
AI-based Attacker Models for Enhancing
Multi-Stage Cyberattack Simulations in Smart Grids

Using Co-Simulation Environments
Ömer Sen∗†, Christoph Pohl∗, Immanuel Hacker∗†, Markus Stroot∗†, Andreas Ulbig∗†,

∗RWTH Aachen University, Aachen, Germany — †Fraunhofer FIT, Aachen, Germany
Email: {oemer.sen, immanuel.hacker, markus.stroot, andreas.ulbig}@fit.fraunhofer.de

christoph.pohl@rwth-aachen.de

Abstract—The transition to smart grids has increased the
vulnerability of electrical power systems to advanced cyber
threats. To safeguard these systems, comprehensive security
measures—including preventive, detective, and reactive strate-
gies—are necessary. As part of the critical infrastructure, secur-
ing these systems is a major research focus, particularly against
cyberattacks. Many methods are developed to detect anomalies
and intrusions and assess the damage potential of attacks.
However, these methods require large amounts of data, which are
often limited or private due to security concerns. We propose a
co-simulation framework that employs an autonomous agent to
execute modular cyberattacks within a configurable environment,
enabling reproducible and adaptable data generation. The impact
of virtual attacks is compared to those in a physical lab targeting
real smart grids. We also investigate the use of large language
models for automating attack generation, though current models
on consumer hardware are unreliable. Our approach offers a
flexible, versatile source for data generation, aiding in faster
prototyping and reducing development resources and time.

Index Terms—Smart Grid, Cybersecurity, Cyberattack, AI-
based Attack, Large Language Models

I. INTRODUCTION

As power grids increasingly incorporate Information and
Communication Technologies (ICT), they become more inter-
connected with external devices, removing the natural barrier
of isolation and exposing them to new cybersecurity threats.
A notable example is the 2015 Ukraine cyberattack, which
resulted in a significant blackout. Cybersecurity in power sys-
tems is a vital, ongoing process based on prevention, detection,
and reaction, guided by standards such as IEC 62351 and IEC
62443. Additionally, improving cybersecurity resilience and
protecting critical infrastructures are emphasized legally with
emerging regulations like NIS2.

Smart grids are complex systems and combine a lot of soft-
ware and components. They include their accumulated vulner-
abilities and even the used protocols like IEC 104, commonly
used in SCADA systems, lack authentication and encryption.
Implementing security enhancements means evaluating new
metrics, analyzing component behavior in a network, examin-
ing logs, and running Intrusion Detection Systems (IDSs) in
smart grids. These steps are promising but all depend on data
or reference values for analysis. While some openly accessible
datasets exist, many are either poorly maintained, too specific,
or have other shortcomings [1].

Grid operators tend to keep their data private due to se-
curity concerns, forcing researchers to either build their own
laboratories or simulate smart grids themselves. Modelling
smart grids in a laboratory requires expertise, time to install
hardware, and significant expense to operate. Implementing
and setting up even a small laboratory demands professionals
from various domains.

Other studies evaluated multiple simulation methods with
and without cyberattacks [2]. Some tools could generate
reports and run simple Distributed Denial of Service (DDoS)
attacks, while others focused solely on co-simulating power
grids and their network communication. Manual red teaming
approaches face challenges in consistency and scalability,
making automation a promising solution. Frameworks like
Plan2Defend [3] and autonomous agents for cyber defense [4]
use autonomous methods to mitigate ongoing cyberattacks or
execute plans, reducing response time. While these methods
evaluate system security and monitor activity, they lack the
ability to generate attack data, relying on manual implemen-
tation of sophisticated attacks for training.

Proactive testing via attack emulation allows for hardening
security before actual attacks occur. Although individual cy-
berattacks on smart grids have been analyzed, there is less
focus on general frameworks for complex data generation.
IDSs require extensive data to evaluate performance and adapt
to varying network topologies.

To address these challenges, we propose a method for
automatically running cyberattacks inside a simulation en-
vironment, generating network logs and power simulation
results. This approach allows for the creation of datasets
in configurable network topologies and various attack sce-
narios, improving data availability and eliminating the need
for expensive setups. This comprehensive approach enables
the extraction of valuable data, facilitating the study and
enhancement of smart grid cybersecurity. Our contributions
are the following:

• Definition of the problem and corresponding require-
ments for our method, and deduction of a general concept
for our work.

• Design and assessment of the AI-based attacker model in
a simulation environment, detailing the physical labora-
tory and co-simulation structure, the autonomous agent’s

ar
X

iv
:2

41
2.

03
97

9v
1 

 [
cs

.C
R

] 
 5

 D
ec

 2
02

4



operation, deployment environments, and the data gener-
ation process.

• Evaluation of the data generation process via comparative
analysis with a physical laboratory using a digital twin
approach.

II. BACKGROUND

A. Smart Grid Control Architecture

Compared to early power grids that directly connected en-
ergy generators with consumers, modern energy infrastructure
is much more complex. The increasing use of energy sources
such as Photovoltaic (PV) systems and wind turbines makes
regulation and coordination more challenging. When these
generators are distributed and connected to a large power
grid without bundling their loads in a large converter, special
regulation and balancing are required before their energy can
be fed into the grid. Smart grids provide a solution as cyber-
physical systems that connect energy sources with consumers
and enable communication between actors to balance and
control the power grid reliably.

Understanding smart grid operation requires knowledge of
its components:

Terminal Units enable smart grid communication by col-
lecting and transmitting data and sending and receiving control
commands. These units are divided into Remote Terminal
Units (RTUs), connecting to physical equipment, and Master
Terminal Units (MTUs), aggregating data from RTUs. Super-
visory Control and Data Acquisition (SCADA) Systems
handle data from terminal units, process it to adjust grid
behavior, and provide Human-Machine-Interfaces (HMIs) for
data visualization and remote control of grid components.
Intelligent Electronic Devices (IEDs) are controllers in power
equipment that collect data from sensors and issue commands.
They communicate with SCADA systems directly or via
RTUs. Decentralized Energy Resources (DERs) are small
components supplying or demanding electricity, connecting
directly to the grid or aggregated. Examples include micro-
turbines, solar arrays, and energy storage systems. Protocols
are crucial for data exchange in smart grids. Common ones
like IEC 104 and Modbus operate over TCP/IP networks
to connect SCADA systems with terminal units but lack
integrated security, making them vulnerable to cyberattacks.
Secure Shell (SSH) is used for remote access but can pose
security threats if compromised.

The overall structure of an Industrial Control System (ICS)
can be described using the Purdue model, proposed by
Williams et al. in the 1990s [5]. This model segments the
network into multiple layers, allowing separation between
operational technology (OT) and information technology (IT)
systems. The model defines a hierarchy for communication
between layers, ranging from external services at the highest
level (Level 5) to the actual control of physical actors at the
lowest level (Level 0).

The layers of the Purdue model are as follows:
Level 5 (Enterprise Zone) includes general IT systems

accessible to external clients, providing the most open services.

Level 4 focuses on data and software for production schedul-
ing and operational management, including mail servers and
other widely accessible services. The Demilitarized Zone
(DMZ) separates IT and OT systems, using firewalls to block
most communication protocols and secure sensitive data by
preventing outgoing communication. Level 3 (Manufacturing
Zone) is the highest level within the OT site, containing local
workstations and data collections for process data. Level 2
houses area control systems that collect and monitor data
within subsystems. Level 1 consists of controlling elements
that send measured values to data collectors and control
physical actors and sensors. Level 0 includes all machinery
performing physical tasks and measurements.

Despite being proposed decades ago, the Purdue model
remains widely applied, particularly in the context of cyber-
security for cyber-physical systems.

B. Simulation Aspect

To simulate smart grids, we must understand what simula-
tion entails and how it can be achieved. Generally, simulation
involves imitating real-world systems via software. Instead
of creating a single, complex model, implementing smaller
components separately and combining them to model complex
systems increases the framework’s sustainability and perfor-
mance feasibility. These components can run in individual
virtual environments to prevent interference.

Virtualization involves running individual processes or en-
tire Operating Systems (OSs) on multiple virtual computers,
each using a portion of the host computer’s resources. In
contrast to the well-established approach of bundling and
isolating software in Virtual Machines (VMs), we imple-
mented our work with the help of containerization. While
VMs include their own operating systems, containerization
allows software to share resources with the host dynamically,
increasing performance for parallel execution. These instances
are called containers and are built according to a blueprint,
that defines the corresponding software, memory and network
available when instantiating it. Containers can communicate
through virtual network, sending actual network packets be-
tween specific instances.

Virtual networks allow communication between specific
containers or VMs, creating separated networks on the same
host. Orchestration tools further streamline the setup by read-
ing configuration files to define containers and their settings,
automating their deployment and management.

Using container orchestration, we can automate the deploy-
ment of pre-configured containers and their virtual networks.
This enables running complex scenarios with shared comput-
ing resources, making large-scale simulations less resource-
demanding.

A key goal of our work is to run simulations automatically
and incorporate systems classified as artificial intelligence
(AI). Automation in software refers to the automatic operation
of software with minimal user interaction, where a program
executes pre-defined tasks. Autonomy describes a program’s



TABLE I: Example for a multi-staged cyberattack.
Step Result Depends on

1. Get hostname Hostname
2. Check interfaces Available networks (1)
3. Scan network Reachable targets (2)
4. Generate SSH keys SSH keys
5. Brute-Force credentials Compromised targets (3),(4)
6. Connect agent to C2 server (5)
7. Remove SSH key

ability to make decisions and react to its environment. Accord-
ing to [6], autonomy is a spectrum, with greater consideration
of parameters leading to higher autonomy.

The European Commission’s Artificial Intelligence Act [7]
defines AI systems as machine-based systems designed to
operate with varying levels of autonomy. These systems may
exhibit adaptiveness and generate outputs such as predictions,
content, recommendations, or decisions that influence environ-
ments.

C. Multi-Staged Cyberattacks

As smart grids increasingly resemble traditional computer
networks, they become susceptible to similar cyberattacks [8].
Below are some prevalent attack schemes and their potential
combinations for more complex routines.

Attackers often combine techniques from different cate-
gories to execute complex attacks, making them harder to
detect and defend against.

Advanced Persistent Threats (APTs) involve multiple stages
executed sequentially. These stages typically include re-
connaissance, initial access, persistence, and command-and-
control, followed by the final impact. The complexity of APTs,
with their numerous specialized steps, targets specific victims
over a prolonged period, making them difficult to track and
defend against.

For instance, the DARPA 2000 dataset features various
DDoS attacks comprising multiple steps [9]. A simpler attack
might include IP address scanning, service exploitation, and a
subsequent DDoSs attack using compromised hosts. A more
sophisticated attack, such as island-hopping, spreads malware
through infected PDFs sent across the network until a desired
database service is found. These examples highlight how
combining different attack methods and exploiting vulnerabil-
ities can allow attackers to gather extensive information and
manipulate network components.

When trying to breach complex systems, such as critical
infrastructure, attacks need a methodical progression. So called
multi-staged cyberattacks unfold in several distinct steps,
where each has an individual objective. The key property of
running complex cyberattacks in this manner is the depen-
dency of consecutive steps on the results of their predecessors.

Such dependencies allow individual stages of the attack to
rely on information that were previously collected and thus
make modelling complex attacks possible. This comes at the
cost of having to plan the steps according to the available
information and which dependencies are fulfilled. In Table I
we picture a multi-staged cyberattack, where for example the

brute-force depends on the results of a network scan. Running
a brute-force attack without having a target diminishes the
value of the operation; therefore, we can only perform this
step if a potential target has been found. Structuring attacks
in such a modular way qualifies multi-staged cyberattacks to
adapt the environment if planned accordingly.

III. METHODOLOGY

A. Requirements

We aim to create a framework for generating network logs
of smart grids during multi-stage cyberattacks. In order to
achieving this, there are a few requirements that we postulate
from sparsely available datasets.

Virtual Smart Grid Simulation: A simulation resembling
real grids, incorporating essential components of real-world
smart grids, and entirely virtual to eliminate hardware require-
ments is necessary. Recordable Network Communication:
The simulation must log network traffic at the transport
layer. Integrated Attack Simulation: Capturing anomalies
during adversary actions within the simulation is crucial for
utilizing the network and component logic effectively. Real-
istic Impact on Data Output: Generated data should be as
usable as real hardware data, accurately reflecting cyberattack
impacts. Configuration-Based Setup: The simulation should
be configurable for various scenarios and topologies, allowing
automatic setup based on user-defined parameters to ensure
scalability and prevent initialization errors. Autonomous At-
tacks with Modular Methods: Supporting multiple attack
methods, the simulation should manage multi-stage attacks
autonomously, ensuring reproducibility and optimal method
selection. Offline Availability: The simulation should function
without internet access, adhering to the segmented network
architecture typical of smart grids. Clean and Consistent
Network Logs: Generated network traffic should be uniform,
minimizing fluctuations across different runs to ensure attack
impacts are clear.

For our data, two main properties are crucial: realism and
consistency across different scenarios. Realistic data must
closely depict the individual nuances of each attack, and
consistency ensures that data output is structured similarly
across different runs. We identified four main metrics to
analyze each attack scenario:

Power Simulation Results: The simulation must accu-
rately reflect the effects on power generation and distribution,
showing changes in component behavior due to cyberattacks.
Timely Spread: Attacks should occur within a consistent
timeframe, with tasks performed at similar points during
the simulation. Traffic Volume: Reliable simulation behavior
is indicated by consistent data communication volume and
direction during attacks. Protocol Distribution: Consistent
protocol usage during an attack ensures stable behavior of the
involved components.

These metrics help ensure that the generated data is both
realistic and consistent, providing a robust foundation for ana-
lyzing and improving smart grid cybersecurity. Our methodol-



ogy focuses on these requirements, and we will evaluate how
these were satisfied by our framework at the end of this work.

B. Design Idea

To meet the requirements for generating realistic network
logs of smart grids during multi-stage cyberattacks, we pro-
pose a design that ensures realistic simulation, modularity, and
scalability without compromise.

Each component in the simulation must mimic its physical
counterpart’s behavior. This includes modeling interactions
with other elements in the simulation environment, especially
data exchanges and remote control messages, to produce
realistic data.

A modular structure allows flexible configuration of scenar-
ios using reusable components. Containerization tools, such
as Docker, support this modularity. Using Docker images for
the smart grid actors enables easy instantiation of multiple
components with the same logic but different parameters.
Networking configurations ensure that only selected connec-
tions are enabled between containers, specifying maximum
bandwidth and simulated latency to create realistic network
logs, even on a single host. Users can define the topology in
readable configuration files, adapting it as needed.

Orchestration tools help manage complex network topolo-
gies and prevent user errors. These tools can derive a whole
simulation scenario from a single file, handling initialization
and setup. Established orchestration tools also support scripts
triggered after containers start or stop, facilitating the setup
and extraction of network logs.

With these design choices, we chose a Docker-based ap-
proach leveraging containerization capabilities. Using a col-
lection of pre-existing components for network communication
and power simulation, we adopted the co-simulation environ-
ment proposed in [10].

This approach employs several tools and frameworks that
align with our design decisions:

• rettij: Utilizes Kubernetes orchestration, allowing the use
of configuration files to define components and network
connections in virtual smart grids via Docker images.

• Mosaik and Panda Power: Add power simulation capa-
bilities, enabling realistic power grid simulations [11].

Based on this co-simulation environment, we developed
an attacker container that autonomously performs specified
cyberattacks. This attacker integrates seamlessly into the co-
simulation, generating network logs and power simulation
results applicable to real-world scenarios.

By combining these components, our framework facilitates
the generation of realistic, consistent, and high-quality data for
analyzing and improving smart grid cybersecurity.

IV. APPROACH

A. Co-Simulation Environment

Our work utilizes the co-simulation software Mosaik, which
groups individual simulators in a common context to build
scenarios modularly [12]. Each simulator provides the func-
tionality of real-world components, enabling the reconstruction

of existing physical scenarios and the reuse of logic across
varying simulator combinations.

To simulate the power grid and communication within a
laboratory setup, we use Panda Power and other network
communication simulators within Mosaik. Panda Power dis-
cretely simulates loads at each time step, while network
communication simulators manage the interactions between
components. Mosaik synchronizes these simulators, iterating
through each simulation step and ensuring timely execution
based on the current simulation time.

Mosaik connects modular simulators, synchronizing their
communication to create a discrete environment. It iterates
through each simulation step, checking if enough time has
passed to execute the next step and then instructs the corre-
sponding simulator to proceed.

Panda Power generates measurements for the virtual power
grid, simulating components based on a predefined configu-
ration file. This file describes power generators, transformers,
buses, and power lines. The framework extracts detailed infor-
mation about current usages and loads across all components
[11].

Terminal unit nodes handle IEC 104 communication, run-
ning as either RTUs or MTUs. They connect to a Mosaik
server, translating measurements and commands to Panda
Power to update the simulation. Terminal units can be con-
figured to use predefined values or send specific commands at
designated times.

Fig. 1: Topology inside the co-simulation. All components are
realized by individual containers. The virtual network emulates
local laboratory communication, with only traffic through the
switch considered in the network logs.

Rettij initializes virtual networks and starts containers,
simplifying network connection definitions. The topology
configuration specifies the components and their respective
images (see Figure 1 as example). Rettij also handles virtual
delays and bandwidth limitations, simulating realistic network
conditions for larger grids. With the help a virtual switch, that
handles packet forwarding and is developed by the rettij team,
we can create virtual networks between relevant components



name: Capture Network Traffic (TCPDump with Scapy)
id: 1b27e1f8-af08-47eb-b3dc-100c1d697413
platform: linux

command: /bin/python tcpdump.py -t 150
payloads: [tcpdump.py]
cleanup: [/bin/rm tcpdump.py]

Fig. 2: Caldera ability for running a Python script.

and capture all passing packets. The virtual network separates
the communication of terminal units from Mosaik and Panda
Power servers, keeping their messages out of the switch logs.
Managing networking between containers is a key challenge.
The network must be segmented, with components communi-
cating only with selected others. Rettij allows defining network
topology in YAML format, modeling the LAN connections
within the laboratory.

The rettij framework uses Kubernetes orchestration, defining
components and network connections in virtual smart grids via
Docker images. The combination of Mosaik, Panda Power,
and rettij provides a robust environment for simulating and
analyzing cyberattacks on smart grids.

By integrating modular attacks based on real-world cyberat-
tacks, we ensure flexibility and reduce the need for specialized
cybersecurity expertise. Our attacker container autonomously
performs specified cyberattacks within the co-simulation, gen-
erating realistic and high-quality network logs and power
simulation results.

B. Attack Emulation

To complete our scenarios, we need to integrate attacking
logic into our simulation environment. This section outlines
our approach using MITRE Caldera™, a step-based attack
emulation tool that aligns well with our co-simulation needs
due to its structured and workflow-oriented nature. Caldera
employs a central command-and-control (C2) server with plan-
ning algorithms to manage attack steps, facilitating iterative
execution of multi-stage attacks within the co-simulation.

Several alternatives exist for attack emulation, namely
Atomic Red Team, Splunk and MulVal. But they do not focus
on Linux systems for their code, are closed-source or only
report assessments according to vulnerability reports.

Caldera on the other hand includes planning capabilities
for autonomous execution, high extensibility due to plugins, a
modular configuration and is actively developed as an open-
source project. The smallest component the attack execution
relies on, are the so-called abilities. These are YAML-defined
scripts and commands that implement ATT&CK techniques.
Each ability is identified by a unique ID and includes executors
specifying the platform and command to be run, such as
Shell for Linux. Abilities may include payloads downloaded as
needed and cleanup commands to minimize traces on victim
machines. An example of how these might look is given in
Figure 2.

Adversaries are constructs combining multiple abilities to
form multi-stage attack plans. Each adversary definition en-
sures that abilities are executed in sequence, with dependencies
checked for each step. For example, an adversary performing

a Denial of Service (DoS) attack might include abilities for
network scanning, host enumeration, and attack execution.

Fact sources store and manage data used across agents and
abilities, allowing for dynamic execution based on collected or
pre-defined information. Facts are labeled values, such as IP
addresses or credentials, that can trigger abilities. Rules filter
which facts are used, ensuring targeted execution.

Operations combine adversaries and fact sources, specifying
execution details such as agent groups, step intervals, and
execution mode (automatic or manual). Operations control the
overall attack flow, leveraging modular definitions to reuse
attack logic and necessary information.

To execute an attack, we follow these steps:
1) Start the C2 Server: The C2 server orchestrates com-

ponents, provides payload access, and listens for agent
connections. It runs locally without internet access, main-
taining all necessary attack information.

2) Connect an Agent: An agent, a client executable on
a compromised machine, connects to the C2 server.
It communicates via HTTP packets, providing minimal
obfuscation. Agents are categorized by group identifiers
for targeted attack execution.

3) Execute an Operation: We select the agent group and
adversary for execution. The operation uses Caldera’s
planning module to determine and send instructions to
agents based on available facts and adversary require-
ments. Agents execute commands, collect outputs, and
send results back to the server for parsing and further
execution.

4) Cleanup: To minimize traces, agents execute cleanup
commands either remotely by the server or as part of
adversary completion.

This structured approach ensures detailed control and paral-
lel execution across multiple agents, enhancing the robustness
of our attack emulation within the simulated environment.
C. Generative Methods

We tested three state-of-the-art open-source Large Language
Models (LLMs) pre-trained on large code bases and focused
on code generation, given our hardware constraints (NVIDIA
GeForce RTX 3060 Ti with 8 GB VRAM). Code Llama [13]
(13 billion parameters), DeepSeek Coder [14] (6.7 billion
parameters), and Starcoder 2 [15] (7 billion parameters).

We tested the LLMs’ understanding and generation capabil-
ities through four tasks, including the analysis and generation
of abilities and adversaries.

We transformed all local definitions of Caldera’s abilities
and adversaries into an embedding, which the LLMs could
use as reference during their inference. This process, Retrieval
Augmented Retrieval (RAG), was handled by PrivateGPT [16],
allowing us to ingest all local YAML files automatically.

V. RESULTS

All results of the co-simulation were run in the scenario
depicted in Figure 1 with the same attacker and a set delay
for running the final step of the attack after ten minutes.



Inspired by the Confidentiality-Integrity-Availability (CIA)
triad we ran three different attacks in addition to the default
scenario without any attack going on. For testing the confi-
dentiality we list all accessible files on the infected machine
and sent the results back to the attacker, while the integrity
of the system was compromised by manipulating the control
commands sent by the MTU. Finally disabling the network
connections of the infected hosts assessed the impact on
availability. In the following we present excerpts from our
results.

A. Framework’s Applicability

The framework uses YAML files to define simulation pa-
rameters, including network topology, simulators, and connec-
tions. Key elements include controller and proxy modules for
different backends, and global parameters like runtime and
step size for synchronization. The network topology speci-
fies IP addresses, bandwidth, and delay. The co-simulation
deploys components, including SCADA devices, networking
hardware, and power grid components. The developed ap-
proach integrates with co-simulation environments using a
structured workflow and central C2 server (cf. Figure 3).
This server autonomously executes multi-stage cyberattacks,
ideal for Mosaik simulations. Components include abilities
(predefined scripts), adversaries (execution plans), fact sources
(data stores), and operations (execution flow).

In a simulated environment, the approach can execute DoS
attacks. Vulnerable terminal units mimic real-world issues like
default SSH passwords. An attacker node initializes the C2
server and connects an agent on a compromised machine. The
operation starts with a brute-force SSH attack and disables
network interfaces. Attacker actions include NMAP scans,
Telnet connections, SCP file transfers, netcat use, and shell
commands. Configurations test system performance, standard
operation, power manipulation, and scenarios causing power
spikes, vRTU slowdowns, or shutdowns. Other setups involve
Telnet data exfiltration and reconnaissance via NMAP and
Telnet logins. The simulation generates outputs, capturing net-
work traffic, logging actions, and creating reports for analysis.

In cyber-physical labs, the approach’s lightweight scripts
and modular components adapt to various attack scenarios.
The C2 server commands infected agents, executing abilities
and returning results. This data helps evaluate the effectiveness
of countermeasures and understand cyberattack impacts on
smart grids.

B. Power Simulation

Looking at the measured power levels via the three-phase
power measurement device of the laboratory (Figure 4), we see
the balancing of the components in a self-consumption opti-
mization operation scenario. The initial ten minutes of the DoS
scenario are almost identical to running the laboratory without
any attacker in it. But then the communication between the
MTU and RTU is disrupted by the attack and the regulatory
commands do not reach the corresponding Distributed Energy

Fig. 3: Control sequence between an attacker using Caldera
and a compromised victim.

Fig. 4: Measured power curve at substation of the DoS
scenario in the laboratory.

Resources (DER). Thus the imbalances occur and the grid sum
now mirrors the load induces to the power grid.

Inside the co-simulation we observe the same effect of im-
balances after the attack is executed (cf. Figure 5). Noteworthy
is the exact timing of when the impact happens, which is
contrasted by the timing in the laboratory. This is due to
the manual setup that is required when running the physical
components, which can easily be automated inside the co-
simulation.

C. Timely Spread

As a next metric we inspected the number of packets sent
over time. In Figure 6 we see how the amount of network

Fig. 5: Measured power curve at substation of the DoS
scenario run in the co-simulation.



(a) Laboratory. (b) Co-simulation

Fig. 6: Packet count over time in normal scenarios.

traffic fluctuates over time inside the laboratory, while the co-
simulation produces a more stable and homogeneous amount
of network packets during the scenario.

One of our requirements is the consistency of the data,
which is hard to ensure inside physical setups due to the
warm start of the environment. This means that organisational
communications happen before the actual scenario is run,
rendering the recorded network traffic incomplete. By fully
instantiating the network during the co-simulation, we can
collect all of this traffic and reproduce even the organisational
communication during each scenario.

D. Connections

Next in line is the connection overview. Here we show
how much traffic occurs between the individual hosts. As
one key result we see how much data the connections for
controlling the terminal units make up. This communication
is only required because the Virtual Remote Terminal Units
(VRTUs) need to be started by hand to correctly time their
execution.

Fig. 7: Network connections in the laboratory.

In Figure 7 we see the default communication without any
attack performed. Here the Caldera entry refers to the host,
that connects to the terminal units to run the required scripts.

When we compare these results to those of the co-simulation
in Figure 8, we clearly see how the network log only contains
the communication between the MTU and the RTUs and
nothing else. Working with clean data allows the data to make
sure even slightest irregularities due to the attackers behaviour

Fig. 8: Network connections in the co-simulation.

TABLE II: Protocol percentages and absolute counts of net-
work traffic for different scenarios (normal, manipulation, and
DoS), with total packet numbers below each scenario name.

Laboratory Co-Simulation
Normal Manip. DoS Normal Manip. DoS

Protocol (1509) (3,577) (2,205) (1,431) (2,588) (1,792)

IEC 104 0.34 0.15 0.13 0.67 0.39 0.28
SSH 0.54 0.77 0.79 0.00 0.36 0.46
ARP 0.01 0.04 0.07 0.32 0.24 0.24
LLC 0.07 0.04 0.00 0.00 0.00 0.00
Other 0.04 0.01 0.01 0.02 0.02 0.03

IEC 104 510 542 280 956 1008 500
SSH 811 2743 1744 0 926 818
ARP 20 144 164 452 614 429
LLC 113 129 0 0 0 0
Other 55 19 17 23 40 45

can be accounted for, while the laboratory’s heterogeneous
equipment is prone to potential variations.

E. Protocol Distribution

The impacts of the attacks can also be seen in the compo-
sition of different protocols that are contained in the network
logs. In Table II we listed the percentages that the most
frequent protocols contributed to the overall packet count.

In the laboratory we captured a lot of Secure Shell (SSH)
packets originating from the host that had to start the pro-
cesses manually on the VRTUs. These packets obfuscate the
the traffic, that is introduced by the attacker and its SSH
brute-force ability. In the co-simulation we do not have to
rely on manual connections for re-/starting the processes on
any component, which reduces the noise inside the exported
network log. Another example is the Address Resolution
Protocol (ARP) that is only partially captured in the laboratory,
while we see all packets in the log of the co-simulation. We
also see protocols like the Logic Link Control (LLC) that
are introduced by the hardware switch, which only occurred
inconsistently during the test in the laboratory and are an
example of how unwanted packets can pollute the captured
network logs. Even though filtering is a valid option, this



involves granular post-processing of the collected data. The
DoS attack nearly halves IEC 104 packet counts in both
environments and reduces SSH packet amounts.

F. Further Findings

The generation of data in the laboratory proved to be more
volatile due to manually starting the communication process
on the involved components, which poses a big challenge
for reproducibility. Similarly we observed more noise due to
specific hardware like the switches and network taps, that are
required for recording network traffic inside the local network.

Furthermore, the fact that the VRTU in the physical labora-
tory did not expose additional network interfaces for separately
running the SSH connections to start their internal workings,
introduced a lot of network traffic, that would not occur on
productive RTU components.

To conclude the experience from setting up the test scenario
inside a physical laboratory, we can say that minimizing the
noise was difficult and in the end not completely possible
due to the available hardware and communication channels.
In general the modular configuration of the co-simulation
allows for less restrictive setups and also reduces potential
interference with unwanted processes.

Also worth mentioning is the fact, that our autonomous
agent, that was developed inside the co-simulation, could
immediately run most of the attack steps without any adaption
to its configuration. Only the binary that is sent to the target
machine needed to be recompiled for the ARM architecture
of the VRTU. Besides that, the whole attack scenario could
just be run as is.

Finally the results from querying the LLMs did not yield
immediately usable code fragments. Instead the generated text
contained partially usable code, that still needed to be adapted
to make use of Caldera’s facts mechanism. Thus the usage of
these models might be helpful during the development, they
are no source for reliable code, that can be embedded directly
into a running attacker.

(a) Normal (b) Manipulation

Fig. 9: Power output in the CIGRE MV [17] scenario.

Finally we also successfully ran our framework on the
topology suggested by the CIGRE Task Force [17]. Again
the attacker was able to adapt to the more complex network
without further configurations (see Figure 9). Only the target
values for the manipulation had to be set. This indicates the
potential flexibility of our framework, but requires further
research.

VI. CONCLUSION

With this work we demonstrated how the overall data
scarcity for attack data on smart grids can be tackled. We
introduced a framework, that allows for configurable data
generation and compared the impacts on the physical and
simulated smart grids, showing that even though the data is not
identical, the impacts the attacks have can be well reproduced.
In general the virtually generated data contains less noise due
to precise definitions of what happens in the network.

Our proposed methods allowed us to not only develop
cyberattacks that could be deployed in the physical laboratory
with almost no additional work, but also generated data that
achieves higher consistency between different runs. The easily
adaptable setup of the virtual environment enabled a fast
reproduction of the complex physical setup and thus increased
the overall development efficiency.

In the future we hope to see more complex cyberattacks on
larger grid topologies. By allowing for quick prototyping and
testing of attack methods we also see a lot of potential for
more in depth analysis of overall cybersecurity of smart grids
without the limiations of openly available datasets.

ACKNOWLEDGMENT

Received funding from the BMBF under
project no. 03SF0694A (Beautiful).

REFERENCES

[1] A. Kenyon et al., “Are public intrusion datasets fit for purpose charac-
terising the state of the art in intrusion event datasets,” Computers &
Security, 2020.

[2] T. D. Le et al., “Smart grid co-simulation tools: Review and cybersecu-
rity case study,” in icSmartGrid, 2019.

[3] T. Choi et al., “Plan2defend: Ai planning for cybersecurity in smart
grids,” in ISGT Asia, 2021.

[4] S. Vyas et al., “Professor pete burnap. automated cyber defence: A
review,” arXiv preprint arXiv:2303.04926, 2023.

[5] T. J. Williams, “The purdue enterprise reference architecture,” Comput-
ers in industry, 1994.

[6] P. Formosa, “Robot autonomy vs. human autonomy: social robots,
artificial intelligence (ai), and the nature of autonomy,” Minds and
Machines, 2021.

[7] Council of European Union, “Artificial intelligence act,” 2024.
[Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/
?uri=CELEX:52021PC0206

[8] X. Li et al., “Securing smart grid: cyber attacks, countermeasures, and
challenges,” IEEE Communications Magazine, 2012.

[9] A. Ahmadian Ramaki et al., “Causal knowledge analysis for detecting
and modeling multi-step attacks,” secur. commun. netw., 2016.

[10] D. van der Velde et al., “Towards a scalable and flexible smart grid
co-simulation environment to investigate communication infrastructures
for resilient distribution grid operation,” in SEST, 2021.

[11] L. Thurner et al., “pandapower — an open-source python tool for con-
venient modeling, analysis, and optimization of electric power systems,”
IEEE Transactions on Power Systems, 2018.

[12] A. Ofenloch et al., “Mosaik 3.0: Combining time-stepped and discrete
event simulation,” in OSMSES, 2022.

[13] B. Roziere et al., “Code llama: Open foundation models for code,”
arXiv:2308.12950, 2023.

[14] D. Guo et al., “Deepseek-coder: When the large language model meets
programming–the rise of code intelligence,” arXiv:2401.14196, 2024.

[15] A. Lozhkov et al., “Starcoder 2 and the stack v2: The next generation,”
arXiv:2402.19173, 2024.

[16] I. Martı́nez Toro et al., “PrivateGPT,” 2023. [Online]. Available:
https://github.com/imartinez/privateGPT

[17] K. Rudion et al., “Design of benchmark of medium voltage distribution
network for investigation of dg integration,” in IEEE PESGM, 2006.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://github.com/imartinez/privateGPT

	Introduction
	Background
	Smart Grid Control Architecture
	Simulation Aspect
	Multi-Staged Cyberattacks

	Methodology
	Requirements
	Design Idea

	Approach
	Co-Simulation Environment
	Attack Emulation
	Generative Methods

	Results
	Framework's Applicability
	Power Simulation
	Timely Spread
	Connections
	Protocol Distribution
	Further Findings

	Conclusion
	References

