. We are primarily focus with
decreasing the false positives caused by LLMs illusions.

As LLM research advances, there is an increasing recog-
nition of Prompt Engineering’s ability to dispel LLMs’
misconceptions. The Socratic method of debate [45]—[48] is
very attractive. Asking and responding to questions, start-
ing with generalized beliefs and then testing their internal
consistency through rebuttals [47], helps us get closer
to the truth, reducing the illusions that may be present
in large-scale models and thus improving the accuracy
of the models’ judgments. In particular, we established
three LLM roles: Critic, Supporter, and Judge |47]. The
following is the flow of their interactions:

e Detector is a critical component to performing ef-
fective smart contract auditing. We feed the code to
be detected and the similar code into Detector, and
the vulnerabilities are identified by recognizing the
differences in implementation between the two pieces
of code.

e Critic & Supporter. In order to determine the
validity of the vulnerability reason during the de-
tecting phase, we use the Socratic method to assess
the validity of the output from the detecting phase.
Specifically, Critic refutes the cause of the vulner-
ability given by Detector, while Supporter further
evaluates Critic’s output to debate and determine the
most appropriate cause of the vulnerability.

o Judge is responsible for synthesizing the vulnerabil-
ity cause, the vulnerability cause arguments given by
Critic and Supporter. And, it independently gives its
own judgment.

In our future work we consider using multiple rounds of
iterations to optimize the Socratic method. [46] [46]

IV. EVALUATION
A. Experimental Setup

In this section, we will provide a summary of some key
implementation details about SimilarGPT

GPT model setups. We use the GPT-4-turbo model
from OpenAl for SimilarGPT. Our work indicates that
GPT-4-turbo could be cost-effective while offering enough
inference capacity. The model hyper-parameters are main-
tained at their default values, with TopP set to 1, pres-
ence penalty set to 0, and frequency penalty set to O.
Nonetheless, It should be mentioned that to lessen the
impact of the GPT’s output’s unpredictability, we set
the temperatures of the three roles-Critic, Supporter, and
Judge—to 0. To retain some creativity, the detector’s
temperature is set to 0.8, which gives LLM several possibil-
ities for produce some creative results [16]. Furthermore,
each agent interaction occurs in a fresh session, ensuring
independence between conversations and preventing any
potential interference from previous responses.

Datasets. To accurately assess the detection capability
of SimilarGPT and the efficacy of CBSC. We employ
real-world vulnerabilities and smart contract audit reports
from reputable industry companies as datasets. We col-
lect two datasets separately. The first dataset comprises
vulnerability data from Defihack [42], a well-known DeFi
Hacks dataset, and CVE (Common Vulnerabilities and
Exposures) [49]. We collect 13 typical vulnerability data
from the Defihack and CVE wvulnerability collections.
We have included a variety of types of vulnerabilities,
such as overflow, access control, bad randomness, price
manipulation, and logic vulnerability, to ensure that the
vulnerability data is comprehensive. Those vulnerabilities
encompass a range of ages, from 18 to 24. The second
dataset is sourced from Solodit [50]. This popular smart
contract auditing website is specifically designed to fa-
cilitate the auditing of Web3 projects, with a particular
emphasis on smart contract security. SimilarGPT will
be assessed by collecting 67 vulnerable functions from
Solodit as positive samples and 71 negative samples (i.e.,
non-vulnerable code). The specific gathering methods are
similar to those employed to address vulnerable code from
third-party libraries.

Research question. Our proposed method focuses on
two primary issues: enhancing recall and lowering false
positive rate. Thus, we developed a series of experiments
to address the following research questions(RQs):

1) RQ1: How effective is SimilarGPT at detecting vul-
nerabilities? How does it compare to traditional vul-



nerability detection methods, including those based
on LLM?

2) RQ2: How helpful is the Socratic method for improv-
ing SimilarGPT’s precision rate?

3) RQ3: How effective is SimilarGPT’s Code-based
similarity checking in improving the recall of Simi-
larGPT?

B. RQ1 - Vulnerability Detection

We examined SimilarGPT’s detection of real-world vul-
nerabilities. These real vulnerabilities once led to over
$1,000,000 losses in defi. The settings for SimilarGPT are
essentially kept as specified in [[V-A] i.e., the parameters
are kept as defaults, with only the detector role set to a
temperature of 0.8 and the Critic, Supporter and Judge
roles set to a temperature of 0. Table [I| displays the per-
formance of SimilarGPT on 13 real-world vulnerabilities.
SimilarGPT is compared to Slither [6], a popular static
analysis tool for detecting vulnerabilities, and Mythril [5],
a symbolic execution tool. In addition, Gptlens [15] is an
adversarial framework for vulnerability detection in smart
contracts based on the Large Language Model (LLM),
aiming to overcome the accuracy and recall concerns of
existing LLM tools in vulnerability detection.
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Hopelend overflow
Coinlancer access control
Virgo_ ZodiacToken logic error
Lancer overflow

TABLE I: Vulnerability detection results for 13
real-world vulnerabilities.

In Table[l] the first column lists the vulnerability name,
followed by the corresponding vulnerability description.
The remaining columns provide the detection results for
each tool. Table [I] shows that SimilarGPT outperforms
all the tools, with SimilarGPT detecting 8 out of 13
vulnerabilities, followed by Gptlens with 4 vulnerabili-
ties, Slither detecting only one vulnerability related to
bad-randomness, and Mythril detecting one vulnerability
related to overflow. In those undetected vulnerabilities,
the Lancer and ZongZi contracts were due to that they
didn’t provide enough contextual information, including
the solidity version and calling function information. The
vulnerabilities in the Bad Guys by RPF contract were
identified due to the absence of modifiers applied to its
parameters. Yet Critic and Judge continue to argue that
there is no vulnerabilities. The GPU weakness was not

identified as a perceived risk, and our think that this may
be a result of the knowledge update time of large models.
The knowledge of GPT-4-turbo is updated until 2023.

And the capabilities of SimilarGPT can be improved
in real time by adding third-party package updates and
open-source vulnerability code from different auditing
platforms.

Defi-fork-bugs. The vulnerability found in the Ura-
nium [51] contract led to losses of about $50 million.
This issue stemmed from a slightly modified function
originally from uniswap v2. A coding error introduced the
bug, causing the significant financial loss.In fact, we can
avoid this bug entirely. As early as April 2021, a identical
vulnerability had impacted Nimbus [52]. If we're serious
about learning this lesson. But even in the 2023,Swapos
[53] contract experienced the same coding error, although
the identical vulnerability had already occurred two years
ago. In this time, Swapos’s vulnerability resulted in losses
of almost $468,000. Nevertheless, this incident was com-
pletely avoidable, and the security weakness that led to it
should never have existed in the first place. And, this is
where SimilarGPT’s effectiveness may manifest.

Answer for RQ1:SimilarGPT excels in detecting
real-world vulnerabilities, identifying a broader range
of vulnerabilities more effectively compared to other
tools. This demonstrates SimilarGPT’s practicality
and efficiency in smart contract security analysis.

C. RQ2 - Socratic Debate Framework

The two primary components of the SimilarGPT are
vulnerability identification and false positive filtering.
While part ot CBSC identifies vulnerabilities, the Socratic
method is responsible for mitigating the impact of the
LLM’s hallucination. This section uses the Solodit dataset
that was previously mentioned in

The Socratic method |45), [47] is a type of debate method
that involves asking and answering questions, beginning
with universal beliefs and examining their internal coher-
ence through rebuttals. Here, we attempt to demonstrate
the Socratic method’s effectiveness in filtering false pos-
itives. We refer to the study [15], [18] as a comparison.
Specifically, we construct two frameworks. 1) a conven-
tional one-stage framework; 2) a two-stage framework. In
the one-stage framework [18], both vulnerability detection
and interpretation are performed by the same agent; how-
ever, in the latter two-stage framework [14], [15], former
agent is responsible for detecting the vulnerability, while
the latter is responsible for determining the validity of the
vulnerability interpretation. The prompts in two of these
frameworks are similar to SimilarGPT, and the same code
similarity-based detection mechanism is employed.

In the results shown in Fig. [5], our approach outperforms
the traditional model in all four main performance metrics.
The fact is that the three frameworks do not differ much
in recall rate. Even the single-agent framework performs
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Fig. 5: Comparing SimilarGPT with the
traditional integration models.

better on recall. However, when further analyzed, we find
that their frameworks do not perform well on negative
samples, resulting in the highest false positive rate, reach-
ing 57% false positive rate, for the one-stage. Observing
the experimental results suggests this issue is primarily
due to hallucinations in LLMs.

Answer for RQ2:the application of the Socratic
Debate Framework in SimilarGPT reduced the false
positive rate to 12%, compared to 57% in single-agent
frameworks. This demonstrates the framework’s effec-
tiveness in refining the detection process by mitigat-
ing the influence of hallucinations in large language
models.

D. RQ3 - Code-based Similarity Checking

In this section, we try to answer question for how
effective CBSC' is in improving the recall rate.

The dataset for the experiment is the Solodit dataset,
which contains 138 samples, of which 67 are positive ex-
amples and 71 are negative examples. This dataset is also
used in the ablation experiment of the Socratic method.

We have implemented modifications to the framework.
In the detector section, we have eliminated the CBSC
method and instead used the code to be detected as
input to the detector. Additionally, the default settings
are maintained for the model parameters, except for the
temperature option.

TP | TN | FP | FN | Sum

with SimilarChecking 38 63 12 30 143
without SimilarChecking 20 61 10 47 138

TABLE II: detecting results before and after
SimilarChecking.

Table [[]] shows that in the Solodit dataset, SimilarGPT
discovered 38 true positives (TPs) and produced 12 false
positives (FPs). Without a CBSC method, there are only
20 TPs, which is roughly half of the former. However,
we highlight that in the absence of CBSC method. The
precision rate is 66%. There isn’t much of a difference
between these examples and the ones with CBSC method.
A plausible assumption is that CBSC method has no
substantial influence on precision rates.

Answer for RQ3:the use of Code-based similarity
checking in SimilarGPT raised the true positive de-
tections from 20 to 38, highlighting its effectiveness in
improving the recall rate and thereby enhancing the
tool’s overall accuracy in identifying vulnerabilities.

V. RELATED WORK

Vulnerability Detection. In recent years, vulnerabil-
ity detection has received a lot of attention, especially
given the rapid development of blockchain and smart
contract technologies. Early research concentrated on ap-
proaches like static analysis, dynamic analysis, and formal
verification. And for those static analysis tools, such as
Slither 6], Oyente [8], and others [54]—[56], identify pos-
sible vulnerabilities by comparing the code’s syntax and
control flow to preset rules. However, such approaches have
limitations in dealing with complex logic, dynamic behav-
ior, and low-level vulnerabilities (e.g., re-entry attacks),
making it difficult to detect complex logic errors and
resulting in too many false positives. Dynamic analysis,
like Fuzzy testing Confuzzius [7], Sfuzz [57], and other
tools [58] by automatically generating inputs to test the
behavior of the system, as well as symbolic execution
Manticore citemanticore, Mythril [5], |59]—[61]. Formal
verification [62], [63] ensures the correctness of the code
through mathematical proofs. While providing a high
degree of accuracy, it is usually applicable to smaller or
relatively simple systems, and the verification process is
complex and time-consuming.

Based on the observation that the code reuse rate is high
on Ethernet [19]-[21], vulnerability detection methods
based on code similarity have been properly developed.
Liu [23] et al, developed a semantic clone detection tool
for Smart Contracts in Ethereum. The method captures
essential semantic elements from symbolic transaction exe-
cution and converts them into vectors for similarity evalua-
tions. To address the constraints of vulnerability detection,
they offer a semantic-aware security auditing approach [64]
that evaluates vulnerabilities through N-gram language
modeling and static semantic labeling. In addition, [65]
enhanced vulnerability detection accuracy by depicting
syntactic and semantic aspects of contracts using the
birthmark. Huang [22] et al, analyzed data flow and
control flow using key instructions and the Graph2Vector
tool for similarity. Pierro [66], Chen [67], and Gao [6§]
evaluated contract similarity and detected vulnerabilities



by analyzing the edit distance of Abstract Syntax Trees
(AST), node type hash sequences, and normalization of
variables and constant values, respectively. These studies
collectively advanced the development of smart contract
security analysis.

LLM-based vulnerability detection.Researchers  have
made extensive use of Large Language Models (LLMs)
for vulnerability detection, including Ullah [69], Fu
[70], Thapa ([71], David [72], Alqarni [73], Sun [2§|,
Mathews [74], Hu [75] and Purba [76], among others.
They evaluated the performance of LLMs on vulnerability
detection tasks, analyzed the gaps, and proposed ways to
improve detection capabilities. Sun [77] et al. proposed
GPTScan, which combines LLMs with static program
analysis, while Li [78] et al. proposed LLift, which
integrates LLMs with static analysis tools to improve the
accuracy of detecting logic vulnerabilities. In addition,
LLMs have been used for other security tasks, such
as TitanFuzz [79] and FuzzGPT [80] by Deng et al. In
addition to ChatAFL [81] for fuzzing and protocol testing.
LLMs are also applied to program repair tasks such as
ACFix [82] and ChatRepair.

VI. THREATS TO VALIDITY

Our study currently may have two limitations. The first
involves the randomness of the LLM’s output. To reduce
the bias produced by different parameters and prompts,
we try to use default settings for models. We also analyze
model performance using several runs and average the
findings to assure the stability and reproducibility of the
outcomes. The second constraint is the danger of data
bias during the data gathering procedure, which may
have an impact on the model evaluation outcomes. To
address this issue, we employed a variety of data sources
during the data gathering phase and rigorously screened
and cleaned the data to reduce the influence of bias. In
addition, we intend to include more control variables and
experimental designs in future studies to help validate our
findings. Nonetheless, these limitations remind us that we
must exercise caution when interpreting our findings and
conduct more extensive validation and cross-validation
where possible to ensure the reliability and generalizability
of our findings. We expect to address these constraints
by continuously optimizing our methodology and tools in
future works.

VII. CONCLUSION

In this research, we introduce SimilarGPT, a smart
contract vulnerability detection tool that integrates Large
Language Models with Code-based similarity checking.
SimilarGPT effectively identify vulnerabilities in smart
contracts by leveraging Ethereum’s prevalent code reuse
issue. Our experimental results reveal that SimilarGPT ex-
cels at increasing the recall rate of vulnerability detection
while decreasing the false positive rate. In particular, by

implementing the Socratic method, we significantly miti-
gating the false positives caused by LLMs hallucination.
Furthermore, SimilarGPT allows it to adapt to the chang-
ing security ecosystem of smart contracts. Future work
will focus on enhancing the code similarity identification
method and expanding the dataset to increase the tool’s
detection accuracy and usefulness.
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