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Abstract. Smart contracts form the core of Web3 applications. Con-
tracts mediate the transfer of cryptocurrency, making them irresistible
targets for hackers. We introduce Asp, a system aimed at easing the con-
struction of provably secure contracts. The Asp system consists of three
closely-linked components: a programming language, a defensive com-
piler, and a proof checker. The language semantics guarantee that Asp
contracts are free of commonly exploited vulnerabilities such as arith-
metic overflow and reentrancy. The defensive compiler enforces the se-
mantics and translates Asp to Solidity, the most popular contract lan-
guage. Deductive proofs establish functional correctness and freedom
from critical vulnerabilities such as unauthorized access.

1 Introduction

Decentralized blockchain-based systems such as Ethereum have ushered in a
new computation paradigm dubbed “Web3.” Smart contracts form the core of
Web3. A smart contract (“contract” for short) is a program whose code and
execution are recorded on a blockchain. A contract facilitates an exchange of
value, typically cryptocurrency, between contract participants.

Trust is a central concern for Web3 applications, as there is no central trusted
authority and the participants need not have prior trust relationships. Blockchain
properties play a crucial role in building trust in contract execution. Every con-
tract is stored on the blockchain, ensuring that its code is open and immutable.
Every contract transaction is executed in a replicated manner, guarding against
the possibility of machine failures or compromised execution engines.

Although these mechanisms provide a solid foundation, contracts are but pro-
grams, and programs may have errors. Immutability of code and fault-tolerant
execution are of no help if contract code is buggy and vulnerable to attack. As
contracts handle large amounts of cryptocurrency, they are irresistible targets for
hackers, who stole nearly $4 billion in 2022 and $2 billion in 2023 from buggy
contracts [1,2]. In response to this threat, developers audit contracts through
standard processes: testing, static analysis, and expert code review. While these
methods uncover some bugs, they are inadequate at guaranteeing security.

As a result, [19,21,7] and others have developed formal verification methods
for contracts. However, formally verifying contracts written in standard lan-
guages such as Solidity or Rust is difficult, in part due to complex language
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constructs and the need to reason about reentrancy.3 Non-standard contract lan-
guages have emerged in response, but have drawbacks. FSolidM [13,14] models
contracts as finite state machines extended with Solidity actions, but verification
is limited to propositional CTL properties. Scilla [20] compiles contracts to Coq
for analysis, but proofs in Coq require substantial expertise and effort. Move [6]
has impressive automated verification support, but Move contracts cannot exe-
cute on common blockchains such as Ethereum.
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Fig. 1: The Asp pipeline. The Viper system is used to verify proof assertions.

This paper introduces the Asp system, which is aimed at easing the construc-
tion of provably secure contracts while addressing these drawbacks. It has three
tightly-linked components, as shown in Figure 1: the Asp contract language, a
defensive compiler, and a deductive proof checker. The Asp language provides
abstractions that simplify verification; the compiler translates Asp contracts to
run on standard blockchains; and the Asp proof checker is used to verify safety
and liveness properties that users state directly on the Asp contracts.

Asp combines well-known notions (such as state machines and deductive
proofs) but differs from prior work on contract verification in its emphasis on
abstraction coupled with defensive compilation. We illustrate the Asp language
and particularly its abstraction mechanisms through a variety of examples, show
how the use of abstractions simplifies proofs, and describe the implementation of
the compiler and proof checker. Our Asp prototype is implemented in about 3000
lines of OCaml and 100 lines of Viper; examples of Asp contracts (with proofs)
are available at https://github.com/DebraChait/Asp-example-contracts.
We summarize the three components of the Asp system next.

The Asp Language A programming language typically strikes a balance between
ease of expression and ease of analysis. Most contracts today are written in the

3 ‘Reentrancy’ is an execution pattern where a malicious contract forces an internal
contract-invocation loop that drains cryptocurrency from the target contract.
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languages Solidity, Vyper, Ink! and Rust. These are full-fledged programming
languages, which complicates verification. With Asp, we aim to achieve a good
balance through a programming model that employs abstractions. Coins, tokens,
timers, and addresses – Web3 abstractions ordinarily represented at a low level
– are provided as abstract types in Asp. Abstractions ease programming and
simplify analysis, as the abstract operations are few in number and have precise
semantics. The Asp language semantics inherently forbids arithmetic overflow,
out-of-bounds accesses, and reentrancy, eliminating those common vulnerabili-
ties as concerns for a contract programmer.

An Asp contract has a finite-state machine skeleton that is augmented with
actions on state variables defined over abstract data types. This structure nat-
urally models real-world contract execution. For instance, consider sending a
package through the mail–a contract between the sender and the post office.
This contract passes through the stages of preparation, payment, transit, and
delivery; these stages are naturally modeled by a finite-state machine. In conven-
tional languages such as Solidity, such structure must be encoded and enforced
implicitly, obscuring it and complicating analysis.

Asp contracts interact through synchronized message transfers. This also
models the event-driven structure of real-world contracts: for instance, the change
from the transit to the delivery stage in the prior example is through the event
of delivering the package.

The Asp Defensive Compiler The Asp compiler translates contracts to Solid-
ity, the most popular contract language. Compilation preserves Asp semantics,
implements the high-level abstractions, and supports the message-transfer view
of communication. The compiler adds auxiliary defensive code to enforce the
language semantics and check properties dynamically that are difficult to prove
statically. Development of a compiler back-end for Ink! is in progress; compila-
tion to other contract languages follows the same design. Compilation assures
the portability of verified Asp contracts to a variety of blockchains.

The Asp Proof Checker Although the Asp semantics eliminates many common
vulnerabilities, it cannot rule out all of them. Thus, one must prove that con-
tract behavior does not, for instance, allow unauthorized access to stored cryp-
tocurrency, or that the contract cannot be placed in a ‘frozen’ state. (These are
commonly exploited vulnerabilities.4) The first is a safety property, which Asp
users can establish through a standard automaton-based proof system. Asp al-
lows auxiliary ‘ghost’ state to be added to a contract purely for the purposes
of proof – this state may be viewed as implementing a deterministic checking
automaton. The second is an adversarial liveness property, which requires its
own proof system. The Asp proof-checker takes a declarative proof sketch for an
Asp contract and turns that sketch into lemmas that encode the requirements
of the proof system. The lemmas are checked by translation to an SMT solver,
invoked indirectly through the Viper system [15]. This provides Asp users with
deductive proofs of contract properties.

4 https://info.merklescience.com/april-2023-hackhub-report
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Deductive proofs are an important mechanism for enhancing trust in the in-
herently trustless world of Web3, as any contract participant may independently
validate a claimed proof of a property against the contract code. As contract
code is immutable once deployed, a proof remains valid throughout execution.

2 Asp By Example

To illustrate how the design of Asp promotes trustworthy smart contracts, we
present an example of an open auction contract. Figure 2 shows the skeleton of
the contract written in Asp. (We will fill in the contract gradually.)

1 contract SimpleAuction(beneficiary: address ,

2 bidding_time: nat)

3 where beneficiary != Address.none && bidding_time > 0 {

4

5 msg start , bid(coin);

6 var tmr: timer ,

7 maxBidder: address := Address.none;

8

9 initial StartAuction;

10

11 state StartAuction:

12 | owner?? start -> AuctionOpen

13 { Timer.set(tmr , bidding_time); }

14

15 state AuctionOpen:

16 | a??bid(c)

17 when Timer.is_active(tmr)

18 && Coin.value(c) > Coin.value(maxBid)

19 notby beneficiary -> AuctionOpen

20 { /* actions */ }

21

22 | when Timer.has_fired(tmr) -> AuctionClosed

23 { /* actions */ }

24

25 state AuctionClosed: // no transitions

26

27 }

Fig. 2: Skeleton of an open auction contract in Asp

2.1 State Machine Structure

An auction is naturally expressed as a state machine. The initial state is denoted
by keyword initial, the auction moves to a state where it is open and bidders
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can submit bids, and finally transitions to a state where the auction has closed.
Mirroring blockchain execution, transitions can only be triggered by external
messages (akin to function calls in function-based languages). The construct a

??bid(c) in line 16 of Figure 2 denotes a message named bid, received from an
address dubbed a, containing an input parameter c of type coin.5

An Asp contract starts in its initial state, and execution must follow the
contract transition partial function T : S ×M ⇀ P (S), which maps each state
and its input messages to the set of its possible next states. Thus, if a contract is
in state s ∈ S, a message m ∈M cannot be received at that state if (s,m) /∈ T .
(Contrast this with a function-structured language, where functions represent
state changes but there is no clear delineation of allowed state sequences.)

Asp has transition guards to capture the conditions under which a transition
is enabled. Transition guards include input guards denoting received messages,
such as a??bid(c) in line 16; predicates which must evaluate to true, such as when
Timer.has_fired(tmr) in line 22; and access control, such as notby beneficiary in
line 19. Access control errors represent one of the most highly exploited contract
vulnerabilities in 2023. 6 Asp’s access guards make access control explicit.

A transition without an input guard is called a τ transition. It is enabled
at a state if its boolean guard evaluates to true. Although executable contracts
must be deterministic, Asp contracts may be internally non-deterministic – that
is, multiple τ transitions may be enabled at a state – to allow for a notion of
contract refinement. The compiler enforces determinism by choosing arbitrarily
between enabled τ -transitions; correctness proofs are not affected by this choice.

In Figure 3, we add actions to the transitions from state OpenAuction that
specify state changes. Transition actions are comprised of a loop-free sequence
of operations that include message transmissions and state updates. Restricting
the action to be loop-free simplifies analysis, in effect by letting the skeleton
structure explicitly define any loops.

2.2 Abstractions

We introduce the abstractions of common Web3 constructs that are included in
Asp. We demonstrate how these abstractions simplify verification by comparing
the Asp types and semantics with existing encodings and verification schemes.

Basic Types Basic types include int (integer), nat (naturals), Tuple (tuples),
Seq (unbounded sequences), and Map (mappings from a key type to a value type).

In a significant departure from a conventional programming language, the
number types (int and nat) are given their mathematical definitions. As a con-
sequence, there is no notion of arithmetic overflow in Asp, so a contract program-
mer need not be concerned with vulnerabilities that arise from such overflow. Of

5 Section 2.2 elaborates on Asp’s special abstract types.
6 https://blog.merklescience.com/hubfs/Marketing%20reports/Hackhub%

202024%20(24-May-2024-7.29pm).pdf
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1 contract SimpleAuction (...) {

2 ...

3 state AuctionOpen:

4 | a??bid(c)

5 when Timer.is_active(tmr)

6 && Coin.value(c) > Coin.value(maxBid)

7 notby beneficiary -> AuctionOpen

8 { maxBidder !! bid_lost(maxBid);

9 /* store new maxes */

10 maxBidder = a;

11 Coin.moveall(c,maxBid); }

12

13 | when Timer.has_fired(tmr) -> AuctionClosed

14 { beneficiary !! winner(maxBid , maxBidder); }

15 ...

16 }

17

18 contract Beneficiary () {

19 var auction: Address;

20 ...

21 state AcceptBid:

22 | a?? winner(amt , addr) by auction -> FinalState {

23 log!! final_winner(Coin.value(amt));

24 }

25 ...

26 }

Fig. 3: Code snippets of open auction contract and receiving contract in Asp

course this is a fiction. It is the task of the defensive compiler to check for viola-
tions of this fiction (such as when arithmetic operations overflow) and cancel the
transaction execution when violations occur. Certain operations are inherently
partial: for instance, division by zero is undefined, as is an out-of-bounds access
to a sequence. The defensive compiler also checks that every executed operation
is well-defined. Section 5 elaborates.

Coins In conventional contract languages, there are two separate ways of ac-
counting for cryptocurrency. The underlying blockchain maintains an account
balance for each address and ensures that no double-spending can occur. At the
contract level, cryptocurrency is represented as integers. This leaves contract-
level accounting open to arithmetic error. Mistakes at the contract-accounting
level cannot propagate to the blockchain balances, but they can allow malicious
contracts to obscure the amounts of currency sent or received by a contract.

Asp unifies both views in a single Coin datatype. A coin variable is a container
for the native cryptocurrency of the blockchain in its most basic unit, whatever
that may be. This allows Asp contracts to be ported to multiple blockchains,
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each with its own cryptocurrency. Coins cannot be created: they may only be
transferred. To enforce this requirement, the Coin datatype provides only three
operations: Coin.value(c) is the (non-negative integer) value contained in c;
Coin.moveall(c,d) transfers all value from c to d; and the partial operation
Coin.move(c,k,d) transfers value k from c to d, if c has value at least k–if not,
the operation is undefined.

Example 1. 2vyper [7] provides resources as special ghost state that can only
be manipulated in certain prescribed ways – somewhat similar to the coin type
in Asp. However, 2vyper users must define ghost state operations and set up
coupling invariants to prove that the values of uint type used for cryptocurrency
accounting remain consistent with the resource values in ghost state. 7 Asp users
rely on the guarantees of coin type, without needing extra proofs to verify against
malicious accounting manipulation.

All coins that are received in an input message must be transferred to coin
state variables–i.e., received coins are not lost. (This is enforced by the defensive
compiler.) Sending a message containing coin variables transfers their entire
value to the receiving entity; thus, those variables have zero value after the send
action.

Example 2. Line 11 of Figure 3 moves all coins sent as a bid to the contract’s
maxBid coin. Line 8 first transfers the previous maxBid to the dethroned maxBidder,
so that the final value of maxBid is that of the accepted bid.

The Coin operations in Asp directly modify the value of a coin operand.
However, coins stored in Map, Seq, or Tuple types are copied when retrieved
from their storing structure. To prevent spurious coin creation or destruction,
coin operators only accept operands that reference coins stored in complex types.
Map.ref (and likewise for Seq and Tuple) directly modifies the specified entry,
so that total coins are conserved.

Example 3. In Example 5, a map stores Token types (described next; analogous
operations to Coin). Note that Token.move expects Map.ref rather than Map.get,
as move operations modify the values of their operands.

The coin operations enforce a coin conservation law: coins are neither created
nor destroyed and all coins in circulation are accounted for. In Solidity contracts,
one would have to explicitly prove that the integer-based accounting in contracts
matches the blockchain-based accounting; the Asp coin datatype eliminates the
need for such proofs.

Tokens While cryptocurrency conservation is maintained by the blockchain,
tokens in conventional languages have no such protection and are exclusively
treated as uints. Issuing, burning, and transferring tokens is entirely comprised

7 See, for example, Figure 9 on page 16 of [7].
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of arithmetic manipulation, heightening the need to verify against malicious to-
ken contracts. Asp provides an abstract token type to prevent honeypot contracts
and other exit scams that issue malicious tokens.8

A token in Asp is essentially a coin, with two important differences: (1) tokens
are defined and allocated by an issuer, and (2) tokens can be of different kinds. In
Asp, these aspects are handled by designating an Asp contract as a token issuer
with the declaration “issues Token(<limit>),” where the optional <limit> is a
natural number indicating the number of available tokens.

A token issuing contract issues just one kind of token. Tokens are issued
into a token variable v through Token.issue(<number>,v), which is defined only
if a sufficient quantity of tokens are available for issue. The coin operations
have analogous token operations (Token.move(v,k,w), Token.moveall(v,w), and
Token.value(v)) and follow similar token-conservation rules, up to minting (i.e.,
issuing) and burning (i.e., removal) through a Token.burn(v,k) operation.

Example 4. The following code adapted from Certik9 presents a snippet from
malicious token contract:

function setBalance(address user , uint256 amt) public

onlyRole(DEFAULTADMINROLE){

_balanceaccs[user] = amt * 10** decimals ();}

This code allows the contract owner to change a user’s token balance to any
amount they specify. Such a scam is impossible with Asp’s token type.

Example 5. The Move [10] language is designed for contract verification. How-
ever, Move does not have a built-in notion of tokens: [10] provides an example
contract for designing a safe token.10 To ensure that tokens are not generated
or destroyed spuriously in a token transfer, the Move contract defines a transfer
function as a withdraw followed by a deposit, both carefully defined to disallow
manipulation. Asp condenses this into a few lines of code with the token type:

1 contract BasicCoin () issues Token () {

2 msg transfer(nat ,address);

3 var accounts: map[address ,token];

4 ...

5 state Bank:

6 | a?? transfer(x,b) when Map.in(a,accounts) && Map.in(b,

accounts) notby b -> Bank

7 {Token.move(Map.ref(accounts ,a),x,Map.ref(accounts ,b))

;}

8 }

The Move contract ensures that tokens are not duplicated by defining a unique
token storage struct for each address. Asp tokens cannot be duplicated by design.
As tokens are explicit types, the Asp contract simply has an accounts map from
address to token, through which tokens may be issued, transferred, or burned.
8 https://certik.com/resources/blog/honeypot-scams
9 https://certik.com/resources/blog/honeypot-scams

10 Figures 1,2 on pages 3,4 in [10].
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Addresses An address holds the blockchain address of an Asp contract or an
external party. A contract contains the special address variables creator and
owner. These are set at the time of instantiation to the address of the creating
entity. The owner may be modified, but only through an Address.change_owner

action initiated by the current owner. The creator cannot be modified. A con-
tract instance has its own unique constant address, referred to as Address.self.

Example 6. Line 12 of Figure 2 specifies that the first transition of the auction
contract can only be triggered by the contract owner.

Addresses may be stored, copied, and transferred between contracts. Message
receive and send operations refer to addresses. A special address, log, is used
to log messages to the blockchain. Log transfers are always enabled and do not
change the state of the contract.

Example 7. Line 23 of Figure 3 logs the amount of the winning bid after the
auction is complete. 11 This is akin to an event in Solidity.

Timers In blockchains, time is not measured as real time, but rather by the
growth of the chain, to ensure that all miners and validators have a common
view of time. As a consequence, the progress of time may be uneven and is
not guaranteed, which may be a point of fallacy for developers. Time-dependent
actions are important for contracts such as auctions, which must terminate,
and for contracts such as hashed timed locks, which place a limit on how long
cryptocurrency is kept in escrow.

Asp includes a Timer data type. A timer variable represents a timer that
is initially inactive. Timer operations move the (implicit) timer state machine
through a sequence of states: Off, Active(k) (for k > 0), and Fired. The Timer.

has_fired predicate determines whether a timer is in its Fired state. All timers
advance together by the same non-deterministically chosen amount on a transi-
tion, which models the way time advances on the underlying blockchain. Timers
also simplify proofs of liveness properties; Section 4.2 elaborates.

Example 8. VerX [19], a contract verification tool, provides a benchmark of a
contract that runs a continuous sale, which divides time into “buckets” of twelve
hours (in Solidity) for accounting purposes.12 Since time varies based on the
frequency of blocks added to the chain, the only guarantee that this contract
provides is that a bucket will eventually be reset. However, it does not guarantee
anything more precise about the time of each bucket, since time is dependent
on the length of the blockchain. Asp timers abstract away concrete notions of
time so users do not rely on mistaken assumptions. The snippet below replaces
the concept of “hours” with a timer that progresses non-deterministically and is
reset upon firing.

11 Interaction between contracts will be addressed in Section 2.3.
12 https://github.com/eth-sri/verx-benchmarks/blob/master/Mana/main.sol
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1 state TrackSale:

2 | when Timer.is_active(timer_bucket) -> CheckMax

3 { ... }

4

5 | when Timer.has_fired(timer_bucket) -> CheckMax

6 { Timer.reset(timer_bucket);

7 Timer.set(timer_bucket , bucket_size);

8 ...

9 }

2.3 Interacting contracts

In our auction example, we may want to create a separate state machine to
describe the actions of the beneficiary, perhaps to model sending the prize
or dividing the winning bid among collaborators. Interactions between con-
tracts are specified by synchronized send and receive actions, using notation
akin to CCS and CSP. In Figure 3, the second transition from AuctionOpen

in the SimpleAuction contract sends the message winner with parameters of
type coin and address to the beneficiary. 13 The contract Beneficiary receives
a corresponding transition message winner of identical parameter types. When
SimpleAuction sends the winner message to Beneficiary, the message will be re-
ceived by Beneficiary only if Beneficiary previously set the variable auction to
the address of SimpleAuction, and is at state AcceptBid.

3 Asp Semantics

At its core, Asp contracts induce reactive state machines which communicate
through synchronized message exchanges. We define the semantics of execution
and communication. We begin by defining the transition semantics of a single
contract instance, then consider the semantics of interactions between multiple
contract instances.

For a simpler notation, we assume that every contract transition contains
either an input guard and no output actions, or is a τ transition with at most
one output action. A contract is easily restructured to meet these requirements
by introducing fresh states and edges.

3.1 Single Instance Transition Semantics

A single contract instance defines a labeled transition system with transitions
labeled as input, output, or internal. The contract skeleton may be viewed as
the tuple (Q, q0, δ), where Q is the finite set of states, q0 is the initial state,

13 The lack of withdraw pattern may seem concerning to smart contract developers who
are familiar with reentrancy. Asp contracts automatically lock against reentrancy,
so refunds can be sent to losing bidders directly.
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and δ ⊆ Q ×Q is the next-state relation. We refer to a pair (q, q′) in the next-
state relation as an edge. The state variables V induce the space of assignments
X = V → D. (For simplicity in notation, all variables have domain D.) The
initial assignment is denoted x0.

Every message declaration m(t0, . . . , tn−1) is viewed semantically as the set
of input letters of the form m(α, d0, . . . , dn−1), where α represents the address
of the message sender and each di is a value in D. The set of input letters is
denoted Σ; this has a corresponding set Σ of output letters. For a letter e (input
or output), e represents the matching letter (output or input, resp.), with e = e.

The labeled transition system for a single contract instance is defined as a
tuple (S, s0, Σ, T ). The state space S is Q ×X. The initial state s0 is (q0, x0).
T denotes the set of labeled transitions. A transition from state (q, x) to state
(q′, x′) is defined if (q, q′) is an edge labeled with guard g and action a, the
predicates in guard g evaluate to true at the state (q, x), the operations in action
a are fully defined at state x, and x′ is the result of performing the operations
in a. This transition is labeled by input letter e if g has an input guard that
evaluates to e in the state (q, x), by output letter e if the action a is an output
action that evaluates to e, and by τ otherwise.

3.2 Multiple Instance Semantics

Consider a collection M1, . . . ,Mn of contract instances. Intuitively, the instances
communicate by synchronizing pairwise on transition labels, i.e., when an output
transition of one contract matches with an input transition of another.

As described previously, contract execution on a blockchain is single-threaded
and externally triggered. To match this execution model, we define a single-
threaded cascading semantics for Asp contracts. Intuitively, a cascade is started
at a quiescent configuration by invoking an input transition in one of the con-
tracts. (A configuration is a vector of contract states; it is quiescent if no cascade
is in progress.) This input transition may trigger a synchronized transition with
another contract; the execution thread then moves to that contract. A cascade
continues in this manner until no further synchronizations are possible.

The precise formulation of a cascade relies on a pushdown stack of contract
indexes and is parameterized by a recurrence limit R ≥ 0. A configuration is a
pair (s, γ) where s is a vector with s(i) being the state of Mi, for all i, and γ
is a pushdown stack with entries from {1, . . . , n}. The stack is represented as a
sequence with the left end of the sequence being the top of the stack. It is an
invariant of the semantics that in any reachable configuration the stack contains
at most R + 1 occurrences of each index. A quiescent configuration is a pair
(s, γ) where the stack γ is empty, denoted by ϵ. We say that an input or output
letter e is directed towards the environment if its address entry is not one of the
M -contract instances. We use the update notation s′ = s[k ← u] to represent
the state vector s′ which is identical to s except at the k’th entry, which is u.

The transitions from a configuration (s, γ) are as follows.

1. (Local τ -Move) If k is the entry at the top of the stack and (s(k), τ, t) is a
transition of Mk, then ((s, γ), τ, (s′, γ)) is a transition, where s′ = s[k ← t].
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2. (Synchronized Push) If k is the entry at the top of the stack and there is an
output transition (s(k), e, t) inMk and a matching input transition (s(l), e, u)
in Ml for some l that has at most R occurrences in γ, then ((s, γ), τ, (s′, γ′))
is a synchronized transition, where s′ = s[k ← t, l ← u] is the new state
vector, and γ′ = lγ is the new stack.

3. (Environment Output) If k is the entry at the top of the stack and there
is an output transition (s(k), e, t) in Mk where e is directed towards the
environment then ((s, γ), e, (s′, γ)) is a transition, with s′ = s[k ← t].

4. (Pop) If k is at the top of the stack and none of the above types of transitions
are enabled at s(k), then ((s, γ), τ, (s, γ′)) is a transition, where γ = kγ′.

5. (Environment Input) Consider a quiescent configuration (s, ϵ). If there is an
input transition (s(k), e, u) in Mk for some k where e is directed towards the
environment, then ((s, ϵ), e, (s′, γ′)) is a transition, where s′ = s[k ← t] is
the new state vector, and γ′ = k is the new, non-empty stack.

Along a computation, a cascade is an execution fragment that starts at a
quiescent configuration and ends at the next quiescent configuration. Every infi-
nite computation can be partitioned into either an infinite sequence of cascades,
or into a finite sequence of cascades followed by an infinite suffix where the stack
is “stuck” and every transition is either a local move or an environment output.

Reentrancy attacks are blocked with R = 1 as it is impossible for an attacker
contract to trigger an account withdrawal transition twice within a cascade.
(Appendix A contains an illustrative example.)

4 Asp Verification Proof Methods

By design and semantics, Asp contracts are inherently free from common vul-
nerabilities such as reentrancy, out of bounds accesses, and arithmetic overflow.
Other security properties, such as proper access control, must be established
through verification. In Asp, a user-supplied deductive proof is required for ev-
ery claimed property of an Asp contract. This has a crucial benefit in the trustless
Web3 setting, as any user can independently validate claimed proofs before en-
tering into a contract.

The Asp proof-checker reads in a proof sketch for an Asp contract. It trans-
lates the sketch into Hoare triples (per contract transition) according to the
proof rule specified. The triples are checked for validity through Viper [15], an
intermediate verification language based on SMT solving.

Most attacks on smart contracts, including many classified as security viola-
tions, target violations of safety properties. Termination is guaranteed in practice
by contract execution’s reliance on available “gas,” cryptocurrency paid to a val-
idator in return for executing a contract transaction. We address other liveness
concerns, such as reachability and lockouts. The Asp proof-checker currently
supports safety and reachability verification, which we illustrate with examples.
Appendix B describes a lockout vulnerability, its resolution, and a formal proof
of lockout-freedom; implementation of this proof method is in progress.
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4.1 Safety Proofs with Ghost Variables

Informally, a safety property is one that can be falsified in finitely many steps.
(A precise formulation is in [4].)

A standard proof method for safety uses a finite-word automaton to detect
violations. Instead of defining automata over subsets of atomic state propositions,
as is typical, we define the automaton directly over the contract state space S. A
deterministic finite-word automaton recognizing violations of a safety property L
is a tuple A = (Q, q0, δ, R) whereQ is the set of automaton states (not necessarily
finite), q0 is the initial state; δ : Q× S → Q is the transition function, and R is
a subset of states, which we refer to as the rejecting states.

A run ρ of the automaton on an infinite computation w = s0, e0, s1, e1, . . . is
a function from Nat to Q, where ρ(0) = q0 and the tuple (ρ(i), si, ρ(i+1)) is in δ
for all i. The run is rejecting if ρ(k) is in R for some k. Computation w violates
L if there is a rejecting run of the automaton on w.

Following the automaton-theoretic view of verification, we define a product
transition system M ×A from the contract machine M and the safety-violation
automaton A. This has state space S ×Q, initial state (s0, q0), and transitions
of the form ((s, q), (s′, q′)) where for some e, (s, e, s′) is in T and δ(q, s) = q′. It
is straightforward to show that every computation of M is safe if, and only if, a
reject state of A is not reachable in M ×A; equivalently, if the property “not in
R” is invariant over the transition system M ×A.

In Asp, the product construction is carried out manually using auxiliary state
variables declared with the prefix ghost. The type checker ensures that ghost
state does not influence normal contract execution: ghost state is never used
to modify contract state, ghost state is never communicated to other contracts
through messages, and assertions on ghost state cannot be used to control tran-
sition enabledness. Ghost variables encode the state of the violation automaton.
As the automaton is deterministic, automaton state updates can be added to ev-
ery contract transition. (Updates to ghost/automaton state can, and do, depend
on the contract state variables.) Checking that “not in R” is invariant amounts
to showing that an assertion θ on the joint state (contract + ghost) satisfies:

– (Initiality) θ(s0, q0) holds,
– (Inductiveness) If θ(s, q) holds and ((s, q), (s′, q′)) is a transition of M × A,

then θ(s′, q′) holds, and
– (Sufficiency) If θ(s, q) holds, then q is not in R.

A safety proof sketch in Asp partitions θ across the contract skeleton states
as a family of assertions {θm}, where θm is associated with the skeleton state
m, for all m. Given these assertions, the proof checker carries out the initiality,
inductiveness, and sufficiency checks through a translation of Asp constructs to
the Viper verifier, as demonstrated in the following example.

Illustrating Asp safety proofs In our auction example, one property we may
want to prove is that all bidders receive proper refunds. To prove this property
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1 contract SimpleAuction (...) ... {

2 ...

3 ghost var bidded: map[address , int] default 0,

4 refunded: map[address , int] default 0;

5

6 state AuctionOpen:

7 | a??bid(c) ... -> AuctionOpen

8 {Map.set(bidded ,a,Map.get(bidded ,a) + Coin.value(c));

9 Map.set(refunded ,maxBidder ,

10 Map.get(refunded ,maxBidder) + Coin.value(maxBid));

11 maxBidder !! bid_lost(maxBid);

12 ... }

13 | when Timer.has_fired(tmr) -> AuctionClosed

14 {Map.set(refunded ,beneficiary ,

15 Map.get(refunded ,beneficiary) + Coin.value(maxBid)

16 );

17 beneficiary !! winner(maxBid , maxBidder);}

18 ...

19 }

Fig. 4: Open auction contract with ghost variables

(via invariance), we add ghost variables to the contract (as shown in Figure 4)
to keep track of coins bidded and refunded.

Asp users specify proof sketches in a separate proof file. To prove that all
dethroned bidders are refunded their full bids, we write the following assertion
using ghost variables:

1 always forall b: address :

2 (b != maxBidder && b != beneficiary)

3 ==> Map.get(refunded , b) == Map.get(bidded , b)

always denotes an assertion that holds at every skeleton state. To prove that
the winning bidder is refunded their previous losing bids, we add: 14

1 always Map.get(refunded , beneficiary) == 0 ==>

2 Map.get(refunded , maxBidder) ==

3 Map.get(bidded , maxBidder) - Coin.value(maxBid)

4 always Map.get(refunded , beneficiary) > 0 ==>

5 Map.get(refunded , maxBidder) ==

6 Map.get(bidded , maxBidder) - Map.get(refunded , beneficiary

)

We then add that the highest bidder is never the beneficiary, and require the
following skeleton-state-specific assertions to support the proof:

14 Note that this second property requires case-specific assertions. This is because Coin
.value(maxBid) is 0 after the coin is sent to the beneficiary.
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1 @StartAuction Map.get(refunded , beneficiary) == 0

2 @AuctionOpen Map.get(refunded , beneficiary) == 0

The Asp proof-checker checks the initiality of these assertions and their in-
ductiveness over every contract transition. (Sufficiency is not needed, as the
assertion encodes the desired property directly.) The inductiveness checks turn
into Hoare triples, which are compiled to Viper and verified automatically.

4.2 Proofs of Timer-supported Reachability

Timers in an Asp contract can be used to check reachability. However, the state-
changes of the corresponding timer state machines are implicit, as is the progress
of time which, in a blockchain, is measured by the non-uniform measure of
blockchain length. To incorporate these implicit progress measures, we add a
self-loop time-progression transition, time, to every skeleton state. The time tran-
sition is enabled at state s only if there is some timer in an active state at s. Its
effect is to advance time by at least one unit and update the state of all active
timers accordingly. (The time transition guard ensures that it is never enabled
for a contract without timers.)

With this addition, the reachability proof scheme is formally as follows. A
proof consists of a state assertion θ and a partial rank function ρ over a well-
founded relation ≺ that meet the following conditions (where R represents the
set of states for which we wish to prove reachability):

1. θ holds of the initial state,
2. ρ is defined for all states in θ that are not in R, and
3. For every state s in θ but not in R:

(a) Some transition (either an explicit contract transition or the implicit
time transition) is enabled at s, and

(b) For every transition from s to a state t, it is the case that either R holds
at t, or θ holds at t and ρ(t) ≺ ρ(s)

This proof method is sound for reachability. Consider, to the contrary, that
there is a maximal contract computation that does not include a state in R. By
the first and third rules, every state on this computation satisfies θ but not R.
This computation cannot be finite, as the final state must have an enabled tran-
sition, contradicting maximality. Hence it must be infinite: but then it induces
an infinite decreasing chain in ≺, which contradicts well-foundedness.

Illustrating liveness proofs with timers We wish to prove that AuctionClosed
will eventually be reached, to ensure that the auction will close and the benefi-
ciary will receive the winnings. The following timer-based proof verifies this.

1 reachability auction_closed (2) { // "2" is the rank length

2 goal = {

3 @AuctionClosed true

4 /* other state -specific goals are false by default */

15



5 }

6 invariant = {

7 @StartAuction Timer.is_off(tmr)

8 @AuctionOpen !Timer.is_off(tmr)

9 }

10 rank = { /* partial function , defined by cases */

11 @StartAuction

12 | (2,0)

13 @AuctionOpen /* Order is important */

14 | (1, 0) if Timer.has_fired (tmr)

15 | (1, Timer.value(tmr)) if Timer.is_active (tmr)

16 @AuctionClosed

17 | (0, 0)

18 }

19 witness = {

20 @StartAuction a== owner && a != Address.none

21 @AuctionOpen a != beneficiary && a != Address.none

&& Coin.value(c) > Coin.value(maxBid)

22 }

23 }

The Asp verifier compiles this proof outline to a set of lemmas for the Viper
verification tool, which encode all the checks defined for the timer-based reacha-
bility proof rule. The enabledness check (3(a)) requires existentially quantifying
the free variables of each transition. As existential quantification is not well-
supported by Viper15, we explicitly write the existential witness necessary to
show that transitions are enabled at each state. The well-founded set is the set
of natural-number tuples (of a fixed length), ordered lexicographically. Verifica-
tion of the generated lemmas takes less than 2 seconds.

4.3 Proofs of Liveness in Adversarial Environments

A class of attacks on contracts consists not in stealing cryptocurrency, but rather
in “freezing up” the contract so that it becomes unusable, so that any funds
stored in the contract are inaccessible. Showing that such lockouts are not pos-
sible requires reasoning about potential adversarial actions in the multi-agent
setting of Web3.

One way to formulate the property is to do so in game-theoretic terms. We
consider an external Player (address) x and show that from any reachable con-
tract state, there is a winning strategy for the Player to reach a contract state
satisfying property Q (say a state where a message from x must be accepted).
The Opponents are the other agents and the contract M itself, as M contains
non-deterministic τ -actions which are resolved arbitrarily.

The following deductive proof system establishes this property. It is inspired
by similar proof systems (cf. [16]) for µ-calculus properties. A proof consists of a
state assertion θ and a partial rank function ρ that meet the following conditions:

15 From http://viper.ethz.ch/tutorial/#expressions
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1. θ is an invariant of the contract M ,
2. ρ is defined for all states in θ, and
3. For every state s in θ, one of the following holds:

(a) s satisfies Q, or
(b) There is a transition for the Player to a state s′ that is in θ, and the

rank decreases strictly after that transition, or
(c) Some Opponent transition is enabled and all Opponent transitions lead

to states in θ and strictly decrease rank.

The soundness of this proof rule is established as follows. Consider any reach-
able state, say s. As this state is reachable, it is in the invariant θ. From this
state, the choices of the Player and Opponent produce a game subtree where
all tree states are in θ. This tree cannot have an infinite branch where Q never
holds, as rank decreases strictly on every transition, but the domain of ρ is well-
founded. Thus, every branch must end in a state satisfying Q. The proof rule is
also relatively complete: in fact, it is deduced from a µ-calculus framing of the
property (Appendix B). Implementation of this proof system is in progress.

5 Defensive compilation

The Asp compiler translates Asp contracts to Solidity, the most popular contract
language; a translation to Ink! (and Rust) is in progress. To make the discussion
concrete, we focus on Solidity and Ethereum; the translation to other languages
and blockchains is similar.

We briefly summarize the aspects of contract execution on Ethereum that
are most relevant to compilation. On a blockchain, a contract is passive until
one of its interface methods is invoked by an external entity; this invocation is
called a transaction. The externally-invoked method may recursively invoke other
methods, including those of other contracts. A transaction is executed by the
EVM (Ethereum Virtual Machine) in a single-threaded manner until completion.
On successful completion, changes to the contract state are committed to the
blockchain. On failure, which can be due either to an undefined instruction (e.g.,
divide by zero) or a programmed ‘revert’ instruction, the state of the blockchain
is not changed. Every transaction execution has a cost in cryptocurrency, known
as the ‘gas’ fee.

The compiler must transform the state-machine view of an Asp programmer
to the method-invocation view of the underlying contract execution engine. The
compiler does so by essentially turning an Asp state machine skeleton inside-out.
Every Asp message is transformed into a publicly accessible contract method.
Within this method, a case analysis by (skeleton) state determines the transi-
tion that is executed and the next skeleton state. If no transition is enabled, the
compiled contract reverts. Cascade semantics is implemented through a (pri-
vate) tau_closure method that repeatedly executes τ transitions from the next
skeleton state on, until a state without τ transitions is reached. The source Asp
contract may be internally non-deterministic; the compiler determinizes execu-
tion by making an arbitrary choice between simultaneously enabled τ transitions.
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Message sends are converted to a low-level Solidity call operation. Ghost vari-
ables and ghost operations are not compiled to Solidity; they are used only for
proofs.

In addition, the compiler inserts code that, at run time, performs two func-
tions: (a) it ensures that the assumptions underlying verification (such as no
arithmetic overflow, no reentrancy, no undefined actions) hold during execution
and (b) it checks for properties that may be cumbersome to prove, such as coin
conservation. These checks guard against semantics violations and are thus de-
fensive in nature; hence, we refer to the process as defensive compilation. The
no-reentrancy property is enforced by introducing a “reentrancy counter” that
is checked then incremented on entry into every invocable method and decre-
mented on exit. A reentrant call exceeding the reentrancy limit will fail the check
and cause the entire transaction to be canceled.

The Asp semantics has no notion of explicit failure. However, a transaction
of the compiled Solidity code may be canceled due to the failure of a compiled
Asp guard, or due to the failure of an inserted defensive check, or due to a
detected arithmetic overflow. The first two cases match the Asp semantics, as
the corresponding transition is not defined in Asp. The third case is one where the
Asp transition is defined (as arithmetic in Asp is ideal) but the compiled version
does not succeed. As a consequence, compilation correctness is expressed not as
an equivalence but as a language inclusion. This gives us the following important
property for Asp compilation.

Property 1. Let C1, . . . , Cn be Asp contracts with corresponding compiled con-
tracts S1, . . . , Sn. Every successful transaction of the compiled contracts corre-
sponds to a successful cascade of the Asp contracts.

As a corollary, every safety property of an Asp contract is a safety property of
the compiled contract. The corollary is important as it ensures that proof effort
is required only at the Asp level; assuming correct compilation, there is no need
to re-check the code generated for (multiple) target blockchains.

These correspondences also hold for adversarial liveness and reachability
properties under the assumption that arithmetic overflow or shortage of gas
do not cause a transaction to revert. We then obtain in the other direction that
every Asp contract cascade is matched by a successful transaction of the com-
piled code. This induces a bisimulation between the Asp and compiled Solidity
transition systems that preserves adversarial liveness and reachability.

6 Related Work and Discussion

The importance of ensuring that smart contracts are free of bugs was recognized
early. In 2016, only a year after Ethereum was created, a hacker stole a large
amount of ETH (worth about $3B today) in the “The DAO” exploit. That led to
a controversial decision to “hard fork” the Ethereum chain to recover the funds.
This recourse is impossible today: there are far too many active (and buggy)
contracts to hard-fork the chain on each exploit.
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Several companies (e.g., CertiK, Certora) offer smart contract audit services,
which look for errors in smart contracts.16 Tools such as MYTHRIL17 and the
Solidity SMT tools [3] search for errors using bounded model checking and au-
tomatic invariant inference. The tools and services are valuable for detecting
potential errors, but they do not provide a comprehensive guarantee that a con-
tract is free of vulnerabilities. The VerX [19] tool model-checks safety properties
of Solidity contracts, while the SmartPulse [21] tool checks LTL properties. Both
tools extensively apply predicate abstraction methods. Fully automated checkers
are, however, inherently limited by state explosion.

In Section 1, we point to the difficulty of formally proving security for con-
tracts written in full-fledged languages such as Solidity. The solc-verify tool [11]
checks user-supplied assertions on Solidity contracts, but it is restricted to quantifier-
free assertions. Hence, one cannot typically write proofs about maps, for instance.
2vyper [7] is a verification system for the Vyper language, a variant of Solidity.
As neither the Solidity nor the Vyper language restrict reentrancy, it is necessary
to prove either that the contract code blocks reentrancy, or that reentrancy, if it
occurs, does not lead to a vulnerability. The 2vyper system includes special proof
rules to prove these assertions. While the proof system is technically interesting,
such proofs add a substantial burden in practice. A similar reentrancy-sensitive
proof system is defined in [8] for contracts written in the Dafny language (and
potentially compiled to Solidity, although that is not yet implemented).

Such difficulties have led to the development of several non-standard pro-
gramming languages for smart contract development (including Asp) which elim-
inate reentrancy as an issue. Move [6] is an object-oriented language with a
non-standard, strict type system, similar to the “borrow” system of Rust. The
type system naturally blocks reentrancy. The Move verifier [23,10] checks user-
supplied proofs and is impressive in its scope and application. However, the
non-standard type system of the Move language must be enforced by the under-
lying virtual machine execution, which limits portability. Indeed, Move is tightly
linked to the Diem blockchain and variants such as Aptos and Sui, and has not
been ported to common blockchains such as Ethereum and Solana.

Obsidian [9] is another non-standard object-oriented contract language that
uses typestate and linear typing to enable static verification of resource use.
However, Obsidian does not in itself support the verification of user-supplied
safety or liveness properties.

While the languages discussed so far are conventional in their structure and
constructs, FSolidM [13] models a contract as a finite-state machine skeleton
that is extended with Solidity state variables and statements. The associated
VeriSolid [14] tool checks CTL properties of sequences of transition labels of
FSolidM machines, using automated data abstraction and model checking via
BIP and the NuSMV tool. While model checking has its advantages, the scope
of verified properties is restricted to propositional CTL (thus no arithmetic or
quantified assertions), and the language is closely tied to Solidity.

16 http://www.certik.com and http://www.certora.com.
17 https://github.com/Consensys/mythril
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Contracts in Scilla [20] are also represented as state machines. However,
Scilla is viewed as an intermediate notation, with contracts compiled to Coq
for verification. The Tezos blockchain also translates from its bytecode notation
to Coq [5]. The KEVM formalization of Solidity semantics [12] is similar in
nature. While translations to Coq permit complex properties to be expressed
and verified, they also create a substantial proof burden, requiring considerable
expertise and manual effort.

With Asp, we explore a different point in the design space. The Asp lan-
guage inherently blocks several commonly exploited vulnerabilities, eliminating
a significant concern for programmers. Like the FSolidM designers, we believe
that an explicit state-machine skeleton simplifies contract design. However, Asp
contracts do not operate on Solidity data types or expressions. Instead, Asp con-
tracts operate on abstract data types, whose mathematical definitions simplify
the writing of contracts, and their analysis. Abstract operations are concretized
by the compiler and are therefore correct by construction.

Indeed, its reliance on abstract data types is one of the major distinguish-
ing features of Asp. A further advantage of programming with abstract types
is portability: a verified Asp contract can be compiled to multiple languages
and blockchains. The Asp type system is otherwise conventional (unlike that of
Move), which faciliates compilation to standard languages such as Solidity, Rust,
and Ink! and to commonly used blockchains such as Ethereum and Solana.

Asp, like Move, relies on programmer-supplied deductive proofs. We believe
that this is crucial for security, as deductive proofs allow greater expressiveness
(e.g., quantifiers to express properties of maps) and flexibility (e.g., safety, live-
ness, and adversarial proofs). A current drawback is that proof sketches for even
simple properties must be supplied manually; in the future, we aim to augment
programmer-supplied proofs with proof-generating model checking [16,18]. As
argued previously, we believe that it is important in the context of Web3 to
provide explicit, independently-checkable proofs for every security claim. In this
sense, the design of Asp follows the proof-carrying-code principle [17] of plac-
ing the burden of constructing a proof on the contract creator (who may use
automated methods) while making it possible for every user to independently
validate a claimed proof.

Our motivation in developing Asp is to explore the language design space,
prioritizing ease of reasoning over sophisticated language features. Abstractions
compensate for the simpler language structure; the defensive compiler enforces
the abstract semantics and strengthens security; and verifiable proofs build trust.
We expect Asp to evolve over time.18 We are considering the introduction of new
abstractions, such as commitments, secret inputs, and randomness, and modular
proof methods. We also plan to explore how verified proof assertions can be used
by the compiler to eliminate run-time defensive checks (cf. [22]).

18 We intend to release the Asp system as open source once we have the necessary
approvals. At present, we have made several Asp contracts (with proofs) available at
https://github.com/DebraChait/Asp-example-contracts.
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A Cascade semantics and reentrancy

The cascade semantics of Asp contracts supports limited reentrancy to allow
patterns of sending a message and receiving a response, and to simultaneously
prevent malicious reentrancy often characterized by the ability to reenter a con-
tract arbitrarily many times.

To demonstrate the cascade semantics and the prevention of malicious reen-
trancy, we take a simple example of reentrancy from Solidity By Example.19 This
involves two contracts, one which stores and returns ether (the cryptocurrency
of the Ethereum blockchain), and one which attempts to drain all ether from
the first contract via reentrancy. The two contracts are written as Asp state ma-
chines in Figure 5, with the shorthand bal[a] to represent Map.set and Map.get

operations. We set the reentrancy limit R = 1.
According to Asp’s semantics for multiple interacting contracts (Section 3.2,

a cascade can only begin from a quiescent state with environment input, mirror-
ing smart contracts’ reliance on external calls to begin execution. We start our
cascade with an Environment Input configuration transition via the Attacker
contract’s receipt of a coin through a ”send” message. The cascade proceeds as
follows (we note which configuration transitions are taken at each step):

1. Environment Input, via Attacker. Attacker is pushed onto the stack, and
Attacker’s state is updated to CollectDeposit.

2. Synchronized Push. Etherstore is pushed onto the stack. Attacker’s state is
updated to Etherstore Deposit, and Etherstore’s state is updated to Accept-
Deposit.

3. Pop. Attacker is now at the top of the stack.
4. Synchronized Push. Etherstore is pushed onto the stack. Attacker’s state

is updated to EtherstoreWithdraw, and Etherstore’s state is updated to
WithdrawRequested.

5. Synchronized Push. Attacker is pushed onto the stack (with Attacker at the
bottom of the stack as well). Since R = 1, this is allowed. Attacker’s state
is updated to AcceptReturn, and Etherstore’s state is updated to ResetBal-
ance.

6. Pop. Note that this is where Attacker attempts to maliciously reenter Ether-
store. This reentrancy is blocked, because the limit of R = 1 is exceeded.
Attacker is popped off the stack.

7. Local τ -Move, followed by another Local τ -Move. Etherstore’s state is up-
dated to GaveWithdrawal, and then to AcceptDeposit.

8. Pop. Etherstore is popped off the stack.
9. Pop. Attacker is prevented from requesting another withdrawal, since its

balance has already been reset. Attacker is therefore popped off the stack,
and we return to a quiescent configuration.

The reentrancy limit allows for an exchange of message and response, but
prevents the unlimited reentrancy that characterizes malicious attacks. The cas-

19 https://solidity-by-example.org/hacks/re-entrancy/
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cade semantics then demand that the would-be-victim contract completes its
state changes before the attacker can synchronize with it again.

B Vending Machines and Lockout-Freedom

Figure 6 shows an outline of a vending machine, which suffices to illustrate
lockouts. Consider the following desirable property: it should always be possible
for any customer to use the machine–possibly after a short wait.

This contract does not satisfy the property, for an interesting reason: an
absent-minded – or malicious – customer may enter a coin, then simply walk
away, effectively locking the machine, which stays ‘frozen’ in its Choose state.

To fix the problem, we may introduce a timer and a timeout at the Choose
state. A different resolution is to allow any one, not just the current customer,
to cancel the current transaction at the Choose state. Both options satisfy the
critical safety property that the original customer is refunded their money on
cancellation – unlike in a real vending machine!

This property is a form of eventual access or deadlock freedom (AGEF in CTL)
but in an adversarial, multi-agent setting. Lockout-freedom may be formulated
as the property that every actor x has eventual access to the machine. Eventual
access for actor x is written as AGE{x}FQ, where by E{x}F we mean that there
is a winning strategy for the Player (actor x) that eventually reaches a state
where Q holds. The Opponents are the other actors in the environment of M ,
and M itself, as the contract may make arbitrary τ -transition choices.

The following deductive proof system establishes this property. It is inspired
by similar proof systems (cf. [16]) for µ-calculus properties. A proof consists of a
state assertion θ and a partial rank function ρ that meet the following conditions:

1. θ is an invariant of the contract M ,
2. ρ is defined for all states in θ, and
3. For every state s in θ, one of the following holds:

(a) s satisfies q, or
(b) There is a transition for the Player to a state s′ that is in θ, and the

rank decreases strictly after that transition, or
(c) Some Opponent transition is enabled and all Opponent transitions lead

to states in θ and strictly decrease rank.

The soundness of this proof rule is established as follows. Consider any reach-
able state, say s. As this state is reachable, it is in the invariant θ. From this
state, the choices of the Player and Opponent produce a game subtree where
all tree states are in θ. This tree cannot have an infinite branch along which Q
never holds, as that would induce an infinite strictly decreasing rank sequence,
contradicting well-foundedness. Thus, every branch must satisfy Q.

We show how to apply this proof method to the contract corrected by allowing
any customer to cancel in the Order state. Here, Q is the assertion that pay is
enabled for x; θ is essentially the set of all states, except that at the Choose state
there must be a defined customer. The rank ρ is defined on the naturals, with
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1 contract Etherstore{

2 ...

3 state AcceptDeposit:

4 | a?? deposit(value) -> AcceptDeposit {bal[a] += value

}

5 | a?? withdraw when bal[a] > 0 -> WithdrawRequested {

req = a}

6

7 state WithdrawRequested:

8 | -> ResetBalance {req!! return(bal[req])}

9

10 state ResetBalance:

11 | -> GaveWithdrawal {bal[req] = 0}

12

13 state GaveWithdrawal:

14 | -> AcceptDeposit {}

15 }

(a) Contract that stores and returns ether.

1 contract Attacker{

2 ...

3 state Start:

4 | c??send(amt) when amt >= 1 -> CollectDeposit {

amount = amt}

5

6 state CollectDeposit:

7 | -> EtherstoreDeposit {Etherstore !! deposit(amount)}

8

9 state EtherstoreDeposit:

10 | -> EtherstoreWithdraw {Etherstore !! withdraw}

11

12 state EtherstoreWithdraw:

13 | b?? return(balance) -> AcceptReturn {}

14

15 state AcceptReturn:

16 | -> Attack {if Etherstore.balance >= 1 then

Etherstore !! withdraw}

17

18 state Attack:

19 | -> EtherstoreWithdraw {}

20 }

(b) Contract that tries to drain Ether from the above contract via reentrancy.

Fig. 5: Two contracts that demonstrate limited reentrancy in Asp’s cascade se-
mantics.
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1 contract VendingMachine {

2 msg pay(coin), refund(coin);

3 msg order , item , cancel , halt;

4

5 var customer: address ,

6 paid , total: coin;

7

8 // states and state transitions

9 initial Wait;

10

11 state Wait: // for a new customer

12 | x??pay(c) -> Choose

13 { customer = x; Coin.moveall(c,paid); }

14 | owner ??halt -> Halt

15

16 state Choose: // place an order or cancel

17 | customer ??order -> Deliver { Coin.moveall(paid ,total);

}

18 | customer ?? cancel -> Wait

19 { customer !! refund(paid); customer = Address.none; }

20

21 state Deliver: // deliver item

22 | -> Wait { customer !!item; customer = Address.none; }

23

24 state Halt: // halted , no actions

25 }

Fig. 6: A Vending Machine contract outline.

value 0 at the Wait state, value 2 for the Choose state with a defined customer,
and value 1 at the Deliver state. Consider a customer x. If the machine is at
the Wait state, then Q holds, as pay is enabled for x. If the machine is at the
Choose state with a customer, say y (possibly different from x), then the cancel

transition by x (the Player) changes state to Wait state, with a reduction in rank.
There is no Player transition at the Deliver state, but the τ -transition (by the
Opponent M) moves the contract to the Wait state, with a reduction in rank.

(The Asp proof checker is currently being extended to support this and other
proof rules for game-like properties.)

The (relative) completeness argument relies on a µ-calculus framing of the
property E{x}Fq, as (µY : p∨ ⟨Player⟩(Y )∨ (⟨Opponent⟩(true)∧ [Opponent](Y ))).
It essentially splits the least fixpoint according to stages, which induce the rank
function – the strategy used in [16].
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