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Abstract—Malware is a fast-growing threat to the mod-
ern computing world and existing lines of defense are not
efficient enough to address this issue. This is mainly due to
the fact that many prevention solutions rely on signature-
based detection methods that can easily be circumvented
by hackers. Therefore, there is a recurrent need for
behavior-based analysis where a suspicious file is ran in a
secured environment and its traces are collected to reports
for analysis. Previous works have shown some success
leveraging Neural Networks and API calls sequences
extracted from these execution reports.

Recently, Large Language Models and Generative Al
have demonstrated impressive capabilities mainly in Nat-
ural Language Processing tasks and promising applications
in the cybersecurity field for both attackers and defenders.

In this paper, we design an Encoder-Only model, based
on the Transformers architecture, to detect malicious files,
digesting their API call sequences collected by an execution
emulation solution. We are also limiting the size of the
model architecture and the number of its parameters since
it is often considered that Large Language Models may be
overkill for specific tasks such as the one we are dealing
with hereafter. In addition to achieving decent detection
results, this approach has the advantage of reducing our
carbon footprint by limiting training and inference times
and facilitating technical operations with less hardware
requirements. We also carry out some analysis of our
results and highlight the limits and possible improvements
when using Transformers to analyze malicious files.

Index Terms—malware detection and analysis, dynamic
analysis, Large Language Model, cybersecurity, artificial
intelligence

INTRODUCTION

The emergence of generative Al [1] and transformers
[2] opens up a lot of new opportunities in the field of
cybersecurity [3], for both attackers and defenders. Nu-
merous papers have highlighted various ways in which
this new technology can be used to automate attacks,
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such as the creation of malware [4] or phishing websites
[5] for instance, but also to improve Red Teams tooling
[6] or accelerate mitigations.

In the context of dynamic malware analysis, where
a malicious file is executed in a secure environment
and information reports are gathered to identify potential
misbehaving activities, researchers focus on Al to deal
with the problems of detection and classification [7]. The
question of how to deal with the information contained
in these reports is crucial, and several works [8]-[11]
have identified the importance of API (Application Pro-
gramming Interface) calls and their arguments.

Recently, Trizna et al. leveraged “Speakeasy” [12],
a Windows emulation tool that makes it possible to
collect dynamic traces during the analysis of malware
and benign Windows PE files with minimal temporal
and computational costs [13]. These traces (i.e. reports)
are then processed to train machine learning models for
malicious behavior detection. Trizna publicly released
two of these models: “Quo Vadis” [13] and “Nebula”
[14].

In this article, we are building upon Trizna works
with a focus on a Small Language Model (SLM) to
limit our carbon footprint and to reduce training times
and computing resources [15]. Even if larger Language
Models tend to perform better [16], it has also been
showed that a particular attention needs to be devoted
to the ratio between the size of the models and the size
of the training data [17], especially when dealing with
very specific tasks.

Our model aims at identifying malware based on API
names and their arguments extracted from Speakeasy
emulation reports and tokenized in a custom and op-
timized way. We compare our results with Nebula [14],
and also train our model on other datasets to investigate
our SLM generalization capabilities.

Note that our definition of an Language Model may



differ from others since from our point of view, a
Language Model encompasses Encoder-Only, Encoder-
Decoder and Decoder-Only architectures.

The paper is organized as follows. In Section I we
detail our datasets, the different preprocessing steps
and the architecture of our SLM, Encoder-Only model.
Section II presents several results, while we detail some
limitations in Section III. Finally, Section IV gives some
insights into future works in order to improve our model.

I. METHODOLOGY

Motivated by the fact that LLMs require significant
computing resources, one side objective is to implement
a Small Language Model. For specific tasks, it has been
shown that it is not always optimal to implement and
train a Large Model with a massive amount of data.
Leaner Models can match Large Models performance
when they are trained with high quality data [18], [19].
Focusing on low demanding models has several benefits
both from a carbon footprint perspective and from a
usability point of view. Since our models are expected to
be operated by Orange technical teams, low-demanding
energy and resources models are easier and faster to
deploy to production.

We build an Encoder-Only model, based on the ar-
chitecture defined in [2]. We combine Speakeasy emula-
tion reports provided by Quo Vadis and JSON reports
generated from two academic datasets and also from
our own proprietary corpus. API calls are extracted
from these reports, normalized and tokenized using a
custom algorithm. Associated tokens are then input into
the model for training. This model outputs Portable
Executable (PE) files [20] prediction labels based on a
maliciousness score. Figure 1 provides an overview of
this detection chain.

Datasets

To investigate the relevance of a Transformer-based
machine learning model achieving malware detection di-
gesting emulation reports, we leverage several datasets in
this work. The first one is the freely available Quo Vadis
dataset [13] that has been generated using Speakeasy
emulation tool and some manual labeling by a profes-
sional threat intelligent team. This dataset contains JSON
reports of malware and benign execution emulations,
with information on API calls, file usages, network traffic
and registry accesses, among others. In this work, we are
focusing only on API names and their arguments. This
dataset has also the advantage of being already split into
training and validation corpuses to foster reproducible
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Fig. 1: Overview of our detection chain.

results. Our model is thus trained on this Quo Vadis
train corpus and compared to previous academic results
[13], [14]. We also experiment our methodology on the
Bodmas dataset provided by [21], with extra benign files
extracted from PEMachinelLearning dataset [22]. This
combined dataset is referred to as “B&PEML” which
stands for “Bodmas and PEMachineLearning”. It finally
contains 57,293 malicious files and 81,322 benign files
in raw PE format, collected between August 2019 and
September 2020. As it is a well-balanced dataset and
widely used in the literature [23]-[25], it makes sense
to evaluate our model on JSON reports generated by
Speakeasy on this specific dataset. Comparisons with
existing and future works can also be made to benchmark
performance. Finally, we use a third internal dataset
composed of benign and malicious PE files collected
internally during the first months of 2024. This last
source of data will give us insights into our model
generalization capabilities when facing recent PE files.
In this document, we refer to this internal dataset as
the OBMID-24 dataset where this acronym stands for
“Orange Benign and Malware Internal Dataset 2024”.
Several samples from these datasets produced un-
usable reports because of too few reported API calls.
This is due to the fact that Speakeasy stops its process
when it encounters an API call that is not present in its



emulation library. In order to prevent some bias related
to these early stops, we discard all the reports under 4
KBytes, because they generally contain fewer than five
instructions. Table I reports the approximate number of
samples per dataset after this filtering.

TABLE I: Approximate number of retained samples per
dataset.

benign | malware
Quo Vadis 33k 59k
B&PEML 42k 39k
OBMID-24 10k Sk

Cleaning and normalization

To facilitate reports processing by our model, we
first perform API names and arguments cleaning and
normalization. Similarly to Trizna et al.. [14], we filter
out some unnecessary symbols and replace some fields
by generic placeholders in order to reduce variability,
tokens list size and irrelevant data. For instance, all url
addresses are replaced by the (url) placeholder. Table
II summarizes several placeholders used during this
cleaning and normalization process. This preprocessing
limits the creation of pointless tokens, since a tokenizer
could for example split an url address into multiple use-
less parts that may hinder model training and inference
efficiencies.

TABLE II: List of some placeholders used to normalize
our data.

Arguments Tags
http://... (url)
C:A\\... (path)

Long string (100+) | (string)
Google\ \Temp {(google)
Error 0x80004005 (error)

Tokenization

Tokenization is a crucial step and must not be over-
looked. Even if their work focuses on source code,
Jimenez et al. [26] report that differences between to-
kenizers are of practical importance since the use of
different tokenizers may lead to contradictory conclu-
sions. Put another way, a careful selection of tokenizers
is required for a given specific task.

Since API names from Speakeasy reports are constant
and finite in number, it does not make a lot of sense
to tokenize these names in order to capture different
meanings according different contexts. Authors in [27]

found that preventing the tokenizer from decompos-
ing API names can help improve Pre-Trained Models
performance. Adding API names as specific tokens to
their dictionary makes their model focus more on API
sequences rather than on API names alone.

VMware found similar results in [28] when using
common tokenizers algorithms for API names and/or
API calls arguments. A WordPiece tokenizer applied
to VMware product names, technical jargon and multi-
compound words leads to a “sub-token soup” that hin-
ders Natural Language Processing efficiency.

In the Quo Vadis dataset, we identified about 2,500
unique API names that could all be added to our dic-
tionary making it as large as dictionaries used in other
academic works. For instance, Nebula [14] leverages a
50k tokens dictionary while Neurlux [9] relies on a 10k
tokens dictionary. However, due to our focus on a limited
resources model, we decided to associate specific tokens
to top API names only to limit the size of our dictionary.

We complement this static mapping with different
tokens computed by a WordPiece tokenizer [29], [30]
on remaining API names, their associated libraries and
all API arguments. WordPiece tokenizer is an efficient
solution to alleviate some out-of-vocabulary issues when
dealing with rare API names or unseen API parameters.
We also double check manually that our dictionary does
not exhibit sub-optimal tokenization on all API names
and libraries. Our final dictionary size is close to 5,500
tokens.

We present an example of our preprocessing method
applied to a malicious file in Figure 2.

Encoder

We build an Encoder-Only model to classify PE files,
based on Speakeasy emulation reports. We decided not
to rely on fine-tuning some existing pre-trained Encoder-
Only models, like BERT [31] and its derivatives, for two
main reasons: (i) API names and arguments have very
different characteristics from the language that BERT
model or alike has processed during its training steps and
(i) we want to focus on a relatively modest machine-
learning architecture to limit our carbon footprint by
reducing time and resources consumption.

Our model is very similar to the Transformer archi-
tecture as detailed in [2]. We are using an embedding
layer and some positional encoding before the encoder
layers. The encoder layers are composed of multi-head
attention (MHA) sublayers, followed by feed-forward
neural networks (FFNNs). After each sublayer, we add
residual learning [32] as well as a normalization step to


http://

{'file_access': [{'event': 'create’,

‘path’: '<drive>\\windows\\system32\\sirc4.exe'},
{'event': 'write', 'path': '<drive>\\windows\\system32\\sirc4.exe'}],
‘apis': [{'api_name': 'kernel32.GetModuleHandleA',

‘args': ['@xe'],

‘ret_val': '0x400000'},

{'api_name': 'user32.GetKeyboardType', 'args': ['@x8'], 'ret_val': '@x4'},
{'api_name': 'kernel32.GetCommandLineA', 'args': [], 'ret_val': '@x45f@'},
{'api_name': 'kernel32.GetStartupInfoA',

‘args': ['@x1211f58'],

‘ret_val': None},

{'api_name': 'kernel32.GetCurrentThreadId',

‘args': [1,

‘ret_val': 'Ox296bc4'},|
{'api_name': 'kernel32.GetSystemDirectoryA',

‘args': ['C:\\Windows\\system32', 'ex1ee'],

‘ret_val': 'ex14'},

{'api_name': 'kernel32.InitializeCriticalSection',

‘args': ['@x40f5b0'],

‘ret_val': None},

{'api_name': 'kernel32.localAlloc’,

‘args': ['ex@', 'exff8'],

‘ret_val': '©x7000'},

{'api_name': 'kernel32.VirtualAlloc',

‘args': ['exe', '©xloeeee’, 'ox2eee’,

‘ret_val': '©x50000'},

{'api_name': 'kernel32.localAlloc’,

‘args': ['ex@’, 'ox644'],

‘ret_val': '0x8000'},

{'api_name': 'kernel32.VirtualAlloc',

‘args': ['0x50000', '©x4000', 'Ox1000',

‘ret_val': '©x50000'},

{'api_name': 'kernel32.GetModuleFileNameA®,

‘args': ['exe’,

*C:\\Windows\\ \ b7f

*PAGE_NOACCESS '],

'PAGE_READWRITE'],

656be@31825fc35d6.exe’,
'ox105'],

‘ret_val': 'o@x58'},

{'api_name': 'kernel32.CopyFileA',

‘args': ['C:\\Windows\\sy \ b7f
*C:\\Windows\\system32\\sIRC4.exe",
‘oxe'],
‘ret_val':

2656be@31825fc35d6.exe’,

‘ex1'}1}

(a) Original Speakeasy report.

‘kernel32', '.', 'getmodulehandlea', "(['", '
‘user32', '.', 'getkeyboard', ‘##type', "(['",
"kernel32', '.', 'getcommandlinea', '([1)',
"kernel32', '.', 'getstartupinfoa', "(['", '@x1211f', '##58', "'])",
‘kernel32', '.', 'getcurrentthreadid’, '([1)',

‘kernel32', '.', 'getsystemdirectorya’, "(['<", ‘path', ">',", "'",

‘kernel32', '.', ‘'initializecriticalsection’, "(['"
‘kernel32', '.', 'localalloc’, "(['", '@xe@', "',", "
‘kernel32', ‘.‘, ‘virtualalloc', “(['", '@x@', - DY

"kernel32',
‘kernel32', '.', ‘'virtualalloc', "
‘kernel32', '.', ‘getmodulefilenamea’, "(['", '
‘kernel32', ‘., ‘copyfilea', "(['<", 'path’, ">',",

', 'localalloc’, “(['", '

(b) List of tokens after preprocessing.

Fig. 2: An example of preprocessing applied to a mali-
cious file.

ensure a better learning and a better context understand-
ing. Encoder layers output is then aggregated using a
global average pooling and then passed through a fully-
connected neural layer and returns the output prediction
of the label. Figure 3 details the different layers of our
Encoder-Only model.

According to [14], it could be more suitable to use
a smaller embedding size and increase the number of
heads in the MHA layer. So we set the embedding size
to 32, and we set the number of heads for each MHA
layer to 8. We also choose to restrict the size of the input
sequences given to the model to 512 tokens. This choice
is justified by our analysis of the sequences length in
both our datasets, presented in Figure 4, which shows
that very few sequences contain more than 500 tokens
(only 12% in the B&PEML dataset).
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Fig. 3: Architecture of our Encoder-Only model.

II. RESULTS

A. Tests on the different datasets

We first train our model on Quo Vadis dataset only
with a train-test separation as defined by their authors.
Note that the testset provided by Quo Vadis is composed
of 3 months-old data compared to its training data, as
explained in [13]. We retain 80% of the train dataset
for training and 20% for validation. Our model achieves
98% (resp. 97%) accuracy on the train (resp. validation)
dataset. Table III summarizes the F1-score and the ac-
curacy result computed on the test corpus of datasets
detailed in Section L.

TABLE III: Results on different datasets using our model
trained on Quo Vadis dataset only.

Fl-score | Accuracy
Quo Vadis 0.87 0.872
B&PEML 0.76 0.73
OBMID-24 0.385 0.76

Results are pretty decent on the Quo Vadis dataset
but quite disappointing on the two other datasets. On
OBMID-24, our model performs poorly which can be
interpreted as a low generalization capability or a pos-
sible overfitting problem. Figure 5 shows the confusion
matrices for these tests. There are also a lot of malware
files tagged as benign files, which is not acceptable in
operational conditions.

In the next experiment, we train our model on
B&PEML dataset with train-validation-test split of 70%-
15%-15%, stratified sampling, and early stopping. This
model gives train and validation accuracies of 99%.



(a) Number of tokens per sequence on Quo Vadis
dataset.

(b) Number of tokens per sequence on B&PEML
dataset.

Fig. 4: Number of tokens per sequence on both datasets.
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Fig. 5: Confusion matrices for training on the Quo Vadis
dataset.

Results on B&PEML dataset are very good, but both
Fl-score and accuracy decrease significantly when in-
ference is conducted on other datasets, which suggests a
potential overfitting problem as in the first experiment.
Figure 6 shows the confusion matrices for this second
experiment.

Our last test consists in training our algorithm on both
B&PEML and Quo Vadis datasets. After observing no
significant changes in results, we choose to also use

TABLE IV: Results on different datasets using our model
trained on B&PEML dataset only.

Fl-score | Accuracy
Quo Vadis 0.70 0.70
B&PEML 0.99 0.99
OBMID-24 0.63 0.85
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(a) Test on the Quo Vadis dataset.
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Fig. 6: Confusion matrices for training on the B&PEML
dataset.

OBMID-24 as the validation subset. We get a train accu-
racy of 98.5%, and a validation accuracy of 95%. We test



TABLE V: Results with our model trained on the Quo
Vadis and B&PEML datasets and validated on OBMID-
24 datasets.

Fl-score | Accuracy
Quo Vadis 0.88 0.88
B&PEML 0.99 0.99

this model on B&PEML and on QuoVadis, with the same
test samples as for the two previous experiments. Results
are summarized in Table V. Note that we sidestep the
overfitting problem by using validation data comprising
very recent files, that were not processed by the model
during training.

This training increases the performance of our model
for both datasets, even if there is still a significant amount
of false negatives according to Figure 7 when testing the
model on Quo Vadis. We also tested this training on both
datasets without the validation step on recent files, which
did not give us significant improvements.

Begnin

True labels

Malware

Malware

Begnin
Predict labels

Fig. 7: Confusion matrix for training on the Quo Vadis
and B&PEML datasets, validation on the OBMID-24
dataset and testing on Quo Vadis dataset.

B. Data analysis

In order to have a better understanding of our results,
we conducted a deeper analysis of the different datasets
used for our experiments. We compute the most recurrent
trigrams per classes for both Quo Vadis and B&PEML
datasets, to see if the distribution is the same or if some
differences between classes could lead to some bias or to
some relevant information. Figure 8 presents the trigram
occurrences in both datasets.

We can observe on Figure 8a that the trigram kernel32
getprocaddress 0x7000000 is the most common trigram
in the malware samples of the Quo Vadis train set,

while it is only the third common trigram in the benign
samples, with a third of the occurrences of the first
trigram in this case. As a consequence, this trigram may
be interpreted by our model as the main information
related to the maliciousness of a file. In Figure 8b, we see
that this API call is the most common in both malware
and benign samples on B&PEML dataset. We suspect
that this specific trigram might induce a bias when
training our model on the Quo Vadis dataset, because
the benign distribution of trigrams is not the same as
its malware counterpart, for common API instructions.
This potential bias could explain the aforementioned bad
generalization capability when training our model on
Quo Vadis and testing it on other datasets.

C. Complementary analysis

We ran other tests on our model in order to challenge
our findings. We trained our model with the API calls
without the arguments, as shown in Figure 9a. When
training on Quo Vadis, the results of [14] are confirmed
with a 9% reduction in Fl-score for the test on Quo
Vadis, but on B&PEML Fl-score drops to 20%. We
also notice that the majority of binaries were classified
as benign which is a major drawback. When training
on B&PEML, the conclusions are fairly similar. The
B&PEML test loses a few percentages but remains at
97% in terms of Fl-score and accuracy. Results on Quo
Vadis dataset are somehow similar but on the OBMID-
24 dataset, results drop to 72% in Fl-score and 53% in
accuracy. These results suggest that API calls arguments
have a strong contribution and are therefore needed to
generalize on data that differ from the training dataset.

We have also experimented a third preprocessing
method based on the sequence of API calls, as shown
in Figure 9b, adding tags such as [START] and [END]
or [SEP] to separate API calls and arguments from each
other. However, both modifications did not demonstrate
any improvement from a performance standpoint. Worse,
by adding the [SEP] tag every seven tokens on average
and maintaining a length of 512 tokens, we are losing
approximately ten instructions per report.

We ran Nebula code available on Github!, directly
on the B&PEML dataset. The results are rather disap-
pointing with a 40% F1-score and an accuracy of 57%,
suggesting a possible generalization problem. It would
be interesting to dig deeper in future works to gain a
better understanding of these results.

"Nebula Github: https://github.com/dtrizna/nebula, July 2024
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Most Common trigrams per Classes

(a) Trigram occurrences in Quo Vadis.

Most Common trigrams per Classes

(b) Trigram occurrences in B&PEML.

Fig. 8: Trigram occurrences for both dataset on the train samples.

['kernelsz'; '.", 'getmodulehandlea’,

‘user32', '.', 'getkeyboard’, '#itype’,
‘kernel32', '.', 'getcommandlinea’,
‘kernel32', '.', 'getstartupinfoa’,
‘kernel32', '.', ‘'getcurrentthreadid’,
‘kernel32', '.', ‘'getsystemdirectorya’,
'kernel32', '.', 'initializecriticalsection’,
‘kernel32’, '.', 'localalloc’,

‘kernel32*, '.', ‘'virtualalloc',

'kernel32’, '.', 'localalloc',

'kernel32', '.', 'virtualalloc',

s
‘kernel32', '.', ‘getmodulefilenamea‘’, ‘'kernel32', *.', ‘copyfilea']

(a) Data format after preprocessing without arguments in the
sequences of API calls.

"[START]", 'kernel32’, '.°,
‘user32', .
"kernel32"
"kernel32
‘kernel32',
"kernel32',
‘kernel32',
"kernel32',
‘kernel32',

‘[SEP]",

‘getmodulehandlea’, "(['", ‘oxe’, “'1)",
', 'getkeyboard', '##type’, ", 'exe', "'1)", '[SEP]',
*.", 'getcommandlinea’, '([1)', '[SEP1',

, 'getstartupinfoa', " 'ox1211F', '
getcurrentthreadid’, '([1)",
, 'getsystemdirectorya', "(['<", '
, 'initializecriticalsection’,
, 'localalloc’, "(['", 'exe’,
, 'virtualalloc’, "(['", 'exe’
"kernels2', '.', 'localalloc’, "(
"kernel32', , 'virtualalloc', , '0x50000',
"kernel32', '.', 'getmodulefilenamea', "(['", '
‘kernel32', '.', ‘copyfilea', "(['<", 'path’, ">',"

1,
", '[SEP]",

(b) Data format after adding tags as [START], [END] and [SEP].

Fig. 9: Two other preprocessing methods used in our
experimentation.

IIT. LIMITATIONS

Speakeasy is a valuable security solution since (i) it is
capable of generating sandbox-like reports quickly and
easily with a lot of quality information, (ii) it is an open-
source project with a permissive software license (MIT

license) and (iii) it is still active at the time of writing
(July 2024). Nevertheless, it suffers a few limitations.
As mentioned by their authors, it cannot fully emulate
some files [33] since windows API are too many to be
all emulated. A given emulation may also fail due to
a missing expected environment by the sample under
analysis. This comprises for instance the absence of
specific files or registry keys and also unexpected data
as returned by the emulation engine.

Our experiments faced these limitations with an im-
pact on our computed model. Indeed, even if very few
sequences from Speakeasy reports are longer than 500
tokens, we can see on Figure 4 that on both B&PEML
and Quo Vadis datasets lots of sequences have no
more than 50 tokens: 18% on Quo Vadis and 30% on
B&PEML. Another meaningful metric is that 53% of
sequences exhibit less than 150 tokens, due to the fact
that the emulation tool stops when it encounters an API
call that is not emulated. This leads to low detailed
reports that are less valuable when training our model.

From an attacker perspective, this limitation is useful
to break any Speakeasy analysis. An attacker would just
have to call an unsupported API at the beginning of its
malicious payload to bypass a detection algorithm, which
would then analyze an insufficient detailed emulation
report. Mitigation is still possible since emulated API
handlers can be added by defining a Python function
with the correct name and arguments even if this kind
of mitigation is an unbalanced cat-and-mouse game. As



a consequence, a detection model based on Speakeasy
reports must not be used as the only line of defense in
the context of PE files dynamic analysis.

IV. DISCUSSION AND FUTURE WORKS

Our approach using an SLM for malware detection
allows us to use Al in a responsible way, and forces
us to get a better knowledge about our data in order
to implement more precise preprocessings and identify
valuable features.

According to our experiments, our model can really
take advantage of being trained on a combination of
datasets, while being challenged in its validation steps
with more recent samples. We still need to conduct more
investigations to improve our false-negatives ratio. We
think this could be done for instance by cleaning and
normalizing input data even more during the preprocess-
ing step.

Some additional data analysis are also required to
make sure that the distributions of API calls of our
malware and benign samples are similar, in order to
prevent any bias in the data.

The next step in our work consists in combining
static and behavioral analysis into an “hybrid” model. It
would first use a machine learning model based on static
features to identify the maliciousness of a sample [34]
then further analyze it using the Encoder-Only model in
case this sample has not been classified with sufficient
confidence. We expect this hybrid model to be more
accurate than any model that would use either static or
behavioral features. This hybrid model would also have
the advantage of being rather small, which matches with
our low carbon footprint side objective.

Even if Speakeasy suffers some limitations (cf. Sec-
tion III), it still remains a very interesting tool that should
benefit from being complemented by other dynamic
analysis techniques. Combining and correlating security
information from such other techniques is a promising
research field for some future works.

We are also curious to assess the robustness of this
Encoder-based model and of our future hybrid detection
model when challenged with offensive tools such as
Gym-Malware [35], Malfox [36], or our own adversarial
model MERLIN [37]. These tools are capable of evading
some static antivirus detection engines by altering some
key characteristics of a given PE file. It would be
interesting to evaluate the impacts of such alterations on
both Speakeasy emulation reports and on our detection
results.

CONCLUSION

In this paper, we designed a Small Language Model
leveraging an Encoder-only architecture, for malware
detection based on behavior analysis. We deliberately
limited the size of our model for carbon footprint con-
siderations and ease of deployment in an operational
context. These restrictions allowed us to identify several
key factors for this task, such as the importance of
an optimal tokenizer, the efficiency of the emulation
tool that reports dynamic behavior and as usual, data
quality. Our results are pretty decent but suggest that
some improvements should be conducted to enhance the
performance of our detection chain. Besides, comparing
our results on several datasets seems to indicate a bias
for the Quo Vadis dataset, which could explain some
bad generalization capabilities of our model. Finally, a
good practice to avoid overfitting and maintain good
generalization capabilities could be to rely on very recent
samples during the validation step.
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