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Abstract When considering risky events or actions, we must not down-
play the role of involved objects: a charged battery in our phone averts
the risk of being stranded in the desert after a flat tyre, and a func-
tional firewall mitigates the risk of a hacker intruding the network. The
Common Ontology of Value and Risk (COVER) highlights how the role
of objects and their relationships remains pivotal to performing trans-
parent, complete and accountable risk assessment. In this paper, we op-
erationalize some of the notions proposed by COVER – such as part-
hood between objects and participation of objects in events/actions – by
presenting a new framework for risk assessment: WATCHDOG. WATCH-
DOG enriches the expressivity of vetted formal models for risk – i.e.,
fault trees and attack trees – by bridging the disciplines of ontology
and formal methods into an ontology-aware formal framework composed
by a more expressive modelling formalism, Object-Oriented Disruption
Graphs (DOGs), logic (DOGLog) and an intermediate query language
(DOGLang). With these, WATCHDOG allows risk assessors to pose
questions about disruption propagation, disruption likelihood and risk
levels, keeping the fundamental role of objects at risk always in sight.
Keywords: ontology, logic, risk, COVER, fault trees, attack trees

1 Introduction

Risk assessment is a key activity to identify, analyze and prioritize the risk in
a system, and come up with (cost-)effective countermeasures [38]. This is true
when considering safety (i.e., the absence of risk connected with unintentional
malfunctions) and security (i.e., the absence of risk linked with intentional at-
tacks) [35]. To perform transparent, complete and accountable risk assessment,
it is fundamental to explicitly account for the role objects play in Events (includ-
ing Actions) in which they participate, and for how their status affects safety
and security interplay: a door being locked causes the impossible escape event in
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case of fire but simultaneously stops the action of a burglar entering your house
[23, 27, 36]. Formalisms widely employed in industry and academia to conduct
risk assessment – such as fault trees [31] and attack trees [34] – are not equipped
to explicitly reason about objects. Without an explicit representation of objects
at risk, it is impossible to evaluate their role in risk scenarios and to correctly
evaluate the overall risk imposed on these objects: e.g., what is the risk level my
car is subject to, considering that both its tyres can break (safety-related event)
and its onboard computer can be hacked (security-related action)?

Our objective here is to provide an ontology-grounded formal approach for
object-based risk representation and reasoning by combining and extending
standard formalisms for safety (fault trees) and security (attack trees). To ad-
dress this lack of expressivity, two promising fields must be taken into account:
ontologies for risk and model-based risk assessment. On the one hand, risk on-
tologies – like the Common Ontology of Value and Risk (COVER) [33] – excel
in providing a structured ground for reasoning about a specific domain of know-
ledge, transparently and explicitly laying out key concepts and relationships
needed to reason about risk. While excellent for conceptualization and trans-
parency, ontologies are however not designed to enable quantitative and applied
risk evaluations. On the other hand, specific model-based technologies from the
field of formal methods – like fault trees (FTs) and attack trees (ATs) – excel in
providing applicable, tried and tested instruments for rigorous and quantitative
risk assessment. These methods, however, sometimes rely on opaque conceptual
assumptions and, in particular, do not offer the expressivity needed to explicitly
reason about objects at risk. With WATCHDOG we propose a risk assessment
framework that enriches and extends the expressivity of vetted model-based
technologies – such as FTs and ATs – while grounding them in the conceptual
clarity of COVER.

Fundamental elements highlighted by the COVER ontological framework [33]
– such as the participation of a given object in a risk-related action/event or the
parthood relationship between different objects – are not expressible in classical
risk assessment formalisms, such as FTs and ATs. We address this gap and
operationalize these concepts by presenting object-oriented DisruptiOn Graphs
(DOGs), a new formalism that extends the strengths of classical FT- and AT-
based risk analysis accounting for the role of objects at risk (OaRs) in disruption
propagation, likelihood and risk calculation † . Morever, to perform transparent
decision-making w.r.t. safety and security of systems, practitioners need the abil-
ity to analyse their models in a meaningful and thorough way. To cater for this
need, we present DOGLog – a logic to formally query DOGs– and DOGLang,
an intermediate domain-specific language to ease the querying process. With
DOGLog and DOGLang practitioners can query DOGs to learn meaningful in-
formation about systems disruptions and risk levels. One could ask, for example:
Given that one of my tyres breaks, is my entire field trip compromised? Is the
probability of an attacker compromising the network larger/smaller than p?
† We adopt these notions from previous work. For a more in-depth discussion on risk,
disruption, propagation, and their relation with risk propagation, see [12, 35].
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Given an object at risk (e.g., my laptop), what is the most risky security Ac-
tion/safety Event in which it participates? What is the maximum risk level
imposed on my laptop, given all the Actions/Events in which it participates? Fi-
nally, we showcase property specification in DOGLog and DOGLang on an DOG
model for a variant of small but well-known and representative example from
safety-security literature, modelling safety and security risks on a household
given the status of a door lock [23, 27, 36].

2 Baseline Research

Attacker
breaks in

house

A. enters door
left unlocked

A. forces
door

A. destroys
door

A. hacks
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out

Door gets
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locked

Figure 1: An attack tree (left) and a
fault tree (right) for the locked door
example.

Fault Trees (FTs) and Attack Tress (ATs)
constitute a sensible starting point as they
are popular technologies that already en-
code key concepts highlighted in the Com-
mon Ontology of Value and Risk (COVER)
– such as Events and Actions – and pose
a solid ground for model-based risk assess-
ment. Fault tree analysis (FTA) [31] is a
widespread technique to support safety risk
assessment, and the use of fault trees is re-
quired, e.g., by the Federal Aviation Admin-
istration, the Nuclear Regulatory Commission, in the ISO 26262 standard [17]
for autonomous driving and for software development in aerospace systems. A
fault tree (FT) (see Fig. 1, right) models Events that describe how component
failures arise, and propagate disruption through the system, eventually lead-
ing to system-level failures. Leaves in a FT represent basic events (BEs), i.e.
elements of the tree that do not need further refinement. Once these fail, the
failure is propagated through the intermediate events (IEs) via gates, to even-
tually reach the top level event (TLE), which symbolizes system failure. When
considering model-based risk assessment of systems security – attack trees (ATs)
are widely employed. ATs (see Fig. 1, left) are hierarchical diagrams that rep-
resent malicious Actions that can lead to a system being compromised [34, 24].
ATs are referred to by many system engineering frameworks, e.g. UMLsec [21]
and SysMLsec [30], and are supported by industrial tools such as Isograph’s
AttackTree [19]. The TLE of an AT represents the attacker compromising the
entire system, and the leaves represent basic attack steps (BASes): actions of the
attacker that can no longer be refined. As for FTs, intermediate nodes in ATs
are labelled with gates.

The Common Ontology of Value and Risk (COVER) [33] is based on UFO
[16] – a foundational ontology. It embeds a domain-independent conceptualiza-
tion of risk, has been subject to validation and proper comparison to the liter-
ature of risk in risk analysis and management at large (e.g. [18]), and it is built
upon widespread definitions of risk. This ontology has already shown its utility
in constructing formalisms for risk quantification and propagation [12], and em-
beds several key assumptions about the nature of risk, which align with those in
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the literature in risk assessment. Firstly, risk is experiential. This means that
the notions of “event” and “object” are deeply entangled and, when assessing
the risk an object is exposed to, one aggregates risks ascribed to events that can
impact the object. For instance, consider the risks your laptop is exposed to. To
assess them, you will need to consider: 1. which of your goals depend on your
laptop (e.g. work deliverables); 2. what can happen to your laptop such that
it would hinder its capability to achieve your goals (e.g. its screen breaking);
3. which other events could cause these (e.g. you dropping it on the floor). Then
the risk your laptop (object) is exposed to is the aggregation of the risk of it fall-
ing (event) and breaking (event), and so on. The second assumption is that risk
is contextual. Thus, the magnitude of the risk an object is exposed to may vary
even if all its intrinsic properties (e.g., vulnerabilities or states) stay the same.
To exemplify, let us pick one risk event involving your house door, namely that
of robbers breaking into it. Naturally, the properties of the door – such as having
a strengthened blocking mechanism – influence the magnitude of this risk. Still,
the tools used by the robbers can significantly increase how risky the breaking
event is. Lastly, another assumption that we derive from COVER is that risk
is grounded on uncertainty about events and their outcomes. This is a very
standard position – see [18] and [3] – which implies that likelihood is positively
correlated with how risky an event is. For instance, the risk of encountering a
bear is higher while walking in a forest than in an urban park, simply because
it is more likely in the former case.

In COVER, a Risk Experience is a multifaceted hypothetical occurrence
that can be broken down into Risk Events, further categorized into Threat
Events and Loss Events. Threat Events are hypothetical occurrences cap-
able of precipitating Loss Events, which, in turn, are incidents that undermine
the objectives of a Risk Subject, the Agent whose viewpoint is under scrutiny
in the risk evaluation process. A Loss Event might involve Objects at Risk
and Risk Enablers. Dispositions of objects at risk and risk enablers that can
be manifested as threat and loss events are Vulnerabilities. As discussed in
[33] COVER accounts also for a numerical evaluation of Risk linked to a Risk
Assessment. We emphasise here that the quantification of risk is applicable
solely to anticipated scenarios that have the potential (though not certainty) to
materialize. The ontology tackles this concern by acknowledging the feasibility
of anticipated events, as discussed in [13].

In order to ground WATCHDOG in COVER, we make a number design as-
sumptions, which are used in the construction of both the new proposed model
(DOGs) and logic (DOGLog). We further discuss how they relate to – and are
grounded in – the COVER ontology, their implications and limitations. Through-
out the paper, we highlight them with the assumption tag whenever they play
an active role. We distinguish between two types of assumptions: operational
and structural. Operational assumptions introduce constraints that are stricter
than necessary due to the novel nature of this work, requiring a cautious and in-
cremental approach. Structural assumptions, on the other hand, directly derive
from the existing COVER ontology as-is. We elaborate on these in the sequel:
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• Assumption 1 (structural): the attribution of impact on parent elements
in the DOG is independent of the attribution on children elements. COVER
grounds this assumption by clearly distinguishing the notions of probability,
impact, and risk. On DOGs we propagate disruption (i.e., attacks/failures
propagation in the system) and – quantitatively – their probability values.
In the case of disruption likelihood, the values assigned to each event depend
on those assigned to the other events to which they are related. Differently,
impact values are assigned independently to each single event. For example,
the probability value assigned to a “breaking laptop” event naturally depends
on the probability value of a possible related event such as “stumbling”. This
is not the case for what concerns the loss value (or associated impact) of
the two events (in itself, stumbling may not be a problem, while laptop
breaking represents something serious). Note that by distinguishing between
probability and impact values, we enable a clearer assessment of an event’s
impact, independent of the likelihood of its occurrence;

• Assumption 2 (structural): OaRs that can participate in parent elements
of an DOG are a collection of all OaRs that can participate in their children
elements, plus additional OaRs added by the risk assessor. This assumption
is in line with the representation of events in COVER. In this context, events
modelled as children of other events in the graph can be naturally taken as
parts of the parent event, and in a simplified view, this allows inferring that
objects that participate in parts (or sub-events) of an event, also participate
in the event itself;

• assumption 3 (operational): for each OaR that participates in an element
(event/action) of the DOG, we assume that its parts participate in it as
well, but the opposite does not hold. For instance, if Door participates in
Door stays locked also its part – namely, Lock – participates in it, but if Lock
participates in Lock breaking this does not imply that Door participates in
that event. This is, again, aligned with the theory about events, objects and
their parts encoded by UFO and inherited by COVER‡;

• assumption 4 (operational): in computing risk values, we assume the at-
tacker already knows which failure occurred in the system before acting.
Looking at the conceptualization provided in COVER, this aligns with the
composition of the “risk experience” concept, which not only accounts for
the role of “passive” elements involved in the assessment of risk (e.g., “ob-
ject at risk”) but also for the role of the “active” elements involved (see, for
instance, the concept of “threat object” and related threat capability). This,
then, supports the two-step representation of the assessment process we pro-
pose, where, firstly, vulnerabilities in a system are identified and, secondly,
based on these, threats can be activated. This solution allows for simulations
that act as operationalizations of the concept of “risk experience”;

• assumption 5 (operational): the attacker can adapt its strategy to the
event under consideration. E.g., when computing max total risk (Sec. 4) we
assume the attacker can maximise the risk level for each individual event in

‡For a more detailed focus on this assumption we refer the reader to [15, 14].
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the graph by choosing the best actions at each iteration. Operating in this
way gives practitioners the safest possible risk metric, as they are provided
with a worst-case upper bound when computing total risk. Also here, the as-
sumption is inspired by how the “risk experience” is represented in COVER,
where the “threat capability” of a “threat object” participating in a “threat
event” is always directly related to “loss events” and related risks.

3 Object-oriented Disruption Graphs
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Figure 2: DOG for the smart house locked door example.
Object-oriented DisruptiOn Graphs (DOGs) extend classical FT- and AT-based
risk analysis by integrating key concepts from COVER, i.e., adding needed con-
structs to reason about objects at risk during risk assessment. Fig. 2 represents
an object-oriented disruption graph that captures risks on a smart house. This
scenario extends the well-known locked door example, typical of safety-security
literature [23, 27, 36], with IS engineering specificities. On the left – in redred –
Actions of an attacker are represented in an AT. On the right – in violetviolet –
Events that can cause failures are represented in a FT. Root nodes in both the
FT and AT– the top level events (TLEs) – can be mapped to COVER’s Loss
Events. Each of the events/actions in the FT and AT is labelled with objects at
risk (OaRs) that can participate in it – a white rectangle on the corner, con-
taining numbers for objects that participate in the labelled event/action. These
numbers refer to the Object Graph – at the bottom, in blueblue – where arrows in
UML-like notation represent the parthood relationship between objects. Specific
combinations of properties of OaRs that are needed for events/actions to happen
– what we call conditions – are typeset in blue and linked to events/actions via a
dashed line. For example, the condition ¬Lock_Locked is needed for the action
Attacker enters door left unlocked to happen. Finally, example probability values
are typed next to each leaf node in the FT/AT components. With this model,
one can ask ontology-aware questions that do not overlook the role of objects
at risk, e.g., 1. Given that an Attacker destroys the door and that the Fire does
not break out, are any of the two loss events happening? 2. Is the probability of
both successfully forcing the door and fire breaking out lower than 0.05? 3. What
is the most risky event in which Inhabitant participates, assuming that Lock is
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Locked? 4. What is the minimal risk level associated with the OaR Door, given
all the events/actions in which it participates? In Sec. 5 we will formalize these
queries via our logic (DOGLog) and query language (DOGLang).
Definition 1 (Object-Oriented Disruption Graph). An Object-Oriented
Disruption Graph (DOG) G is a tuple (A,F,O,B) where A is an attack tree, F
is a fault tree, O is an object graph and B is a disruption knowledge base.
As mentioned in [35], ATs and FTs can be syntactically unified under the dis-
ruption tree (DT) model:
Definition 2 (Disruption Tree). A disruption tree (DT) T is a tuple (N,E, t)
where (N,E) is a rooted directed acyclic graph, and t : N→{OR, AND, LEAF} is a
function s.t. for v ∈ N , it holds that t(v)=LEAF iff v is a leaf. Moreover, ch :
N → 2N gives the set of children of a node and T has a unique root, i.e., RT.
We also define the set of intermediate events IE = N \ LEAF. Moreover, if
u ∈ ch(v) then u is called a child of v, and v is a parent of u. Furthermore,
we employ only AND- and OR-gates in the AT/FT components of the model.
The behaviour of a DT T can be expressed through its structure function [31]
- fT : if we assume the convention that a LEAF has value 1 if disrupted and
0 if operational, the structure function indicates the status of the root node –
or top level event (TLE) – given the status of all the LEAVEs of T. Thus, for
each set of LEAVEs we can identify its characteristic vector b⃗: we refer to this
vector as a scenario. We denote by ST = 2LEAFT the universe of scenarios of
T. When further distinction is needed between ATs and FTs constructs, we use
(respectively) the subscripts _A and _F : e.g., we refer to a scenario on an AT
(resp. FT) as an attack scenario (resp. fault scenario), represented by b⃗A (resp.
b⃗F ). As shown before, in FT- and AT-related literature nodes canonically repres-
ent respectively events and attack steps: one might easily map attack steps and
events to the terminology chosen in the COVER ontology, for which nodes NA

of an AT represent Actions and nodes NF of a FT represent Events. From this
point on, we will use the general term elements to refer indistinctly to nodes in
FTs and ATs. To enrich ATs and FTs, we introduce Objects at Risk (OaRs) that
explicitly capture impacted objects in (safety and security) risk experiences.
Definition 3 (Object Graph). An object graph (OG) O is a rooted directed
acyclic graph (NO, EO, OP, cOP ) where: 1. nodes in NO represent Objects at
Risk (OaRs); 2. directed edges in EO ⊆ NO ×NO represent the parthood relation
between OaRs; 3. properties on OaRs are atomic propositions op ∈ OP; and 4.
cOP : NO → 2OP returns a set of atomic propositions of a node v ∈ NO.
Moreover, ch : NO → 2NO gives the set of parts of a node and O has a unique
root, denoted RO. As previously hinted, OaRs and the object graph (OG) are
represented by connected blue rectangles (see Fig. 2, page 6). Similarly to DTs’
evaluation, we need a way to evaluate properties of OaRs, thus:
Definition 4 (Evaluating Properties of OaRs). We let a configuration b⃗O

be the Boolean vector assigning values to properties of OaRs in OP and we let
fO : Bn ×OP → B be a valuation such that fO(b⃗O, op) = 1 iff the Boolean value
of a property op ∈ OP equals 1 given b⃗O.
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Figure 3: An ex-
cerpt of Fig. 2.

Furthermore, we let C be the set of all possible configurations.
Finally, we introduce a Disruption Knowledge Base (DKB)
that establishes a formal relation between elements in ATs and
FTs and OaRs that can participate in them. We also define
attribution of an impact value to ATs and FTs elements and
their preconditions and conditions in the DKB. Preconditions
are relevant properties of OaRs that can participate in a given
event/action. These properties must be arranged in a specific
way for events/actions to happen: conditions express this arrangement.
Example 1. Consider the excerpt of the DOG of Fig. 2 in Fig. 3: conditions for
the event Fire breaks out – in blue, connected with a dashed line – are encoded
in the Boolean formula ¬Operational_Sprinklers∧Inhabitant_Unaware: in fact,
the OaRs Smart house and Inhabitant participate in the event Fire breaks out
and Operational_Sprinklers and Inhabitant_Unaware are the relevant proper-
ties of these participating objects at risk. These are exactly the preconditions for
event Fire breaks out and they must be set resp. to false and true in conjunction
for Fire breaks out to happen.

Definition 5 (Disruption Knowledge Base). A disruption knowledge base
(DKB) B is a tuple (D, Im,Pa, Pr) where:

1. D = NA ∪NF ∪NO is an entity domain where NA, NF and NO are pairwise
disjoint

2. Im : NA ∪ NF → R≥0 is a function that returns an impact factor for each
element v ∈ NA ∪NF

3. Pa : NA ∪NF → 2NO is a function that for each element v ∈ NA ∪NF returns
a set of OaRs that can participate in v

4. For each element v ∈ NA∪NF , Pr : NA∪NF → 2OP is a function that returns
the set of its preconditions Pr(v) = cOP (o1) ∪ cOP (o2) . . . ∪ cOP (on) with
oi ∈ Pa(v)

5. For each element v ∈ NA ∪NF , conditions on v are represented by a Boolean
formula Cond(v) over its preconditions Pr(v)

Do note that conditions naturally map to descriptions of situations in COVER.
Assumption 1: Moreover, we assume that attribution of impact on parent
elements (see item 2) is independent of the attribution on children elements.
Assumption 2: We also assume that OaRs that can participate in parent ele-
ments (events/actions) – being decorated with AND-gates or OR-gates in the
DT– are a collection of all OaRs that can participate in their children elements,
plus additional OaRs added by the risk assessor (exactly what the Pa function
returns). As seen with properties of OaRs, we need a way to evaluate whether
conditions on a given DT element (it being an action or an event) are satisfied:
Definition 6 (Evaluating Conditions of Elements). We let f Cond : Bn ×
Form → B be the evaluation function for conditions – with Form being the
set of Boolean formulae – such that given a configuration b⃗O and conditions
Cond(v) for an element v, f Cond(b⃗O, Cond(v)) = 1 iff the Boolean assignment
in b⃗O satisfies Cond(v).
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To summarize: for each element v we construct a Boolean formula Cond(v) over
the set of preconditions Pr(v), which are exactly the relevant properties of OaRs
that participate in v which are needed for v to happen. To do so, we collect the
n OaRs that can participate in v with Pa(v) and – for each of these objects
oi ∈ {o1, . . . , on} – we collect its properties via cOP (oi). Assumption 3: For
each OaR that participates in element (event/action) v, we assume that its parts
participate in v as well, but the opposite does not hold. The union of all these
collected sets cOP (oi) is exactly the set Pr(v) of preconditions on v. The Boolean
formula Cond(v) over preconditions in Pr(v) for v represents its conditions. It
is important to note that, in a practical setting, a user would iteratively be
asked whether 1. all participating objects in v and 2. all preconditions of a
given participating OaR are relevant for conditions on v. The ability to isolate
and compute separately both preconditions and conditions will be functional in
this setting. E.g., the property Lock_Locked is relevant for preconditions of an
element v = Attacker enters door left unlocked, but Lock_Hackable is not: thus,
it is not included as an atom in Cond(v). As hinted, understanding computations
on DOGs requires further attention on the interplay between Actions (resp.
Events) in ATs (resp. FTs) and their conditions. Since Cond(v) is a Boolean
formula over preconditions for v ∈ NA (resp. v ∈ NF ), for v to be attacked (to
fail) the entire Boolean formula composed by v∧Cond(v) must evaluate to true.
To account for this, let us define an extended structure function for DTs where,
for v to be disrupted it would be necessary to have f ◦

T(b⃗ , b⃗O, v) return 1, i.e., both
the node in question should be disrupted and its conditions must be satisfied.
Definition 7 (Extended Structure Function). The extended structure func-
tion of a disruption tree T is a function f ◦

T : Bn ×Bn ×N → B that takes as input
a scenario b⃗ , a configuration b⃗O and an arbitrary element v ∈ N . We define it
as follows:

f ◦
T(b⃗ , b⃗O, v) =


bi ∧ f Cond(b⃗O, Cond(v)) if v = vi ∈ LEAF∨
v′∈ch(v)

f ◦
T(b⃗ , b⃗O, v

′) ∧ f Cond(b⃗O, Cond(v)) if v ∈ IE and t(v) = OR∧
v′∈ch(v)

f ◦
T(b⃗ , b⃗O, v

′) ∧ f Cond(b⃗O, Cond(v)) if v ∈ IE and t(v) = AND

4 DOGLog: a Logic to reason about DOGs

We construct our logic on three syntactic layers, represented with ϕ, ψ and ξ.
Layer 1 formulae reason about disruption propagation: the atomic propositions
a in DOGLog can represent any element in an AT or FT, and any property of
OaRs, i.e., a ∈ NA ∪NF ∪OP . Formulae can be combined through usual Boolean
connectives. Furthermore, we can set evidence to construct what-if scenarios:
ϕ[a 7→ bool] sets the element a in ϕ to either 0 or 1, representing an event/action
taking place or an object property being true or false. Finally, DOGLog allows
reasoning about minimal risk scenarios (MRSs): minimal assignments on leaves
of the FT and AT, such that a formula is satisfied (e.g., such that an event/action
takes place). Note that MRSs are always evaluated by fixing a specific configur-
ation, i.e. a specific status of object properties. Layer 2 formulae reason about
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disruption propagation probabilities. We can check whether the disruption prob-
ability of a given ϕ formula (e.g., a given event/action) is bounded by a selected
threshold – with our comparison operator ▷◁ ∈ {<,≤,=,≥, >} – and we can
also set probabilistic evidence, i.e., formulate scenarios where an event/action
e ∈ NA ∪ NF is assigned a specific disruption probability q. Combining layer 2
formulae with Boolean operators is also allowed. Lastly, layer 3 reasons about
safety- and security-related risk levels. One can ask what are the most risky
actions/events in which an OaR participates – with ∗ ∈ {A,F} symbolizing
resp. AT and FT nodes, i.e., actions and events. Moreover, one can ask what
is the max/min total risk level to which an OaR is subject, aggregating risk
from both safety- and security-related events/actions in which it participates,
and what is the optimal configuration of object properties to minimise risk on
an OaR. Finally, one can also set evidence on object properties, i.e., forcefully
set them to true or false to create insightful what-if scenarios. Note that when
setting evidence we usually assign values to a ∈ LEAVEs ∪ OP in layer 1, and
to e ∈ LEAVEs in layer 2. We can however assign values to IEs of ATs and FTs
if 1. a/e ∈ NA ∪NF is a module [10], i.e., all paths between descendants of a/e
and the rest of the AT or FT pass through a/e 2. and none of the descendants
of a/e are present in the formula. If so, we prune that (sub)AT or (sub)FT (and
relative conditions) and treat occurring IEs as LEAVEs. We can formally define
the syntax for DOGLog as follows:
Layer 1: ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ[a 7→ bool] | MRS(ϕ)
Layer 2: ψ ::= P(ϕ) ▷◁ p | ¬ψ | ψ ∧ ψ | ψ[e 7→ q]
Layer 3: ξ ::= MostRisky∗(o) | TotalRisk

max
(o) | TotalRisk

min
(o) | OptimalConf(o) | ξ[op 7→ bool]

5 Object-Oriented Risk Queries: DOGLog and DOGLang

To ease the usability of our logic, we present DOGLang, a Domain Specific
Language (DSL) for DOGLog. Defining languages and tools to specify prop-
erties and requirements is common: in [9] the authors capture high-level re-
quirements for a steam boiler system in a human-readable form with SADL.
Further controlled natural languages for knowledge representation include Pro-
cessable English (PENG) [37], Controlled English to Logic Translation (CELT)
[28], Computer Processable Language (CPL) [7] and FRETish [8]. DOGLang
is constructed by adhering to the same design philosophy of LangPFL – a do-
main specific language for FTs that was developed in the literature [25]. As
for LangPFL, DOGLang is inspired by the aforementioned languages for their
ease of use and close proximity to natural language. DOGLang expresses only a
fragment of DOGLog. Notably, nesting of formulae is disallowed: we retain most
of the expressiveness of DOGLog while making property specification easier. In
DOGLang, DOG elements are referred to with their short label and each oper-
ator in DOGLog has a counterpart in the DSL: Boolean operators, not, and, or,
impl . . .; setting the value of DOG elements to Boolean or probabilistic values,
set, set_prob; minimal risk scenarios MRSs, MRS[. . .]; operators to check dis-
ruption probability thresholds, Prob[. . .] ▷◁ . . . (note that ▷◁ ∈ {<,≤,=,≥, >});
and to reason about risk levels aggregated on a given object and about risky ac-
tions/events in which this object participates, MostRiskyA[. . .], MostRiskyF[. . .],
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Natural Language Property in DOGLog DOGLang

Given that an Attacker destroys the door
and that the Fire does not break out, are

any of the two TLEs happening?

TLE1 ∨ TLE2
[ADD 7→ 1,FBO 7→ 0]

assume:
set ADD = 1
set FBO = 0

check:
TLE1 or TLE2

What are all the MRSs such that
both Loss Events happen, given that Lock

is Locked and Door is Frail?

JTLE1 ∧ TLE2
[LiL 7→ 1,DiF 7→ 1]KM

assume:
set LiL = 1
set DiF = 1

computeall:
MRS[TLE1 and TLE2]

Is the probability of both successfully
forcing the door and fire breaking out

lower than 0.05?
Prob(AFD ∧ FBO) < 0.05

assume:
check:

Prob[AFD and FBO] < 0.05

What is the most risky event in which
Inhabitant participates, assuming that Lock

is Locked?
MostRiskyF (Inhab.)[LiL 7→ 1]

assume:
set LiL = 1

computeall:
MostRiskyF[Inhab.]

What is the max risk level associated
with the OaR Door, given all the

events/actions in which it participates?
TotalRisk

max
(Door)

assume:
compute:

MaxTotalRisk[Door]

What is the minimum risk level on
Door, assuming that OaR Look exhibits

property Lock Hackable?
TotalRisk

min
(Door)[LH 7→ 1]

assume:
set LH = 1

compute:
MinTotalRisk[Door]

What are the properties that all OaRs must
exhibit, in order to minimise the risk

level associated with the object House,
assuming we fix that Door is Frail?

OptimalConf(House)[DiF 7→ 1]

assume:
set DiF = 1

computeall:
OptimalConf[House]

Table 1: Risk queries for G (Fig. 2) in natural language, DOGLog and DOGLang.
MaxTotalRisk[. . .],MinTotalRisk[. . .], OptimalConf[. . .]. One can specify properties
in DOGLang by utilizing operators inside structured templates. Assumptions on
the status of DOG elements can be specified under the assume keyword. These
assumptions will be automatically integrated with the translated formula ac-
cordingly, e.g., set or set_prob will be translated with the according operators to
set evidence, while other assumptions will be the antecedent of an implication. A
second keyword separates specified formulae from the assumptions and dictates
the desired result: compute and computeall compute and return desired val-
ues, i.e., probability values, and lists of events/actions/configurations and MRSs
respectively, while check establishes if a specified property holds.

In Table 1 we exemplify some queries on the DOG for the smart house locked
door example in Fig. 2. These queries exemplify the expressive power enabled
by DOGs, DOGLog and DOGLang and are chosen to reflect the different Layers
of our logic. It is important to note that syntactically the DOG model does
not represent answers to these queries right away, so one cannot read them
from Fig. 2 directly. Answers are computed as per semantics of both the model
and the logic: e.g., the A. forces door node is a composite element, and the
computation of this complex probability value follows probability composition
on the structure of the model in Fig. 2.

6 Enabling Risk Computations: DOGLog Semantics

To enable object-oriented risk computations and to ground the meaning of for-
mulae into the enriched model presented in Sec. 3, we define formal semantics
for DOGLog. For the first layer of the logic, formulae are evaluated on the fol-
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lowing model M = ⟨b⃗R, b⃗O,G⟩ where a risk scenario b⃗R = (b1, . . . , bk) is defined
as b⃗R = b⃗A ∪ b⃗F , b⃗O is a configuration and G is an DOG. Formally:

M |= a iff


with a ∈ NA f ◦

A(b⃗A, b⃗O, a) = 1
with a ∈ NF f ◦

F (b⃗F , b⃗O, a) = 1
with a ∈ OP fO(b⃗O, a) = 1

M |= ¬ϕ iff M ̸|= ϕ

M |= ϕ ∧ ϕ′ iff M |= ϕ and M |= ϕ′

M |= ϕ[ai 7→ bool] iff


with ai ∈ NA ∪NF M ′ |= ϕ with b⃗

′
R = (b′

1, . . . , b
′
k) ∈ M ′,

b′
i = bool ∈ B and b′

j = bj for j ̸= i

with ai ∈ OP M ′ |= ϕ with b⃗
′
O = (b′

1, . . . , b
′
m) ∈ M ′,

b′
i = bool ∈ B and b′

j = bj for j ̸= i

M |= MRS(ϕ) iff b⃗R ∈ JϕKM

With JϕKM we denote the minimal satisfaction set of risk scenarios for ϕ, i.e.,
the set of minimal risk scenarios b⃗R that satisfy ϕ given G. We define JϕKM as
follows: JϕKM = {b⃗R | ⟨b⃗R, b⃗O,G⟩ |= ϕ ∧ ∄b⃗

′
R.b⃗

′
R ⊆ b⃗R ∧ ⟨b⃗

′
R, b⃗O,G⟩ |= ϕ}. Note

that the set of all minimal risk scenarios for a given ϕ – i.e., JϕKM – is always
computed by fixing a specific configuration b⃗O first.
Layer two formulae require the introduction of probabilities. First, we need to
decorate the leaves of the AT and the FT in G with probability values. To do so,
we let an attribution on G be a map α : LEAVEs → [0, 1]. With a slight abuse of
notation, we simply write αG for the probability attribution on both the leaves
of the AT A and the FT F in G. We then let ρ(ϕ) define the probability of
a given layer one formula ϕ. Intuitively: given ϕ and a configuration b⃗O, we
consider every possible fault scenario b⃗F ∈ SF on F and how that would impact
truth values of FT nodes in ϕ. For each of these fault scenarios, we compute
the maximal probability of successfully attacking AT nodes in ϕ under the given
configuration b⃗O. Assumption 4: Note that – with this setup – we assume the
attacker already knows which FT nodes in ϕ failed. Consequently, we let:

ρ(ϕ, b⃗O)A,F =
∑

b⃗F ∈SF

Prob(b⃗F ) × PA(Set(ϕ, b⃗F , b⃗O))

where the probability associated to each fault scenario b⃗F ∈ SF – with v as a
BE– is calculated via Prob(b⃗F ) =

∏k
i=1 bi × α(vi) + (1 − bi) × (1 − α(vi)) and

where the maximal probability of successfully attacking ϕ is given by multiplying
attributions on BASes in every minimal attack scenario for ϕ – b⃗A ∈ JϕKA – to
then take the maximum between the resulting values of these attacks. Formally:

PA(ϕ) = max
b⃗A∈JϕKA

∏
v∈b⃗A

α(v)

This last step is coherent with a more general framework for multiple metric
computations on ATs previously defined in [24, 26]. Finally, we account for how
every possible fault scenario would impact truth values of atomic propositions
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of FT nodes in ϕ by recursively defining Set(ϕ, b⃗F , b⃗O), with b⃗F ∈ SF :

Set(a, b⃗F , b⃗O) =



with a ∈ NA a

with a ∈ NF

{
1 iff f ◦

F (a, b⃗F , b⃗O) = 1
0 otherwise

with a ∈ OP

{
1 iff fO(a, b⃗O) = 1
0 otherwise

Set(¬ϕ, b⃗F , b⃗O) = ¬Set(ϕ, b⃗F , b⃗O)

Set(ϕ ∧ ϕ′, b⃗F , b⃗O) = Set(ϕ, b⃗F , b⃗O) ∧ Set(ϕ′, b⃗F , b⃗O)

Set(ϕ[ai 7→ bool], b⃗F , b⃗O) = Set(ϕ, b⃗F , b⃗O)[ai 7→ bool]

Set(MRS(ϕ), b⃗F , b⃗O) = MRS(Set(ϕ, b⃗F , b⃗O))

where 1 and 0 represent the true and false derived layer 1 formulae. Note that
– also due to Set – some occurrences can lead to the application of the PA

function to either true or false, i.e., when ϕ = 1 or ϕ = 0. In these cases, we fix
that PA(1) = 1 and PA(0) = 0. With ▷◁ ∈ {<,≤,=,≥, >} and an updated model
M = ⟨b⃗O,G, αG⟩, semantics for layer two formulae can be defined as follows:

M |= P(ϕ) ▷◁ p iff ρ(ϕ, b⃗O)A,F ▷◁ p; M |= ¬ψ iff M ̸|= ψ;
M |= ψ ∧ ψ′ iff M |= ψ and M |= ψ′;
M |= ψ[ei 7→ q] iff M(αG[withα(vi) 7→ q]) |= ψ, with vi ∈ NA ∪NF

Note that the model M for layer 2 formulae does not contain a risk scenario b⃗R:
this is because in computing probabilities we already account for both 1. possible
fault scenarios b⃗F and 2. possible attack scenarios b⃗A. Layer 3 formulae require
further attention on OaRs and the participation relation. To compute the risk
level associated with an OaR o, given a certain configuration – e.g., the risk
level of Door, given that Lock_Locked is set to false – we first identify the set
of elements in which o participates, and for which a satisfying risk scenario plus
configuration exist. We can consider events/actions as layer one atomic formulae
a s.t. a ∈ NA ∪NF , and – with ∗ ∈ {A,F} – formally define this set as:

LoM∗=
{
a ∈ N∗ | o ∈ Pa(a) ∧ ∃b⃗∗, b⃗O. f ◦

∗(b⃗∗, b⃗O, a) = 1
}

Note that one might want to parameterize some elements of the given configura-
tion b⃗O to, e.g., compute optimal assignments to minimize risk on a given OaR.
To accommodate for this need, we let C[op7→bool] be the set of configurations that
could still be compatible with a partial Boolean assignment [op 7→ bool]. E.g.:
Example 2. Assume we want to consider only the configurations compatible with
setting the evidence that Lock_Locked is true, i.e., [Lock_Locked 7→ 1] and that
we only have two other object properties to consider, the values of which are still
not assigned. The resulting partial configuration can be represented as b⃗O =
(1, ·, ·), where · represents the unassigned values of remaining object properties.
The set C[Lock_Locked 7→1] would then contain all possible configurations whose
assignments are still compatible with b⃗O = (1, ·, ·): e.g., b⃗

′
O = (1, 1, 0) would be
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in C[Lock_Locked 7→1], while b⃗
′′
O = (0, 1, 0) would be excluded from the set since

the value of the first object property is set to zero (against [Lock_Locked 7→ 1]).
We let objRiskVal =

∑
a∈LoMA∪LoMF

(ρ(a, b⃗O)A,F ×Im(a)) represent the cumulative
risk value on a specific OaR o, given events and actions in which it participates.
Intuitively, we sum the risk values from each event/action in which o participates,
resulting from the probability of each event/action times its impact factor. Given
a set of configurations C , we let ValC define semantics for layer 3 formulae:
ValC (MostRiskyA(o)) = argmax

a∈LoMA

max
b⃗O∈C

(ρ(a, b⃗O)A,F ×Im(a));

ValC (MostRiskyF (o)) = argmax
a∈LoMF

max
b⃗O∈C

(ρ(a, b⃗O)A,F ×Im(a));

ValC
(

TotalRisk
max

(o)
)

= max
b⃗O∈C

objRiskVal; ValC
(

TotalRisk
min

(o)
)

= min
b⃗O∈C

objRiskVal;

ValC (OptimalConf(o)) = argmin
b⃗O∈C

objRiskVal; ValC (ξ[op 7→ bool]) = ValC[op 7→bool] (ξ)

Assumption 5: Note that with semantics as given, the attacker can adapt its
strategy to the node under consideration. E.g., when computing max total risk
we assume the attacker can maximise the risk level for each individual node in
the graph by choosing the best BASes at each iteration. We then sum risk levels
derived from each of these single-node worst-case scenarios.

7 Related work

This paper directly relates to approaches that seek to combine ATs and FTs
and increase their expressive capabilities. In this sense, numerous works attempt
combinations of FTs and ATs into joint safety-security models: these are collec-
ted in a recent survey on model-based formalisms for safety-security risk assess-
ment [27]. Of the 14 selected formalisms in [27], 7 combine or extend FTs and
ATs: Attack-Fault Trees [2], Component Fault Trees [22], Extended Fault Trees
– also known as Fault Trees with Attacks [11], Boolean driven Markov processes
(BDMPs) [5], Attack Tree Bow Ties [1], Failure-Attack-CounTermeasure Graphs
[32], and State/Event Fault Trees (SEFTs) [29]. Of these formalisms, only BD-
MPs and SEFTs explicitly integrate properties of objects by joining FTs and
Petri nets, expressing that certain disruptions can only happen in certain states.
However, both BDMPs and SEFTs do not explicitly address how 1. the part-
hood relation between objects and 2. the participation relation between objects
and events/actions can influence the propagation of disruptions and the com-
putations of risk levels. Furthermore, they do not allow for aggregation of risk
levels on a given object, nor do they allow to compute an optimal configura-
tion of states to minimize risk. Lastly, [20] presents Object-Oriented Fault Trees
(OFTs), where each FT node is described by an object with instance variables
containing information such as the node’s parents, children and type. Despite
the name, OFTs do not account for objects participating in different events rep-
resented by FT nodes, nor can they account for risk aggregation on objects,
given safety- and security-related events/actions.
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8 Discussion

To validate our approach, we intend to perform requirement elicitation from
users: we then plan to translate these elicited requirements into concrete queries,
modeled after those in Sec. 5 that serve for now a simple exemplification purpose.
The effectiveness of our approach will be evaluated on the basis of the types of
queries we are able to capture. Additionally, we aim to conduct user studies via
the development of a mock-up implementation to further evaluate the approach
hereby presented. Ideally, we envision users to be risk analysts, as our approach is
a natural extension of models that they might already be familiar with. Finally,
as far as scalability is concerned, we expect to formulate novel symbolic model-
checking algorithms that encode presented computationl semantics in Binary
Decision Diagrams (BDDs) [6]: BDDs are promising as they have proven to be
computationally successful and efficient already in the classical setting of FT
and AT analysis [4].

It is important to notice that in the case of operational assumptions – stricter
than the absolute necessary – we take care to never be incoherent with COVER:
i.e., we could lift or weaken these assumptions in future work, while remaining
still grounded in the COVER ontology. E.g., one could weaked assumption 3
to account for the principle of mereological expansion or assumption 4 – fun-
damental for risk computation – when considering a different ordering between
failures and attacks, or again assumption 5 to model different types of at-
tackers. These diverse possibilities increase flexibility in modelling disruptive
situations while remaining grounded in COVER.

9 Conclusion and future work

We presented WATCHDOG, an ontology-aware framework for object-oriented
risk assessment that exploits both the strengths of model-based formal meth-
ods and ontologies: by combining ontologies with probabilistic risk quantifica-
tion models, we enriched the expressive power of FTs and ATs and presented
a more expressive ontology-aware model (DOGs), logic (DOGLog) and a query
language (DOGLang). We chose COVER for its domain-independent nature and
its foundation in a comprehensive analysis of existing work on risk ontologies.
However, our approach remains flexible and does not preclude the integration of
knowledge from other ontologies. Our research opens up interesting directions
for future work. First, one could allow a more nuanced notion of propagation
or of parthood, considering the parthood relationship of OaRs and mereology.
Furthermore, one could enrich DOGs by introducing new concepts from (the
COVER) ontology, e.g., the notion of goal, or by introducing multiple risk as-
sessors viewpoints via multiple ATs and FTs components. Finally, one could
consider the effect of weakening assumptions, as discussed in Sec. 8.
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