
Presented in 12th IEEE International Conference on Cloud Computing for Emerging Markets-2023

Obfuscated Memory Malware Detection

Sharmila S P [1,2], Aruna Tiwari [1], Narendra S Chaudhari[1]

[1] Computer Science and Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India

{phd2201101012, artiwari, nsc}@iiti.ac.in
[2] Information Science and Engineering, Siddaganga Institute of Technology, Tumakuru, Karnataka, India

{sharmila@sit.ac.in}

Abstract—Providing security for information is highly critical

in the current era with devices enabled with smart technology,

where assuming a day without the internet is highly impossible.

Fast internet at a cheaper price, not only made communication

easy for legitimate users but also for cybercriminals to induce

attacks in various dimensions to breach privacy and security.

Cybercriminals gain illegal access and breach the privacy of users

to harm them in multiple ways. Malware is one such tool used by

hackers to execute their malicious intent. Development in AI

technology is utilized by malware developers to cause social harm.

In this work, we intend to show how Artificial Intelligence and

Machine learning can be used to detect and mitigate these cyber-

attacks induced by malware in specific obfuscated malware. We

conducted experiments with memory feature engineering on

memory analysis of malware samples. Binary classification can

identify whether a given sample is malware or not, but identifying

the type of malware will only guide what next step to be taken for

that malware, to stop it from proceeding with its further action.

Hence, we propose a multi-class classification model to detect the

three types of obfuscated malware with an accuracy of 89.07%

using the Classic Random Forest algorithm. To the best of our

knowledge, there is very little amount of work done in classifying

multiple obfuscated malware by a single model. We also compared

our model with a few state-of-the-art models and found it

comparatively better.

Keywords—Memory feature engineering, Random Forest,

Cyber-Attack, Memory Analysis, Multi-class Classification

I. INTRODUCTION (HEADING 1)

Rapid development in digital technology and the replacement

of paper documents with e-documents have caused a hike in

the number of cyber attacks[1] every day. Hackers are

perturbing the daily activities of users with multiple types of

attacks which begin from observing the user activities to

intervening in the network and disrupting the entire working

of the system.

Malware is a significant cyber-attack[2]. The word malware

is a hyponym derived from ‘mal’ for ‘malicious’ intent and

‘ware’ is for ‘software’. So, it is a software or program

written with malicious intent. Although antiviruses[3] are

built with the ability to detect and remove malware with the

existing signatures of malware. However, they lack the

accuracy in detecting new and unknown malware whose

signatures are not found in the antivirus database. These

unknown malwares are intelligently coded to change their

form and behavior thereby they are undetected by the

antiviruses and sandboxes to deceive the detection.

Obfuscated malware is metamorphic malware that can hide

itself from detection. Since 1980, enough research has been

done in the field of malware detection, however, still there

are major challenges in this field detecting unknown

malware, optimizing the detection rate, detecting obfuscated

and evasive malware, predicting malware before the attack,

identifying the path of malware propagation, mitigating the

flow of malware and recovery from malware infection and

many.

Our contribution to this paper:

1. Implementing a multi-class classification model for

identifying multiple obfuscated malwares to choose the

proper course of action for its mitigation.

2. A Random Forest Classifier has been proven to

demonstrate impressive accuracy for selecting important

features and for both binary and multi-class classification.

3. Compare the proposed model with the existing dilated

CNN model intended for detecting obfuscated malware.

Further, the rest of the paper is organized as mentioned here.

In section II brief introduction to obfuscated malware is

provided, in section III background and related work is

discussed, and in section IV and V proposed methodology

and implementation details are presented. Discussing the

results in section VI we provide concluding remarks in

section VII followed by references.

II. OBFUSCATED MALWARE

Obfuscation is a software engineering strategy to conceal

software from its internal structure and functionality.

Malware developers are using these techniques to alter the

malware features and behavior such that it can be hidden from

malware detection systems.

A. Obfuscation methods:

Ilsun You [4] classifies malware into encrypted,

polymorphic, oligomorphic, and metamorphic malware.

Encrypted malware is associated with an encryptor and

decryptor. It evades detection by encrypting with different

keys during infection, thereby generating different signatures

and confusing the antivirus scanner or any ML-based

detector. Meanwhile, the decryptor recovers the main body of

malware when the infected file is run. As there is a feasibility

of mutation of decryptor from one generation to another

generation, oligomorphic malware with multiple decryptors

were devised. Further to complicate the detection

polymorphic malware with an infinite number of decryptors

were coded. Dead code insertion and other techniques like the

usage of mutation engines were employed to generate such

malware. Advanced malware is metamorphic with auto

mutation techniques to evolve themselves as and when it is

propagating in a network.

According to S. Schrittwieser et al., there are three software

obfuscation techniques data obfuscation, static code

rewriting, dynamic code rewriting[5] in the context of

protecting the software. In data obfuscation the program data

Presented in 12th IEEE International Conference on Cloud Computing for Emerging Markets-2023

is split or merged into several blocks, thus preventing the

attacker from evading the software. Dynamic code rewriting

makes use of packers and encryptors to alter the program

behavior during runtime. SubVirt [6] is one such tool used for

code virtualization. Unlike dynamic code rewriting, static

code rewriting transforms code during compilation with

semantic replacement and substitutions. Injecting dead codes

and rearranging the basic blocks of control flow would

mislead the reverse engineering of software.

Lichen Jia [7] identifies three types of obfuscation methods

used by malware viz. binary, source code level, and packed

obfuscation methods. Adversarial examples were developed

using these obfuscation methods to evaluate learning-based

malware detection systems (LB-MDS). With the frequency

of each obfuscation method used in its corresponding

obfuscation space, there is a decrease in the accuracy of LB-

MDS.

B. Dataset Description

Detection of malicious processes and programs is revitalized

with the application of memory engineering and forensic

analysis to capture vital characteristics and behaviors hidden

in obfuscated malware. Canadian Institute of Cybersecurity

from the University of New Brunswick has assimilated the

CIC MalMem 2022 dataset using Memory feature

engineering[8]. This malware dataset is composed of features

extracted through memory analysis of memory dump

processing done in debug mode. Being an updated and

balanced dataset, it consists of 2916 samples of benign, 986

Ransomware samples, 982 Spyware and 948 Trojan Horse

samples. Each family of malware has 5 subfamilies of data

samples. Being a balanced dataset, it is very useful for our

research.

C. Detection of Obfuscated Malware

Extreme Learning machines [9] are employed to detect

obfuscated malware using the CIC MalMem 2022 dataset.

Accuracy and geometric mean of sensitivity and specificity

are the metrics used for evaluation. Authors have worked on

standard, regularized, and unbalanced ELM methods for

binary and multiclass classification of obfuscated malware.

Extracting the training time and testing time based on the

number of neurons and other metrics, it is shown that

accuracy increases with the number of neurons with a

maximum accuracy superior to 90% for binary classification

but not for multiclass classification.

Dilated CNN model is employed in the classification of

obfuscated malware [10]. Its architecture consists of 4 blocks

with two convolutional layers, a dropout layer, and a batch

normalization layer. For binary classification, sigmoid

activation function and binary cross entropy loss function are

used. For classifying multiple malware, one hot encoder and

Softmax activation function are used. Focal loss function is

applied to deal with imbalanced dataset issues. They achieved

99.92% accuracy with Adam Optimizer and for 100 epochs.

But, 81.83% accuracy in classifying multiple malware even

with 500 epochs.

Another similar experiment was conducted for the detection

of Obfuscated malware using an Artificial Neural

Network[11]. With three hidden layers of the neural network,

activation function ReLU for the hidden layer and Softmax

for the outer layer, the number of nodes used was 64 for the

first and second hidden layers which subsequently doubled in

the third layer to 128. With a batch size of 1024 and 100

epochs, this model identified malware with 99.72% accuracy.

As the number of epochs and training time increased the loss

was decreased and almost tending to zero. There was no

attempt made to classify multiple families of malware in this

work.

With a similar dataset Random forest algorithm is used to

detect obfuscated malware in the cloud environment[12]

which is preceded by the application of nature-inspired

optimization techniques for feature selection, Viz. Cuckoo

Search Algorithm(CSA), wrapper-based Binary Bat

Algorithm(BBA), Particle Swarm Optimization(PSO), and

Mayfly algorithm(MA). Although these algorithms decrease

the selection of feature set, however, improve the

classification accuracy. The model achieved an accuracy of

99.99% with {MA, RF}, 99.91% with {PSO, KNN} and

99.10% with {PSO, SVM} for binary classification, though

PSO is excellent for feature selection, multiple malware

detection is not addressed.

III. BACKGROUND AND RELATED WORK

A. Role of AI in generating Obfuscated Malware

AI techniques are employed in [13] for preparing obfuscated

malware by inserting NOP instructions via deep

reinforcement learning. It is apparent that, machine learning

models used in malware detection systems can be fooled by

adversarial examples. Convolutional Neural Network is

implemented to insert dead codes at optimal positions,

thereby the resulting executable gets a mislabel from the

machine learning classifier.

Obfuscated malware generated by [14] using adversarial deep

reinforcement learning, employing an efficient action control

strategy for generating new malware to defend against LB-

MDS. It has been experimentally proved that 67% of the

malware generated by this model is efficient in escaping from

detection. The new metamorphic malware generated by this

model possesses uplifted misclassification and enhanced

evasion probability.

Prominent API features of 11 families of malware are

extracted from the Cuckoo sandbox by [15]. To represent the

extracted features, A feature extraction algorithm, and

procedures for feature reduction and representation are

proposed. KNN, RF, and DT multiclass classifiers are used

to classify 11 families of malware with a high training

accuracy of 95.7% but testing accuracy is not highlighted.

Although it is found to be time-consuming to extract the

dynamic features from the API call traces, overcoming

which, API call sequence analysis serves as a major feature

of analysis for Obfuscated malware detection.

B. Random Forest

Random Forest[16] is a versatile supervised machine learning

algorithm for both classification and regression tasks. It is

powerful by growing multiple decision trees and aggregating

the results of multiple decision trees for better decision-

making. It is successful in giving accurate and stable results

for various complex problems beginning from image

classification, and image segmentation, to cancer cell

detection. Also, it has the capability of adaptability to extend

Presented in 12th IEEE International Conference on Cloud Computing for Emerging Markets-2023

its application to multidimensional problems. Various

versions of Random Forest like Multinomial random forest,

Oblique Random Forest, Random Credal Random Forests

etc., are successfully implemented and built in the python

libraries.

C. Target Multiple malware

We intend to detect three types of obfuscated malware from

our trained model viz. ransomware, trojan, and spyware.

Ransomware is a type of malware that encrypts the files on

the disk to demand a ransom from the victim but without a

guarantee that paying the ransom will fetch the access back.

Problems pertaining to ransomware are growing rapidly

because of the obfuscation techniques adopted by the

malware developers. Spyware is a type of malware that

performs passive attacks by recording user behavior and

activities to transfer third-party networks, more dangerous

than active attacks. Trojan is another malware executing

malicious activities in the background with the disguise as

harmless programs. Trojan Horse by the name ‘Animal’

appeared in 1974, executed without authorization to copy or

replicate to every directory in a user system, it can execute

endless activities in the background.

IV. PROPOSED METHODOLOGY

In this work, we propose a machine learning model which is

a result of experimental analysis to detect obfuscated

malware and to identify the class of the obfuscated malware.

Here we use the CIC MalMem 2022 Dataset as mentioned in

Section II B, to identify the class of a new sample of malware

as spyware, trojan or ransomware. We have evaluated State

of the Art (SoTA) binary classifiers and multi-class classifiers

with CIC Malmem 2022 dataset to derive the metrics for

comparison and further analysis.

Fig. 1. Actual Workflow of the Model

We conducted two experiments with State of the Art (SoTA)

models in Machine Learning for Binary classification and

Multi-class Classification. In Binary Classification, a given

sample can be identified as malware or non-malware. As per

our observation from the literature survey, an enormous

amount of work has been implemented in such classification.

But, identifying the new sample as malware or benign, does

not provide a proper insight on the specific type of malware

attack and the course of action to be taken to mitigate the

propagation of such malware. Because of the variants of

malware like ransomware, spyware, trojan, backdoors,

rootkits, viruses, etc., identifying the type of the malware will

be helpful for suitable action to be taken to stop and/or

recover the adverse effect caused by the malware, which will

further aid in mitigating the progress of the malware as well

as recovering from the loss caused by the malware in a system

or a network. This would also aid in identifying the source of

the attack.

In the first experiment of Binary classification, the SoTA

classifiers considered are Logistic Regression, Naïve Bayes

Classification, Linear SVM classification, Decision Tree, and

Random Forest classifiers. Similarly, The SoTA models

considered for Multi-class Classification are Naïve Bayes

Classification, Decision Tree, Random Forest, Gradient

Boosting, and K-Nearest Neighbor. With this intersection,

SoTA models can also be studied for their application in such

problems.

Binary classifier Implemented Multi-class classifier Implemented

Logistic Regression Naïve Bayes Classification

Linear SVM classification Decision Tree

Naïve Bayes Classification Random Forest

Decision Tree Gradient Boosting

Random Forest K-Nearest Neighbor

Table 1: List of SoTA Classifier models considered.

Consuming updated datasets for cyber security models plays

a major role in enhancing the performance, hence we use CIC

MalMem2022 dataset which has 58,596 samples. Out of

which 80% is taken for training and the remaining 20% is

reserved for testing. A baseline of SoTA algorithms is

implemented in Python by taking libraries from the scikit

learn toolkit. Hyperparameters are optimally chosen by

performing rigorous random searches. After performing

several hundred iterations optimal hyperparameters were

finalized. Before the commencement of the actual

experiment, feature engineering is performed to select the

relevant features.

Cleansing the data is the initial step in feature engineering,

wherein, specified labels of rows and columns are dropped.

Especially, when dealing with multi-index labels on different

levels this can be achieved by specifying the corresponding

axis, index, column names, or levels, thus specific labels from

rows and columns can be removed from the data frame

without affecting the original data frame, unless required.

Further categorization is done to convert categorical variables

to indicator variables for powerful representation in statistical

modeling for machine learning. To handle categorical

variables, one hot encoding is employed, which provides

accurate options for controlling prefixes, and suffixes by

handling missing values. Whenever data distribution is not

Gaussian, ensuring the values within the range will

equivalently contribute to the data analysis. MinMax scaler is

used to transform data by scaling the features within the range

without affecting the shape of the original data distribution.

Finally splitting the dataset into 80:20 completes the feature

engineering step.

V. IMPLEMENTATION

Dividing the dataset into training and testing in 80:20 ratio,

the binary and multiclass classifier models are implemented

using Python and Scikit learn libraries. After the training,

predicting a label of a new sample is executed which returns

the learned label from the object in the array. This is followed

by deriving the metrics from the prediction. For multi-class

classification, we employ the Adam optimizer with a Sigmoid

activation function and sparse categorical cross-entropy loss

function.

Presented in 12th IEEE International Conference on Cloud Computing for Emerging Markets-2023

A. Binary Classification of Malware

With reference to, Fig. 2, 𝑀1, 𝑀2, … . . 𝑀𝑛 represents the

machine learning classifiers implemented from scikit library.

The dataset has a sample 𝑋 belongs to {X1, X2…Xn} with

features F{F1,F2….Fn } defining a mapping X → F.

Identifying the class Y of X is the major objective of this

experiment. Y can be 0 or 1 for benign and malware.

𝐴1, 𝐴2, … . . 𝐴𝑛 are the accuracies derived from the models

𝑀1, 𝑀2, … . . 𝑀𝑛 . Comparing these accuracies, we evaluate

and analyze the outstanding performer among all the binary

classifiers. With a similar ground rule, the multi-class

classifiers are also analyzed as in Fig. 3 for which Y can be

0,1,2 and 3 for benign, spyware, ransomware, and trojan.

With this major objective, we carried out the experiment to

create a baseline of five machine-learning algorithms. As

mentioned earlier, implementation is undertaken with the

scikit learn library. Basic and non-parameterized functions

were used for Logistic Regression and Naïve Bayes classifier.

For Decision Tree minimum samples of leaf used are 3 with

a maximum depth of 10, entropy as the criteria, and log2 max

features are used. Repeating the same parameters for Random

Forest with a number of estimators as 30. C = 1 was the right

choice for Linear SVM.

B. Multi-class Classification of Malware

The major objective of this experiment is to create a baseline

of five machine learning algorithms. Like the binary

classification experiment described in section V A, the

implementation is made with the scikit learn library. Basic

and non-parameterized functions were used for Naïve Baye’s

classifier. For the Decision Tree, the minimum samples of

leaf used are 16 with a maximum depth of 12, entropy as the

criteria, and log2 max features are used. Repeating the same

parameters for Random Forest with number of estimators as

30, min_samples split =4 and max depth as 40. With the batch

size of 2000 and just 10 epochs we achieved better accuracy

with Random Forest. Learning rate of 0.2 was the right choice

for Gradient Boosting. The ML models are tested and

evaluated using the following metrics.

i) Accuracy: metric used to measure the correctness in the

classification. Ratio of samples identified correctly to the

total samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

ii) Precision: metric used to measure the preciseness of the

model in predicting positive samples.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑟𝑖𝑔ℎ𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

iii) Recall: metric used to measure how many of predicted

positive samples are correct.
𝑅𝑒𝑐𝑎𝑙𝑙

=
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑟𝑖𝑔ℎ𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑟𝑖𝑔ℎ𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 𝑇𝑜𝑡𝑎𝑙 𝑟𝑖𝑔ℎ𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

iv) F1-score: metric that gives balance factor between

precision and recall, its value is directly proportional to

the performance.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Fig. 2. Binary Classification Model

Fig. 3. Multi-class Classification Model

VI. RESULTS AND DISCUSSION

A. Results of Binary Classification

The following are the results deduced from the experiment

details discussed in the previous section. The values of the

metrics accuracy, precision, recall, and F1 score of binary and

Presented in 12th IEEE International Conference on Cloud Computing for Emerging Markets-2023

multi-class classification are tabulated in Tables 3 and 4

respectively.

Model Accuracy Precision Recall F1 Score

Logistic Regression 99.56% 99.42 99.71 99.56

Linear SVM classification 99.88% 99.88 99.88 99.88

Naïve Bayes Classification 99.21% 98.78 99.65 99.21

Decision Tree 99.99% 99.98 99.982 99.99

Random Forest 99.982% 99.982 99.982 99.982

ANN [11] 99.72% ~100.0 99.9 ~100

MLP Classifier[10] 99.70% 99.70 99.70 99.70

kNN classifier [10] 99.96% 99.96 99.96 99.96

Dilated CNN [10] 99.88% 99.88 99.88 99.88

Table 2: Binary Classification-Results.

It is evident that for the hyperparameters chosen by our

model, all models are performing equivalent but Random

Forest performance is consistent in all the tests. Results of

ANN, MLP Classifier, KNN Classifier, and dilated CNN

which are existing models are also shown here for

comparison.

B. Results of Multi-class Classification
Model Accuracy Precision Recall F1 Score

Naïve Bayes Classifier 68.86% 68.86 73.26 64.51

Decision Tree 84.67% 84.89 84.92 84.90

Random Forest 89.07% 87.63 87.62 87.62

Gradient Boosting 83.84% 83.84 83.84 83.83

K-Nearest Neighbor 79.80% 79.80 79.85 79.81

Dilated CNN [10] 81.83% 72.71 72.72 72.71

Table 3: Multi-class Classification-Results.

Fig. 4. Multi-class Classifiers - Results

It is evident from the results of multiclass classification that

Decision Tree and Gradient Boosting are closer in

performance, but Random Forest is performing outstanding

among other models, although 89% is not superior, but it is

comparatively better result obtained so far. A combo chart in

Fig.4 shows the distribution of metrics. Comparing these

results with Anzhelika’s Dilated CNN model, our proposed

model is better with +8%. A similar experiment was carried

out by Lamia Pervan using ANN, although binary

classification results were best, the model performance

decreased for multiclass classification. The confusion

matrices derived from our experiment are as shown in Fig.5.

a. Decision Tree b. Naïve Bayes

c. kNNClassifier d. Gradient Boosting

e. Random Forest Classifier

Fig. 5. Confusion matrices with Multi-class Classifiers

VII. CONCLUSION

Obfuscated malware detection is one of the hot topics of

research in the field of AI-infused cyber security. Although a

good amount of work is found in classifying a sample as

malware or non-malware, to the best of our knowledge

significant research is lacking in detecting multiple malware

in a single model. In this paper, we have implemented a

Machine Learning-based cybersecurity model for multi-class

classification of obfuscated malware to detect three types of

malware viz. spyware, ransomware, and trojan. We have

compared the results of our work with existing works and

presented that our proposed model performance is 8% better

than the existing models with the better hyperparameters we

chose. With the Random Forest algorithm and considerable

hyperparameter tuning, we achieved an accuracy of 89.07%

in classifying multiple obfuscated malware. Although there

is further scope for improvement in achieving still higher

accuracy, extensive experiments are being conducted for

further improvement in accuracy.

Presented in 12th IEEE International Conference on Cloud Computing for Emerging Markets-2023

REFERENCES

[1] H. S. Berry, “The Evolution of Cryptocurrency and

Cyber Attacks,” in 2022 International Conference on

Computer and Applications (ICCA), Dec. 2022, pp.

1–7. doi: 10.1109/ICCA56443.2022.10039632.

[2] B. Marais, T. Quertier, and S. Morucci, “Malware

and Ransomware Detection Models,” pp. 1–8, 2022,

doi: https://doi.org/10.48550/arXiv.2207.02108.

[3] M. Botacin et al., “AntiViruses under the

microscope: A hands-on perspective,” Comput.

Secur., vol. 112, p. 102500, Jan. 2022, doi:

10.1016/j.cose.2021.102500.

[4] I. You and K. Yim, “Malware Obfuscation

Techniques: A Brief Survey,” in 2010 International

Conference on Broadband, Wireless Computing,

Communication and Applications, Nov. 2010, pp.

297–300. doi: 10.1109/BWCCA.2010.85.

[5] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G.

Merzdovnik, and E. Weippl, “Protecting Software

through Obfuscation,” ACM Comput. Surv., vol. 49,

no. 1, pp. 1–37, Mar. 2017, doi: 10.1145/2886012.

[6] S. T. King and P. M. Chen, “SubVirt: implementing

malware with virtual machines,” in 2006 IEEE

Symposium on Security and Privacy (S&P’06), 2006,

pp. 14 pp. – 327. doi: 10.1109/SP.2006.38.

[7] L. Jia, Y. Yang, B. Tang, and Z. Jiang, “ERMDS: A

obfuscation dataset for evaluating robustness of

learning-based malware detection system,”

BenchCouncil Trans. Benchmarks, Stand. Eval., vol.

3, no. 1, p. 100106, Feb. 2023, doi:

10.1016/j.tbench.2023.100106.

[8] T. Carrier, P. Victor, A. Tekeoglu, and A. Lashkari,

“Detecting Obfuscated Malware using Memory

Feature Engineering,” in Proceedings of the 8th

International Conference on Information Systems

Security and Privacy, 2022, pp. 177–188. doi:

10.5220/0010908200003120.

[9] L. Igor Moraga, J. P. R. Malcó, D. Zabala-Blanco, R.

Ahumada-García, C. A. Azurdia-Meza, and A. D.

Firoozabadi, “Detection of Obfuscated Malware by

Engineering Memory Functions Applying ELM,” in

2023 IEEE Colombian Conference on Applications

of Computational Intelligence (ColCACI), Jul. 2023,

pp.1–6.

doi:10.1109/ColCACI59285.2023.10226058.

[10] A. Mezina and R. Burget, “Obfuscated malware

detection using dilated convolutional network,” in

2022 14th International Congress on Ultra Modern

Telecommunications and Control Systems and

Workshops (ICUMT), Oct. 2022, pp. 110–115. doi:

10.1109/ICUMT57764.2022.9943443.

[11] L. P. Khan, “Obfuscated Malware Detection Using

Artificial Neural Network (ANN),” in 2023 Fifth

International Conference on Electrical, Computer

and Communication Technologies (ICECCT), Feb.

2023, pp. 1–5. doi:

10.1109/ICECCT56650.2023.10179639.

[12] M. R. Ghazi and N. S. Raghava, “Machine Learning

Based Obfuscated Malware Detection in the Cloud

Environment with Nature-Inspired Feature

Selection,” in 2022 5th International Conference on

Multimedia, Signal Processing and Communication

Technologies (IMPACT), Nov. 2022, pp. 1–5. doi:

10.1109/IMPACT55510.2022.10029271.

[13] D. Gibert, M. Fredrikson, C. Mateu, J. Planes, and Q.

Le, “Enhancing the insertion of NOP instructions to

obfuscate malware via deep reinforcement learning,”

Comput. Secur., vol. 113, p. 102543, Feb. 2022, doi:

10.1016/j.cose.2021.102543.

[14] M. Sewak, S. K. Sahay, and H. Rathore, “DOOM: A

novel adversarial-DRL-based op-code level

metamorphic malware obfuscator for the

enhancement of IDS,” UbiComp/ISWC 2020 Adjun.

- Proc. 2020 ACM Int. Jt. Conf. Pervasive Ubiquitous

Comput. Proc. 2020 ACM Int. Symp. Wearable

Comput., pp. 131–134, 2020, doi:

10.1145/3410530.3414411.

[15] C. C. San, M. M. S. Thwin, and N. L. Htun,

“Malicious Software Family Classification using

Machine Learning Multi-class Classifiers,” 2019, pp.

423–433. doi: 10.1007/978-981-13-2622-6_41.

[16] L. Brieman, “Random Forests,” Machine. Learning.,

vol. 45, no. Oct-2001, pp. 5–32, 2001, doi:

https://doi.org/10.1023/A:1010933404324.

