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Abstract—Ambient sensing, human activity recognition and
indoor floor mapping are common targets for attackers who hack
mobile devices. Other than overt signals such as microphones
and cameras, other covert channels such as WiFi, Bluetooth
and assisted GPS signal strengths have been used to infer this
information. In the space of passive, receive-only sattelite GPS-
based sensing, the state-of-the-art was limited to using only the
signal strength and location information up till now. This paper
shows that semi-processed GPS data (with 39 features) that is
now accessible to apps since the release of Android 7 (with precise
location permissions) can be used as a strong leaky channel to
sense the ambient, recognize human activity and map indoor
spaces with a very high accuracy (99%+ in many cases). This
paper presents the results of a longitudinal study where semi-
processed GPS measurements were taken over the course of a
year using different mobile devices spread out over a 40,000 sq.
km geographical region. Data was also collected on flights, cruise
ships and high-altitude locations. We thoroughly characterize all
the satellite GPS signals and based on cross-correlation analysis
extract the best set of features that preserve vital information.

We propose a novel method, AndroCon, that comprises lin-
ear discriminant analysis, unscented Kalman filtering, gradient
boosting and random forest based learning to yield a highly
accurate ambient and human activity sensor. AndroCon relies on
simple ML algorithms that can run surreptitiously and provide
partially explainable results. We easily identify difficult scenarios
such as being inside a metro, a person waving a hand in front of
the mobile device, being in front of a staircase and the presence of
people in the room (not necessarily holding mobile phones). This
is the most comprehensive study on satellite GPS-based sensing
till date.

I. INTRODUCTION

The integration of advanced wireless technologies such as
WiFi, 4G, and 5G along with precise-positioning technologies
such as the Global Positioning System (GPS) in mobile
devices has fuelled the growth of a plethora of applications
that use location-based services (LBS) [1], [2]. The market for
such applications is currently 50 billion USD and is anticipated
to soar to 400 billion USD by 2030 (CAGR of 24.6%) [3],
[4].

LBS services are used by applications that provide the fol-
lowing services: navigation, local search, traffic alerts, weather
updates, home delivery, ride-sharing and device tracking – they
enhance the user experience significantly. As of today, such
applications have become indispensable. 94% of smartphone
users rely on them daily and 84% of small to medium-sized

businesses are reported to have seen a surge in the footfall due
to location-based marketing [5].

We shall show in this paper that while LBSs offer a lot
of convenience, they pose significant privacy risks – many
of them were hitherto unknown and undiscovered. Let us
first look at the known privacy risks of the precise location
signal. It conveys location information, which for obvious
reasons leaks privacy information [6]. Our claim in this paper
is that GPS signals that are used to find the location can
be used for other surreptitious activities as well: sensing the
ambient, tracking human activity, and finding more about the
layout (floorplan). This can be done because modern GPS
chips share a lot of information with applications such as the
signal strength, Doppler shift, signal-to-noise ratio (SNR), etc.
Modules in the GPS chip use this information to deduce the
precise location (x, y, and z coordinates) of the device. Our
claim in this paper is that we can find alternative uses for this
information that is readily available at the application level.
This will allow us to sense the user’s environment. Using
such semi-processed GPS signals – already provided by all
GPS chips to Android applications – as an ambient sensor is
entirely novel (to the best of our knowledge).

There is some work in the field of ambient sensing using
other modalities. For example, smart speakers [7] and WiFi
signals [8], [9] have been used to find out details of the
users’ ambience. In the former case, background sounds in the
environment have been used to guess the nature of the user’s
surroundings and in the latter case, the WiFi signal strengths
have been used as an information-leaking channel. Similar
work exists with other more overt channels such as mobile
phone cameras [10]–[12]. Bluetooth beacons emit signals that
can be picked up by nearby devices. This allows attackers to
infer proximity and movement patterns of users [13]. Such
ambient information is quite beneficial. One of the innocuous
uses is that it allows third parties to influence online shopping
behavior through targeted advertising [14]. However, there are
more pernicious applications as well that pose genuine privacy
risks such as figuring out that a person of interest is having
a meeting in a small room, when he was actually supposed
to be there at a party 10 meters away. The basic cell phone
location information will not be able to discriminate between
these two situations, whereas our solution AndroCon will be
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able to.
Let us further elaborate on our use case. Assume that

somehow a user was conned into installing an Android app.
She further gave it precise location permissions. Almost all e-
commerce, ride-sharing apps and some games like Pokemon
Go [15] necessitate such permissions. Now, our claim is that
even if the device is in flight mode and all communication
channels are off (WiFi, mobile data, NFC, Bluetooth), if we
can still continue to read semi-processed GPS data, then an
important information-leaking side-channel exists. The GPS
data can be used to figure out important information about
the environment that includes (but is not limited to) whether
the user is in a closed space or open space, is the place
crowded, is the user sitting or standing, moving quickly or
slowly, underground or overground, inside a flight, within a
lift or close to a staircase (refer to Section VI for the full list).
There is no need to take the help of any other kind of sensor
such as the camera, accelerometer or microphone. Our claim
is that semi-processed GPS data (in pure receive-only mode) is
sufficient. In this paper, we shall advance various arguments to
convince the reader that this is indeed possible. We shall make
theoretical arguments, show the results of simulations, show
real measurement data using GPS sensors and finally show
extensive evaluation results using 5 phones collected over a
period of 1 year.

In this paper, we shall demonstrate the potential of semi-
processed GPS parameters, both independently and collec-
tively, to discern user activity (both static and dynamic) and
the ambience in diverse settings (crowded, open area, indoor,
metro tunnel, flight). As GPS signals bounce off the user and
their surroundings, they capture the environmental context,
generating a unique pattern for each setting [16]–[18]. These
details are intrinsic to semi-processed GPS parameters, which
we fingerprint for the purpose of ambient sensing. However,
GPS signals, are inherently noisy due to multipath effects
and interference with other signals [19] – this necessitates
data cleaning prior to the fingerprinting exercise. We employ
a nonlinear Kalman filter for noise filtering. It preserves
the essential signal variations that our algorithm needs [20].
Subsequently, we apply Linear Discriminant Analysis (LDA)
for feature reduction and identify linear combinations of
semi-processed parameters that effectively distinguish between
different ambient contexts. The resulting data is then fed
into an ML model for ambient and activity classification.
Additionally, we use the semi-processed parameters and GPS
signal strength, in conjunction with user trajectories and graph
optimization (GO) techniques, to detect the indoor layout of
the user’s location.

This paper makes the following contributions:
1 To the best of our knowledge, this is the first study that

characterizes in-depth the potential of semi-processed GPS
signal for ambient sensing.

2 We show how apps using GPS sensing can covertly
capture semi-processed GPS data without consent and utilize
it to discern the user’s ambience (99.6%) and activities (87%)
across diverse settings, effectively jeopardizing privacy. At the

moment, this vulnerability affects 90% of Android users.
3 Evaluation of ML models to effectively classify different

user activities and ambient settings using 8 semi-processed
GPS parameters as inputs.

4 The ability of attackers to infer floor maps/indoor layouts
(error margin of 4 meters), using semi-processed GPS data
and user trajectories, without needing access to other ambient
information leaking sources such as cameras.

The structure of this paper is as follows: section II provides
the necessary background information. In section III, we
discuss the semi-processed GPS parameters that we use and
their effectiveness in classifying activities and environments
followed by characterization and validation of semi-processed
data readings in section IV. The architecture of the model is
shown in section V and its performance is evaluated in sec-
tion VI. The overview and evaluation of the layout estimation
algorithm are presented in section VII. We review the relevant
literature in section IX, and finally, conclude in section X.

II. BACKGROUND

A. Overview of GPS

The Global Positioning System (GPS) was established by
the US Department of Defense in 1973. It is a member of
the Global Navigation Satellite System (GNSS) constellation.
GPS, in 2024, has 31 satellites that orbit the Earth in six planes
of rotation. All of them are in the medium earth orbit (20,000
kms above sea level [21]). These satellites transmit navigation
signals, which contain precise information about their position,
velocity and current time (PVT). This information is generally
resistant to inclement weather conditions. To accurately calcu-
late the geographical location, a GPS receiver requires signals
from at least four satellites.

Let us explain the physics. Every GPS satellite has an
atomic clock that very accurately maintains the time. The
uncertainty is less than 1 part in 1016. Assume that a message
is sent from a satellite at time ts and it is received at time
tr. Then the distance d between the sending satellite and the
receiver is shown in Equation 1.

d = (ts − tr +∆)× c (1)

Here, c is the speed of light and ∆ is the clock skew between
the non-ideal receiver clock and the ideal sender clock. Now,
the Euclidean distance d is also give by another equation (see
Equation 2).

d =
√
(xs − xr)2 + (ys − yr)2 + (zs − zr)2 (2)

Here, ⟨xs, ys, zs⟩ are the coordinates of the satellite and
⟨xr, yr, zr⟩ are the coordinates of the receiver. There are four
unknowns here: three of them are the coordinates of the
receiver and the fourth unknown is the clock skew ∆. For
four unknowns, we need four equations. We thus need data
from four satellites.

We need to note that Equation 1 is an ideal relationship.
There are delays induced due to the ionosphere, signal interfer-
ence, multipath effects, etc. Hence, modern receivers need to



apply many different correction factors. The actual relationship
is thus more complex. Hence, there is a need to also transmit
many other parameters (described in Section III) as well
such that receivers can correct their data. These include the
pseudorange along with SNR, phase shifts, Doppler shifts and
details about the satellite and the constellation (see Table I).
A GPS message also contains other parameters about the
receiver’s clock (other than the time itself).

1) GPS pipeline: Figure 1 shows the GPS processing
pipeline at the receiver. Each GPS satellite uses a unique pseu-
dorandom code (PRN ) to modulate its signal for unique iden-
tification, ensuring security and enhancing the robustness [22].
Code and carrier tracking loops monitor all such incoming
GPS signals, demodulate and identify them. The code tracking
loop compares the incoming signal’s code with the codes of
one of the replicas. Through cross-correlation analysis, the
receiver finds the code (and satellite) corresponding to the
signal. This aids in calculating the pseudorange – apparent
distance between the satellite and receiver [22] – which is
one of the most important parameters of interest for distance
calculation.

Modern GPS chipsets allow an application to tap the in-
formation at any point in the GPS processing pipeline. In
general, applications do not tap the information available at
the intermediate stages because they don’t find it useful. Only
the output of the final stage is used by applications – it is the
device’s precise location information. We decided to tap the
pipeline in the middle and extract 9 parameters of interest out
of 32 parameters (refer to Table I). Hence, we refer to these
parameters as semi-processed GPS data.

A brief taxonomy of these parameters is presented in
Figure 2. We broadly use five types of parameters that can be
classified into the following buckets: received signal power,
carrier phase shift, multipath inteference, signal-to-noise ratio
(SNR) and the Doppler shift (due to satellite motion). These
parameters can be used to extract information about the
surroundings because they are influenced by it. For instance,
if there are a lot of objects around the receiver, the multi-path
interference and SNR will be high.

B. Location Accuracy Permissions in Android

In Android, the location accuracy permission, facilitated
by ACCESS COARSE LOCATION and ACCESS FINE LOCATION, en-
ables apps to specify the desired precision to access the
location of the device. ACCESS COARSE LOCATION utilizes cell
tower or Wi-Fi network data for positioning, offering 100
meters accuracy [23], suitable for weather or news apps.
ACCESS FINE LOCATION provides higher precision through
GPS-based positioning methods, typically within 50 meters,
occasionally as fine as 3 meters or better [24], crucial for map-
ping or navigation apps. In Android 12 and beyond, apps must
request both permissions, irrespective of their precision re-
quirements, to suit user preferences. Notably, accessing semi-
processed GPS measurements requires ACCESS FINE LOCATION

permission.

C. Linear Discriminant Analysis (LDA)

Any kind of learning that involves a lot of parameters tends
to be inefficient unless we have a large number of training
examples. Hence, dimensionality reduction needs to be done.
We use LDA, which is a widely used supervised-learning
technique for dimensionality reduction in pattern-classification
applications [25]–[27]. It projects a dataset into a lower-
dimensional space that enhances class separability through a
linear combination of features. This is done to address the
curse of dimensionality and reduce computational costs [28].
Unlike a cognate technique namely Principal Component
Analysis (PCA), which identifies directions of maximum
variance, LDA creates a transformation that maximizes the
separation between different classes.

LDA operates by finding a projection matrix that transforms
the original data into a new space where samples from different
classes are more distinct. This is achieved by maximizing
the between-class variance while minimizing the within-class
variance. The projection matrix is determined through an
optimization process involving scatter matrices that represent
variances. This involves solving an eigenvalue problem, where
the eigenvectors form the projection matrix. By transforming
the data in this manner, LDA facilitates a more effective
and efficient classification, making it a valuable tool for the
exploitation of the semi-processed GPS data in our research.

D. Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an advanced un-
supervised technique used for noise filtering in nonlinear
systems. It predicts the future state of a nonlinear system
and updates this prediction using incoming noisy measure-
ments. Unlike the traditional Kalman Filter, which assumes
linearity, the UKF employs a deterministic sampling approach
to generate sample points around the mean, which are then
passed as inputs to nonlinear functions. This method accurately
captures the mean and covariance accurately, enhancing its
effectiveness in complex applications. The UKF is widely
used in fields such as robotics, and navigation, where precise
estimation in the presence of noise is crucial.

Consider a nonlinear state-space model at time t:

xt = f(xt−1) + wt (3)

zt = h(xt) + vt (4)

xt is the state vector and zt is the corresponding noisy
measurement at time t; f(·) is the state transition function;
h(·) is the observation function; wt ∼ N(0, Q) is the process
noise representing the uncertainty in the model’s state tran-
sition with covariance Q; vt ∼ N(0, R) is the measurement
noise representing the uncertainty in the measurements with
covariance R.

The Unscented Transform approximates the state distribu-
tion using a set of sigma points. These points are passed as
inputs to the the nonlinear functions f and h.
1 Sigma Point Generation

Sigma points χ
(i)
t−1 are generated around the mean x̂t−1:
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Fig. 1: GPS pipeline: From signal acquisition to position calculation

TABLE I: List of semi-processed GPS signal parameters

Field Notations Description Unit
PseudorangeRate PR Pseudorange rate at the associated timestamp. m/s
PseudorangeRateUncertainty PRU Pseudorange’s rate uncertainty (1-σ). m/s
ReceivedSvT imeUncertainty RecSvTU Error estimate (1-σ) for the received GNSS time. ns
AccumulatedDeltaRange ADRng Accumulated delta range since the last channel reset. m
AccumulatedDeltaRangeUncertainty ADRngU Uncertainty of the accumulated delta range (1-σ). m
CN0 CN0 Carrier-to-noise density in the range [0,63]. dB-Hz
BasebandCn0DbHz BbCN0 Baseband carrier-to-noise density (Added in API level 30). dB-Hz
AgcDb Agc Incoming signal power. dB
State State Integer representing satellite sync state, with each bit indicating a

specific measurement status.
-
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Fig. 2: Representation of the semi-processed GPS signal
parameters that we use. RSS is “Received Signal Strength”

χ
(0)
t−1 = x̂t−1 (5)

χ
(i)
t−1 = x̂t−1 +

√
(L+ λ)Pt−1, i = 1, . . . , L (6)

χ
(i+L)
t−1 = x̂t−1 −

√
(L+ λ)Pt−1, i = 1, . . . , L (7)

Pt−1 is the error covariance matrix; L is the dimension of
the state vector, and λ is a scaling parameter describing the
spread of the sigma points around x̂t−1. Note that in the first
case we are adding a scaled version of the error, and in the
second case we are subtract it.

2 Prediction Step
The sigma points are next passed to the state transition

function to generate a new set of samples.

χ
(i)
t|t−1 = f(χ

(i)
t−1) (i = 0, 1, 2, . . . , 2L) (8)

The predicted mean and covariance are computed as:

x̂t|t−1 =

2L∑
i=0

W (i)
m χ

(i)
t|t−1 (9)

Pt|t−1 =

2L∑
i=0

W (i)
c

[
χ
(i)
t|t−1 − x̂t|t−1

]
×

[
χ
(i)
t|t−1 − x̂t|t−1

]T
+Q (10){

W
(i)
m = 1− 1

λ2 i = 0

W
(i)
c = 1

2Lλ2 i = 1, 2, . . . , 2L

W
(i)
m and W

(i)
c are the weights for the mean and covariance,

respectively.
2 Update Step
The predicted measurements are obtained by passing the

sigma points to the observation function (h).

γ
(i)
t|t−1 = h(χ

(i)
t|t−1) (11)

The predicted measurement’s mean and covariance are as
follows:



ẑt|t−1 =

2L∑
i=0

W (i)
m γ

(i)
t|t−1 (12)

St =

2L∑
i=0

W (i)
c

[
γ
(i)
t|t−1 − ẑt|t−1

] [
γ
(i)
t|t−1 − ẑk|t−1

]T
+R

(13)

Ct =

2L∑
i=0

W (i)
c

[
χ
(i)
t|t−1 − x̂t|t−1

] [
γ
(i)
t|t−1 − ẑt|t−1

]T
(14)

Ct is the cross-covariance matrix that represents the co-
variance between the state and the sigma points. St is the
residual covariance matrix that includes the measurement noise
covariance. The Kalman gain Kt and the updated state and
covariance are as follows:

Kt = CtS
−1
t (15)

x̂t = x̂t|t−1 +Kt(zt − ẑt|t−1) (16)

Pt = Pt|t−1 −KtStK
T
t (17)

We keep repeating this process from the sigma point gen-
eration step for the subsequent inputs until all the data is
processed.

III. THE VALUE OF SEMI-PROCESSED GPS DATA

In this section, we begin by examining the way semi-
processed GPS data is retrieved on an Android platform.
Subsequently, we explain all the 9 GPS parameters, and finally
explain how ambient sensing can be achieved.

A. Accessing Semi-Processed GPS Measurements

Prior to Android 7, developers accessed location details via
the android.gsm.location API, which provided basic satellite
information like C/N0 (carrier-to-noise ratio), azimuth and el-
evation, along with the fundamental National Marine Electron-
ics Association (NMEA) sentences containing the PVT (po-
sition, velocity and time) solution [29]. Multipath effects and
potential interference greatly degrade the positioning accuracy
by altering the true distance between satellites and the user;
this causes pseudorange errors. GPS receivers attempt to cor-
rect these errors, but since these measurements aren’t directly
accessible to users, they rely on often inadequate receiver-
embedded correction models [30]. To foster the development
of improved correction models for higher accuracy, Google has
made these details public on Android phones. This information
comprises the semi-processed GPS data, which is available
to developers via the android.location.GnssMeasurements API
within the android.location package (starting from Android
7 [31]).

B. Information Present in Semi-Processed GPS Measurements

Even though similar problems have been solved in the case
of Wi-Fi and Bluetooth signals, the same techniques cannot be
reused. We need to devise novel methods to select features,
identify the nature of the noise, clean the data, reduce the
dimensionality, choose the settings and ML models of interest

and comprehensively evaluate the design. Let us understand
in more detail the 9 GPS parameters of interest. The rest 23
(out of 32) parameters were eliminated because they were not
recorded on all the phones (variability across chipsets), the
values were quite unstable or were of no use (such as the
details of the satellite).
1 Doppler Shift :

The Doppler shift indicates a change in frequency due to
the relative motion between the signal source and the receiver.
Given that the satellites are moving and the receiver itself may
be non-stationary, a Doppler shift is expected. A positive shift
indicates that the satellite is moving towards the receiver –
this increases the perceived signal frequency. Conversely, a
negative shift occurs as the satellite moves away, effectively
decreasing the frequency.

PR = -k × dopplershift (where k is a constant) (18)

This metric is significant in discerning the following sce-
narios.

Identifying Motion State: A high value of PR suggests
movement, while a low or near-zero value indicates a sta-
tionary state or slow movement.

Distinguishing Environmental Context: Multipath phe-
nomena, where signals reflect off surfaces before reaching
the receiver affect Doppler shifts. In open areas with minimal
multipath effects, the PR measurements remain stable, while
in crowded or indoor areas, they can fluctuate significantly due
to multipath effects.

Similarly, PRU quantifies the uncertainty in PR mea-
surements, which varies with environmental conditions. In
crowded or mobile environments, multipath effects and irreg-
ular Doppler measurements increase this uncertainty, resulting
in high PRU values. In open areas with minimal multipath
effects, the uncertainty is lower, leading to low PRU values.
This analysis underscores the utility of PR and PRU in infer-
ring both the state of motion and the environmental context
of individuals based on semi-processed GPS measurements.
2 Carrier Phase:

This quantifies the accumulated error in the distance be-
tween the satellite and the receiver. It is calculated by mea-
suring the phase shift. A positive value indicates that the
satellite vehicle (SV ) is moving away from the receiver, while
a negative value signifies that the SV is moving towards the
receiver.

ADRng = −k ∗ carrierphase (where k is a constant) (19)

This facilitates the differentiation between the following sce-
narios.

Identifying Motion State: A high change in the ADRng
suggests motion, while a low or near-zero change indicates
stationary or slow movement.

Distinguishing Environmental Context: In open areas with
minimal multipath interference, ADRng values are stable.
Conversely, in crowded or indoor environments, reflections
cause phase shifts, altering the carrier phase and resulting in
variable ADRng measurements.

android.gsm.location
android.location.GnssMeasurements
android.location


Similarly to PRU, ADRngU reflects the uncertainty in
ADRng measurements.
3 Signal To Noise Ratio:
CN0, or Carrier-to-Noise (C/N) density in dB-Hz, is a

crucial metric for evaluating GNSS signal quality. It typically
ranges from 10 to 50 dB-Hz with a potential spectrum extend-
ing from 0 to 63 dB-Hz in exceptional circumstances [32].
Variances in CN0 allow differentiation between the following
environmental conditions.

In congested or enclosed areas with signal interference, CN0
levels decrease, indicating heightened noise in the GPS signal
and suggesting the individual’s presence in such environments.
Conversely, open-sky scenarios with minimal interference in-
crease CN0 levels, signifying reduced noise in the GPS signal
and implying the individual’s presence in open-sky or less
congested areas.

Similarly, BbCN0 represents the C/N of the signal at the
baseband, obtained after demodulating the GPS signal received
by the antenna. This value is typically slightly weaker than the
C/N measured at the antenna port (CN0) [32]. Our experiments
demonstrated a strong correlation coefficient(0.98) between
CN0 and BbCN0, indicating similar behavior in distinguishing
environments/activities.
4 Received Signal Strength (RSS):

The Agc acts as a dynamic amplifier, adjusting the power
of incoming signals. Negative or low Agc value indicates
potential interference or jamming [32]. Notably, this value
remains consistent under the same level of incoming signal
power, helping differentiate user activity (motion/rest).

Furthermore, Agc can distinguish between different ambient
conditions, such as crowded urban areas or open spaces
near electromagnetic transmission towers. In highly interfered
environments like crowded areas, Agc levels are low, while in
less congested or minimally interfered spaces, Agc values are
higher.
5 Multipath Interference:

The State field indicates the current synchronization state
for each satellite signal. It can assume a value of either 0 or
a combination of different synchronization states [32].

When the State is STATE MSEC AMBIGUOUS (value: 16), it
implies millisecond-level ambiguity in the GPS measurement’s
tracking state due to multipath effects [32], indicating a
congested or enclosed environment.

RecSvTU represents the error estimate (1-σ) for the received
GPS time of a particular SV , typically influenced by multipath
interference. As it quantifies uncertainty, its effectiveness
in distinguishing user activity and environmental conditions
mirrors that of PRU And ADRngU.

IV. EMPIRICAL STUDY OF THE SEMI-PROCESSED GPS
SIGNAL CHARACTERISTICS

This section aims to establish a mapping between EM wave
parameters, such as RSS and Doppler shift, which are utilized
for ambient sensing, and the corresponding semi-processed
GPS parameters. Subsequently, it examines the correlation

among semi-processed parameters to reinforce the idea that
they can be fused to achieve improved classification outcomes.

A. Real-World Data Collection

Semi-processed GPS data was logged using the GnssLog-
ger [33] Android application on five different Android phones
(refer to Table II). Note that phones that use the Samsung
Snapdragon chipset do not allow the user to retrieve the
ADRng measurements [34]. We deliberately used two phones
with the same version (Redmi Note 9 Pro Max) to characterize
variations across two phones of the same model. There was
some variation even in this case. Therefore, noise filtering is
required to ensure that our technique works across phones in
a robust manner.

TABLE II: Details of the phones

Model Name Android
version

Chipset Year

Redmi Note 9
Pro Max

Android 11 Snapdragon
720G SoC 2020

Redmi Note 9
Pro Max

Android 11 Snapdragon
720G SoC 2021

Galaxy A54 Android 14 Exynos 1380 2023

OnePlus Nord
CE2

Android 13 MediaTek
Dimensity 900 2022

Redmi Note
K20 Pro

Android 12 Snapdragon
855 2020

B. Datasets: Synthetic (Kaggle) and Real-World

Along with the data that we collect using these phones, we
use open-source datasets as well. This is needed to ensure that
similar effects are also being seen in those datasets and our
noise filtering techniques work. We utilized the Kaggle GNSS
dataset [35]; it contains 39 traces collected using the Pixel
4, Pixel 4 XL and Xiaomi Mi8 phones (resp.). This dataset
primarily contains measurements collected during motion. To
simulate diverse user activities and environments, we gener-
ated supplementary data at different sites using our 5 phones.
The settings include an open ground, indoors, while standing
and sitting. The data collection process lasted approximately
45-150 minutes at each site on an average.

The ionosphere’s electron density variations cause fluctua-
tions in GPS signals [36], resulting in measurement variability.
Furthermore, diverse weather conditions can introduce addi-
tional fluctuations. This leads to erroneous measurements and
potential misclassification. To simulate real-world settings and
mitigate these effects, semi-processed data was collected three
times over the course of a year under various atmospheric
conditions and at different times of the day. We tried to
minimize the experimental noise by ensuring the ambient
setting was the same. Of course, there were variations due
to the weather, position of satellites, etc. We did not try to
achieve consistency in these parameters.

STATE_MSEC_AMBIGUOUS


C. Calibration with Real Sensors: Signal Power

Researchers have primarily used the RSS, the Doppler shift
and SNR for designing human activity recognition (HAR)
and ambient sensing systems for WiFi, Bluetooth and cellular
tower signals [16]–[18]. We, of course, use many more
parameters.

However, we stick to these three parameters for the purpose
of characterization and calibration of our setup. We map
these parameters to the corresponding semi-processed GPS
parameters. The GPS signal inherently captures the Agc (RSS
or signal power). We used an RF Explorer Spectrum Analyzer
(Model B34J7ML7J58J9MD6) [37], which records the signal
RSS. We set the RF Explorer to the L1 GPS band frequency
range (1575.42 MHz) [38]. We logged the GPS’s RSS using
the measurement device (RF Explorer) and simultaneously, we
logged the Agc. We found a linear relationship between them
(refer to Figure 3).
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Fig. 3: Correlation between Agc and RSS

D. Correlation Results across the GPS Parameters: Feature
Selection and LDA

Next, we consider all our data: our traces and the Kaggle
GNSS traces. The trends are roughly similar. We plot the cor-
relation for all pairs of GPS signals (results shown in Figure 4)
CN0 exhibits a strong correlation with BbCN0 (0.98). Hence,
only one of them is required. We choose CN0. The correlation
of CN0 with other signals is as follows: ADRngU (0.68), PRU
(0.48), and RecSvTU (-0.53). PR shows a correlation of 0.63
and 0.54 with ADRng and RecSvTU, respectively. This means
that we have a lot of pairs of parameters that have reasonably
high correlations. This motivates the use of a feature reduction
algorithm such as LDA.

V. MODEL ARCHITECTURE

We shall use the same ML model to classify both the
ambience as well as human activity. Henceforth, we will
refer to both an ambient setting as well as human activity
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Fig. 5: Flow diagram of our ML model

as an event. Figure 5 shows our proposed ambient sensing
framework.

We first collect 8 features from the phone. Recall that we
had discarded BbCN0. Then, we eliminate the nonlinear noise
using Unscented Kalman filtering (UKF). Subsequently, we
perform feature reduction using the LDA algorithm. We need
to classify the features into C classes, then the output is a
vector with C − 1 elements (dimensions reduced). Then we
use an ML-based classifer to map the reduced set of features
to a class label. In the evaluation section (Section VI), we shall
evaluate different types of ML models.

A. Preprocessing

a) Noise Filtering: GPS signals are susceptible to mul-
tipath effects, resulting in noise that affects the accuracy of
activity or ambient-recognition models. While the Kalman
Filter effectively filters noise in linear systems, it is inadequate
for the nonlinear dynamics inherent in GPS signals [39]. We
thus use the Unscented Kalman Filter (UKF) [20], which
is adept at handling these nonlinearities by employing a
deterministic sampling approach. By selectively filtering the
non-critical noise components, the UKF maintains a balance
between noise reduction and the retention of essential signal
features.

B. Feature Reduction

Prior to applying LDA, StandardScaler [40] normalization
was used to address the issue of differing scales and normalize



the semi-processed parameters. The output is a C−1 element
vector.

VI. AMBIENT SENSING AND HUMAN ACTIVITY
RECOGNITION

We group ambient sensing and human activity recognition
(HAR) into one section because the techniques that are used
are similar.

A. Evaluation Setup

1) ML Models: We evaluated six machine learning algo-
rithms: Random Forest (RF), K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), Decision Tree (DT), Naive
Bayes (NB) and Gradient Boosting (GB). Given that we were
getting a high accuracy, we did not use more sophisticated
CNN-based models. These algorithms were chosen due to their
popularity in the related work [41], [42]. Some of them also
produce explainable models and results. To ensure the model’s
generalizability to new data and avoid overfitting, extensive
empirical analyses were conducted to determine the optimal
hyperparameters for each model using GridSearchCV [43]
(refer to Table III).

TABLE III: Hyperparameters used for each classifier

Classifier Hyperparameters

Random Forest n estimators: 100, max depth:
10, min samples split: 10,
min samples leaf: 4, bootstrap:
True

Support Vector Machine C: 110, kernel: rbf, tol: 0.001,
break ties: True

K-Nearest Neighbors n neighbors: 10, weights: distance, al-
gorithm: auto, leaf size: 30

Decision Tree max depth: 20, min samples split: 20

Naive Bayes var smoothing: 1e-9, fit prior: True,
class prior: None

Gradient Boosting Classifier n estimators: 100, learning rate: 0.01,
max depth: 10, min samples split: 10,
min samples leaf: 4

Notably, for SVM, we adopted the one-versus-one (OVO)
strategy to address class imbalance, transforming the multi-
class classification problem into multiple binary classification
tasks [44]. Additionally, a ten-fold cross-validation method
was used to minimize overfitting. The dataset was randomly
partitioned into 80% for training and 20% for testing.

2) Details of the Platform: The learning models were
trained on the Google Collaboratory cloud platform1. The
cloud-based system was equipped with a dual-core Intel®

Xeon® CPU running at 2.20GHz, 13GB of RAM, and a disk
capacity of 107.72 GB. The hyperparameter tuning task was
slow and time consuming. Hence, we used a NVIDIA® Tesla®

T4 GPU equipped with 15GB of dedicated RAM.

1https://colab.research.google.com/

B. Ambient Sensing

1) Data collection: For each ambient setting, over 100K
samples were collected in various locations such as a dormi-
tory floor, stadium, bustling market and underground metro
tunnel. The data collection involved 20 volunteers who were
graduate and undergraduate students in a premier university.
The were aged between 19 and 28. The volunteers were first
rigorously trained on how to take measurements. Furthermore,
to ensure the generality of the dataset, the volunteers were
requested to vary the settings within limits. For example, one
group put the mobile phones in their shirt pockets, some kept
it in their pant pockets and some in their purses.

2) Class Labels: Five user environments were defined:
flight1, indoor, metro tunnel, open ground and outdoor
crowded area. Indoors, open areas and outdoor crowded
areas are distinguishable using precise location coordinates
and mapping services like Google Earth2. This is because
multiple locations belonging to different classes maybe in
close proximity and it proved to be hard to distinguish them
in our experiments. In any case, the objective of this work is
to use GPS semi-processed data alone. For the open space and
outdoor crowded area settings, samples were collected in an
open-air stadium. We considered two cases: empty and filled
(with people).

3) Results with Parameters Considered Individually: We
evaluated the effectiveness of each of the semi-processed GPS
parameters (after Kalman Filtering (UKF)) for characterizing
the ambient environment (see Figure 6).

In the interest of space, only the most accurate results for
each parameter (across all models) have been shown. Agc
classifies the ambient with an average accuracy of 86.7% while
ADRng performs the worst with an accuracy of 40.6%. All
other parameters have an accuracy range between 57.9-82.1%.
This accuracy is on the lower side because we are considering
the parameters individually. We combine the parameters to
achieve better results.

4) Results with Fused Parameters: The accuracy of the
models after all the steps (UKF + scaling + LDA) is shown
in Figure 7. Although SVM accurately predicted the results
for three settings, it failed to classify the Indoor and Metro
environments with misclassification rates of 57.6% and 79.3%,
respectively. Similarly, KNN achieved over 90% accuracy for
all the settings other than Metro, where it had a misclassi-
fication rate of 43.4%. The NB (Naive Bayes) model also
underperformed for Metro with a misclassification rate of
32.4%. The Metro setting is hard to classify because several
parameters such as ADRng and State are not available. In
contrast, RF (Random Forest) and GB (Gradient Boosting)
exhibited the best performance with accuracies exceeding 90%
for all the settings.

Table IV shows the same data for each setting using several
popular ML metrics: accuracy, sensitivity, specificity and the

1All the signals were collected in passive, receive-only mode. There was
no signal transmission. This is allowed as per rules.

2https://earth.google.com/web/
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Fig. 6: Ambient sensing accuracy for each semi-processed GPS parameter

TABLE IV: Performance metrics of ambient classifier models:
GB and RF are the best. The results are averaged across all
the phones and volunteers.

Classifier Ambience Acc Sen Spe F-score
GB Flight 99.8 99.8 99.9 99.8

Indoor 99.6 99.6 99.8 99.4
Metro 91.6 91.6 99.9 93.9
OpnGrnd 99.9 99.9 100.0 99.9
OutCrwd 98.8 98.8 99.8 98.7

RF Flight 99.5 99.9 99.9 99.8
Indoor 99.3 99.3 99.8 99.2
Metro 88 88.0 100.0 93.3
OpnGrnd 99.8 99.8 100.0 99.9
OutCrwd 98.8 98.8 99.7 98.4

DT Flight 99.9 99.9 99.9 99.8
Indoor 99.2 99.2 99.8 99.1
Metro 91.6 91.6 99.9 93.2
OpnGrnd 99.8 99.8 99.9 99.9
OutCrwd 98.8 98.8 99.9 98.9

KNN Flight 97.5 97.5 98.7 97.2
Indoor 92.8 92.8 98.4 92.4
Metro 56.7 56.7 99.7 62.2
OpnGrnd 98 98.0 99.0 98.3
OutCrwd 89.7 89.7 98.4 89.1

NB Flight 79.1 79.1 99.6 87.8
Indoor 89.7 89.7 93.0 79.6
Metro 67.6 67.6 98.7 51.0
OpnGrnd 97.6 97.6 99.1 98.2
OutCrwd 90.2 90.2 97.4 86.0

SVM Flight 96.4 96.4 88.4 85.4
Indoor 42.4 42.4 97.7 55.0
Metro 20.7 20.7 100.0 33.7
OpnGrnd 97.9 97.9 97.4 97.2
OutCrwd 84.9 84.9 97.3 82.9

F-score. We find RF and GB to be the best models across
metrics.

5) Characterization of the Indoor Environment: Addition-
ally, we further characterized the indoor environment based
on population density. We consider two settings: nobody is
present in a small (12 ft x 8 ft) room and two people are
present. The GB model accurately classified both scenarios
with an accuracy of 99.25%, as shown in Figure 8.

6) Relative Importance of Features: We further evaluated
the importance of each feature. This involves randomly shuf-
fling the values of each parameter and measuring the resulting
increase in the model’s prediction error [45]. A feature is
deemed important if shuffling its values leads to a significant
increase in model error, indicating that the model relied on that
feature for accurate predictions. Agc has the highest impor-
tance score of 0.78, while all other features have importance
scores ranging from 0.55 to 0.75 (see Figure 9), demonstrating
their substantial contributions to classification.

C. Human Activity Recognition(HAR)

1) Class Labels: Prior work [17], [18], [46]–[48] has
extensively explored various HAR systems. They cover both
static activities (sitting, lying and standing) and dynamic
activities (such as walking, running or traveling in a vehicle).
The latter can be discerned on the basis of the speed or
velocity. The Android platform’s getSpeed API [49] in the
android.location.Location package facilitates this. In our
case, we shall use Doppler shifts [49] for this purpose (cap-
tured by the PR attribute).

Distinguishing static activities cannot be done on the basis
of Doppler shifts. We wish to classify static activities into four
classes: sitting, standing, lying down and hand waving (mobile
phone not held with the moving hand). In case of hand waving,
the device was mounted on a wall stand and hand movements
were performed in its close proximity (within 2m).
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2) Results with Individual GPS Parameters: Figure 10
shows the accuracy of each activity for each semi-processed
GPS parameter. The results are consistent with previous ob-
servations. Agc achieves the highest accuracy of 77.2%, while
ADRng performs the worst with a high misclassification rate
of 72.6%. The accuracy for other parameters ranges from 35%
to 56% reflecting the inability of individual parameters in
classifying activities. Hence, we combine the parameters to
achieve better results.

3) Results with Fused Parameters: Figure 11 compares
model performance using the fused parameters. SVM achieves
93.4% accuracy for lying down but has a an accuracy of 60%
for other activities. KNN accurately classifies hand waving
with an accuracy of 88.4% but has an average accuracy of
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Fig. 9: Feature importance test for ambient classification (GB model)

74.4% for other activities. NB identifies the lying down posture
with ≥ 80% accuracy but performs poorly (about 67% on
average) for the other three activities. RF, DT, and GB are the
best – they achieve a minimum accuracy of 80%. The peak
accuracy is 97.2% (RF).

Table V shows the same data along with other ML metrics:
sensitivity, specificity and the F-score. We can observe that
SVM performs the worst (accuracy = 57.4%) and RF performs
the best (accuracy = 87%). Consequently, RF was selected as
the model of choice for this activity.

4) Relative Importance of Features: Additionally, we eval-
uated the importance of each feature in HAR when they are
fused together. The feature Agc has the highest importance
score of 0.88, while all other features have importance scores
in the range of 0.5 to 0.65 (see Figure 12). This further
strengthens our claim – using fused parameters improves
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TABLE V: Performance metrics of activity classifier models

Classifier Activity Acc Sen Spe F-score
RF HandWaving 77.5 77.5 98.9 85.6

LyingDown 97.2 97.2 96.5 92.6
Sitting 91.2 91.2 92.3 86.4
Standing 82.7 82.7 94.7 83.8

DT HandWaving 80.7 80.7 94.7 81.7
LyingDown 84.9 94.9 98.2 94.2
Sitting 85.1 85.1 93.2 84.0
Standing 87.9 87.9 96.3 88.8

GB HandWaving 82.4 82.4 96.7 85.4
LyingDown 96.9 96.9 96.7 92.8
Sitting 86.7 86.7 94.1 85.9
Standing 82.8 82.8 94.8 84.0

KNN HandWaving 71.8 71.8 94.2 75.4
LyingDown 88.4 88.4 93.4 83.3
Sitting 68.9 68.9 85.6 66.8
Standing 56.9 56.9 87.3 59.3

NB HandWaving 61.4 61.4 94.6 68.8
LyingDown 80.7 80.7 89.5 73.8
Sitting 77.8 77.8 90.1 76.4
Standing 63.2 63.2 86.6 63.1

SVM HandWaving 60.3 60.3 91.0 63.8
LyingDown 93.4 93.4 78.1 68.7
Sitting 38.3 38.8 87.7 45.4
Standing 44.8 44.8 86.8 49.4

accuracy.

D. Assessment of the Robustness

We conduct several experiments to demonstrate the ro-
bustness of our method. We consider different environmental
conditions, variations in the satellite vehicle ID (SvID) density,
different test:train split, sparse fingerprinting techniques and
accuracy variability across different phones.

1) Variation in the Number of Unique SvIDs: Figure 13
shows the impact of varying the number of SvIDs on the

prediction accuracy. A subset of SvIDs was randomly selected
from the logged data and only semi-processed GPS data
corresponding to these SvIDs was used for evaluation. Care
was taken to maintain the integrity of the dataset by ensuring
that SvIDs representing a significant portion of the logged data
were not removed. The dataset was becoming really sparse.

The maximum number of unique SvIDs observed during the
experiment was 28. The results show that even with a SvID
density as low as 50% of the total number of unique SvIDs
(14 unique SvIDs) an accuracy of 92.1% (13(a)) and 84.4%
(13(b)) in ambient and activity classification, respectively, was
achieved.

2) Different Train:Test Splits: Figure 14 shows the accu-
racies when we vary the train:test ratio. For example, a ratio
of 80:20 indicates that the training data is 80% of the overall
dataset and the remaining 20% of the data is used for testing
purposes.

Even when the proportion of test data is as high as 50%, the
average accuracy of ambient classification is 94.2% (14(a)),
and 85.4% (14(b)) for activity classification, respectively. We
can attribute this high degree of resilience to the UKF’s
noise removal and feature preservation capabilities. When we
remove UKF, the accuracy drops to roughly by more than
50%.

3) Unseen Events: Additionally, the accuracy of the model
was assessed by experiments performed by volunteers using
another set of Android phones on settings that are similar to
the settings that we have been using up till now. It is important
to note that up till now we only used a set of 5 phones
and the same settings even though we varied the following
parameters: time of the year, time of the day, weather condition
and there was some noise. For example, in a crowded area,
the composition of the crowd varied. In this case, we vary
everything other than the nature of the setting. For example, we
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collected measurements at locations that were roughly 1000
kms away from our original location. One location had an
altitude of 3.5 kms. We also tested on a cruise ship, which we
categorized as an open space.

Figure 15 shows the results. While a decrease in accuracy
was observed, it remained consistently above 91.5% 15(a) for
ambient recognition and 83% 15(b) for activity classification,
respectively. The best-performing technique was still GB for
ambient classification and RF for human activity recognition.
This reduction in precision was mainly due to variations in
multipath effects and the significantly different experimental
setups. Moreover, these volunteers did not go through our
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Fig. 13: Accuracy on varying the number of SvIDs for (a) ambience
classification and (b) activity classification
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Fig. 14: Accuracy with different level of train:test ratio for (a)
ambience classification and (b) activity classification
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Fig. 15: Accuracy of events performed by random volunteers at
random locations for (a) ambience classification and (b) activity
classification

orientation process. There is a possibility that our orientation
process may have sub-consciously created some degree of
homogeneity, even though we tried our best to avoid it. With
this fresh set of volunteers, this did not happen. It is not
possible for us to say what exactly was the cause for the
reduction in accuracy.

4) Variability across different phones: We investigated the
variability in accuracy across different testing phones under
similar conditions, noting a significant 8% difference between
two Redmi Note 9 Pro Max models of different build years.
Additionally, to capture environmental variability, we logged
data at the same place but at different times of the day. This
resulted in a 9% difference in accuracy for the same phone and
a 13% difference in accuracy for different phones. Specifically,
the Galaxy A53 (2023) achieved the highest average accuracy
of 92.3% in ambient sensing, while the Redmi K20 Pro (2020)
exhibited the lowest at 81.8%. This disparity suggests that
older models generally have lower accuracy, primarily due to
GPS receiver noise. However, after UKF followed by LDA,
the maximum accuracy difference decreased to 3% for data
logged at the same time and 4.2% for data logged at the same
place but at different times. This underscores the effectiveness
of our approach in mitigating noisy readings across diverse
phone models and handling varying ambient conditions at the
same location.

VII. FINDING THE INDOOR FLOOR LAYOUT

Our goal is to create an indoor floor map using semi-
processed GPS data. Prior work [50] has used WiFi RSSI (re-
ceived signal strength indicator), user activities (measured via
accelerometers or pressure sensors), and graph optimization
techniques to construct the indoor map. These approaches do
not work for us given that the RSSI proves to be quite a feeble
technique in the case of GPS signals. For WiFi the source of
the signal is nearby, hence, its strength variation carries more
information. However, for us the source is very far away and
the variation observed is minimal. It is often affected by noise
to a much greater degree. This had necessitated the need for
UKF and LDA in the first place. Nevertheless, we use RSS

(Agc) as the starting point of our investigation and then build
on it since is clearly inadequate for our purpose.

A. Study of GPS RSS Patterns

To study GPS RSSI variations across different areas of a
large indoor area, we conducted an experiment in a dormitory
corridor. It measured 32.3 m × 25.6 m (refer to Figure 16(a)).
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Fig. 16: (a) Floor layout of the dormitory corridor and (b) GPS RSS
heatmap of the dormitory corridor

Since there are no GPS-based heatmap simulators available,
and civilian GPS operates at a frequency that is very close
to 2.4 GHz WiFi, we utilized NetSpot, a commercial tool
designed for WiFi signal strength mapping. We generated a
heatmap depicting the relative GPS RSS levels across the site
(see Figure 16(b)). We assumed ideal, zero-noise conditions.
To simulate a GPS setting, we introduced two access points
situated outside the site, specifically in the open areas to the
northeast and southwest. The differences in the RSS readings
indicate their potential for inferring the layout. We scaled the
data to match the real-world GPS signal intensity, which was
measured using the RF Explorer Spectrum Analyzer at all
points of interest: near entrances, lifts, stairs and corners. A
correlation of 0.83 was observed, which is quite high. The
heatmap clearly identifies the points of interest such as the
three lifts at the corners, the rooms and the entrance to the
stairs. But the data still does not tell us what is there at these
points of interest. Even with WiFi signals, accelerometer and
pressure sensor data was required. We are replacing it with
semi-processed GPS data and the GPS location information,
which we have not used up till now.

B. Trajectory Creation Methodology: Use Location Data

1) Activity Landmarking: Our aim is to identify floor
landmarks such as pathways, stairs, elevators, rooms, and
obstructions based on user activity and GPS-based location
information. We will not use data from any other sensor. For
example, users typically walk straight along pathways, turn at
obstructions, and engage in different activities on stairs or in
elevators. These activities can be captured using our human
activity recognition (HAR) framework. Notably, elevators act



as Faraday cages [51], and they block GPS signals. We shall
rely on multiple users to collect this data – semi-processed
GPS parameters, HAR fingerprints and trajectory information.
Then we shall merge these results to identify the landmarks.

2) Trajectory Alignment: We collected the walking trajec-
tories of our volunteers. It is necessary to employ a trajectory
alignment algorithm (akin to [50]) because different people
will produce different trajectories. Let us briefly described the
algorithm in [50]. It involves using a transformation matrix,
which it creates, for adjusting the curvilinear paths, transla-
tion and rotation. This matrix is based on common “activity
landmarks” in the different trajectories. Trajectory coordinates
are classified as either activity landmark coordinates (ALC)
or non-activity landmark coordinates (NALC). When merging
trajectories, we focus on common ALCs and calculate their
relative coordinates to determine the necessary translations
and rotations. This iterative process ensures a more accurate
and consistent overall map by aligning each new path to the
existing map. The advantage of aligning trajectories is that
we create a robust skeleton of the internal map. A single
observation is prone to a lot of noise especially when using
GPS signals.

After aligning the trajectories with themselves and with
a virtual coordinate system, we apply graph optimization
techniques (refer to [50]) to further refine the locations of the
ALC and NALC trajectory points. The Levenberg-Marquardt
algorithm [52] is used for optimization. The result is a map
of the site with the ALC points (specifically) indicated.

C. Evaluation of the Accuracy of Classifying ALC Points

1) Data collection: 10 volunteers participated in the data
logging process. The data was collected using the GnssLogger
Android application, the same tool employed for event classi-
fication. Each volunteer carried a device with the GnssLogger
app installed and traversed the floor, and sometimes used the
services at the landmarks. To ensure robustness and mirror
real-time scenarios, participants were requested to start and
end their journeys at random points on the floor.

2) Results of the Trajectory Creation Algorithm: Figure 17
illustrates the outcome of our mapping process(setting: dorm-
room corridor). The activity landmark trajectory data is shown
in Figure 17(a). Given the initial random alignment of the
trajectories, we realign them to eliminate inconsistencies as
shown in Figure 17(b). The resultant map contains noise,
which we remove using graph optimization to obtain an opti-
mized floor map with reduced errors (see Figure 17(c)). The
final step involves aligning the generated map with the ALC
information. The final floor map is shown in Figure 17(d).
Note that we add the real layout in the background only for
the purpose of better visualization.

3) Accuracy Assessment:
a) Layout Shape: To evaluate the quality of the gener-

ated map, we use the following metrics [50], [53], [54]:
• Graph Discrepancy Metric (GDM): This measures the

differences between the landmark points of the generated

map and the real map (ground truth) using Euclidean dis-
tance. A smaller GDM indicates a closer match between
the generated map and the real map.

• Shape Discrepancy Metric (SDM): This assesses the
differences in the overall shape of the generated map as
compared to the real map. It involves uniformly sampling
points along lines connecting landmarks of both maps and
measuring the distances between corresponding sampling
points. A smaller SDM indicates a greater similarity in
shape between the two maps.

Figure 18(a) shows the cumulative distribution function
(CDF) plot for the GDM. The maximum error observed is
4.10 m, and the 90th percentile error is 3.42 m. Similarly, for
SDM, the maximum error is 3.41 m, with the 90th percentile
error is 2,94 m (refer to Figure 18(b)). Our results align closely
with the related work [50], [53], affirming the efficacy of our
method in constructing floor maps.

b) Landmark detection accuracy: We utilized a GPS-
based Human Activity Recognition (HAR) system to accu-
rately detect landmarks categorized as stairs, rooms, lifts, and
empty corners within our framework. Table VI shows the
accuracy of the models (RF, DT, GB, KNN, NB, SVM) across
four landmarks: Lift, Stairs, Rooms, and Corners. RF shows
strong performance with an average accuracy of 90.15%. DT
and GB also perform well, with average accuracies of 87.5%
and 87.7% respectively. KNN has a moderate average accuracy
of 81%. NB performs adequately with an average accuracy of
70.8%, but has a notably low accuracy for Lift (61.4%). SVM
has the lowest average accuracy of 50.2%, with particularly
poor performance for Rooms (54.7%) and Corners (34.3%).

TABLE VI: Accuracy of activity classifier models

Classifier Lift Stairs Rooms Corners
RF 98.5 96.2 86.2 79.7
DT 96.7 93.1 77.9 82.3
GB 96.6 93.0 78.3 82.8
KNN 91.8 84.4 72.9 74.9
NB 61.4 80.7 77.8 63.2
SVM 61.6 57.8 54.7 34.3

VIII. EXPLOITATION BY ANDROID APPLICATION

By exploiting the ACCESS_PRECISE_LOCATION permission,
apps can covertly log semi-processed GPS data, which as
we have seen poses privacy risks. While users may agree
to precise location access for legitimate services, apps could
misuse data for targeted ads or privacy breaches. Android 12
introduced a privacy option for selecting between fine and
coarse location permissions. Before this, there was only a
single location permission. This enhanced the control that
users had over location data access [55].
Countermeasures: Android 12 (and beyond) users can limit
permissions to coarse location, thus restricting app access to
the semi-processed GPS data. Android mandates developers to
explicitly outline the required permissions in the app descrip-
tion [56] file. Android 11 and earlier versions users are often
advised to check descriptions for fine location requests. They
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Fig. 17: Result of the indoor floor mapping experiments: (a) Raw trajectories, (b) After trajectory alignment, (c) After graph
optimization, and (d) Final result after aligning with a coordinate system
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Fig. 18: CDF of (a) GDM and (b) SDM

often overlook such details during installation [57] risking
privacy breaches.

A. Impact

Disabling fine location permissions isn’t practical, as de-
velopers may justify its need for location-based services.
Even vigilant users regardless of whether they check app
descriptions for requested permissions or choose between
permissions are still vulnerable to privacy breaches. This
vulnerability persists as users are unaware of the privacy risks
associated with logging semi-processed GPS data, owing to
the absence of relevant disclosures in the official Android
documentation [55].

Additionally, devices running Android 10 or later must
support semi-processed GPS measurements, while for Android
9 and earlier, this is mandatory for devices manufactured in
2016 or later [34]. Currently, over 90% of Android phones sup-
port semi-processed measurements [34], exposing a substantial
portion of the user base to this kind of a covert attack.

IX. RELATED WORK

Given that there is an overlap in the prior work on activity
and ambience recognition, we combine them and discuss
the combined related work in Section IX-A. Subsequently,
we shall discuss the related work on layout detection in
Section IX-B.

A. Ambient Sensing and HAR

We present a brief comparison of the related work in
Table VII. Image-based solutions are prominent due to their
high accuracy [58]. However, their widespread adoption is
limited by the high cost of processing image data and security
concerns.

In response, wireless signal patterns: RSS and channel state
information (CSI) is used for ambient and activity recognition.
Wang et al. [59] introduced a deep learning technique, a
sparse autoencoder (SAE), which recognizes events using
WiFi CSI signals. Gao et al. [60] developed another CSI-based
system for event classification using deep learning, where
they converted CSI measurements into radio images, extracted
features, and then applied an SAE network for better accuracy.
Muaaz et al. [61] proposed WiWeHAR, a multimodal HAR
system that combines WiFi CSI data and wearable inertial
measurement unit (IMU) sensor data. These systems demand
precise feature engineering and efficient signal processing and
noise removal.

RSS-based solutions are comparatively more noise-tolerant.
One of the earliest works is PAWS [17], which utilizes ambient
WiFi signals to create RSSI fingerprints. Bhat et al. [62]
refined existing techniques to develop a recognition system
using the RSS of a single communication channel. Shuaeib
et al. [63] introduced an RFID-based indoor HAR system
that uses RSS from passive RFID tags to track activity in
real-time by mapping the analyzed data to reference datasets.
Such solutions rely heavily on the availability of good-quality
WiFi signals, which may not always be feasible especially in
outdoor settings. GPS, on the other hand, is more ubiquitously
available.

Sekiguchi et al. [18] categorize events based on GPS
coordinates along with cell tower and WiFi signal data. Our
approach does not use GPS coordinates or any other kind
of location information. We solely focus on semi-processed
GPS signal parameters, which are almost always available.



Year Work Approach WiFi IMU Cell Tower GPS RFID Camera
2021 Ramirez et al. [58] Video-based trajectory X X X X X ✓
2016 Wang et al. [59] Wireless signal CSI patterns ✓ X X X X X
2017 Gao et al. [60] Wireless signal CSI patterns ✓ X X X X X
2020 Muaaz et al. [61] WiFi CSI + IMU sensors ✓ ✓ X X X X
2015 PAWS [17] RSS-Based ✓ X X X X X
2020 Bhat et al. [62] WiFi and RSS-based ✓ X X X X X
2020 Shuaeib et al. [63] RFID-Based X X X X ✓ X
2021 Sekiguchi et al. [18] GPS coordinates + Other wireless signals ✓ X ✓ ✓ X X
2020 Bui et al. [64] processed GPS signals X X X ✓ X X
2024 Zhu et al. [65] processed GPS signals X X X ✓ X X
2024 AndroCon Semi-processed GPS signal parameters X X X ✓ X X

TABLE VII: Comparison of Event Classification Approaches

We do not use any WiFi or assisted-GPS signals (signals from
cellphone towers).

Bui et al. [64] utiized the magnitude of the received GPS
signal for distinguishing between indoor and outdoor envi-
ronments. Zhu et al. [65] classify ambient conditions based
on visible satellites, GNSS distribution, C/N0, and multipath
effects. However, both studies utilize processed signal data,
which yields less accurate results compared to our research.
Our work also encompasses diverse settings that were not
accounted for in either study.

B. Indoor Layout Mapping

We show a comparison of related studies in Table VIII. Most
approaches utilize Simultaneous Localization and Mapping
(SLAM), a computer vision technique designed to localize a
robot in an unknown environment while concurrently generat-
ing a map. Conventional SLAM techniques typically depend
on visual cues such as landmarks, camera-detected obstacles,
sonar data or laser-range sensors (Kamar et al. [66]) [10],
[70], [71]. However, these approaches may incur high costs
or maybe quite intrusive in terms of privacy.

Alzantot et al. [67] propose to use crowd-sourced user
trajectories to construct indoor maps. However, this method
was susceptible to errors due to the non-alignment of tra-
jectories. Adressing the issue, Shen et al. [54] present an
indoor pathway mapping system using WiFi RSS fingerprints
to align trajectories. Gu et al. [68], [72] further improved
the performance by employing Bluetooth and WiFi data for
trajectory alignment, but sparse WiFi access point deployment
poses practical challenges. Philipp et al. [69] propose Mapge-
nie – generating maps from pedestrian movement traces and
utilizing external building data and applies grammatical rules
to model and interpret pedestrian movement patterns; however,
it requires a foot-mounted IMU that is typically not found
on smartphones. Zhou et al. [53] use a link-node approach
(landmarks as node and pathways and links). This method
utilizes smartphone sensors and WiFi RSS fingerprinting, com-
plemented by geometric scaling methods. However, challenges
arise in accurately representing curved features within the
maps. Zhou et al. [50] address these challenges through graph
optimization methods.

Our approach draws inspiration from Zhou et al. [50]
that leverages WiFi RSS and MAC address fingerprinting

for trajectory alignment and landmark identification. Sadly,
Zhou et al.’s method relies heavily on mobile sensors such
as gyroscopes and compass readings, which may introduce
errors and reduce reliability. Moreover, it requires extensive
user permissions and depends on the availability of WiFi
access points. In contrast, our proposed method utilizes semi-
processed GPS data and does not need any other information.

For both event recognition and indoor floor mapping, image-
based solutions [10], [58] captured using cameras are highly
effective; however, they raise significant privacy concerns. This
has limited their widespread adoption.

In contrast, methods utilizing EM waves such as WiFi,
Bluetooth or GPS are preferred due to their covert nature.
Many of these methods have matured over time and they
provide solutions with a comparable quality as camera-based
designs do. Our solution, AndroCon, also provides similar
accuracies (if not better).

X. CONCLUSION

The fact that semi-processed GPS data can be used to sense
the ambient, recognize human activity and figure out floor
layouts was hitherto unknown. We successfully showed that all
of the above can be achieved, and that too with a high accuracy
that ranges from roughly 99.5% in controlled conditions to
87% in absolutely uncontrolled conditions. We conducted an
extensive set of experiments with tens of volunteers, many
phones of different makes and brands, diverse set of scenarios
and thousands of sample points. We collected data for a year
across a large geographical area – some of the collection points
were 1000 kms away from the place where this research was
carried out. We also collected data on flights, cruise ships and
high-altitude locations. Our results are thus robust.

Furthermore, our approach can construct floor maps with
a maximum error margin of 4.1m as compared to the ground
truth. We can classify points of interest within an indoor layout
such as elevators, stairs, corridors, empty corners and rooms
with a roughly 90.15% accuracy, while just relying on GPS
data. Currently, Android does not address this vulnerability,
which leaves approximately 90% of users exposed.

XI. RESPONSIBLE DISCLOSURE

We reported the identified vulnerability and use-cases, ex-
cluding the floor mapping use-case to the Android security



Year Work Approach SLAM WiFi Smartphone
sensors

IMU GPS

2020 Karam et al. [66] IMU + LiDAR ✓ X X ✓ X
2012 Alzantot et al. [67] User trajectories X X ✓ X X
2013 Shen et al. [54] WiFi RSS alignment X ✓ X X X
2016 Gu et al. [68] User trajectory +WiFi+Bluetooth X ✓ ✓ X X
2014 Philipp et al. [69] Pedestrian movement+crowd-sourced struc-

tural (external) information of buildings
X X X ✓ X

2015 Zhou et al. [53] Link-node approach X ✓ ✓ X X
2018 Zhou et al. [50] Link-node approach+GO X ✓ ✓ X X
2024 AndroCon GPS Semi-processed data + user trajectory X X X X ✓

TABLE VIII: Comparison of Indoor Floor Mapping Approaches

team. They were able to reproduce some of the results and
they acknowledged our concern.
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