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Abstract—The scaled Web 3.0 digital economy, represented
by decentralized finance (DeFi), has sparked increasing interest
in the past few years, which usually relies on blockchain for
token transfer and diverse transaction logic. However, illegal
behaviors, such as financial fraud, hacker attacks, and money
laundering, are rampant in the blockchain ecosystem and seri-
ously threaten its integrity and security. In this paper, we propose
a novel double graph-based Ethereum account de-anonymization
inference method, dubbed DBG4ETH, which aims to capture the
behavioral patterns of accounts comprehensively and has more
robust analytical and judgment capabilities for current complex
and continuously generated transaction behaviors. Specifically,
we first construct a global static graph to build complex interac-
tions between the various account nodes for all transaction data.
Then, we also construct a local dynamic graph to learn about the
gradual evolution of transactions over different periods. Different
graphs focus on information from different perspectives, and
features of global and local, static and dynamic transaction
graphs are available through DBG4ETH. In addition, we propose
an adaptive confidence calibration method to predict the results
by feeding the calibrated weighted prediction values into the
classifier. Experimental results show that DBG4ETH achieves
state-of-the-art results in the account identification task, improv-
ing the F1-score by at least 3.75% and up to 40.52% compared
to processing each graph type individually and outperforming
similar account identity inference methods by 5.23% to 12.91%.

Index Terms—Blockchain regulation, Web 3.0, Ethereum,
Transaction network, Graph learning

I. INTRODUCTION

Blockchain is a decentralized, distributed public ledger that
has achieved tremendous success in various industries such
as finance, energy, and agriculture [1], where well-known
killer-level applications are digital cryptocurrencies [2], [3].
Ethereum is one of the most representative cryptocurrencies
with the largest usage and the second largest by market
capitalization. Unlike traditional financial transaction systems,
Ethereum’s addresses are designed to be anonymous without
any actual meaning. Although the anonymity of blockchain
can protect user privacy, the lack of real identities also provides
a protective umbrella for various financial crimes [4]. With the

development of the Web 3.0 ecosystem [5], blockchain has
also introduced a series of new criminal activities, bringing
new security challenges and regulatory issues [6]–[8]. Accord-
ing to the latest report ‘Hack3d’ from CertiK1, in the first
quarter of 2024, there were 233 on-chain security incidents
in the Web3.0 domain, resulting in losses of $502 million, an
increase of 54% compared to the same period last year.

To crack down on financial crime, official governments
have begun to strengthen blockchain regulation under the
anonymity of transactions, as well as researchers have deeply
explored the account de-anonymization inference methods [9]–
[13]. These methods most aim to mine attributes and behav-
ioral patterns using publicly available transaction information
to determine the identities behind anonymous accounts, en-
hancing the comprehensive understanding of the behavior of
participants. Account identity inference methods for Ethereum
accounts typically use graph analytics [9], [10], [12]–[15],
which models large amounts of data as graphs and treats
account identification as a classification task from a graph
perspective. Although graph analysis methods can enhance
the learning of transaction information through deep learning,
some challenges still need to be addressed urgently.

(i) Lack of a comprehensive graph learning model. Existing
graph analysis methods discard transaction sequential informa-
tion during graph construction to facilitate graph computation
[16]. Figure 1 (a) and (b) show that similar static graphs may
correspond to completely different evolving dynamic graphs.
Analyzing account behavior only through constructing a static
transaction graph will lead to a lack of detailed evolution
information about the accounts. Furthermore, since transac-
tion sampling drops out unimportant transaction information
in a long perspective, even the same dynamic graph may
correspond to a completely different static graph, as shown
in Figure 1 (b) and (c).

(ii) Ignoring the reliability of prediction results. Existing
methods overlook the actual probability of events occurring,

1https://www.certik.com
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This represents transactions dependent across time slices.

Fig. 1: Details about the challenge (i): (a) and (b) have similar
static graphs, but completely different dynamic graphs. (b) and
(c) have similar dynamic graphs, but different static graphs.

leading to models that may be overly confident or cautious.
In particular, some scenarios may involve large-scale account
de-anonymization inference and surveillance with limited re-
sources, so higher confidence levels in predictions become
exceedingly important.

(iii) The scarcity of labeled account information. The current
Ethereum account labels largely depend on public platforms,
such as labelcould2, that provide labels according to their
internal validation processes. Due to the high costs, the labor-
intensive nature of the work, and the lack of a unified
standard for labeling, there is a severe shortage of usable label
information. This scarcity amplifies the vulnerability of tasks
to underfitting or overfitting.

To address the above challenges, we propose a novel
Ethereum account identity de-anonymization inference
method: Double Graph inference-based account de-
anonymization on Ethereum (DBG4ETH). Since directly
inputting large-scale transaction graphs into graph neural
networks (GNN) [17]–[19] training is not feasible, we
generate account-centered subgraphs from the obtained
account-centric transaction dataset, further transforming the
account identification task into a subgraph-level classification
task. The following describes our approach in three stages
and elaborates on how we address these challenges.

Stage 1: Transaction data are constructed into graphs. We
first select the labeled nodes as the central nodes based on the
transaction data. Then, the central node is used as the center to
sample the top-K nodes as neighbors according to the average
transaction amount. Additionally, we filter out the remaining
attributes from the transactions and generate 15-dimensional
deep account features for nodes in the subgraph. These deep
account features are classified into four types, including sender
account features, receiver account features, transaction fee
features, and contract features, which are described in detail
in Section III-B2.

2https://etherscan.io/labelcloud

Stage 2: Combining static-dynamic and long-short graph
learning. To address the challenge (i), we propose a double
graph identity inference method that combines static-dynamic
and long-short terms. To be specific, we split the obtained sub-
graph by transaction time into multiple discrete-time dynamic
graphs at fixed intervals to construct a Local Dynamics Graph
(LDG), which learns the continuously evolutionary transaction
information of accounts over an extended period. Meanwhile,
we construct a Global Static Graph (GSG) to capture the long-
term behavioral features of accounts, rather than being limited
to the changes in features between adjacent periods captured
by the LDGs. Subsequently, we obtain two prediction values
from the global static account encoding module and the local
dynamic account encoding module.

Stage 3: Adaptive confidence calibration. To solve the chal-
lenge (ii), we put two predicted values into a joint calibration
module, which outputs the calibrated prediction probability
values. Finally, two probability values are fed into the classifier
to produce the predicted account type. To address the challenge
(iii), we aim to achieve effective account classification through
our elaborate designed deep features and integrated learning
paradigm, even when trained on a limited amount of labeled
datasets.

In summary, our main contributions are as follows:
• DBG4ETH: We propose a well-designed Ethereum ac-

count de-anonymization inference scheme capable of
perceiving both the local dynamic changes in transactions
and the long-term behavior of accounts from a more
strategic perspective.

• Confidence: Our method includes a confidence cali-
bration module, which employs an adaptive confidence
weight assignment method to make the model’s predicted
probabilities more accurately reflect the actual situation.

• Accurate and efficient: The results of de-anonymization
experiments on six types of Ethereum accounts demon-
strate that our model can achieve state-of-the-art per-
formance compared to multiple baselines. Moreover,
our approach yields optimal results even when the
label is limited. The source code is available at:
https://github.com/msy0513/DBG4ETH-main.

II. BACKGROUND AND RELATED WORK
A. Ethereum Account Model

The Ethereum account model is fundamental to the opera-
tion of the Ethereum blockchain, providing a framework for
transactions and smart contract execution.

Accounts. There are two primary types of accounts: ex-
ternally owned accounts (EOAs), controlled by private keys,
and contract accounts, which are essentially self-executing
programs. EOAs enable users to send transactions, like trans-
ferring Ether or initiating smart contract functions. Contract
accounts, deployed by EOAs, contain code that runs automat-
ically upon receiving transactions, enabling complex logic and
state changes on the blockchain.

Transactions. Transactions involve interactions between
these accounts, with simple Ether transfers between EOAs

2
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and more sophisticated engagements when invoking contract
account functionalities. Each account has a unique address, a
balance in Ether, and a nonce for ensuring transaction ordering.
This model supports a decentralized ecosystem where applica-
tions can run autonomously, enhancing security and efficiency
in a trustless environment.

B. De-anonymization Inference

Ethereum account de-anonymization refers to the process of
correlating blockchain transaction data with real-world entities
or behaviors to uncover the identities or purposes behind osten-
sibly anonymous or semi-anonymous account addresses. On
public blockchain networks such as Ethereum, while account
addresses do not directly disclose ownership information, in-
depth analysis of transaction histories, fund flow patterns, and
interactions with smart contracts can reveal insights into the
potential users or functions associated with these accounts.
This process is of paramount importance for combating illicit
activities, enhancing regulatory compliance monitoring, and
advancing the analytical capabilities of the blockchain. The
de-anonymization task mainly consists of several tasks such
as account clustering, account identification, money laundering
tracking, etc. In this paper, we focus on the Ethereum account
identification task that further infers account use by tracking
a user’s historical transactions.

Graph representation learning methods are popular methods
for dealing with Ethereum account identity inference tasks.
Specifically, graph representation learning methods can better
capture the identity characteristics of anonymous accounts by
constructing massive transaction data as a graph and studying
the topological relationships among accounts. Related studies
are presented in the following Section II-C. Besides using
graph learning to implement Ethereum account identity infer-
ence, some methods apply language models. BERT4ETH [16]
employs a universal pre-trained Transformer [20] encoder to
capture dynamic temporal information in transactions, further
detecting fraud activities.

C. Graph Representation Learning

The account identity inference task usually uses graph
representation learning methods which can be mainly divided
into graph embedding methods and GNN-based Methods.

1) Graph Embedding Methods: Traditional graph embed-
ding methods typically map nodes in the graph to low-
dimensional vectors and then use machine learning models
for classification and prediction. Random walks are a common
graph traversal technique used to explore sequences of nodes
randomly within a graph. For example, DeepWalk [21] uses
random walks to sample sequences of nodes, employing the
Word2Vec [22] method to learn the low-dimensional vector
representations of nodes. Node2Vec [23] evolves from Deep-
Walk by introducing two parameters p and q, to implement
biased random walks, thereby generating training sequences
for nodes. In specific blockchain applications, Yuan et al. [24]
proposed using random walk methods on graphs to cap-
ture behavioral patterns of accounts in transaction graphs.

Trans2Vec [25] enhances random walks on graphs by in-
corporating transaction amounts and timestamps to extract
compelling features for completing phishing detection tasks.

2) GNN-based Methods: Graph embedding methods can
directly compress data, making vector calculations simpler
and faster than operating directly on graphs. However, the
method is unable to optimize the quality of embeddings based
on feedback from classifiers. GNNs offer a solution that can
process graph data and produce predictive results end-to-end.

Traditional GNN-based methods, such as graph convolu-
tional network (GCN) [17], adapt the convolution operation
from image processing to graph-structured data for the first
time, allowing nodes to aggregate and update information from
their neighbors to learn node representations. Graph attention
network (GAT) [18] introduces an attention mechanism, al-
lowing nodes to dynamically weigh different neighbors based
on their importance when aggregating neighbor information,
enhancing the model’s flexibility and expressiveness. Graph
isomorphism network (GIN) [19] design a new aggregation
mechanism to capture topological structures on graphs, effec-
tively improving the learning capabilities of graph structures.

D. GNN-based De-anonymization Methods

In GNN-based blockchain account identity inference tasks,
I2BGNN [9] learns to map transaction subgraph patterns to
account identities, achieving account de-anonymization with
subgraphs as inputs. Ethident [10] is an end-to-end graph neu-
ral network framework for account de-anonymization, which
designs 49 graph enhancement methods for different categories
of accounts. RiskProp [11] proposes an account risk rating
method based on directed bipartite graphs to quantify the
distribution of risks in transaction networks. KYC-GCN [12]
proposes using an improved GCN architecture to handle mul-
tiple aggregators and data based on importance sampling, to
achieve account category inference. Unlike the above methods
that construct static graphs for identity inference, some works
use dynamic graphs for phishing detection tasks. TEGDetec-
tor [13] transforms transaction sequences into multiple time
slices and learns transaction behaviors across different time
intervals according to time coefficients. Additionally, some
methods consider the heterogeneity of graph nodes to solve
the Ethereum account classification problem. BPA-GNN [15]
considers both isomorphic and heterogeneous features during
neighbor aggregation to obtain the final prediction.

III. DOUBLE GRAPH CONSTRUCTION

A. Problem Definition

We define two account interaction graphs. GSG is repre-
sented by Gg = {V,E,X,R, Y }, where V = {v1, v2, ..., vn}
denotes the set of account nodes, E ⊆ {(vi, vj)|vi, vj ∈ V }
is the interaction edges between the nodes, X ∈ Rn×d1 is
the node feature matrix, and R ∈ Rm×d2 is the edge feature
matrix. n denotes the total number of nodes, and m denotes
the total number of edges. Y = {(vi, yi) | vi ∈ V } denotes
the label set of the corresponding account nodes.
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LDG can be denoted as Gl = {V,E,X,R, T, Y }, where
T denotes the transaction evolution time and the remaining
notation is the same as the GSG definition. Assume that
Ei = {e0, ..., ek} is the set of k neighbouring transactions
extracted centred on the target address vi, and the transaction
evolution time of ej ∈ Ei can be defined as follows:

Tej (Vi, Ei) =
tj − tmin

tmax − tmin
(1)

where Vi is the set of all nodes in subgraph centred on vi,
tj is the timestamp of transaction edge ej , tmin and tmax

denote the minimum and maximum values of the transaction
evolution time in Ei, respectively. We use the transaction
evolution time to partition the LDG into T time slices, where
Gi,k = {Vi, Ei,k} denotes the transaction graph under the
k-th time slice for vi centred transactions. Therefore, the
blockchain network can be modeled as a dynamic graph
classification dataset, including N graphs.

B. Ethereum Data Processing

1) Transaction Data Filtering: We first obtain Ethereum
transaction data and labeled account information. Secondly,
we delete all unsubmitted transactions. Then, we sample the
top-K important neighbors for the target account vi based on
the average transaction value. For each of neighbors, we also
sampled their top-K important neighbors. The entire sampling
process can be described as follows:

Vk =
⋃

v∈Vk−1

topK (Nν ,K,R [v,Nν , i]) , i ∈ {0, 1, 2} (2)

where Vk is the set of nodes obtained through k-hop sampling
(k = 0 indicates vi), Nν is the set of nodes corresponding to
the edges within 1-hop that are sampled, K is the number of
neighbors selected for each edge, R [v,Nν , i] guides which
edge to sample based on the average transaction value, and i
guides the specific edge to select. Vi = ∪h

k=0Vk represents the
set of nodes constructed by sampling h-hop neighbors from
the target account vi. If there are duplicate average transac-
tion amounts in the sample, we will choose the transaction
information based on the total transaction value.

2) Node Feature Construction: To leverage the obtained
transaction data, we add 15-dimensional deep features to the
account nodes for forming a broader statistical feature space,
which can be classified into the following four categories, as
shown in Table I.

Sender account features include the number of transactions
sent from the account (NTS), the total value of transactions
sent from the current account (STV), the average value of
transactions sent from the account (SAV) and the interval
between two consecutive transactions sent from the account
(STI). We use max STI and min STI to denote the maximum
and minimum values of the send transaction interval. For
example, Ti,k denotes the timestamp of the k-th transaction
sent by the i-th account, max STI and min STI can be
expressed as:

max STIi = max
k

(|Ti,k − Ti,k+1|) (3)

TABLE I: The extraction of 15-dimensional deep features on
transactional data.

Deep feature types Abbreviations Definition

Sender account
features

NTS Number of Transactions Sent

STV Send Total Value

SAV Send Average Value

min/max STI Minimum /Maximum Send Time Interval

Receiver account
features

NTR Number of Transactions Received

RTV Receive Total Value

RAV Receive Average Value

min/max RTI Minimum /Maximum Receive Time Interval

Transaction
fee features

SETF/RETF Send/Receive Ether Transaction Fee

SAETF/RAETF Send/Receive Average Ether Transaction Fee

Contract feature NC Number of Contract calls

min STIi = min
k

(|Ti,k − Ti,k+1|) (4)

Receiver account features include the number of trans-
actions received (NTR), receive total value (RTV), receive
average value (RAV), max receive time interval (max RTI),
and min receive time interval (min RTI), which are calcu-
lated similarly to the features of sender transactions account
features.

Transaction fee features include the total Ether transaction
fee for each account (TETF) and the average Ether transaction
fee (AETF). For the STETF of i-th account as the sender can
be expressed as follows:

STETFi =

NTSi∑
j=1

(gasPricei,j × gasUsedi,j)× 10−18 (5)

where 10−18 denotes the uniform conversion of the smallest
unit of Ether, Wei, into ETH.

An account in Ethereum is an entity that owns Ether, which
can be divided into two categories: EOA and contract account
(CA). With the transaction data, we can determine whether the
sender and receiver of this transaction are an EOA or a CA.
Contract feature is the total number of times all contracts
(NC) are called in transactions involving each account.

3) Interaction Merging and Edge Feature Construction:
Transactions from the source account vi to the target account
vj are merged into one edge, which is characterized by the
total amount w and the total number of times of these t
transactions. For the GSG, the features of edge from vi to
vj can be expressed as rij = [w, t]. For LDG, we use the
total amount of transactions as the features of the edges. The
feature of edge from vi to vj in the k-th time slice can be
denoted as rkij = [wk].

IV. METHODOLOGY

We describe the de-anonymized graph inference network
DBG4ETH in detail as shown in Figure 2. For the target
account vi, the inputs of DBG4ETH are processed node
features and edge features, and the outputs are predicted
account identity labels. DBG4ETH consists of the following
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four components: (1) global static account transaction encod-
ing module, (2) local dynamic account transaction encoding
module, (3) joint prediction and calibration module, and (4)
account classification module. Next, we describe each compo-
nent in detail.

A. Global Static Account Transaction Encoding Module

To thoroughly learn the account behavior patterns on the
graph, we employ GNN and a hierarchical attention net-
work [26] for learning the graph’s topological structure.
Although transaction data on Ethereum is readily available
and abundant, there is currently a scarcity of related labeled
information. To mitigate the sparsity of account labels and
enhance the capability of graph embedding learning, we in-
troduce contrastive learning with adaptive augmentation [27]
as a regularization tool to jointly train the learning of graph
topological structures. In the following, we will describe the
specific encoder for GSG.

1) Node feature alignment: To facilitate processing by
GNN and better preserve the local structure of the graph, we
fuse the features of each neighbor node vj in the subgraph
centered at node vi, with the corresponding connecting edge
information rij to represent the neighbor node’s features
as [xj ||rij ]. Therefore, we use linear transformations and
activation functions to eliminate the dimensionality differences
between nodes to align features of different dimensions. We
employ a linear layer and LeakyReLU [28] to update and
align the feature dimensions of neighbor nodes:

x̃j = LeakyRelu (Θx · [xj ∥ rij ]) (6)

2) Hierarchical attention network: Our goal with the hier-
archical graph attention network [26] is to find the most rele-
vant parts of the neighborhood to generate a representation for
center node vi. Hierarchical graph attention network has two
main components: node-level attention mechanism and graph-
level graph attention mechanism. Therefore, for the node-level
graph attention mechanism, as shown in Figure 2 part 5(3), for
each node with different colors in the subgraph, we use the
graph attention mechanism (GAT) [18] to select more relevant
neighboring nodes and give them higher weights and finally
update the representation of each node with different colors
by combining the neighbor information. Specifically, for node
vi in the subgraph, the node-level graph attention mechanism
is used to learn the attention scores of the hidden features of
the neighbors vj in layer l as follows:

slij = LeakyRelu
(
Θl

n · [H l
i ∥ H l

j ]
)

(7)

where Θl
n is the linear transformation parameter. Next, the

neighbor importance scores are normalized for each layer:

αl
ij = Softmax

(
slij

)
=

exp
(
slij

)∑
x∈V l

i
exp

(
slix

) (8)

where V l
i denotes the l-hop neighbors of vi. Finally, we use

the normalized attention scores for each layer to update the
account features by aggregating the neighbor information:

H l+1
i = Elu

αl
ii ·Θl

α ·H l
i +

∑
j∈V l

i

αl
ij ·Θl

α ·H l
j

 (9)

where Θi
α is a linear layer. Starting from the h-th layer neigh-

bors of the account node vi and updating inward consecutively,
the final output Hh

i represents the embedded features of the
target node, which includes information from all neighbors
within h-hops.

After obtaining the account node representations with dif-
ferent colors in the subgraph, as shown in Figure 2 part 5(3),
it is necessary to aggregate the nodes in the graph to generate
a graph representation of the subgraph representations. Unlike
previous methods that directly use mean, sum, or maximum
pooling to aggregate node features, we first obtain the initial
subgraph representation using global maximum pooling:

c = MaxPooling
(
Hh

i

)
(10)

Subsequently, we utilize GAT to learn the attention score sj
for any node vj in the subgraph towards the overall graph
representation:

sj = LeakyRelu
(
Θs · [c ∥ Hh

j ]
)

(11)

where Θs is the linear layer. The graph-level graph attention
scores are normalized:

βj = Softmax (sj) =
exp(sj)∑

x∈Vi∪{c} exp(sx)
(12)

where sc is the self-attention score of c. Finally, subgraph
embedding can be represented as:

g = Elu

βc ·Θg · c+
∑
j∈Vi

βj ·Θg ·Hh
j

 (13)

where Θg is a linear layer.
3) Contrastive Learning with Adaptive Augmentation: We

use graph contrast learning with adaptive augmentation [27]
to randomly generate two viewpoint graphs g1νi

and g2νi
using

a graph augmentation function on the input subgraph gνi
, and

then use a contrasting objective to force the representations
of the same graphs in the two different viewpoints to be as
similar as possible, and as far away from each other as possible
concerning the representations of the different graphs.

Inspired by [27], we draw on its adaptive graph augmenta-
tion function, which is an augmentation scheme that can add
disturbances to unimportant edges and features, and important
topology and node features can also be maintained after aug-
mentation by the graph. Specific graph augmentation methods
include topology-level augmentation and node-attribute-level
augmentation. (1) Topology-level augmentation: edge central-
ity is computed based on node centrality, and edges with low
edge centrality are eliminated. The node centrality function is
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Fig. 2: The overview of our DBG4ETH.

determined by three measures: degree centrality [29], eigen-
vector centrality [29], and PageRank centrality [29]. (2) Node-
attribute-level augmentation: node attribute augmentation by
randomly masking a fraction of dimensions with zeros in node
features. We note the labels obtained for the generated graph
as the labels of the original graph as well. Subgraph contrast
learning on the GSG maximizes the consistency of the two
augmented subgraphs in the contrast space by minimizing the
self-supervised loss. By adding contrast learning, the original
and augmented graphs are all used to train the model, which
greatly improves the model’s robustness in different scenarios.

B. Local Dynamic Account Transaction Encoding Module
To better encode the intra-graph topological information

and inter-graph temporal dependencies of LDG, the encoding
module uses GNN to learn the complex interactions within
each graph and gated recurrent unit (GRU) [30] to learn the
evolutionary information between different time slices.

Specifically, we first feed the LDG into a GCN to learn
the node representations Ut for the graph at time slice t as
topological features:

Ut = GCN(ht−1, At) (14)

where At is the adjacency matrix of LDG at time slice t, and
ht−1 represents the evolutionary features from the previous
time slice t− 1, with the initial h0 being the input node
features. Then, the evolutionary features are updated by GRU.
Specifically, based on the current topological features Ut and
the previous evolutionary features ht−1, the update gate ut

and reset gate rt are computed as follows:

ut = σ(UtWu + ht−1Vu) (15)

rt = σ(UtWr + ht−1Vr) (16)

where Wu, Vu and Wr, Vr are the weight matrices of the
update gate and reset gate. The update gate determines how

much of the evolutionary information ht−1 from the previous
time slice is passed to the next time slice to be learnt,
and the reset gate determines how much of the evolutionary
information ht−1 from the previous time slice is forgotten.
The reset gate is used to compute the candidate evolutionary
features for time slice t:

h̃t = tanh(WUt + (rt ⊙ ht−1V )) (17)

where W and V denote the weight matrices of the reset
gate, and ⊙ denotes the hadamard product. Finally, the local
dynamic account encoder updates the evolutionary features
under t− 1 time slice based on the evolutionary features ht−1

and the candidate evolutionary features h̃t:

ht = (1− ut)⊙ ht−1 + ut ⊙ h̃t (18)

After obtaining the structural and temporal features within
the subgraphs, we use the graph pooling method Diffpool [31]
to learn the clustering assignment matrix for multiple dynamic
graphs. Specifically, for the t-th time slice, the clustering
assignment matrix Mt for that current time slice t is first
accelerated:

Mt = Softmax
(
GNN(At, ht)

)
(19)

The generated matrix Mt represents the allocation of all the
N nodes initial to the t-th time slice to the new N × r nodes
according to the allocation rate r. The evolutionary feature
hpool
t and the adjacency matrix Apool

t can be expressed as:

hpool
t = MT

t ht ∈ RN ′×d (20)

Apool
t = MT

t AtMt ∈ RN ′×N ′
(21)

where N ′ is the number of node clusters after pooling. The
evolutionary features {hpoo11 ,hpool2 , ...,hpoolT } and adjacency
matrices {Apool

1 ,Apool
2 , . . . ,Apool

T } can be obtained by pool-
ing. To obtain a unique representation of the central node vi,
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we use the Read-out [32] operation to add time slice weights
to the evolutionary features of each time slice to make the
important time slice more useful for the final node identity
judgement. The target node vi can be represented as:

γi =

T∑
t=1

αth
pool
t (22)

where αt is the value of adaptive weights assigned to each time
slice automatically learnt by the model. Finally, the predicted
value of the LDG for the identity of node vi as follows:

l = ReLu(Θg(γi)) (23)

where Θg is the linear layer.

C. Joint Prediction and Calibration Module

After processing through global static and local dynamic
graph encoders, we obtain two types of predictive values repre-
senting account predictions from different perspectives. How-
ever, since different graphs have different complex networks,
too much neural network stacking can bring overconfidence
problems, and the confidence of classification results may be
overestimated. Meanwhile, in the actual Ethereum account
classification task, inferring the account type only from the
predicted probability categories is not entirely trustworthy, and
it is also necessary to provide confidence corresponding to the
fact. Therefore, instead of simply combining and processing
the predictions obtained from the GSG and LDG, we employ
post-processing calibration and an elaborate adaptive predic-
tion value calibration method for the predictions under two
parallel branches. As shown in Figure 3, the joint prediction
and calibration module consists of the following three stages,
with g/l denoted as GSG or LDG.

(1) Confidence Generation

GSG
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Fig. 3: Adaptive calibration method for two types of prediction
values: global static graph and local dynamic graph.

1) Confidence generation: Because two prediction results g
and l are not in the range of 0 to 1, we first scale the predicted
values according to their mean and standard deviation. Then,
we obtain the predicted values that fit into the range of the
two models’ confidence values, respectively.

2) Confidence calibration: Existing calibration methods
are mainly divided into two categories: parametric and non-
parametric calibration methods. Parametric calibration meth-
ods can efficiently take advantage of the data and calibrate

the model using limited data to guarantee classification accu-
racy. In contrast, non-parametric calibration methods provide
a more realistic estimate of uncertainty in the presence of
unknown data distributions and complete calibration with-
out increasing model complexity and training costs. We se-
lected three parametric and three non-parametric calibration
methods to calibrate the two parallel branches, respectively.
The parametric calibration methods include temperature scal-
ing [33], beta calibration [34] and logistic calibration [34].
The non-parametric calibration methods include histogram
binning [35], isotonic regression [36] and bayesian binning
into quantiles (BBQ) [37].

3) Adaptive weight calibration: The evaluation metric of
confidence calibration is expected calibration error (ECE) [33],
which measures the calibration performance of the model by
comparing the difference between the model’s predicted value
and the real value. A smaller value of ECE indicates that the
model’s predicted value is more acceptable or credible, and a
larger value indicates that the model’s predicted result is less
acceptable or credible.

Since parametric calibration methods improve the ability to
calibrate well on limited data and non-parametric calibration
methods improve the overall model classification ability, we
propose a confidence calibration method that incorporates
both types of multiple methods. We use this before-and-after
difference to indicate the reduction in ECE, and if the value
is larger, the calibration method is applied more efficiently.
We calculate the ECE reduction under different calibration
methods for GSG and LDG separately. For the same model,
if the ECE reduction of a calibration method is larger, the
calibration result obtained by that method should get a larger
weight score. Thus, the calibration results can be expressed as
follows:

Pg/l =

6∑
i=1

α
g/l
i C

g/l
i (24)

where Pg/l represents the weighted calibration result of the
GSG or LDG, C

g/l
i is the calibration result of the i-th

calibration method on the GSG or LDG, and α
g/l
i is the

normalized weight obtained by the i-th calibration method on
the GSG or LDG:

α
g/l
i =

∆ECEi∑6
i=1 ∆ECEi

(25)

where ∆ECEi is the changed value in ECE for the i-th
calibration result.

D. Account Classification Module

The account classification model aims to synthesize the
long-view analysis capability in the GSG and the evolutionary
perception capability in the LDG to accurately classify ac-
counts. LightGBM [38] is a gradient boosting-based decision
tree method that is robust to data outliers and noise and thus
performs well in the classification task. Therefore, we choose
LightGBM to classify the calibration results of global static
account graphs and local dynamic account graphs.
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V. EXPERIMENTS

In this section, we validate the practical performance of
the proposed method, DBG4ETH, addressing the following
research questions:

• RQ1: What are the selected components of DBG4ETH?
• RQ2: How does our framework DBG4ETH perform

compared to the current state-of-the-art Ethereum account
deanonymization methods?

• RQ3: How do different modules affect the performance
of the proposed method?

• RQ4: How robust is the model in predicting the identities
of novel account types that may arise in the dynamic
cryptocurrency market?

• RQ5: Is DBG4ETH sensitive to hyperparameters? How
do significant hyperparameters affect the performance of
the model?

A. Experimental Setup

1) Datasets: Following the method of data acquisition
in [10], we obtain the block data (the time interval is be-
tween “2015-08-07” to “2024-02-18”) in the block transaction
column of the Ethereum On-chain Data from the Xblock
website3, obtain the labeled account information through XLa-
belCloud4 and Etherscan Lable Cloud5. We match the labeled
accounts with all participating accounts in the transactions and
retain the top-K transactions related to the labeled accounts
based on the average transaction value. The other accounts
in these filtered transactions are considered the first-order
neighbors for constructing subgraphs. We can obtain k-hop
subgraphs centered on the known labeled accounts by iterating
this process.

The dataset details are shown in Table II, where the number
of positive samples indicates the number of labeled accounts
and the graph denotes the number of graphs containing positive
and negative examples. We select the four categories of ex-
change, ico-wallet, mining and phish/hack, which account for
a high percentage of the total number of 2,433. In addition, to
validate our model’s capability to handle novel account types,
we add two types: defi and bridge. Bridge accounts facilitate
interoperability between different blockchain networks by en-
abling the transfer of assets or information across them. DeFi
accounts refer to the interaction with decentralized finance
applications on Ethereum.

TABLE II: Dataset information for the six types of accounts.

Dataset Label

information Exchange ICO-Wallet Mining Phish/Hack Bridge DeFi

Num. of positive samples 231 155 56 1991 105 105

Graph 460 310 110 2430 210 210

Ave. Num. of nodes 92.97 84.62 101.77 77.35 119.42 83.59

Ave. Num. of edges 205.80 178.34 232.09 163.39 219.01 194.37

3http://xblock.pro/
4https://xblock.pro/#/labelcloud
5https://etherscan.io/labelcloud

2) Evaluation metrics: We evaluate the Ethereum account
identification task’s performance with Precision, Recall, F1

and Accuracy.
3) Baselines: In our study, we compared a total of 14

baseline models across three categories.
Graph embedding methods:
• DeepWalk [21]: It employs random walks to generate

node sequences, which are then used to learn node
embeddings through a Skip-Gram model.

• Node2Vec [23]: It extends DeepWalk by balancing lo-
cal and global exploration to learn more nuanced node
embeddings.

GNN-based methods:
• GCN [17]: It uses graph convolutions to aggregate node

features from the neighborhood for node representation
learning.

• GAT [18]: It applies attention mechanisms to weigh the
importance of neighboring nodes during feature aggrega-
tion.

• GIN [19]: It leverages the graph isomorphism principle
to learn node embeddings that are invariant to graph
permutations.

• GraphSAGE [39]: It employs a sampling-and-aggregation
framework to efficiently generate node embeddings from
large graphs.

• APPNP [40]: It approximates personalized PageRank
scores to capture node relationships for representation
learning.

• GRIT [41]: It integrates graph inductive biases into Trans-
formers, enabling effective node representation learning
without explicit message passing.

Deanonymization in Ethereum:
• Trans2Vec [25]: It captures the temporal and relational

dynamics of transactions through a combination of ran-
dom walks and a deep learning framework to produce
embeddings for de-anonymization tasks.

• I2BGNN [9]: It iteratively refines node representations
using graph inductive biases without explicit message
passing.

• TSGN [42]: It captures temporal and subgraph dynamics
to learn embeddings for evolving graph structures.

• Ethident [10]: It utilizes a hierarchical graph atten-
tion mechanism to identify patterns and behaviors for
Ethereum account de-anonymization.

• TEGDetector [13]: It analyzes temporal event graphs to
detect abnormal accounts.

• BERT4ETH [16]: It is a universal pretrained Transformer
encoder designed to extract illegal account representa-
tions on the Ethereum blockchain.

4) Parameter settings: In the sampling process of con-
structing the graph, we set the maximum number of sampling
hops to 2 and the maximum number of sampling transactions
per hop K = 2000. For GSG, adaptive contrast learning
generates two graphs where we set the ratio of randomly
removed node features to 0.1 and 0.0, and the corresponding
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ratios of randomly removed edges to 0.3 and 0.4, respectively.
We set the encoder to 2-layer GAT, the hidden layer to 128,
and the pooling method to maximum pooling. For LDG, we
set T = 10, the number of pooling to 2, and the number
of address clusters after two pooling is N ′

1 = N ∗ 0.1 and
N ′

2 = 1. During training, we use Adam optimizer to find the
optimal learning rate among {0.1,0.05,0.01,0.005,0.001}.
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Fig. 4: Heat map of 15-dimensional attribute correlation of
node features.

We set the baseline methods as follows: the graph embed-
ding methods are set to a walk length of 30, a walk count
of 200, and an embedding dimension of 64. Average pooling
is used to obtain an embedding representation of the graph.
GNN-based methods are stacked with two layers of graph
networks. The dimension of the GCN hidden layer is set to
64, the dimension of the GAT hidden layer is set to 256,
the number of attention headers is set to 8, the dimension
of the GIN hidden layer is set to 256, and the hidden layer
I2BGNN is set to 128. We choose the average pooling for
the pooling layers of GCN, GAT, and GIN, as well as the
maximum pooling for the pooling layer of I2BGNN. For the
other baseline methods, we select the optimal configuration
from corresponding papers.

B. Irreplaceability of Component (RQ1)

1) Node feature importance validation: We generate 15-
dimensional node features for each subgraph node. To verify
whether node features are valid, we separate the node features
according to their categories and explore whether there is a
correlation between the features pairwise. Figure 4 presents
a heat map of feature correlation coefficients, reflecting the
degree of association between different features. Meanwhile,
we normalize each of the 15-dimensional features individually.
Then, features within the same category are normalized again
to obtain the four account category features: sender account
feature (SAF), receiver account feature (RAF), transaction fee
feature (TFF), and contract feature (CF). The scatter plot distri-
bution of account category features is shown in Figure 5, with

0.0

0.5

1.0

SA
F

0.0

0.5

1.0

R
A

F

0.0

0.5

1.0

TF
F

0.0 0.5 1.0

SAF
0.0

0.5

1.0

C
F

0.0 0.5 1.0

RAF
0.0 0.5 1.0

TFF
0.0 0.5 1.0

CF

Exchange Mining ICO-Wallet Phish/Hack

Fig. 5: Scatter plot of account category features.

the histograms of each category displayed along the diagonal.
The above figures show that various distribution patterns are
expressed among account types. There is no redundant feature
with a strong correlation between the 15-dimensional account
features and the four account category features we constructed,
which can be directly used for subsequent training.

2) Evaluation of six confidence calibration methods: In
Section IV-C, we use six different confidence calibration
methods and evaluate the calibration performance of the
methods with ECE reduction. To understand the influence of
each calibration method in our proposed adaptive calibration
approach, we visualize the normalized weights of ECE reduc-
tions for GSG and LDG across four different account types,
as shown in Figure 6. We conclude that all six calibration
methods calibrate to the same extent for the GSG but perform
very differently for the LDG. The first three columns of
each group of bars in the figure are parametric calibration
methods, and the last three groups are non-parametric cali-
bration methods. The statistics show that the proportion of
the non-parametric calibration method is larger than that of
the parametric calibration method, that is, the non-parametric
calibration method has a stronger correction. In exchange,
ico-wallet, and mining, there are cases where parametric
calibration methods receive negative weights, i.e., the ECE of
the corresponding method is increased compared to the ECE
without that calibration method. We analyze the reason for this
because parametric calibration methods are usually more likely
to overfit the calibration data than non-parametric calibration
methods, especially when sample sizes are relatively small.
In addition, we believe that the similar performance of the
confidence calibration methods on the GSG may be due to
the ECE metric’s weakness in capturing the variance of the
predicted values. Additional calibration assessment metrics
could be investigated for calculation in subsequent work.
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Fig. 6: Different types of accounts use different calibration methods to obtain weight proportion data adaptively.
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Fig. 7: ROC curves for different classifiers selected on four different accounts.

3) Classifier selection and performance evaluation:
DBG4ETH adopts LightGBM as the classifier for weighted
prediction probabilities after confidence calibration, which in-
tegrates the strong learning abilities of both models to identify
Ethereum accounts under the best combination. Specifically,
after confidence calibration, the weighted calibrated probabil-
ities of GSG and LDG are obtained, and these two types
of probabilities are used as input data for LightGBM. To
better select appropriate classifiers, we also used MLP, random
forest [43], AdaBoost [44], and XGBoost [45] for model
training in our experiments. The four graphs in Figure 7
represent the ROC curves of the five classifiers for different
account categories. The purple line in the figure shows the
ROC curve for LightGBM, and we can see that the calibrated
classification results of LightGBM outperform the other four
classifiers across all four account categories.

C. Effectiveness of DBG4ETH (RQ2)

To validate the performance of our proposed DBG4ETH
method, we select two node embedding-based methods, six
graph-based methods and six Ethereum account identification
methods on the same dataset to compare the experimental
results, as shown in Table III. For the GNN-based baselines,
we conducted two experiments for each method: one without
the generated node features and another with adding 15-
dimensional node features. The statistics show that perfor-
mance improves after adding node features compared to with-
out them. For example, GCN’s F1-score can be increased by
16.73%, reaching 47.99%. Further observation of the statistic
in Table III reveals that our proposed DBG4ETH obtains state-
of-the-art experimental results, which are 5.23% to 12.91%

higher than the rest of the baseline methods, proving that
our well-designed DBG4ETH method can capture account
behavior patterns more accurately.

D. Ablation Study (RQ3)

To verify the contribution of each module in DBG4ETH to
the final classification results, we conduct three sets of ablation
experiments and record the F1-score in Table IV.

1) Verify the ability of account classification using GSG or
LDG alone: Firstly, we verify the ability of account classifi-
cation using GSG or LDG alone. We perform the following
ablations: DBG4ETH without GSG and without LDG. Using
either graph alone does not surpass the experimental results
obtained from combining both graphs. In terms of F1-score,
our method improves by up to 40.52% compared to using GSG
alone and by up to 32.67% compared to using LDG alone.
Moreover, our method achieves a good result of 97.19% on
the F1-score, even for the ico-wallet, which performs poorly
for the two benchmark models.

2) Verify the adaptive calibration module: To validate the
adaptive calibration module, we design two sets of exper-
iments: (1) DBG4ETH without calibration: We remove all
calibration methods, three parametric calibration, and three
non-parametric calibration methods (denoted as w/o calibra-
tion, w/o Param. calibration and w/o Non-param. calibration)
through three sets of experiments respectively, which are
used to verify whether adding calibration methods helps to
further infer account identity. (2) DBG4ETH without adap-
tive calibration: We remove adaptive parametric calibration,
adaptive non-parametric calibration, and adaptive calibration
(denoted as w/o Ada. Param. calibration, w/o Ada. Non-
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TABLE III: Performance comparison of experimental results among DBG4ETH and baselines.

Methods
Datasets

Exchange ICO-Wallet Mining Phish/Hack
PrecisionRecall F1 AccuracyPrecisionRecall F1 AccuracyPrecisionRecall F1 AccuracyPrecisionRecall F1 Accuracy

1 DeepWalk [21] 73.75 81.94 77.63 75.54 67.81 82.68 74.51 72.04 70.59 80.00 75.00 76.47 71.91 52.89 60.95 88.77
2 Node2Vec [23] 74.55 81.30 77.78 74.10 68.29 58.33 62.92 64.52 58.83 76.92 66.67 70.59 82.68 41.77 55.50 88.36

3 GCN(w/o node feature) 40.56 46.10 43.15 36.8 53.83 50.96 52.36 39.67 36.87 42.11 39.32 35.69 40.97 50.00 45.04 45.03
4 GCN [17] 81.33 79.22 80.26 78.86 69.93 68.27 69.09 67.60 87.78 86.84 87.31 86.76 71.74 55.22 62.41 55.29
5 GAT(w/o node feature) 50.00 50.00 50.00 34.55 35.69 44.75 39.71 49.04 33.33 25.00 28.57 32.73 40.97 50.00 45.04 45.03
6 GAT [18] 84.61 83.12 83.86 82.93 70.73 69.23 69.97 68.66 78.27 76.32 77.28 75.90 88.35 76.23 81.84 80.44
7 GIN (w/o node feature) 25.00 50.00 33.33 33.33 55.25 50.96 53.02 38.38 47.37 32.15 38.30 24.32 50.00 45.03 47.39 40.97
8 GIN [19] 82.77 81.17 81.96 80.94 25.00 50.00 33.33 33.33 83.93 76.32 79.94 74.91 86.13 81.11 83.54 83.29
9 GraphSAGE [39] 94.23 93.62 93.53 93.53 87.25 87.10 87.08 87.08 82.58 82.58 82.58 82.58 89.07 80.12 83.63 83.63

10 APPNP [40] 82.09 80.76 80.46 80.46 85.52 85.48 85.48 85.48 69.70 69.70 69.57 69.57 59.88 51.08 48.00 48.00
11 GRIT [41] 73.33 53.85 48.94 48.94 50.86 50.21 51.61 51.61 23.91 50.00 47.83 47.83 55.89 56.41 73.36 73.36

12 Trans2Vec [25] 69.23 84.38 76.06 75.54 80.96 64.15 71.58 70.97 80.00 84.21 82.05 79.41 79.47 48.44 60.19 88.77
13I2BGNN(w/o node feature) 81.84 81.82 81.82 81.82 80.71 80.52 80.49 80.49 78.95 78.95 78.95 78.95 88.55 79.75 83.20 83.20
14 I2BGNN [9] 82.52 82.47 82.47 82.47 79.19 77.88 77.88 77.88 72.62 71.05 70.54 70.54 85.31 81.83 83.41 83.41
15 TSGN [42] 71.87 76.16 76.04 77.14 70.73 67.00 66.73 67.00 81.25 73.05 72.34 72.50 73.75 71.30 74.77 87.67
16 Ethident [10] 87.14 87.55 87.23 87.23 73.33 75.00 70.97 70.97 75.00 75.00 66.67 66.67 80.28 87.80 88.93 88.93
17 TEGDetector [13] 85.74 85.63 85.67 85.71 80.63 81.32 80.77 81.00 86.67 84.46 84.65 85.00 81.33 80.42 80.86 88.63
18 BERT4ETH [16] 77.25 76.89 76.69 76.74 78.44 78.59 77.53 77.53 85.00 81.67 82.37 83.33 81.65 86.40 83.59 88.08

19 DBG4ETH 99.46 99.03 99.51 99.46 97.58 96.80 97.19 97.18 97.73 95.24 97.56 97.72 97.43 98.98 98.42 97.43
Improve. (5.23) (5.41) (5.98) (5.93) (10.33) (9.70) (10.11) (10.10) (9.95) (8.40) (12.91) (10.96) (8.36) (11.18)(9.49) (8.50)

param. calibration and w/o Ada. calibration) through three sets
of experiments to validate the necessity of adding adaptive
weights for some calibration methods individually and for
all calibration methods. The experimental results in Table
IV show that incorporating calibration methods and assigning
weights to different calibration methods significantly improves
the results.

TABLE IV: Performance comparison of model ablation ex-
periments.

Models Exchange ICO-Wallet Mining Phish/Hack
w/o GSG 87.50 56.67 80.00 90.83
w/o LDG 78.72 64.52 75.00 93.44

w/o calibration 94.23 83.05 78.05 97.11
w/o Param. calibration 99.03 89.76 68.00 98.31

w/o Non-param. calibration 97.58 98.21 93.02 98.24
w/o Ada. Param. calibration 99.50 88.89 97.56 98.30

w/o Ada. Non-param. calibration 97.08 98.28 75.00 98.41
w/o Ada. calibration 98.49 98.26 97.54 98.23

w/o LightGBM 96.13 91.80 81.63 98.29
DBG4ETH 99.51 97.19 97.56 98.42

3) Verify the classifier performance: The validation of the
classifier performance is presented in Section V-B3. The
results of DBG4ETH without LightGBM in Table IV are
classified with MLP instead of LightGBM classifier.

As a result, it is observed that our proposed DBG4ETH per-
forms best in classifying Ethereum accounts, and it correctly
classifies account types even for those with poor initial results
or small datasets.

E. Impact Of Dynamic Cryptocurrency Market On DBG4ETH
(RQ4)

Considering that the cryptocurrency market is dynamically
changing, we add two new account identities (bridge and defi)
to verify the practical strength of DBG4ETH.

(a) Bridge. (b) DeFi.

Fig. 8: The impact of training set size on model performance.

Table V and VI present the experimental results for the
account types bridge and defi. By comparing our method
with baseline approaches, we demonstrate that DBG4ETH
achieves near-perfect prediction accuracy even when dealing
with novel account types. To further investigate whether the
excellent performance is due to the limited size of the labeled
dataset, we conducted additional experiments by varying the
ratio of training samples from 10% to 50% of the total dataset.
Interestingly, our model performs exceptionally well with only
a relatively small subset of the training data. Specifically, with
just 20% of the training set for bridge and 30% for defi,
our method can achieve optimal predictive performance. The
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TABLE V: Account classification results on bridge.

Models
Bridge

Pricision Recall F1 Accuracy
DeepWalk [21] 65.62 63.64 64.62 63.49

GCN [17] 93.75 92.86 93.30 92.82
GIN [19] 91.67 90.00 90.83 89.90

GraphSAGE [39] 96.05 95.71 95.88 95.71
I2BGNN [9] 97.30 97.14 97.14 97.14
Ethident [10] 94.59 96.54 97.22 97.14

TEGDetector [13] 76.39 75.79 76.67 76.67
BERT4ETH [16] 97.62 97.06 97.27 97.30

DBG4ETH 98.64 100 99.32 99.32

TABLE VI: Account classification results on defi.

Models
DeFi

Pricision Recall F1 Accuracy
DeepWalk [21] 63.33 59.38 61.29 61.90

GCN [17] 93.75 92.86 93.30 92.82
GIN [19] 96.05 95.71 95.88 95.71

GraphSAGE [39] 96.05 95.71 95.88 95.71
I2BGNN [9] 97.30 97.14 97.14 97.14
Ethident [10] 94.59 96.54 97.22 97.14

TEGDetector [13] 63.84 64.03 63.33 63.33
BERT4ETH [16] 97.22 96.15 96.57 96.66

DBG4ETH 100 98.63 99.31 99.32

specific experimental results are shown in Figure 8. This is
attributed to our model’s ability to retain global information
from historical transactions and analyze the evolution of local
transactions, thereby enabling deeper insights into user-related
activities.

F. Hyperparameters Sensitivity Analysis (RQ5)

In this subsection, we mainly conduct sensitivity analysis on
the key parameters in DBG4ETH. These parameters primarily
include the four hyperparameters that influence the generation
of graph views in GSG (i.e., Pe,1, Pe,2, Pf,1, Pf,2) and the
number of pooling layers in LDG.

1) Sensitivity Analysis of Hyperparameters in GSG Encod-
ing: In GSG, Pe,1, Pe,2 represent the probabilities of removing
edges in the two generated graph views, while Pf,1, Pf,2

control the degree of masking node attributes in the two graph
views. These four hyperparameters introduce noise to unim-
portant edges and node features, thereby controlling the degree
of augmentation in topology and node attributes. For simplicity
in visualization, we set Pe,1 = Pe,2 and Pf,1 = Pf,2, with
the adjustment range between 0 and 1. In the sensitivity
analysis, we vary only these four parameters, while keeping
other parameters the same as in Section V-A4. The results
of the ico-wallet dataset are shown in Figure 9 (a). From the
figure, we can observe that when the values of the two types
of parameters are relatively small (< 0.4), our model is not
sensitive to changes in these hyperparameters, demonstrating
the robustness of DBG4ETH to hyperparameter perturbations.
However, when the parameters are set too large, the original

graph is severely disrupted, leading to too many isolated nodes
in the generated graph, negatively affecting the learning of
node representations.

2) Sensitivity Analysis of Hyperparameters in LDG Encod-
ing: In LDG encoding, the most critical parameter is the
number of pooling layers. Each time slice contains maximum
nodes N = 2000, and the pooling rate is set to 0.1. Therefore,
the maximum number of pooling layers that can be applied
is 3. We conducted experiments on four different account
datasets, adjusting the number of pooling layers from 1 to
3. The experimental results are shown in Figure 9 (b). From
the figure, we can observe that our model achieves the best
performance when the number of pooling layers is set to 2,
and the overall change in the number of layers has a relatively
small impact on the experimental results.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 0 0 . 8 0 . 6 0 . 4 0 . 2 0 . 09 5 . 4
9 5 . 6
9 5 . 8
9 6 . 0
9 6 . 2
9 6 . 4
9 6 . 6
9 6 . 8
9 7 . 0
9 7 . 2

P f

F 1
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(a) GSG encoder.

1 2 36 0
7 0
8 0
9 0

1 0 0

E x c h a n g e
I C O - W a l l e t

M i n i n g
P h i s h / H a c k

F 1

N u m b e r  o f  p o o l i n g  l a y e r s

(b) LDG encoder.

Fig. 9: Effect of hyperparameters in GSG and LDG encoder
on the experimental results.

VI. CONCLUSION

The financial crimes in DeFi have caused enormous eco-
nomic losses to innocent customers and hindered the develop-
ment of Web 3.0. The major challenge in blockchain regulation
is to analyze the real identity of customers, including the
account de-anonymization inference under the scarcity of
account labels. In this paper, we propose a novel Ethereum
account identification framework, dubbed DBG4ETH, which
combines the advantages of the global static graph and local
dynamic graph to perceive different accounts’ behavior pat-
terns and achieve a SOTA de-anonymization inference effect.
Meanwhile, we add an adaptive confidence calibration mod-
ule to improve trustworthiness in real application scenarios.
Experimental results show that our method achieves better
results than baselines. In addition, future work should focus
on account de-anonymization tasks under privacy-protecting
services, such as Tornado Cash, which obscure transaction
analysis by disrupting fund flow tracking, making it a crucial
and impactful area of research.
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