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Abstract
In August of 2024, 495 hackers generated evaluations in an
open-ended bug bounty targeting the Open Language Model
(OLMo) from The Allen Institute for AI. A vendor panel
staffed by representatives of OLMo’s safety program ad-
judicated changes to OLMo’s documentation and awarded
cash bounties to participants who successfully demonstrated
a need for public disclosure clarifying the intent, capacities,
and hazards of model deployment. This paper presents a col-
lection of lessons learned, illustrative of flaw reporting best
practices intended to reduce the likelihood of incidents and
produce safer large language models (LLMs). These include
best practices for safety reporting processes, their artifacts,
and safety program staffing.

Introduction
On August 9th, 2024, the organizers of Generative Red
Team 2 (GRT2) declared to a packed session at the DEF
CON hacking conference that the assembled hackers would
fail to find flaws with the Open Language Model (OLMo)
(Groeneveld et al. 2024). This tongue-in-cheek taunt served
as motivation for the hackers to root out cases in which the
large language model (LLM) failed to live up to the inten-
tionally lofty and unachievable claims made in the event’s
model documentation. Over the next two days, 495 partici-
pants prepared 200 “flaw reports,” detailing “any unexpected
model behavior that is outside of the defined intent and scope
of the model design” (Cattell, Ghosh, and Kaffee 2024). Of
the $10,000 in bounty awards in the prize pool, $7,400 was
paid out to participants.

This event addresses a burgeoning need for broader partic-
ipation in the evaluation of AI systems’ safety, security, and
trustworthiness. Recent work points to a growing spectrum
of hazards from generative AI (Kapoor et al. 2024; Wei-
dinger et al. 2022; Lakatos 2023; Thiel, Stroebel, and Port-
noff 2023; Li et al. 2023; Renaud, Warkentin, and Wester-
man 2023; Soice et al. 2023; Commission 2023) that bolster
the case for independent and community-driven algorithmic
flaw evaluations (Elazari 2018; Kenway et al. 2022; Birhane
et al. 2024) and coordinated flaw disclosure protocols de-
signed specifically for AI (Cattell, Ghosh, and Kaffee 2024;
Householder et al. 2024). While prior work has already con-
tributed a rich body of AI flaws (Yong, Menghini, and Bach
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Figure 1: Generative Red Team 2 signage greeting prospec-
tive participants as they wander through the Las Vegas Con-
vention Center.

2023; Nasr et al. 2023; Parrish et al. 2023; Qi et al. 2023;
Kotha, Springer, and Raghunathan 2023), a lack of infras-
tructure for responsible disclosure, or researcher protections
has stifled much-needed evaluations (Longpre et al. 2024a).
This paper documents a large-scale attempt to operational-
ize recommendations addressing these shortcomings at DEF
CON 2024.

The event had three primary goals. First, GRT2 was in-
tended to learn from the security reporting culture. Vulner-
ability and bug bounty processes involve hackers disclosing
security vulnerabilities with protections against incarcera-
tion. The associated culture supporting a productive rela-
tionship between attackers and defenders took decades to
cultivate. Without careful extension of these cultural mores,
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flaw reporting could similarly begin with a hostile relation-
ship between flaw reporters and the corporations they are
reporting to. Avoiding the mistakes of adversarial relation-
ships requires taking into account lessons from the practice
of security. While vulnerability reporting may inspire flaw
reporting, it is an imperfect fit that gives rise to the second
GRT goal: accounting for the idiosyncrasies of probabilis-
tic systems for which “vulnerability” is not always a useful
concept.

Consider two specific AI-related harm events in the AI
Incident Database (McGregor 2021), incidents 541 (Ather-
ton 2023a) and 623 (Atherton 2023b), both of which involve
lawyers submitting court briefs, containing case law confab-
ulated by large language models. While neither incident in-
volves an attacker intentionally exploiting a vulnerability;
nonetheless, the lawyers, clients and court system were all
harmed by the inclusion of false information in court pro-
ceedings. Are these harms an unfortunate but expected re-
alization of the system’s known failure rate, or is there a
deeper problem requiring identification, disclosure, and dis-
claimer?

With the goal of preventing similar incidents before they
can occur, it is necessary that we establish best practices
for investigations that adopt an adversarial mindset in or-
der to identify ways in which trust in expected model prop-
erties may be systematically violated (i.e., where a “flaw”
may be discovered). The DEF CON event thus served as a
testbed for marrying now-established vulnerability reporting
culture with a broader category of harms that may be pro-
duced when a system fails to perform according to expec-
tations, effectively stress-testing in real life the coordinated
flaw disclosure framework proposed by Cattell, Ghosh, and
Kaffee (2024).

The third goal of GRT2 was to explore operational con-
cerns related to flaw disclosure processes. The structure of
vulnerability reporting programs for a given software pro-
gram is the responsibility of the vendor maintaining the soft-
ware, so this work presents the lessons learned by a ven-
dor panel at GRT2 staffed by individuals responsible for the
OLMo safety program. The vendor panel positioned them-
selves in the corner of the room (see Figure 2) for two days
to adjudicate on which of the hackers produced adequate ev-
idence of a flaw to motivate changes to OLMo safety docu-
mentation.

Throughout the event, the vendor panel faced numerous
challenges that required real-time adjustments to adjudica-
tion criteria and processes. These challenges spanned tech-
nical, legal, and ethical domains, highlighting the interdis-
ciplinary nature of LLM flaw reporting. A key theme that
emerged was the distinction between systematic flaws and
individual instances of model failure, which proved crucial
in developing effective evaluation criteria.

In the interest of eliciting creative and unexpected opera-
tional insight, the organizers gave DEF CON hackers little
direction prior to opening the competition. Instead, hackers
were given a three-part rubric outlining the reporting cri-
teria of significance (is this important?), evidence (is this
supported?), and consistency (does this violate documenta-

Figure 2: A closeup of the vendor adjudication table. DEF
CON prohibits large group photography. The adjudication
team was drawn from The Allen Institute for AI and the
UL Research Institutes, and was supported by people from
Dreadnode, Bugcrowd, and volunteers from the AI Village.
The adjudicators were researchers who work in the areas of
LLM research, AI safety, computer security, law, and other
areas of AI research.

tion?).1

The remainder of this paper details six key vendor chal-
lenges encountered during GRT2, including tooling support,
adjudication workload, and LLM documentation practices,
along with actionable lessons learned to inform future LLM
flaw reporting processes.

LLM Vendor Challenges
The following sections describe a compilation of the most
salient LLM vendor challenges faced by the co-authors of
this paper from The Allen Institute for Artificial Intelligence
and its safety program collaborators with the UL Research
Institutes. These individuals were supported on-site by com-
panies exploring commercial offerings of flaw reporting
software for report preparation, review, and payment. Ad-
ditional personnel served as ombudspeople for participants
by facilitating vendor discussions around flaw report sub-
missions. More details on contributions can be found in the
acknowledgements.

Challenge 1. Tooling support for flaw reporting
The entirety of GRT2 was planned, from initial conception
to execution, within a 3-month timespan. In order to execute
the event without the benefit of an extended development
period, existing tooling was repurposed and lightly modified
to support flaw reporting processes. Due to time constraints,
GRT2 utilized four separate software components. However,

1https://grt.aivillage.org/rubric



Figure 3: The Crucible user interface displaying the user in-
put and model response.

future event iterations could benefit from a single, stream-
lined commercial offering with all necessary tooling. The
utilized components included the following.

Submission Format (“Inspect”). The UK AI Safety In-
stitute published a framework2 for writing LLM evaluations
with a standard data format for representing the inputs, re-
sults, and metadata for evaluations. The data formats and
example notebooks, provided by the UK AI Safety Institute,
structured the runtime outputs and allowed the vendor panel
to rely on a consistent underlying representation of the flaw
reports.

Runtime (Dreadnode Crucible). While users had the op-
tion of packaging Inspect data and submitting via an API,
most users submitted via a user interface (UI) supplied by
the cybersecurity startup, Dreadnode. Although the UI was
initially scoped as a warm-up for users to work toward API
submissions, negotiations between the vendor panel and par-
ticipants enabled identification of evidentiary paths to ac-
cepting GRT2 submissions using exclusively the UI. Most
reports that were eventually accepted relied upon the UI be-
cause the participant burden was greatly lessened by this in-
terface.

Report (Dreadnode Crucible). With a collection of
prompts and prompt outputs, the user then described the
model documentation violation (i.e., inconsistency with ex-
pected model properties) in a report. In their reports, par-
ticipant “submitters” described their API or user interface-
originated data, along with an argument that the data demon-
strated the model’s documentation to have been violated.
Although little initial direction was provided, repeated elec-
tronic and in-person feedback helped submitters refine and
develop their submission reports, enabling higher quality re-
porting. This collaborative back-and-forth highlighted the
need for new user interfaces (e.g., a report template) to set
submission expectations.

Business Logic (Bugcrowd). The last system in the chain

2https://inspect.ai-safety-institute.org.uk/

Figure 4: The user interface displaying the metadata as-
sociated with a flaw report submitted from Crucible to
Bugcrowd.

was Bugcrowd, an interface enabling bidirectional com-
munication between adjudicators and participants during
the submission refinement process. Bugcrowd is a crowd-
sourced security platform that pays bounties to users for sub-
mitting vulnerabilities to companies. One element that mo-
tivated participants to submit flaw reports was Bugcrowd’s
reputation system, which gives submitters access to different
tiers of bug reporting based on their history on the platform.

Collectively, these systems provided an audit chain that
recorded every prompt and corresponding output generated
during the event. The logging system mitigated potential is-
sues of replication and selection bias, as participants could
not make misleading claims about model performance by
selecting only the failing instances.

Despite significant efforts to facilitate GRT2 via software,
ultimately, the event would not have been successful with-
out the capacity to engage with participants in real time and
work through trust and submission issues on an case-by-case
basis. If aiming to open flaw report submission to a broader
online event format, particularly when financial incentives
are involved, we believe the following additional systems
are valuable:

1. Reputation system. For its commercial clients,
Bugcrowd filters submissions according to the submit-
ter’s historical success on the platform. This feature
would help to address problems encountered in several
submissions for which spot checks of the data revealed
the arguments made by the submitter to be inconsistent
with the data. In a commercial setting, we would denylist
such submitters.

2. Human output coding. None of GRT2’s interfaces pro-
vided a means for submitters to manually classify LLM
outputs according to the properties relevant to the sub-
mission (e.g., “safe/unsafe,” “toxic/non-toxic,” etc.). This
is the single most powerful potential addition to en-
able stronger red-team evaluation processes. Without this
functionality, submissions required human evaluation to
be described within the free text submission field. A col-



lection of automated scoring mechanisms that did not
rely on human annotation proved more confusing than
useful.

3. Documentation and UX. Many problems were solved
on-site by running what amounted to a submitter help
desk. An extended period for documentation writing and
user experience testing prior to the event would greatly
reduce demands placed on the vendor to explain what
good submissions look like. Not having the benefit of
such a training period during this iteration, we instead
opted to give generous 1:1 feedback.

4. Evaluation Tools. Participants experienced limitations
in the tooling provided to evaluate the system effectively.
For instance, many documented attacks use model APIs
and tools to programmatically extend their search space
(Ge et al. 2023; Yu, Lin, and Xing 2023; Chao et al.
2023), or they use gradient-based methods, with access
to the underlying model weights, to identify transferable
attacks (Wallace et al. 2019). These tools have the ca-
pacity to generate many leads (Casper et al. 2024) from
which further evaluations can support an argument of a
systematic flaw.

5. Reporting Transparency. Many participants found it
challenging to understand the characteristics of accept-
able flaw reports or simply lacked inspiration. During
these events, a public leaderboard of successful (and per-
haps unsuccessful) reports would provide these examples
as guideposts, taking undue burden off the adjudicators to
explain and deduplicate reported flaws. More broadly the
goal should be recording them in a public database, like
the National Vulnerability Database.3 It may also serve
as inspiration for new targets.

Challenge 2. Adjudication Workload
A flaw report is a scientific argument, such that adjudica-
tion of each one of the 200 submissions is a mini-peer re-
view. With finite resources similar to a corporate review
panel, we required an approach to triage submissions. We
adopted a layered review strategy whereby the full review
effort would only be expended if lower-effort checks passed
scrutiny. In practice, most submissions were sent back to
participants at the first stage of review, based on insignif-
icance of the flaw identified in the submission.4 The most
common rejection was related to reports introducing a proof-
of-concept for a known failure mode rather than a systematic
flaw. While such instances are analogous to vulnerabilities,
they do not rise to the level of model documentation “vi-
olation” for probabilistic systems. In the corporate setting,
we believe that a BugCrowd-like reputation system would
also help to significantly reduce the workload of the corpo-
rate vendor panel, by ensuring submitters are aware of the

3https://nvd.nist.gov/
4We can see some of the form responses developed over the

course of GRT2 here. Most form responses were at the first stages,
while later rejections tended to be more customized to specific
issues uncovered upon deeper review. https://github.com/ul-dsri/
olmo-defcon32/blob/main/form responses.md

distinction between vulnerability and flaw reporting before
reviewing their reports.

Challenge 3. LLM Documentation Practices
Without affirmatively stating design intent, there is no way
to show violation of that intent. To make it possible to re-
port violations of system intent and scope (i.e., a “flaw”),
the intent and scope of the relevant LLM system must be
publicly known. Benchmarks are the most common means
of reporting system performance expectations, but without
interpretation by system designers such measures do not
speak to how the system is expected to perform and for
what use cases. Consequently, new OLMo documentation
(referred to as the “model card”) combined OLMo bench-
marks and model design intent. The benchmarks provided
evidence that the design intent was satisfied, while GRT2
participants could draft flaw reports showing the gaps be-
tween that intent and the evidence. OLMo was designed to
support all common LLM use cases5 while its guard model,
WildGuard, was designed to prohibit harmful uses of the un-
derlying model. Claiming a capacity for all common LLM
use cases, while specifically detailing the expectations of
the guard model provided an expansive flaw surface to re-
port against.6 The vast majority of submissions were made
against claims for the content filtering use case, which high-
lights the next challenge.

Challenge 4. Identifying the target
Most commercial LLM-based products are not single sys-
tems, but rather combinations of components that collec-
tively improve task performance and safety. In the case of
the OLMo model, there is a separately published safety
moderation component, WildGuard (Han et al. 2024), which
is responsible for filtering (i.e., “refusing” to answer) harm-
ful prompts posed by users, or harmful responses by the
LLM. Subtle changes to the integration of system compo-
nents can potentially shift performance and safety metrics,
causing them to fall outside of safe operating parameters.
For instance, we discovered while processing reports that
the event’s chosen form of integration of WildGuard with
OLMo had a more permissive setting than expected, which
increased susceptibility to jailbreak attacks (i.e., attacks that
bypass safeguards by concealing harmful intent). Specifi-
cally, WildGuard was configured to trigger a reprompting
of OLMo with added instructions to refuse (see Figure 5),
rather than inserting a guaranteed refusal. Transparency into
these system details were not exposed to participants, as they
may not be for corporate systems—though they may have
aided the evaluation process.

Since safety is necessarily realized relative to the full sys-
tem involved in generating final outputs, it is necessary for
documentation to express system performance at the system

5See the Neely Center AI index for a listing of common
LLM use cases https://neely.usc.edu/usc-marshalls-neely-center-
ai-index/

6The model card at the start of GRT2 is avail-
able here. https://github.com/ul-dsri/olmo-defcon32/blob/
4748b9c294a541b52453eacb0ac6b6f472ae69e0/model card.md



Figure 5: The re-prompting strategy employed when hand-
ing off from WildGuard to OLMo.

rather than the model level. This meant that many flaw re-
ports either directly or indirectly reflected the implementa-
tion of this refusal reprompting mechanism as illustrated by
the next challenge.

Challenge 5. Adjudication Decisions
Consistent with DEF CON’s target audience (individuals
seeking to deeply understand control systems), we ob-
served that a majority of submissions focused on bypass-
ing guardrails and eliciting harmful outputs (rather than,
for instance, eliciting harmless outputs inconsistent with the
model card statements). In judging such submissions, it was
often necessary to make judgment calls with respect to what
types of outputs constitute truly harmful responses violat-
ing system performance expectations. In some cases, harm-
fulness depended on the mind state of the user prompting
the system, with refusal potentially being inappropriate if
the user wanted the information for benign purposes. Fur-
ther challenges arose due to differences in cultural and legal
systems, with some things that are illegal or taboo in one cul-
ture (e.g., certain depictions of religious figures) being legal
or even celebrated in others.

The most challenging aspect of adjudicating submissions
was requiring scientific rigor without dampening participant
enthusiasm. DEF CON attendees were initially not famil-
iar with producing a body of evidence supporting a specific
flaw, but by the end of the event several understood the task
and produced good reports. One participant representative

of the overall pool of DEF CON attendees (the “security
engineer”) initially produced a series of proof-of-concept
jailbreak attacks – instances of single prompts that elicited
harmful behavior, but that did not demonstrate systematic
failure. The individual failures may point to a systematic
problem, but they may also be representative of sampling
biases rather than evidence of a flaw. It was submissions like
these that prompted the adjudication team to make two main
adjustments to judging criteria over the course of the first
day of the event. First, a two-tier system of bounties was in-
troduced to enable participants to receive small ($50) boun-
ties for interesting single-prompt submissions, while encour-
aging the pursuit of more systematic failure demonstrations
for larger ($500) bounties. Second, due to the high volume
of single-prompt submissions in the category of jailbreak at-
tacks (attacks using various strategies to conceal user intent),
at the end of Day 1 the adjudication team declared that jail-
break attacks were no longer eligible for single-prompt $50
bounties, and would be required to demonstrate more gen-
eral failure at the $500 level.

Initially, the security engineer was frustrated by the ven-
dor panel’s refusal to accept individual failure prompts as
sufficient evidence, but he benefited from the introduction
of the $50 tier. Later, due to his heavy reliance on jailbreak
attacks, he was frustrated by the shift to disqualify such
submissions. However, following multiple discussions with
the vendor panel, he was able to develop more systematic
demonstrations of the model violations, winning multiple
$500 bounties.

Lessons from these adjustments of the adjudication crite-
ria indicate that the two-tier bounty system was important
to maintain a sense of progress among participants; how-
ever, it also opened the floodgates to individual instances of
jailbreaks that could be mass-produced for large numbers of
$50 bounties. We recommend that vendors define their flaw
reporting processes around the goal of identifying system-
atic model card violations, but provide a means for recog-
nizing proof-of-concepts (while also establishing limits to
avoid being overly permissive). Without earning the earlier
$50 payouts, and without the shift to a higher standard for
jailbreak-style submissions, the security engineer would not
have persisted to win two $500 payouts and a bonus $1,000
payout for what we acknowledged as the “greatest body of
work.” The security engineer ultimately earned $2,350.

While the security engineer focused on finding instances
in which WildGuard’s filtering could be systematically by-
passed, another participant (the “policy researcher”) with a
background in testing neural networks and policy research
focused on testing a specific use case implied by the overly
broad intent statement of the model card. Specifically, the
model card could be interpreted as affirming support for
providing legal advice, though other documentation7 not
presented to GRT2 participants disclaimed this application.
When the policy researcher showed OLMo easily providing
legal advice (with sometimes incorrect and confabulated re-
sponses, no less), the model card was updated to disclaim
this use case explicitly.

7https://allenai.org/responsible-use



Denylisting vs. Allowlisting. The security engineer and
policy researcher experiences hint at a desirable property
for flaw reporting processes related to denylisting and al-
lowlisting. In a denylisting approach, vendors operate within
an open world and forbid those use cases that are found
to be unsafe. The policy researcher found requesting legal
advice to be unsafe, so the vendor panel disclaimed this
use case in the documentation. It was denylisted. In an al-
lowlisting approach, vendors establish what is permissible
and all other non-mentioned use cases are assumed non-
permissible. This doesn’t prevent misuse, but it does in-
form downstream consumers about the capabilities and lim-
itations of the model. The safety engineering community
builds evidence that a system is safe for specific use cases
in specific contexts. These “safety cases,” bear greater re-
semblance to the allowlisting approach than the denylisting
approach. Allowlisting is also a substantial departure from
current LLM documentation practices, which emphasize the
generality of foundation models while disclaiming use cases
that subsequently prove unsafe in the real world. The ideal
solution is likely to be a combination of both.

Challenge 6. Adjudication Expertise
Finally, general-purpose AI systems have unbounded and
emerging use cases (Zhao et al. 2024; Longpre et al. 2024b),
many of which may pertain to highly specialized domains
or geographies. Adjudicating flaws within legal, biomedical,
cultural, or other deep knowledge areas, may require adjudi-
cators with similar expertise. For our event, we were fortu-
nate to have appropriate subject-matter experts on hand for
additional consultation on submitted flaw reports, including
legal system experts. Panelists also relied on available tools
and backgrounds in studies outside of computing to resolve
questions such as, “is this chemical formula a dangerous/il-
legal substance?” Our capacity to adjudicate all submissions
was likely at least partially premised on the homogeneity
of hacker experience. For models deployed to broader non-
hacking users and use cases, vendors should expect to re-
ceive more varied reports requiring sometimes highly spe-
cialized skills to interpret. We submit that any organization
unprepared to adjudicate flaw reports for a supported intent
of their model should consider prohibiting the use case (i.e.,
denylist it) and tune the refusal mechanism to set those in-
stances aside, so as to avoid needing to parse whether the
system is behaving appropriately in such cases.

Discussion
During the course of GRT2, we updated model documenta-
tion to explicitly set aside the use cases producing incidents
541 (Atherton 2023a) and 623 (Atherton 2023b) (i.e., legal
advice). This substantially reduces the likelihood that these
harms will be replicated by responsible users in the real
world. The participants additionally uncovered a collection
of jailbreak attacks that were previously unaccounted for in
the WildGuard/OLMo safety program. The next versions of
OLMo and WildGuard will benefit from being in receipt of
the flaw reports and reduce the likelihood of people using
these systems to produce harms such as when several coun-
tries used generative AI in state-sponsored misinformation

and phishing attacks (Atherton 2024a,b). The model card
diff8 shows the complete collection of changes made over
the course of GRT2.

OLMo is among the most open LLMs (Liesenfeld, Lopez,
and Dingemanse 2023), inclusive of running the trial flaw
reporting program in a very public setting. What should be
disclosed, on what timeline, and what the vendor is respon-
sible for mitigating remains an open question. Disclosure
provides users and downstream system integrators with the
information needed to advance safety awareness, but it also
provides bad actors with a guide to flaws that might be ex-
ploited before they are adequately patched. Further, where
vulnerabilities have a history and culture for their disclosure
processes, there is no such culture for flaw reporting out-
side GRT2. System documentation artifacts like model cards
(Mitchell et al. 2019), FactSheets (Arnold et al. 2019), and
datasheets (Gebru et al. 2021) will need to evolve to better
enable fruitful exchange between companies and the public
testing their systems.

While we encourage companies to establish their own
flaw reporting programs and ideally participate in a coor-
dinated, open, and structured flaw reporting system across
the AI ecosystem (Cattell, Ghosh, and Kaffee 2024), policies
should also be developed to provide safe harbor for indepen-
dent LLM testing, even in the absence of formal programs
(Longpre et al. 2024a; Albert, Penney, and Kumar 2024).
Organized and independent red teaming is an important pro-
cess complementing other accountability tools such as algo-
rithmic impact assessments, external audits, and public con-
sultation (Friedler et al. 2023). Without effective citizen test-
ing, AI systems are tested on citizens themselves.

As Alexander Pope noted in An Essay on Criticism, “To
err is human; to forgive, divine.” Similarly, we must accept
that all LLM systems will have flaws, but with thoughtful
criticism and reporting, we can continuously improve them,
avoiding the pitfalls experienced by the security community
over decades. To err is AI; to report, divine.
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