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Abstract
We live in a world that is experiencing an unprecedented boom of
AI applications that increasingly penetrate all sectors of private
and public life, from education, media, medicine, and mobility to
the industrial and professional workspace. As this world is simul-
taneously grappling with climate change, the climate effects and
environmental implications of the development and use of AI have
become an important subject of public and academic debate. In this
paper, we aim to provide guidance on the climate-related regulation
for data centers and AI specifically, and discuss how to operational-
ize these requirements. We also highlight challenges and room for
improvement, and make a number of policy proposals to this end. In
particular, we propose a specific interpretation of the AI Act to bring
reporting on the previously unaddressed energy consumption from
AI inferences back into the scope. We also find that the AI Act fails
to address indirect greenhouse gas emissions from AI applications.
Furthermore, for the purpose of energy consumption reporting, we
compare levels of measurement within data centers and recommend
measurement at the cumulative server level. We also argue for an
interpretation of the AI Act that includes environmental concerns
in the mandatory risk assessments (sustainability risk assessment,
SIA), and provide guidance on its operationalization. The EU data
center regulation proves to be a good first step but requires further
development by including binding renewable energy and efficiency
targets for data centers. Overall, we make twelve concrete policy
proposals, in four main areas: Energy and Environmental Reporting
Obligations; Legal and Regulatory Clarifications; Transparency and
Accountability Mechanisms; and Future Far-Reaching Measures
beyond Transparency.
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1 Introduction
The environmental consequences of artificial intelligence (AI) are
becoming ever more apparent as large models are increasingly
trained and deployed across society. This inherently intertwines
the digital transformation with questions of climate change, partic-
ularly concerning the energy and water consumption of AI models.
These features are attracting attention from both the public and
academia (see below, 2.). Concerns are growing that the supply
of renewable energy may not keep up with their increasing de-
mand triggered by the AI scaling race [4] in which the EU is poised
to join the U.S. and China under the EU Commission’s new AI
Continent Action Plan [25]. Scholars and activists, in turn, are in-
creasingly critiquing and situating digital technology within the
framework of environmental justice [28, 40, 67, 72, 81]. Work in po-
litical economy has shed a light on the extractive nature of AI-based
socio-technical systems, extracting and, at times, exploiting, both
natural and human resources [18, 24, 39, 42, 58], often particularly
from marginalized communities [61, 65] and regions [50, 80]. Both
the quest for performance and the funding logic behind AI force
providers to scale them to a point where this trajectory may push
against planetary limits [8–10, 18].

Regulatory frameworks are beginning to address these chal-
lenges, too. While the new U.S. administration scraps environmen-
tal rules and generally deregulates, the EU Artificial Intelligence
Act (AI Act) becomes applicable as the world’s most comprehensive
attempt at direct AI regulation. It features environmental protection
as one of its core goals and contains dedicated sustainability rules,
which also apply to US and other non-EU providers offering models
in the EU. Similarly, the Digital Services Act (DSA) compels Very
Large Online Platforms and Very Large Online Search Engines to
thoroughly assess and mitigate systemic risks, which is of particu-
lar relevance for hybrid platforms increasingly integrating AI. As
scholars have pointed out, this includes climate and sustainabil-
ity risks [11], and intersects partially with obligations under the
AI Act [32, 36]. In parallel, the Energy Efficiency Directive (EU)
2023/1791 introduces transparency obligations for data centers, a
critical infrastructure supporting AI. However, these regulatory in-
struments were developed independently, leading to fragmentation
and gaps. The AI Act originally pursued climate-related objectives
especially in the European Parliament’s position of June 2023, but
over successive drafts and the trilogue negotiations, its environ-
mental provisions were diluted, particularly with regard to energy
consumption from AI inference and risk assessments. Meanwhile,
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the EU’s data center regulation remains incomplete, lacking bind-
ing efficiency and renewable energy targets. These shortcomings
threaten to undermine the most promising legislative avenues for
tackling AI’s climate effects. The EU’s recent push for massive
investments in computing infrastructure under the AI Continent
Action Plan, including the establishment of AI Gigafactories [25],
is a late but necessary impetus for technological and strategic au-
tonomy but must not endanger the Union’s climate goals under the
Green New Deal.

Against this background, this paper makes three key contribu-
tions. First, we offer the first thorough analysis of the AI Act’s final
version from an environmental perspective. Unlike prior scholar-
ship, which has examined these areas separately, we also scrutinize
the interplay between data center regulation and direct AI regula-
tion. AI sustainability is not governed by a single legal instrument
but rather emerges from the interaction of multiple frameworks
and actors. This fragmented approach creates legal uncertainty
and regulatory loopholes — notably the omission of AI inference
from reporting obligations and the failure to mandate Sustainability
Impact Assessments (SIA). We then propose a novel interpretation
of the AI Act to include AI inferences in the reporting obligations
of general-purpose AI providers, and to incorporate sustainability
considerations into the mandatory risk assessment framework to
effectuate the goal of environmental protection enshrined in Art. 1
and Recitals 1, 2 and 8.

Second, we examine the practical challenges of implementing
AI-related environmental obligations and provide technical recom-
mendations. The crux here is to operationalize existing rules and
make climate reporting work by developing metrics that are both
meaningful and workable in practice.

Third, we identify areas where the AI Act and related regulatory
frameworks require future amendments. In light of upcoming eval-
uation rounds, we advocate for closing loopholes and reinstating
environmental obligations that were weakened during the legisla-
tive process. While the current political momentum seems to favor
deregulation, the climate emergency persists. Therefore, it is cru-
cial to improve the best legal tools still available, and to advocate
for a nuanced legal framework to bring the twin transitions of AI
and climate together. Our twelve policy proposals address four key
areas: Energy and Environmental Reporting Obligations; Legal and
Regulatory Clarifications; Transparency and Accountability Mech-
anisms; and Future Far-Reaching Measures beyond Transparency.

2 Related Work
Due to the interdisciplinary nature of sustainable AI, related works
originate from three main fields—computer science; humanities and
policy; and legal research. In recent years, the computer science and
AI community has become increasingly aware of the environmental
effects of AI, which led to both policy-oriented [8, 14, 29, 37, 44,
45, 52, 54, 56, 70, 76] and technical contributions, particularly on
the environmental effects of data centers operations and AI-related
computing [2, 30, 62], studies for tracking [1, 19, 23, 51, 53, 55, 64, 79,
82] and techniques for reducing the emissions of data centers and AI
models [7, 31, 43, 46, 57]. The water consumption of AI training has
also been a concern [49, 83]. Broader scholarship and policy work
includes ethical [15, 27], informational [20, 54, 63, 75], and social

perspectives [6]. Numerous contributions also analyze and evaluate
the various means in which AImay be used tomitigate, and adapt to,
climate change [13, 17, 34, 41, 47, 68, 69, 75], as also acknowledged in
the AI Act (Recitals 4 and 142). However, from a legal perspective,
the problem of sustainable AI remains underexplored. Existing
contributions date from before the AI Act’s final version [63], which
differs significantly from previous proposals (see below, 5.2.) or do
not engage with its provisions in detail [33]. Other, complimentary
work focuses uniquely on the DSA [11] or data center regulation
[16].

3 Technical Background
From a technical perspective, it is important to distinguish between
(pre-)training, fine-tuning, and inference. Training refers to the
process of initially adjusting a model’s parameters or weights to
fit the data. This process is highly compute-intensive and typically
requires a significant amount of energy [37, 53, 55, 79]. LLM perfor-
mance strongly depends on the model scale (number of parameters),
which in turn requires more training data [38, 66], and hence more
resources. Such scaling can even be expected with algorithmically
advanced models, such as DeepSeek R1 [3].

Fine-tuning aims at adjusting a pretrained model to fit more
specific data in order to perform better at specific tasks. It involves
a significantly smaller amount of training data and compute budget.
The specific procedure for successful fine-tuning is very model-,
data-, and task-specific, and rather empirical. Therefore, the com-
putational and energy-intensity can vary significantly for this step.
For example, as highlighted by Luccioni et al. [55], the energy usage
for fine-tuning the Bloomz-7B required 7,571 kWh compared to
51,686 kWh for the entire training process, adding another 15 % to
the initial consumption. Inference, in turn, refers to the procedure
of generating a prediction from a trained model. Typically, an indi-
vidual inference consumes little energy compared to training; but
there are many more inference than training events.

Most of these training, fine-tuning and inference computations
are conducted in data centers. The power usage effectiveness (PUE)
metric reflects the energy efficiency of a data center. It indicates
the ratio of the total energy needed by a data center, including
components such as cooling, to the energy used solely by computa-
tional devices. A PUE of 1.0 would imply ideal efficiency, meaning
that the data center uses only the energy necessary to power the
computational devices. The average data center PUE in 2023 was
1.58 globally[74] and 1.6 in the EU [26].

4 Regulation of Data Centers
Data centers run all kinds of operations, such as cloud computing,
crypto currencies and the Internet at large. Recently, AI training
and inference have experienced massive growth. Broad data center
regulation, therefore, indirectly governs the environmental effects
of AI and constitutes the backdrop against which specific AI regu-
lation must be viewed. Taking a look at the requirements for data
centers can help to find a coherent and effective interpretation of
the requirements in the AI Act as it builds on already available data
and established methodology.
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4.1 EU Data Collection and Reporting
Obligations for Data Centers

In the EU, data collection and reporting obligations for data centers
were established by two recent legal acts, Art. 12 of the recast
Energy Efficiency Directive EU/2023/1791 of September 13, 2023
("EED"), and the Commission Delegated Regulation EU/2024/1364
of March 14, 2024 ("Delegated Regulation"). The new rules apply
to all data centers in the EU with a power demand of the installed
information technology (IT) of at least 500kW, which includes small-
sized data centers. Data center operators are required to collect,
make publicly available and report to a EU database information
that is deemed relevant for the sustainability assessment of the data
centers and the industry as a whole. The reporting is mandated on
an annual basis.

The required data includes energy consumption, power utiliza-
tion, temperature set points, waste heat utilisation, water usage
and use of renewable energy (EED, Annex VII(c)). Notably, while
the EED focuses on energy and power, the reporting of water usage
is a significant step forward as both energy and water consumption
have raised concerns in AI settings [49, 55]. In addition, the Water
Framework Directive can be harnessed to limit the overall amount
water a data center may consume, and also control for any potential
loss of water quality [33].

The Delegated Regulation provides specific key performance
indicators and methodology. Most notable is the requirement to
measure and report the energy consumption of the installed infor-
mation technology. Following the standard-methodology for the
calculation of PUE,1 the energy consumption must be measured at
the uninterruptible power system (UPS) or, if not existent, at the
power distribution unit (PDU) or at another point specified by the
data center (see Delegated Regulation, Annex II(1)(e); see also the
appendix, Figure 1 as Categories 1-3.

The data centers must report to the EU database directly or
via a national reporting scheme, if such a scheme is implemented
by the Member State. From the reported data the Commission
calculates the data center sustainability indicators which are made
publicly available on an aggregate level. They include the power
usage effectiveness (PUE), the water usage effectiveness (WUE)2,
the energy reuse factor (ERF)3, and the renewable energy factor
(REF)4.

4.2 Energy Management Systems and Energy
Audits

The EED also requires that Member States mandate companies
with an average annual energy consumption of more than 10 TJ to
conduct an energy audit at least every four years and those with a
consumption of more than 85 TJ to implement an energy manage-
ment system including regular energy audits (Art. 11 EED). This
would also apply to operators of data centers. The Directive sets

1The Delegated Regulation refers to the European standard CEN/CENELEC EN 50600-
4-2.
2WUE measures the amount of water used in the data center’s cooling and other
operations relative to the energy consumed by the IT stack.
3ERF represents the percentage of energy that is reused from a data center’s waste
energy, showing the efficiency of energy recovery.
4REF indicates the proportion of a data center’s energy that comes from renewable
sources.

up certain minimum criteria for energy audits (Annex VI EED) and
refers to the relevant international or European standards (Recital
80 EED). The legal minimum criteria, however, do not dictate how
energy consumption should be measured.

4.3 German 2023 Energy Efficiency Act
In Germany, the Energy Efficiency Act of 8 Nov 2023 implements
the EED and establishes a national reporting scheme and additional
requirements, including specific efficiency and renewable energy
targets for data centers. The Act broadens the scope of the report-
ing obligation to include even smaller data centers, upwards of 300
kW (Sec. 13). It also expands the duty to set up an energy manage-
ment system to data centers and operators of ICT—i.e., customers
of colocation data centers—of more than 50 kW (Sec. 12). Most im-
portantly, it sets targets on energy efficiency and renewable energy
use, requiring data centers to reach a PUE factor between 1.5 and
1.2 and an ERF of 10% to 20 % depending on their age (Sec. 11), and
to run on 50 % renewable energy, increasing that factor to 100% by 1
Jan 2027 (Sec. 11). Lastly, it requires data center operators to inform
their customers on an annual basis on the energy consumption
directly attributable to them (Sec. 15).

4.4 Regulation Outside the EU
Outside the EU, a number of countries is taking the lead by im-
plementing concrete PUE goals, such as Singapore, Japan, China,
and Australia, while the U.S. as one of the main contributors in
the AI race shows a nuanced picture. However, it should be noted
that some of these measures are limited to procurement policies or
mere political commitments where it is unclear if there will be any
penalty-enabled enforcement like in the German Energy Efficiency
Act. A direct comparison of PUE target values should, therefore, be
made with this caveat in mind.

Under the 2024 Green Data Center Roadmap, Singapore aims
to reach a PUE of 1.3 or less within 10 years [71]. Japan, with its
2022 Energy Conservation Act, requires data center operators to
take efficiency measures to reach a target PUE of 1.4 by 2030 [12].
Meanwhile, in China, according to Li et al., policies issued from
2013 onward introduced efficiency targets, gradually decreasing
the required PUE from 1.5 in 2013 to 1.3 in 2021 [48]. However, the
authors also admit that most recent data still shows a significant
implementation gap with the actual PUE of most data centers rang-
ing between 1.4 and 2.0. As part of Australia’s 2023 Net Zero in
Government Operations Strategy, data center services procured by
the government must demonstrate a five-star energy rating under
the national NABERS scheme, including a PUE of 1.4 or lower. This
requirement applies to procurement from members of the distin-
guished Data Centre Panel, and from 1 July 2025, it will extend to
other companies and state-operated data centers [21].

In the U.S., in the absence of federal efficiency requirements, the
only direct regulation for data center efficiency is the California
Green Building Action Plan 2015 implementing Executive Order B-
18-12. Data centers that exceed a PUE of 1.5 are required to reduce
their PUE by a minimum of 10 percent per year until they achieve
a 1.5 or lower PUE. However, similar to the Australian action, this
plan is only limited to state data centers [22, 73].
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Another noteworthy strain of regulation is the climate reporting
set forth in the SEC climate disclosure rules, and, on a state level, the
California Climate Corporate Data Accountability Act, also known
as SB 253. While the California Act goes further in including private
companies and scope 3 indirect emissions, it is limited to companies
with USD 1 B in annual revenue. For the SEC rules as well as SB
253 the focus is on the companies’ total emissions, therefore direct
attribution to AI or computing energy consumption will be difficult.

Relating to AI more specifically, although not limited to data
centers, is a bill for an AI Environmental Impacts Act that was
introduced in the U.S. Senate by Senator Edward J. Markey (D-
MA) on 1 Feb 2024 [78]. The bill was referred to the Committee
on Commerce, Science and Transportation, and has not yet been
voted upon. Under the new administration, it is unlikely that the
bill will pass Congress. However, even if enacted, it would not
contain any significant hard regulation. The bill primarily mandates
studies, stakeholder consultations, and voluntary reporting on AI’s
environmental impacts without imposing significant regulatory
obligations.

4.5 Discussion and Interim Conclusion on Data
Center Regulation

The regulation of data centers in the context of AI’s environmen-
tal impact, particularly regarding energy and water consumption,
presents both advantages and shortcomings. The increasing growth
of AI-related activities, such as training and inference, places sig-
nificant pressure on the environmental footprint of data centers.
While the EU has implemented generic data center regulations,
such as those outlined in the Energy Efficiency Directive and the
Delegated Regulation, these rules also indirectly govern the envi-
ronmental impact of AI by imposing reporting and data collection
requirements. Notably, these regulations require the reporting of
both energy and water consumption, a critical aspect given the
rising concerns over resource use in AI applications.

One of the key strengths of the EU’s approach is the establish-
ment of specific reporting obligations. Data center operators must
collect and publicly report energy consumption, power utilization,
water usage, waste heat utilization, and the use of renewable energy.
These measures help create transparency and provide a foundation
for future efficiency improvements. Additionally, the German im-
plementation of the EED goes beyond mere reporting by setting
specific targets for energy efficiency and renewable energy use
in data centers, as well as requiring smaller data centers to com-
ply. Germany’s approach might serve as a potential blueprint for
broader EU regulation, particularly mandating data center opera-
tors to inform customers about their direct energy consumption,
an essential factor for optimizing AI-related energy use.

However, the regulations also present several shortcomings.
While data collection and reporting obligations are useful, the ab-
sence of binding efficiency and renewable energy targets at the EU
level is a major limitation. Although the Commission is expected
to propose further legislative measures by 2025, the current lack of
enforceable standards means that data centers could continue to
consume vast amounts of energy and water without significant re-
ductions in their environmental impact. Moreover, while Germany
has introduced stricter targets, these do not extend to all Member

States, potentially leading to a fragmented regulatory environment
across the EU.

In contrast, the situation outside the EU shows a very diverse
landscape, ranging from government procurement to industry wide
political commitments and concrete legal requirements with vary-
ing implementation success.

5 AI Act: Gaps and Interpretation Challenges
The AI Act applies further down in the value chain, targeting enti-
ties that develop and deploy AI systems. After introducing the key
terminology used by the Act, we discuss the major climate-related
obligations contained in it, with a particular focus on transparency,
risk assessment and mitigation. As our analysis shows, the Act
makes steps in the right direction, but falls short of a comprehen-
sive regime for tackling climate-related risks of AI models.

5.1 Terminology of the AI Act: AI, Providers,
and Deployers

The AI Act only applies if an AI model or AI system is used by a
specifically designated entity, such as a provider or deployer. The
activity also needs to relate to the EU, typically either because
the system is offered to persons in the EU or because its output
is used in the EU (Art. 2(1) and Recital 22 AI Act). An AI system
is defined as a machine-based system ’designed to operate with
varying levels of autonomy and that may exhibit adaptiveness after
deployment, and that, for explicit or implicit objectives, infers, from
the input it receives, how to generate outputs such as predictions,
content, recommendations, or decisions that can influence physical
or virtual environments’ (Art. 3(1)).

Key actors in the AI value chain include providers and deployers.
Providers develop or market AI models or systems (Art. 3(3)) while
deployers use existing AI systems in a professional capacity (Art.
3(4)). Note that other operationally relevant actors, such as cloud
service providers, data providers, data center operators, or other
intermediaries, are not directly subject to AI Act rules.

The Act pays specific attention to general-purpose AI (GPAI)
models, e.g., large language models (LLMs) like GPT-4, that are
defined by the wide range of possible uses. Those with the most
advanced capabilities, and therefore higher risk of negative effects,
are labeled GPAI models with systemic risk (Art. 3(63)-(65)). An AI
system that integrates a GPAI model is a general-purpose AI system
(Art. 3(66)), e.g., ChatGPT. AI systems used in specific settings
subject to product safety regulation, e.g., medical devices, and areas
particularly sensitive for public safety or fundamental rights, e.g.,
law enforcement, education, employment, or credit scoring, are
called high-risk AI (HRAI) systems. These systems are subject to
other rules, concerning training data, documentation, human in the
loop, and performance, inter alia (Art. 9-16). When GPAI systems
are used in high-risk applications, rules may apply cumulatively
(Recital 85, 97).

The AI Act contains energy- and climate-related transparency
and risk management obligations, primarily for providers of AI
systems or models. Under certain conditions (e.g., fine-tuning),
however, deployers become providers, which triggers much more
onerous duties, also with respect to climate impacts (Art. 25(1),
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Recital 109). Hence, there is a palpable incentive for companies to
avoid provider status.

Concerning HRAI systems, pursuant to Art. 25(1), deployers can
become providers if they market an existing HRAI system under
their name or trademark, substantially modify an HRAI system, or
change the intended purpose of a non-high-risk AI system such
that it falls under one of the high-risk sectors (e.g., employment;
life- or health insurance; education). Specifically, if a deployer uses
a GPAI system, such as ChatGPT, in a high-risk setting, for example,
by harnessing it for resume screening in hiring, they automatically
assume the responsibilities of a provider of an HRAI system (Art.
25(1)(c)).

An existing HRAI system can be altered. If the modification is
substantial, the modifying entity becomes a new provider (Article
25(1)(b)). It is unclear, however, what precisely constitutes a "sub-
stantial modification" that would trigger provider status for the
modifying entity. A formal interpretation suggests that any change
to themodel could be deemed substantial, based on Art. 3(23), which
defines substantial modification as any unplanned change affect-
ing compliance or intended purpose. On the other hand, a—more
convincing—material interpretation would claim that provider sta-
tus should only apply if the modification increases the model’s
risk in a nonnegligible way. This aligns with the AI Act’s focus on
risk mitigation and also the language in Article 3(23) according to
which any significant modification must affect compliance with the
high-risk rules of the Act (or change the purpose).

For GPAI models, Recitals 97, 109, and 111 suggest that any
entity performing even minimal fine-tuning of a GPAI model is
automatically classified as the provider of a new model, including
all associated responsibilities [4]. For minor modifications this is
disproportionate, even if Recital 109 states that obligations are
limited to the fine-tuning itself [4]. A solution could be an analogy
with Article 25(1)(b) so that provider status would only be triggered
by a substantial modification made through fine-tuning, rather than
any minor changes [4].

This is particularly important for SMEs using powerful mod-
els (GPAI models with systemic risk): if they become providers,
they need to comply with the much more stringent obligations in
Article 55 concerning evaluation and risk management, including
environmental risk.

5.2 Legislative History and Intent
In the original Commission proposal of April 2021, the AI Act only
included minimal references to environmental effects, mostly as a
potential benefit to climate change mitigation (see above, 2.), and
in the section on voluntary commitments [63]. The General Ap-
proach adopted by the Council in December 2022 continued this
narrow framing. However, the momentum changed, particularly
with the position of the European Parliament (EP), published in
June 2023. The suggested EP sustainability amendments to the AI
Act introduce environmental principles for AI development, prefer-
ential funding for eco-friendly AI, mandatory energy and resource
consumption reporting, sustainability risk assessments (SIAs) for
foundation models, and Commission-led guidance on environmen-
tal impact measurement and review [33]. During the final trilogue
negotiations, several of these amendments were dropped (e.g., the

principle; explicit SIAs). However, simultaneously, the impact of
fundamental rights was strengthened, and environmental protec-
tion listed as one such right that must be considered in a range of
provisions [33, 63]. This is supported by the mention of environ-
mental protection as a key policy goal of the AI Act in Article 1
and Recitals 1, 2 and 8.

5.3 Transparency
The first climate-related obligation in the AI Act concerns trans-
parency and reporting, however not with respect to data centers,
but concerning providers of high-risk and GPAI models [4]. Yet,
the rules come with significant ambiguities and loopholes. In the
following, we detail the six most important ones.

1) For high-risk AI systems, pursuant to Article 11(1) providers
must document the computational resources utilized during the
development, training, testing, and validation stages, as outlined in
Annex IV(2) which does, however, not include the energy consump-
tion directly [4]. This omission hinders the capacity to evaluate and
compare the environmental impact of such systems accurately. As
a result, the environmental footprint must be estimated indirectly
based on the recorded computational resources.

2) The AI Act requires providers of general-purpose AI models
to meet transparency obligations. Article 53(1)(a) mandates that
providers maintain up-to-date technical documentation, including
the details outlined in Annex XI. This annex requires the reporting
of energy consumption, whether known or estimated, while esti-
mates may be based on the computational resources used. However,
this requirement exhibits a significant gap as it only covers the
energy used during the model’s development phase, but leaves out
the inference phase [4]. Recent research has shown that energy con-
sumption during inference often exceeds that of the development
phase very significantly over time [55, 79].

To bridge this gap, we propose an alternative interpretation,
based on the information provided to downstream actors (see also
[4]). As a result of the AI Act, providers must supply downstream
developers and relevant authorities with technical information on
how to incorporate GPAI models into AI systems (Articles 53(1)(a)
and (b), together with Annex XI and Annex XII). While energy
consumption is not explicitly referenced in these provisions, they
could reasonably be understood to include details about the com-
putational resources required for inference because downstream
providers need this information to properly allocate resources, e.g.,
purchasing computing power for operating the model. As a side-
effect, this information could be used to calculate energy consump-
tion for individual inferences. However, to calculate the overall
energy consumption for inferences, the total number of inferences
would need to be available as well. While the typical energy costs of
inferences should therefore be mandatorily disclosed by providers,
deployers should be compelled to divulge information on the num-
ber of inferences, as well, e.g., on an aggregate monthly level.

3) Open-source (OS) GPAI models are largely excluded from
transparency requirements unless they present a systemic risk,
as outlined in Articles 2(12) and 53(2) [4]. The idea is that OS
models, by definition, already disclose certain types of informa-
tion. Hence, Recital 102 lists information on parameters, including
weights, model architecture, and model usage as a prerequisite for
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systems to be considered OS. However, it does not mandate the
disclosure of energy consumption. This results in an unwarrented
lack of visibility concerning the environmental impact and energy
usage of these models.

4) Where the Act does mandate the disclosure of energy con-
sumption, this information is restricted to authorities and is not
accessible to downstream providers (unless the proposed interpreta-
tion from 2) is applied) or the general public, due to confidentiality
clauses in Articles 21(3), 53(7), and 78(1) [4]. The limited availability
of this data significantly reduces transparency and accountability,
theryby weakening the potential for public oversight and market
responses.

5) The AI Act fails to address the greenhouse gas (GHG) emis-
sions generated by AI applications, for instance in sectors like
oil and gas exploration [4, 37]. For example, a recent investiga-
tion has revealed Microsoft’s aggressive pitch of its AI models to
ExxonMobile to optimize fossil fuel exploration [35]. Leaving such
applications with significant climate effects out of scope creates a
notable reporting gap.

6) The Act also neglects to address the substantial water con-
sumption, a key concern in data center operations [4]. While the
Energy Efficiency Directive mandates reporting of water consump-
tion for data centers, the AI Act requires no such reporting specifi-
cally for AI—as it does for energy use—nor does it cover operations
outside the EU.

5.4 Environmental Risk Assessment and
Mitigation

In tackling the climate effects of AI and ICT more generally, it is
arguably crucial to move beyond mere transparency provisions
towards more substantive goals and obligations. Indeed, the AI Act
does contain some language to this effect. For providers of GPAI
models with systemic risk and providers of HRAI systems, the Act
mandates risk assessment and mitigation (Art. 55(1)(b) and Art. 9).
We argue that these measures should also consider environmental
risks, in keeping with the normative goals of the AI Act listed in
Article 1 and Recitals 1, 2 and 8.

Crucially, both provisions relate to risks of the AI model or sys-
tem for fundamental rights which, within the AI Act, must be inter-
preted as including environmental risks [5]. In Art. 1(1) and Recital
1, the purpose of the AI Act is defined as protecting health, safety,
fundamental rights enshrined in the Charter, including democracy,
the rule of law and environmental protection. However, in the doc-
trine of the Charter of Fundamental Rights of the European Union
(the Charter), environmental protection (Art. 37 of the Charta) is
merely an objective rule, not a fundamental right [60]. Democracy
and the rule of law are not enshrined in a particular Article of the
Charter but serve as guiding principles that permeate the Charter
and all of the fundamental rights. Accordingly, they (only) find a
mention in the preamble of the Charter.

In our view, the European legislator did not err on the doctri-
nal classification of democracy, the rule of law and environmental
protection in the Charter by including these principles. While it is
conceivable that a legislative error may have occurred in miscate-
gorising the objective rule in Art. 37 of the Charta, that seems very
unlikely for the basic principles merely expressed in the preamble.

Instead, the more convincing interpretation is that, for the purposes
of the AI Act, the legislator meant for these principles to be included
whenever the Act refers to fundamental rights. It is, besides, not
uncommon for a legal term to have different meanings in different
legal settings.

Thus, it should not be dispositive that the explicit SIA contained
in the EP position (see 5.2) was not included in the final version.
Rather, the provisions on risk assessment and mitigation form a cen-
terpiece of the protective measures included in the AI Act. Without
including environmental risks in the risk assessment andmitigation,
in effect, not much consideration for environmental risks would
remain and certainly not the "high level of protection" that Art. 1(1)
mandates.

As a caveat, it should be noted that, while the AI Act requires
climate risk assessment and mitigation, no detailed reporting is
mandated. For HRAI systems the documentation must comprise
a detailed description of the risk management system, but not the
risk assessment or its results (Annex IV(5)). Providers of GPAI mod-
els with systemic risk may rely on codes of practice or European
harmonized standards, both of which are not yet available, or alter-
native means of compliance for assessment by the Commission (Art.
55(2)). If these will entail a detailed reporting of the risk assessment,
and to whom, is yet to be determined.

5.5 Discussion and Interim Conclusion on the
AI Act

Overall, while the AI Act introduces valuable steps toward address-
ing climate-related concerns in AI development and deployment,
it falls short of establishing a comprehensive framework for mit-
igating the environmental risks posed by AI systems. Key provi-
sions on transparency and risk management for high-risk AI and
general-purpose AI systems make some progress in requiring doc-
umentation of computational resources and energy consumption,
but significant gaps remain. For example, the Act does not mandate
the disclosure of energy consumption during the inference phase,
a crucial omission given the long-term environmental impact of
AI applications. Moreover, transparency measures are restricted to
authorities, limiting broader accountability and public scrutiny.

Additionally, while the Act imposes risk assessment and mitiga-
tion obligations on providers of HRAI systems and GPAI models
with systemic risk, these provisions lack sufficient emphasis on
environmental factors. Although environmental protection is in-
cluded in the Act’s objectives, its practical integration into risk
management remains unclear and no detailed reporting on mitiga-
tion efforts concerning environmental risks is currently required.
Without stronger enforcement and clearer guidance, particularly
on the inclusion of energy consumption and other environmen-
tal impacts in risk assessments, the Act’s potential to address the
growing climate-related risks of AI systems will remain limited.

6 Operationalizing the Requirements
6.1 Model Providers and their Access to

Infrastructure
Leading model providers leverage extensive supercomputer net-
works equipped with high-performance GPUs. This group is most
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impacted by energy consumption reporting. We assume that they
possess privileged access or considerable influence over the utilized
infrastructure given their financial power or strategic value. One
can distinguish between companies that develop closed models (e.g.,
OpenAI) and those that create open-source models (e.g., Meta).

Startups and smaller companies are expected to either directly
deploy such models, use available API services of leading model
providers, or fine-tune existing models. Although these companies
do not typically train large models themselves, they must report
energy consumption for fine-tuning. Under our proposed inter-
pretation, however, only if the fine-tuning of a model leads to a
substantial modification.

6.2 Levels for Measuring and Estimating Energy
Consumption

There are several levels within a data center based on which energy
consumption may be measured or estimated [4]. These include (1)
the data center level, (2) the cumulative server level, (3) the GPU-
Level and other hardware within a server and (4) various other
levels. In this section, we outline each level along with their bene-
fits, drawbacks, and estimation methods for when measurement is
unavailable.

6.2.1 Data Center Level. On the data center level, the power re-
quired to operate the entire data center is measured, including both
the direct power consumption of computing equipment and the
additional overhead for cooling and maintaining the data center.
This approach provides the most extensive and complete figures
since it represents the actual energy usage, but also assumes that a
data center is exclusively utilized for the pre-training by the model
provider. It encourages the selection of an efficient data center. Ad-
ditionally, data centers have average PUE values of 1.58, so this
overhead makes up a significant portion of the energy consump-
tion. On the other hand, the power usage resulting solely from the
model’s architecture, the quantity of training data, the efficiency of
the implementation, and experimental settings is very important
but is somewhat skewed by the efficiency of the data center.

If data-center level power consumptionmeasurement is not avail-
able, using the PUE factor for estimation is deemed appropriate. To
calculate total energy usage, the PUE factor is multiplied by the raw
computational power consumption measured or estimated at the cu-
mulative server or rack level (see below). This might be reasonable,
if only parts of a data center are utilized and only measurements
closer to the ICT equipment are available.

6.2.2 Cumulative Server Level. A large-scalemodel is trained across
many servers in a distributed manner. Each server includes GPUs
responsible for the primary computation. To accurately monitor
the power consumption over time, a local power distribution unit
(PDU), capable of measuring the provided power, is attached to each
server. Aggregating these measurements yields a highly precise
figure of the total energy consumption attributable to the model’s
computations. Instead of aggregating local PDUs, the usage of pri-
mary PDUs or uninterruptible power supply (UPS) systems already
measuring at the rack level or even many racks is also suitable
(See also Appendix, Figure 1), as long as the measurements pre-
cisely match fully the utilized hardware resources by the model

providers. The goal is to include all ICT-related power consumption
but exclude data center specific efficiency properties.

The upside of this method is its high accuracy, highly correlating
with model size and structure, data quantity, and hardware-aware
software implementation. It is widely recognized in the industry
for assessing power consumption in data centers. According to a
2023 Green Grid industry survey [77], 66% of data centers can track
power demand at least on rack-level. Roughly one third of over-
all data centers are already able to collect average utilization and
power demand data for individual servers and storage equipment
and match this data to their IT equipment inventory. We assume
that the data centers that are used for training by large model
providers are already able to track this information given its high
cost relevance. However, a significant number of data centers do not
track power demand yet. The surveyed data center professionals
estimate to require between 3-6 months (Europe: 15%, Global: 19%),
1 year (Europe: 29%, Global: 28%), 2 years (Europe: 12%, Global:
10%), 3 years (Europe: 4%, Global: 4%) or more than 4 years (Europe:
11%, Global: 8%) to implement adequate power collection abilities.
For European data centers these numbers stand in (surprising) con-
trast to the obligation under the EED and Delegated Regulation to
provide energy consumption data by Sep 15, 2024 (Art. 3(1) and
Annex II(1)(e) Delegated Regulation). Either a substantial number
of the participants was unaware of the obligations; or thereby ac-
knowledged their inability to comply in time; or the question was
too narrow, being pointed at individual servers, while the EED also
allows measurement at the higher-level UPS.

An estimation is possible when GPU hours and the hardware
used are known. By multiplying a GPU-hour with the peak utiliza-
tion power consumption specified by the manufacturer, one can
estimate the upper limit of energy consumption at the server level.
This upper bound is typically higher than the actual consumption,
as GPU utilization rarely reaches its theoretical peak due to other
resource constraints. Higher GPU efficiency means that the same
operations are completed in less time, reducing the overhead from
non-utilization-dependent hardware power consumption.

6.2.3 GPU-Level and other hardware within a server. The mea-
surement may be based on the energy usage of particular compo-
nents as determined by on-chip sensors. Nvidia GPUs and certain
CPUs already provide straightforward power consumption moni-
toring, therefore estimations are usually not necessary. However,
despite GPU power consumption being a significant factor and its
usage correlating with the total power usage, it substantially under-
represents the actual energy consumption since it measures just a
single component. CPU power usage is a relatively minor factor in
consumption. Most other server components cannot be measured.
We advocate against using GPU-level or other component-based
power consumption tracking for overall energy measurements.

6.2.4 Other levels. Other measurement levels, such as Workload,
Cloud Instance, or Virtual Machine, involve high complexity and
numerous assumptions, resulting in a lack of standardized mea-
surement or estimation methods with considerable uncertainty. We
advise against using these levels for power consumption tracking.

6.2.5 Interim Conclusion on the Level of Measurement. In our anal-
ysis, we argue that energy consumption should be measured and
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reported at the cumulative server level (see also [4]). This approach
captures the total computation-related power usage and is better
suited to help providers optimize their AI models and algorithms for
energy efficiency. Additionally, the PUE factor of each data center,
which is reported and published by the data center operator under
the Energy Efficiency Directive (EU) 2023/1791 and Delegated Reg-
ulation (EU) 2024/1364, provides a useful estimate of overall energy
consumption [4]. With these two figures, it is possible to distinguish
between model-specific power usage (server-level computation)
and the data center’s efficiency, offering a clearer picture of the
total energy investment [4]. Although the EED mandates that PUE
factors must be available for data centers situated within the EU,
the responsibility of reporting these factors should also fall on the
model provider. Specifically, model providers utilizing data center
facilities outside the EU should not be granted an exemption.

Estimates of server-level power consumption should be based
on peak utilization figures provided by the hardware manufacturer
(e.g., Nvidia) [4]. Still, it is important to consider advancements in
research. Interpretation of the legal requirements could accommo-
date justifiable alternative assumptions that may not require peak
utilization figures. For instance, tracking GPU utilization through
interfaces like those provided by Nvidia and referencing hardware
benchmarks based on specific GPU utilization rates could serve as
a basis for such assumptions.

6.3 Measurement or Estimation
Although actual measurement is more onerous, it also yields more
precise results for energy consumption reporting. Major model
providers are likely to already measure power consumption as it
is a primary cost factor and highly linked to computational power.
Despite the availability of power consumption data, companies
may be tempted to use estimated values to protect sensitive infor-
mation. This practice should be restricted by legally prioritizing
measurements over estimations in Annex XI Section 1(2)(e).

The same reasoning applies to smaller entities relying on cloud
computing services for fine-tuning, for example such offered by
Amazon Web Services or Microsoft Azure. Fine-tuning is crucial
for employing foundational models in task-specific applications
and tailoring them to specific datasets. The higher the expense
of initial model trainings, the stronger the incentive to perform
fine-tuning rather than retraining the model. Therefore, this is the
type of adaptation that most businesses will focus on to effectively
integrate large AI models into practical products.

Cloud platforms still lack client-oriented power consumption
reporting as part of their products. It is essential that ordinary
companies with limited resources do not face obstacles in fulfill-
ing their reporting obligations only because their cloud computing
providers do not offer this data. The access rights enshrined in Art.
25(2) AI Act can help if the deploying entity becomes a provider—
but providers may invoke trade secrets and IP rights to dilute this
obligation (Art. 25(5) AI Act). In our view, the interests of down-
stream actors in reporting correct figures should generally trump
the secrecy interests of upstream providers, in this case. Under the
current setup, companies could always resort to computation-based
estimations for their reporting. However, in order to gain the most
accurate data, cloud platforms should be incentivized to provide

energy consumption data to their clients. Complementing Art. 25(2)
AI Act, the obligation established in Sec. 15 of the German Energy
Efficiency Act, requiring data centers to inform customers on their
attributable annual energy consumption, could serve as a blueprint.
Notably, such a law could also apply to cloud service providers
based outside the EU, with the caveat, however, that such an ex-
traterritorial application oftentimes lacks enforcement capabilities.

6.4 Sustainability Impact Assessments
The operationalization of sustainability impact assessments (SIAs)
within the risk assessments required under the AI Act involves
integrating environmental considerations into the existing risk
management frameworks that high-risk AI model providers and
GPAI providers must follow. Much like data protection or algo-
rithmic impact assessments, SIAs would serve as a practical tool
for embedding climate considerations into the development and
deployment of AI systems. Importantly, these assessments should
not be limited to high-risk AI models but should also apply to all AI
systems, regardless of the associated risk to health or safety. This
is because the carbon footprint of AI models is often unrelated to
their classification as high or low risk under the Act. Therefore, an
SIA could ensure that environmental impacts are considered across
the entire AI landscape.

The SIA should involve evaluating various models and design
choices during the development process, comparing them not only
on their performance but also on their estimated environmental
impact. For instance, developers would need to assess whether a
simpler model, like linear regression or even a non-AI model, could
achieve similar results with a smaller carbon footprint compared
to more complex models like deep learning [33, 37]. Similarly, the
decision to use large, pre-trained models or training new, narrow
models (almost) from scratch should factor in the potential climate
benefits. By using existing tools to measure the carbon impact of AI
models, developers would be required to opt for the more environ-
mentally sustainable option when performance is comparable. To
effectively implement sustainability impact assessments, providers
would need to establish standardized methodologies for measuring
the environmental effects of AI models, particularly energy and
water usage during training and inference phases.

Taking one step back, the concept of "data protection by design"
should be expanded to include “sustainability by design,” under
which developers should actively seek to reduce the contribution
of ICT, including AI, to climate change [33]. At both the technical
and organizational levels, this would involve adopting all feasible
measures to limit environmental impact, a shift that has already
been applied in other industries through consumption practices
and product design. These approaches are also gaining traction in
supply chain management and other sectors in pursuit of corpo-
rate Environmental, Social, and Governance (ESG) objectives. By
drawing on these existing practices, sustainability by design could
become a core principle guiding the regulation of the ICT and AI
sectors.
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7 Policy Proposals
Although the AI Act attempts to address climate concerns through
various reporting obligations, these measures largely lack consis-
tency and clarity. We identify twelve policy recommendations that
should be integrated into the evaluation report due in August 2028
(Article 111(6)), as well as any interpretive guidelines from the AI
Office and other agencies, and in reviews and potential textual
revisions prior to that date (see also [4]). These measures can be
grouped in four categories: Energy and Environmental Reporting
Obligations; Legal and Regulatory Clarifications; Transparency and
Accountability Mechanisms; and Future Far-Reaching Measures
beyond Transparency.

7.1 Energy and Environmental Reporting
Obligations

The current AI Act overlooks key environmental factors related to
AI systems [56]. The following proposals aim to ensure comprehen-
sive energy and environmental accountability for AI systems, both
for development and inference phases.

• Inclusion of Energy Consumption From Inferences: We
propose an interpretation that would at least bring energy
consumption for single inferences back into the scope (see
also [4]). Adoption of this interpretation by courts, author-
ities and industry, however, is uncertain. Therefore, both
single and overall inferences should be included as a report-
ing category in Annex XI andAnnex XII (vis-à-vis authorities
and downstream providers) through delegated acts from the
Commission (Articles 53(5) and (6)) and future recommenda-
tions from the AI Office.

• Indirect Emissions andWater Consumption Reporting:
The Act currently omits indirect emissions from AI applica-
tions (e.g., those used for oil and gas exploration [37]) and
water consumption [49]. Reporting should include: Providers
reporting water usage, and deployers reporting application-
related emissions, allowing for estimates where precise mea-
surements are impossible, particularly when dealing with
future scenarios.

• Energy Reporting at the Cumulative Server Level: En-
ergy consumption should be reported at the cumulative
server level (see also [4]). In this endeavor, estimations may
be used only when direct measurements are unavailable.
These principles should guide the development of technical
standards under Article 40 of the AI Act, as well as the po-
tential implementation of the Global Digital Compact on a
global scale.

7.2 Legal and Regulatory Clarifications on AI
Models and Providers

Ambiguities in the AI Act regarding provider responsibilities for
AI models need to be clarified to ensure that entities know when
and what to comply with. The following proposals seek ensure that
companies understand their obligations, that open-source models
are on par with closed models, and that the regulatory framework
sets effective incentives at the source (data centers) to mitigate the
environmental impact of AI model development and deployment.

• Clarifying Provider Status for Model Modifications:
The current definition of provider status needs to focus on
substantial modifications to AImodels, specifically those that
involve changing the model’s weights. Reporting obligations
and the change-of-provider threshold should be tied to com-
putational costs incurred during significant modifications,
with a minimum computational cost threshold ensuring that
only energy-intensive changes trigger additional reporting
[4].

• Elimination of the Open-Source Exemption: The open-
source exemption from reporting obligations should be re-
moved, as making parts of a model public does not justify ex-
clusion from environmental accountability [4]. Open-source
models can have significant energy implications and should
adhere to the same reporting standards as proprietary mod-
els.

• Energy Efficiency and Renewable Energy Targets for
Data Centers: The EED and Delegated Regulation should
be amended in three regards, following the German Energy
Efficiency Act: they should set binding efficiency targets
(PUE) and renewable energy targets for data centers; and
include an information obligation for data center operators
and cloud service providers vis-à-vis their customers regard-
ing the attributable energy consumption. These measures
should be included in the 2025 evaluation report. This would
both increase transparency and facilitate more sustainable
decisions by market participants.

7.3 Transparency and Accountability
Mechanisms

To promote public trust and accountability in AI’s environmental
impact, the following measures are recommended:

• PublicAccess toClimate-RelatedDisclosures: All climate-
related disclosures, including energy consumption, should
be made accessible to the general public [4]. If only aggregate
data are shared, trade secrets can be protected while allowing
for public scrutiny by analysts, academics, and NGOs. Pub-
lic transparency would drive market pressure, reputational
incentives, and public accountability; it would, arguably, en-
courage companies to reduce their environmental impact.

• Energy Reporting for High-Risk AI (HRAI): For High-
Risk AI (HRAI) systems, the Act should require the disclosure
of energy consumption rather than computational resources
to eliminate inaccuracies and enhance comparability.

• Environmental Risk Assessments: Providers should be
required to include environmental risks in their risk assess-
ments. The language in Art. 1(1) and Recital 1, as well as Art.
9 and 55 AI Act should be clarified to reflect this. This will
ensure that environmental impacts are systematically eval-
uated alongside other risks during AI system development
and deployment.

7.4 Beyond Transparency
In addition to the existing proposals, more far-reaching measures
that go beyond reporting and transparency may need to be con-
sidered in the future, particularly as AI’s energy demands grow.
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The following proposals focus on reducing AI’s strain on energy
resources and fostering more sustainable energy practices:

• Restrictions on AI Training and Inference During Peak
Hours: One future measure could involve limiting AI train-
ing and certain inference tasks (e.g., those for recreation-
related purposes) to non-peak energy demand hours [33].
This would reduce the strain on energy grids during peak
times and make AI energy usage more manageable and sus-
tainable.

• Obligations for Data Centers and AI Companies to Cre-
ate Renewable Energy Sources: AI companies and data
centers should be required to create new renewable energy
sources to offset any excess energy demand caused by their
operations. This measure could help ensure that renewable
energy, which is a finite resource, is not monopolized by AI
and data centers, leaving enough clean energy for the rest of
the industry. Clear definitions and guidelines would need to
be established to define which types of energy consumption
would be covered by this ’new source requirement’.

• Tradable Energy Budgets for AI: Another possible long-
term measure could involve implementing tradable energy
budgets for AI, similar to the EU Emissions Trading Sys-
tem (EU ETS) [33]. Companies that consume particularly
large amounts of energy would have a capped energy budget
for AI operations and could trade these credits. This would
create a market-based approach to managing and reducing
AI-related energy consumption. It would, arguably, encour-
age companies to optimize their energy usage and invest in
energy efficiency.

8 Objections and Solutions
Implementing the proposed policy recommendations presents both
practical and political challenges, particularly given the EU’s broader
regulatory landscape and the evolving international context. This
section outlines four key objections to our proposals and sketches
solutions. First, a central priority of the new European Commis-
sion is the simplification of the digital acquis (‘fitness check’) [59].
There is concern that adding further reporting requirements and
regulatory obligations could create administrative burdens that
counteract this goal. However, several of our proposals, particularly
standardized energy reporting metrics and clearer environmental
risk assessments, align with the EU’s push for regulatory clarity
and streamlining. Rather than adding complexity, these measures
would, arguably, make compliance more predictable and feasible.

Second, the shifting international AI governance landscape cre-
ates uncertainty regarding the feasibility of ambitious environmen-
tal rules. There is concern that EU regulatory efforts might face
resistance from international AI providers or risk competitive dis-
advantages. While acknowledging a trend toward deregulation in
some corners of the world, we argue that this reinforces the need
for robust EU policy leadership. The AI Act’s extraterritorial scope
already compels global AI providers to comply with EU regula-
tions when operating in the European market. By introducing clear,
enforceable environmental obligations, the EU can set a global reg-
ulatory precedent, and shape international norms despite external
pressures. Moreover, some of our proposals - such as market-based

mechanisms for energy efficiency - offer flexible compliance path-
ways that may be more politically acceptable in a deregulatory
global environment.

Third, the AI industry, particularly large-scale AI providers and
data center operators, may resist additional regulatory obligations,
citing economic and technological constraints. There is also concern
that lack of enforcement mechanisms could render some obligations
ineffective. Hence, our proposals emphasize practical enforcement
strategies, including gradual implementation, industry incentives,
and transparency-driven accountability. For example: public access
to climate-related disclosures can create reputational incentives
for compliance, even in the absence of strict enforcement; energy
efficiency targets for data centers can be phased in over time for a
realistic transition without abrupt regulatory shocks; clarifications
on provider status and reporting obligations offer legal certainty to
companies. Fourth, some of our more ambitious proposals - such as
tradable energy budgets for AI or restrictions on AI training during
peak hours - may be viewed as far-reaching or difficult to implement
in the near term. While we recognize that not all proposals will
be immediately adopted, it is crucial to articulate ambitious policy
options at this juncture. The AI regulatory landscape is evolving,
and incremental steps toward long-termmeasures can be integrated
into future evaluation rounds of the AI Act, the EED, and related
frameworks. As with the EU Emissions Trading System (ETS), ini-
tial skepticism toward market-based environmental regulations can
give way to gradual acceptance as regulatory mechanisms mature.
Given the current political momentum and upcoming AI Act eval-
uation rounds, there is a narrow but critical window to influence
environmental AI governance. While not all recommendations will
be immediately adopted, presenting a structured, well-argued pol-
icy package ensures that sustainability concerns remain central to
AI regulation in the EU and beyond - rather than being sidelined in
the face of deregulation.

9 Conclusion
AI systems, many of them containing energy-intensive generative
AI components, are increasingly integrated into economic and soci-
etal processes. Importantly, as AI intersects with robotics, writing
code and steering devices, it is poised to merge decisively into
industrial processes, proliferating its deployment, but also its cli-
mate effects. Currently, this intersection between the AI and the
green transition sits at a regulatory blind spot, inadequately ad-
dressed in current regulation. In this paper, we take a closer look at
sustainability-related data center regulation and the sustainability
provisions in the AI Act. While they present a good first step, they
too often lack ambition, clarity and consistency, or present signifi-
cant challenges in implementation. To counter these shortcomings,
we provide interpretations of the AI Act in line with its purpose of
environmental protection, provide guidance on operationalizing the
requirements, and make twelve concrete proposals, grouped into
four areas: Energy and Environmental Reporting Obligations; Legal
and Regulatory Clarifications; Transparency and Accountability;
and Future Far-Reaching Measures beyond Transparency.
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A Measuring Points for IT Equipment in Data
Centers

Figure 1: Measuring points for IT equipment energy con-
sumption, from Annex II of the Delegated Regulation
EU/2024/1364 of March 14, 2024
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B Policy Proposals Overview

Table 1: Summary of Policy Proposals for AI and Environ-
mental Impact

Area Policy Proposal and Description

Energy and Environmental
Reporting

Energy consumption from inferences: Include energy consumption from
both single and cumulative inferences in reporting.
Indirect emissions and water consumption: Mandate reporting of indirect
emissions and water use in AI applications.
Cumulative server energy reporting: Require energy consumption to be
measured and reported at the cumulative server level.

Legal and Regulatory Clari-
fications

Clarifying provider status for AI modifications: Limit provider status to
substantial AI model modifications.
Elimination of open-source exemption: Remove the exemption that allows
open-source models to bypass reporting obligations.
Renewable energy and efficiency targets for data centers: Introduce bind-
ing energy efficiency and renewable energy targets for data centers.

Transparency and Account-
ability

Public access to climate-related disclosures: Ensure that climate-related
disclosures are accessible to the public, not just authorities.
Energy reporting for High-Risk AI: Replace computational resource report-
ing with direct energy consumption disclosures for High-Risk AI systems.
Inclusion of environmental risks in assessments: Clarify that environmen-
tal risks must be part of risk assessments for AI providers.

Future Far-Reaching Mea-
sures

Restrictions during peak energy hours: Limit AI training and non-essential
inference tasks to non-peak energy demand periods.
Obligation to create renewable energy sources: Require AI companies and
data centers to develop renewable energy sources to offset excess energy use.
Tradable energy budgets for AI: Introduce a market-based system with
tradable energy budgets for AI operations, similar to the EU ETS.
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