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ABSTRACT
Multimodal contrastive learning (MCL) has shown remarkable ad-
vances in zero-shot classification by learning frommillions of image-
caption pairs crawled from the Internet. However, this reliance
poses privacy risks, as hackers may unauthorizedly exploit image-
text data for model training, potentially including personal and
privacy-sensitive information. Recent works propose generating
unlearnable examples by adding imperceptible perturbations to
training images to build shortcuts for protection. However, they
are designed for unimodal classification, which remains largely
unexplored in MCL. We first explore this context by evaluating the
performance of existing methods on image-caption pairs, and they
do not generalize effectively to multimodal data and exhibit limited
impact to build shortcuts due to the lack of labels and the dispersion
of pairs in MCL. In this paper, we propose Multi-step Error Mini-
mization (MEM), a novel optimization process for generating mul-
timodal unlearnable examples. It extends the Error-Minimization
(EM) framework to optimize both image noise and an additional
text trigger, thereby enlarging the optimized space and effectively
misleading the model to learn the shortcut between the noise fea-
tures and the text trigger. Specifically, we adopt projected gradient
descent to solve the noise minimization problem and use HotFlip
to approximate the gradient and replace words to find the optimal
text trigger. Extensive experiments demonstrate the effectiveness of
MEM, with post-protection retrieval results nearly half of random
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guessing, and its high transferability across different models. Our
code is available on the https://github.com/thinwayliu/Multimodal-
Unlearnable-Examples
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1 INTRODUCTION
In recent years, there has been a growing interest in multimodal
models among researchers in the community [3]. Traditional meth-
ods [44, 51, 61] have primarily focused on analyzing a single modal
of data. However, with the rise of multimodal learning, different
types of data, such as text, images, and audio, are being combined
into a unified framework. One of the most popular approaches for
multimodal learning is Multimodal Contrastive Learning (MCL), as
demonstrated by models such as CLIP [66] and ALIGN [35]. These
models are trained with a contrastive loss, which encourages the
correlation between pairs of images and captions while also keeping
them distinct from unrelated pairs. This approach reduces the need
for extensive manual annotation of training data and allows the use
of larger datasets that contain millions of examples. MCL has shown
promise in various applications, including image classification [66],
image captioning [41, 63], image generation [43, 65].
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Figure 1: Posts on Facebook inadvertently leak personal in-
formation. UtilizingMEM-3 to protect data can prevent unau-
thorized models from accessing private features.

Training of high-performance multimodal models is highly de-
pendent on large amounts of multimodal data, often sourced from
publicly available datasets such as CC12M [5], YFCC100M [74], and
LAION5B [69]. However, as the demand for larger datasets contin-
ues to surge in the future, these datasets may be still insufficient.
Consequently, malicious actors may resort to unauthorized data
acquisition from the web or engage in the crawling of user posts on
social networks for commercial training purposes. However, these
datasets often contain significant amounts of sensitive personal
information, raising concerns among people about the potential
unauthorized use of personal data and the leakage of user privacy.

A series of recent works make efforts to prevent unauthorized
usage in image classification by making the image unexploitable.
Specifically, they poison the data with some imperceptible pertur-
bations [48, 52–54, 77], creating ‘shortcuts’ [82] in the training
process that hinder the models from learning the features of the
images [83]. This kind of attack is called availability attacks or in-
discriminate poisoning attacks, and these poisoned training data are
called unlearnable examples. These unlearning methods [50] can be
broadly classified into two categories: model-free and model-based
attacks. Model-free attacks usually generate unlearnable noise at
the pixel level without any knowledge of clean data and directly
create shortcuts between image noise and labels, such as LSP [82]
and CUDA [67]. Due to their direct association with labels, these
patterns often exhibit high efficiency. Model-based attacks typically
generate noise through surrogate models. The surrogate model
learns the features through the training phase and generates the
feature-level noise, such as Error-Minimizing [31] and Adversarial
Poisoning [17]. However, there has yet to be research to consider
protecting multimodal data in the context of MCL.

We are the first to consider a scenario focused on generating
multi-modal unlearnable examples against privacy risks [6, 11, 13,
26, 49] associated with MCL. In this context, we concentrate on
image-text pairs as a representative multimodal dataset. Users are
assumed to frequently share personal photos with text on social
media platforms like Facebook, including some private identity
information such as faces, names, phone numbers, and addresses.
Currently, hackers attempt to collect large amounts of such image-
text pairs from the Internet and utilize MCL techniques to train
modern foundational models, as illustrated in the left segment of
Fig. 1. These models inadvertently capture user’s private informa-
tion and facial characteristics, leading to potential privacy leakage.
Protectors aim to prevent the unauthorized exploitation of these
sensitive data by performing unlearning methods on multimodal
data. These methods aim to render models trained on such multi-
modal unlearnable examples incapable of accessing users’ privacy
features, while not impeding users’ social interactions after posting
images and text, as depicted in the right segment of Fig. 1.

An intuitive idea involves extending the unlearning methods for
image classification to MCL. However, we explore the performance
of these methods on multimodal data, and all of them fail to present
effective protection due to increased data modalities or dispersion of
data pairs. For model-free attacks, they fail to generate specific noise
patterns that strongly correlate with the category for a shortcut due
to the lack of certain labels in the image-text pair. For model-based
attacks, while it may be feasible to optimize noise to build shortcuts
with clean captions, their efficacy is significantly diminished. Our
analysis was primarily attributed to the dispersion of the data pairs,
which presents challenges in learning the noise pair and captions
compared to the images and labels in classification, as depicted
in Fig. 2. Therefore, establishing more efficient shortcuts is key to
generating effective multi-modal unlearnable examples.

In this paper, we propose a novel optimization framework that
efficiently generates unlearnable multimodal examples for image-
caption pairs. We first adopt the Error-minimizing (EM) [31] frame-
work as a basis for our attack, and we consider optimizing the
noise along with an additional text trigger. Specifically, following
adversarial triggers in NLP [76], we propose to add short text se-
quences as triggers in the front of the clean caption, which does
not affect the understanding of the text by the user. Therefore,
it can be formulated a multi-step minimization problem to opti-
mize the noise-text trigger pair and build the shortcut between
them, which we dubbed Multi-step Minimization (MEM), to pre-
vent the unauthorized model from learning the features of images
and captions. During optimization, we consider adopting projected
gradient descent (PGD) [62] to solve the noise minimization prob-
lem and use the HotFlip [12] method to approximate the gradient
and replacement strategy in [76] to select the optimal trigger in
the text minimization problem. Through extensive experiments, we
verify that unlearnable examples generated by MEM provide better
protection and exhibit transferability across different models.

In summary, our main contributions are:

• We are the first to consider a new scenario called multimodal
data protection, which aims to prevent multimodal personal
data on social media from unauthorized MCL, and we take
the image-text pair as examples.
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• We analyze the limitations of previous methods extended to
multimodal contrastive learning, attributed to the increase
in modality and the dispersion of the caption features.

• We propose a Multi-step Error Minimization (MEM) to gener-
ate effective multimodal unlearnable examples, which lever-
ages an additional optimized text trigger for better conver-
gence at the basis of Error-minimizing (EM).

• Extensive experiments are conducted to verify the effective-
ness of our method with different datasets. In addition, we
present a practical case study on face privacy protection
within a fine-tuning scenario.

2 RELATEDWORK
2.1 Multimodal Contrastive Learning
Initially designed for self-supervised representation learning in
unimodal contexts, contrastive learning methods aim to improve
the agreement between views augmented differently in the same
instance while reducing the agreement between views of distinct
instances [7, 10, 27, 29, 64]. Recently, these techniques have been
extended to multimodal domains, notably in the context of paired
image-text datasets. Multimodal contrastive models like CLIP [66]
and ALIGN [35] have undergone extensive pretraining on vast
datasets including hundreds of millions to billions of image-text
pairs. Their objective is to maximize the agreement between rep-
resentations of matched image-caption pairs while minimizing
agreement for non-matched pairs. As a result, these models have
exhibited exceptional performance in zero-shot classification tasks
and have shown robustness to distributional shifts.

2.2 Poisoning Attacks
Data poisoning attacks aim to disrupt the model training process
by processing the training dataset, resulting in a significant in-
crease in test errors for some specific samples during the testing
phase. [9, 58, 71]. A common type of data poisoning attack is the
backdoor attack [20, 25, 34, 46, 47, 55–57, 59, 60, 78, 85, 86], which
typically involves injecting triggers into training samples, leading
to misclassification of images containing these trigger patterns
during testing [19, 42]. However, it typically only affects samples
with trigger, while clean samples remain unaffected and can be
correctly classified. Recent work also explores poisoning attacks on
multimodal contrastive learning (MCL). Yang et al. [80] study the
poisoning attacks against multimodal models in both visual and
linguistic modalities. Carlini and Terzis [4] introduced a framework
that effectively poisoned CLIP models with backdoor attacks. In
addition, some works aim to train a robust CLIP model against data
poisoning and backdoor attacks [2, 79]. Due to the time-consuming
of training a high-performance model with a large-scale dataset,
we will follow the experimental setting of these works to train a
rather simpler model with a small dataset in this paper. When the
goal is generalized to the entire test set, the poisoning attack is
called an indiscriminate/availability poisoning attack [28, 82]. In
the community, this is considered a special case of a poisoning
attack, which can also be divided into clean-label and dirty-label
scenario.

2.3 Unlearnable Methods
Unlearnable methods aim to protect data from unauthorized train-
ing of the classification model by introducing imperceptible noise
to the images, in fact, clean-label indiscriminate/availability poison-
ing attacks. Models trained on such unlearnable examples typically
exhibit a notable decrease in accuracy on clean test sets.

There are two categories to generate unlearnable examples in im-
age classification. The first category involves model-based attacks,
which require a surrogate model to guide the perturbation gen-
eration [16, 72]. The error minimization (EM) [31] minimizes the
classification error of images on a surrogate classifier and iteratively
updates the surrogate model with these perturbed images. Fowl
et al. [17] propose adversarial poisoning, which contains targeted
adversarial perturbation (TAP) and untargeted adversarial pertur-
bation (UAP), which uses adversarial examples [21–24, 32, 33] as
poisoned data to make the model unlearn the features. TAP presents
an effective protection for the image dataset. While model-based
methods are potent, they are often computationally demanding.
Some findings reveal that these approaches can be easily neutralized
by adversarial training (AT) [1, 36–38, 45]. To address this, several
works attempt to leverage robust protection against AT [15, 18].
Model-free methods do not require a surrogate model to gener-
ate noise for images. Yu et al. [82] empirically investigate various
unlearnable methods and show that all of them use these spuri-
ous features to create a shortcut in the model. They also propose
the Linear-sperate Synthetic Perturbation (LSP) in response to this
characteristic and show great effectiveness. Autoregressive poi-
soning [68] proposes a generic perturbation generation with each
class that can be applied to different datasets, which is a series of
dataset-independent perturbations. CUDA [67] is generated using
controlled class-wise convolutions with filters that are randomly
generated via a private key. These previous works focus on image
classification using cross-entropy loss, and He et al. [28] explore the
unlearnable examples for unsupervised contrastive learning and
discover that extended EM and TAP methods can still effectively
protect against unsupervised learning. However, when extending
them to multimodal contrastive learning, their effectiveness dimin-
ishes due to the increased modality.

3 MULTIMODAL UNLEARNABLE EXAMPLES
3.1 Preliminaries
Our scenario involves twomain parties: the protector, and the hacker.
We assume that the protector is aware that multimodal privacy data
may be unauthorized used by hackers. Consequently, the protector
takes measures to render the samples unlearnable by performing
operations on the data set. Subsequently, the protector releases
these unlearnable multimodal examples to the Internet. Then, when
hackers crawl the multimodal data from the web to train multi-
modal models from scratch with an initial model or fine-tune the
pre-trained model, these unlearnable examples will prevent the
model from learning the features of private data, and present a
poor representation of features across modalities. In this paper, we
take the image-text pair as multimodal data as an example, and
choose the CLIP [66] as the model used by hackers, which is the
most representative multimodal contrastive learning framework.
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Figure 2: Comparison of different methods in classification and multimodal contrastive learning (MCL). 𝐼𝑖 denotes the image,
and 𝑇𝑖 is the paired caption. The blue area is the expected decision boundary of the models trained on unlearnable examples.

Here, we formulate our problem: we begin by considering a
personal image-caption dataset D ⊂ I × T that comprises pairs
(𝐼𝑖 ,𝑇𝑖 ), where 𝐼𝑖 is an image and 𝑇𝑖 is the associated caption. The
protector aims to generate an unlearnable set D𝑢 that contains
the unlearnable image-text pair

(
𝐼 ′
𝑖
,𝑇 ′
𝑖

)
, and make a CLIP model 𝑓 ∗

trained on it generalize poorly on the clean distribution D:

argmaxE(𝑰 ,𝑻 )∼D
[
L

(
𝑓 ∗ (𝑰 , 𝑻 )

) ]
,

s.t. 𝑓 ∗ ∈ argmin
𝑓

∑︁
(𝑰 ′,𝑻 ′ ) ∈D𝑢

[
L

(
𝑓 (𝑰 ′, 𝑻 ′)

) ] (1)

3.2 Limitation of Existing Works
Directly solving Eq. 1 is intractable for deep neural networks, and
recent works have designed multiple approximate solutions. We
can follow these works and extend them to MCL. However, all
model-free methods for classification fail to generate image noise
here because these methods aim to find a series of specific noise
patterns for images related to one certain class, while there is no
label in the image-caption pair data. Therefore, only model-based
methods can be applied to the MCL, and we extend two typical
methods to generate unlearnable multimodal examples. Specifically,
they leveraged the addition of a set of perturbations Δ on the images
and employ an 𝑙∞ to bound for each noise 𝛿 .

3.2.1 The Error-minimizing Noise. (EM). Huang et al. [31] propose
a bi-level objective to generate perturbations 𝛿 on the images with
a surrogate model, which aims to minimize the loss of the surro-
gate model on training data. We denote image noise by 𝛿 and the
surrogate model by 𝑓 . Therefore, we can apply it to the multimodal
unlearnable examples with the CLIP loss L, and the objective is
the following:

argmin
𝛿∈Δ
E(𝐼 ,𝑇 )∽D

[
min
𝑓

L (𝑓 (𝐼 + 𝛿,𝑇 ))
]
. (2)

3.2.2 Untargeted Adversarial Perturbation. (UAP). Instead of em-
ploying bi-level objectives, Fowl et al. [17] demonstrate that the
common objectives used for generating adversarial examples are
sufficient as unlearnable perturbations. They utilized untargeted
adversarial perturbations (UAP) and targeted adversarial pertur-
bations (TAP) as examples of unlearnable perturbations. However,

extending TAP to image-caption data is challenging due to the diffi-
culty in selecting the desired target goal for the caption. Therefore,
we can only construct UAP 𝛿 using the following objective:

argmax
𝛿∈Δ
E(𝐼 ,𝑇 )∽D

[
L

(
𝑓 ∗ (𝐼 + 𝛿,𝑇 )

) ]
. (3)

However, from Table 1, we experimentally found that although
EM and UAP can be applied to image-caption pairs, they fail to
achieve highly effective protection, especially UAP. We explore the
reasons for the decline in the effectiveness of these methods from
image classification to multimodal contrastive learning. In image
classification, EM and UAP optimize the images with the same
label to converge in a feature space, resulting in the model easily
capturing these additive noises and learning the correlation with
labels, as shown in Fig.2(a). However, in multimodal contrastive
learning (MCL), to effectively apply the EM and UAP methods, the
direction of the optimized image noise must relate to the features
of the caption, causing the image features to become either close to
or far away from these features. Nevertheless, the caption features
of different pairs may be widely dispersed in the image-caption
dataset. Consequently, as illustrated in Fig. 2 (b) and (c), it becomes
more challenging for the model to capture the correlation between
captions and noise generated by EM and UAP compared to those
in classification. In Fig. 2 (c), the learning decision space of UAP is
much more complex, so its poor protection is to be expected.

3.3 Multi-step Error Minimization (MEM)
In the previous section, we showed that the model-based meth-
ods still fail to achieve effective protection due to the dispersion
of image-text pairs. An intuitive strategy of enhancement entails
optimizing both the image and the captions for a larger optimized
space, boosting their convergence across different pairs in the fea-
ture space. Consequently, the optimized feature representations of
the image and caption set exhibit similar distributions, facilitating
the model’s learning of their shortcut, as illustrated in Fig. 2 (d).

To this end, we take the EM method as the basic framework and
propose adding an additional short text trigger to the caption to
minimize contrastive loss, following the setting of an adversarial
attack on text tasks [76]. Regarding the length of the trigger, longer
triggers are more effective, while shorter triggers are more stealthy.
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Figure 3: The framework of MEM. At each step, we concatenate the current trigger to clean captions and attach noise to clean
images. We then compute the gradient with current images and tokens. We update the images using Eq. 5 and update the text
triggers with Eq. 6. The solid line represents forward propagation, and the dashed line represents backward propagation.

Therefore, our method can be conceptualized as a tri-level itera-
tive optimization problem, resembling a multi-step process of EM.
Specifically, we sequentially optimize noise 𝛿 and text trigger 𝑡 to
reduce contrastive loss between optimized images 𝐼 + 𝛿 and opti-
mized text 𝑇 ⊕ 𝑡 , where ⊕ denotes the triggers that can be inserted
into clean text 𝑇 at various positions. For simplicity, we choose
to add text triggers at the beginning of the text. As a result, our
Multi-step Error Minimization (MEM) can be formulated as follows:

arg min
𝛿∈Δ,𝑡 ∈𝒯

E(𝐼 ,𝑇 )∽D

[
min
𝑓

L (𝐼 + 𝛿,𝑇 ⊕ 𝑡)
]
. (4)

We can iteratively optimize the above problem sequentially by
referring to the method in EM. We use projected gradient descent
(PGD) [62] to solve the noiseminimization problem in Eq. 4. Notably,
to mitigate the noise overfit to the clean captions, we augment them
by shuffling the clean caption in a batch and adding the correct
matching text triggers on them. Thus, this generated noise can
focus more on the text trigger than on part of the captions, when
facing the semantic wrong captions. So we can get the optimal 𝛿
according to the following iterative formula,

𝛿𝑡+1 = Proj
(
𝛿𝑡 − 𝛼 sign (∇𝛿𝑡 L (𝐼 + 𝛿,S(𝑇 ) ⊕ 𝑡))

)
, (5)

where ∇𝛿𝑡L is the gradient of the loss w.r.t 𝛿𝑡 . 𝛼 is the step size
and 𝑃𝑟𝑜 𝑗 () denotes the project of 𝛿 within the bound of the norm
(−𝜖, 𝜖). S(·) means shuffle the order of the clean caption samples
in a batch with each iteration. For the text trigger minimization
problem, we first initialize the trigger sequence by repeating the
word "the" or "a" to the front of all inputs. In addition, we optimize
the text trigger based on HotFlip [12], a method that approximates
the effect of replacing a token using the gradient. We denote a text

trigger as 𝑡𝑖 which is a hot vector and can be embedded in the form
𝑒𝑖 . Thus, we can update the embedding for every trigger token 𝑒𝑖 to
minimize the first-order Taylor approximation of CLIP loss around
the current token embedding:

argmin
e′
𝑗
∈V

[
e′𝑗 − e𝑖

]⊤
∇e𝑖L, (6)

where V is the set of all token embeddings in the vocabulary and
∇e𝑡 is the gradient of loss w.r.t 𝑒𝑖 . We can calculate a set of candidate
tokens 𝑒′

𝑗
using a dot product with embedding of the vocabulary

token and gradients. Finally, we can search for each optimal text
trigger with a beam search in a set of candidate tokens. We consider
the top-k candidates from Eq. 6 and search front to the last in
every position in the trigger and score each beam using the loss
on the current batch. We follow Wallace et al. [76] and use a small
beam size for efficiency. In Fig. 3, we can see the framework of the
generation of multimodal unlearnable examples with our MEM.

4 EXPERIMENT
4.1 Experiment Setup
Target models and datasets. Following previous works [2, 79, 80],
we adopt the open-source implementation of CLIP in the com-
munity1. For the architecture of the surrogate model, we choose
the model with ResNet50 [30] as the image encoder and a Trans-
former [75] with certain architecture modifications serving as the
text encoder. Our experiment involves three datasets: Flickr8K [81],
Flickr30K [81], andMS-COCO [8]. Specifically, Flickr8K and Flickr30K
consist of 8000 and 31,000 images, respectively, each accompanied
1https://github.com/mlfoundations/open_clip

https://github.com/mlfoundations/open_clip
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Table 1: Comparison of the effectiveness with different unlearnable examples on several datasets.

Dataset Flick8k Flick30k MSCOCO
Image → Text Text→ Image Image → Text Text→ Image Image → Text Text → ImageMethods Hit@10 Medr Hit@10 Medr Hit@10 Medr Hit@10 Medr Hit@10 Medr Hit@10 Medr

Random 1.2 727 0.9 490 1.0 711 1.0 498 0.2 3419 0.2 2491
Clean 22.7 58 18.5 60 46.5 12 42.7 16 65.1 5 58.3 7
EM [31] 13.8 117 15.9 86 9.6 197 7.9 170 1.7 1213 1.6 880
UAP [17] 12.9 110 16.5 76 36.7 26 35.6 24 63.8 5 57.1 7

MEM-3 (ours) 4.1 304 3.7 250 3.8 412 2.2 308 1.7 1705 1.3 1301
MEM-5 (ours) 3.8 308 3.0 275 3.9 445 2.0 325 0.8 1883 1.1 1466

Table 2: The transferability of MEM-3 generated on a ResNet50 model across different architectures models.

Dataset Flick8k Flick30k MSCOCO

Model Image → Text Text→ Image Image → Text Text→ Image Image → Text Text→ Image
𝐷𝑐 𝐷𝑢 𝐷𝑐 𝐷𝑢 𝐷𝑐 𝐷𝑢 𝐷𝑐 𝐷𝑢 𝐷𝑐 𝐷𝑢 𝐷𝑐 𝐷𝑢

RN50 58 308 60 275 12 445 16 325 5 1086 7 988
RN101 52 236 58 197 10 404 17 306 5 989 6 844
ViT-B/32 53 241 52 194 9 343 13 287 4 1064 4 920

by five captions. We adhere to the protocol established by [14, 39,
84], dividing the datasets into training/validation/testing sets with
ratios of 6,000/1,000/1,000 and 29,000/1,000/1,000 for Flickr8K and
Flickr30K, respectively. MS-COCO comprises 123,287 images, each
annotated with five descriptions. In [39], MS-COCO underwent
division into 82,783 training images, 5,000 validation images, and
5,000 test images. Despite their smaller size compared to the large-
scale datasets used to train the original CLIP model, these datasets
remain suitable for storage and computational resources and have
found widespread usage in MCL studies [79, 80].
Training and Attack Setup. Initially, we focus on training models
from scratch in the main experiments and reserve discussion of the
fine-tuning scenario to the case study on face privacy protection.
Following the training setup of the CLIP model in [2, 66], we choose
a batch size of 128 and set the initial learning rate to 0.0005. The
weight decay rate is set to 0.2, and we employ an Adam optimizer
with decoupled weight decay regularization, while the learning
rate decays using a cosine scheduler. We train these models from
scratch on 1 A100 GPU for 32 epochs. During the attack stage, we
extend the EM and UAP methods to MCL. In both cases, we assume
that the surrogate models are CLIP models with the ResNet50,
while the surrogate model for UAP is already trained on clean data.
For our MEM, we choose an initial surrogate CLIP and iteratively
optimize the noise and text trigger, stopping when the loss is below
a threshold. We select a threshold of 0.01. Regarding the text trigger,
we set the text sequence lengths as three and five, denoted MEM-3
and MEM-5, respectively. Typically, we set the noise bound of all
methods with the 𝑙∞-norm 𝜖 = 8/255.
Evaluation Metrics.We evaluate the impact of data protection by
examining the decline in performance in image and text retrieval
tasks, drawing from previous work on attacks in MCL [79, 80]. Two
metrics are employed to illustrate.Hit@10measures the proportion
of all target images/texts that appear within the top 10 of the list of
rank. Higher Hit@10 values indicate that many text/image samples
successfully retrieving target images/texts early, reflecting a better
rank list.Medr refers to the median position of all target images

(a) Training Loss (b) Testing Metric Medr

Figure 4: Training loss curves and TestingmetricMedr curves
on Flick30K with different methods.

/ texts in the list of test images/texts. Lower Rank values signify
earlier access to target images, indicative of a superior rank list.
The performance of unlearnable multimodal examples is assessed
using Hit@10 and Medr for image retrieval (Image→ Text) and text
retrieval (Text → Image) across all testing images. Lower Hit@10
and higher Medr signify more effective protection of the data.

4.2 Effectiveness and Transferability
In this section, we compare our method with extensions of existing
popular unlearnable methods, including EM [31] and UAP [17].
Table 1 presents their retrieval results on different datasets. It is
evident that UAP nearly fails to provide any protection for multi-
modal data, while EM demonstrates a certain level of protection.
Moreover, as the size of the dataset increases, the effect of EM im-
proves due to the denser caption distribution in the feature space,
consistent with our analysis in Section 3.2. However, our MEM
consistently offers robust protection for multimodal data, reducing
retrieval performance to nearly half random guessing. In particular,
MEM-5, with a longer text trigger, obtained greater results in re-
ducing the performance of the hacker model compared to MEM-3,
likely because longer text triggers enable the model to focus more
effectively on the trigger and establish a shortcut.
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Figure 5: AttentionMaps Visualization: comparing four models on clean data and unlearnable examples with different methods.

Fig. 4 illustrates the descending curves of the training loss trained
on unlearnable examples generated by different methods and the
retrieval Medr on the clean test set. From (a), we observe that
although EM enables the loss to fall faster compared to normal
training, our method, MEM-3 and MEM-5, have a smaller loss on
the first epoch, suggesting that the model can quickly learn the
shortcuts. The UAP hardly speeds up the loss decline significantly,
so it is understandably inefficient. From (b), we find that all models
are trained with Medr decreasing compared to random guessing,
but the model poisoned by MEM stops learning the fastest, reaches
the worst result, and does not learn further as the epoch increases.
The above observations are consistent with the results in Tab. 1.

We assume that data protection is a completely black-box set-
ting, wherein the protector lacks knowledge of the hacker model’s
architecture. Thus, we evaluate the performance of our MEM gen-
erated on the ResNet50 surrogate model on different hacker models,
including ResNet101, and ViT-B/32. The results are presented in
Tab. 2. We find that these examples can be successfully transferred
across different models and can degrade the performance of the
CLIP model. Although they generated a surrogate model with a
structure different from that of the hacker model can also exhibit
the same protective effect, this observation aligns with the one of
unlearnable examples in image classification. This is likely because
the feature preferences learned by the models are similar.

4.3 Analysis
Attention of the models. Fig. 5 presents the heatmaps of images
and text, illustrating the attention of models trained on clean and
unlearnable examples. The Grad-CAM [70] is utilized to visualize
the model attention for images, while the Integrated Gradients [73]
is employed to visualize the attention to the text. Lighter colors
represent higher attention from the model. Remarkably, for the
image, models in (1), (2), and (3) all focus on the central region,
which correlates with the captions. In contrast, model (4), trained
on samples generated by MEM-3, fails to accurately recognize the
clean image due to only learning noise features. Similarly in the text,
models in (1), (2), and (3) all focus on the keywords of ’glass’, while
the model in (d) put the attention on the first three words, probably
because MEM-3 always optimizes the noise and the first three text
triggers to create shortcuts. These visualizations report that the EM
and UAP are ineffective enough in protecting the multimodal data,
while MEM-3 has an obvious effectiveness.
Visulaization of unlearnable examples. We visualize the fea-
ture distributions of clean samples under the normal model and the

(a) Clean (b) MEM-3

Figure 6: t-SNE visualization of the clean samples and un-
learnable examples for clean model and poisoned model.

feature distributions of unlearnable examples optimized by MEM-
3 on the unlearned model in Fig 6. We represent image features
with triangles and text features with circles, with the same color
indicating five identical but transformed images and their corre-
sponding different descriptions in the dataset. From (a), we observe
that under the clean model, the same images and texts cluster to-
gether internally, and the corresponding image-text pairs are close
to each other. However, in (b), there is a divergence between the
same images and texts, with only the pairs being pairwise close to
each other. This indicates that our methods effectively facilitate the
model in learning the shortcuts between noise and textual triggers.
Extension with Semantic Triggers. In the previous parts, we pro-
pose to use the gradient by the Hotflip method to select embeddings
in the vocabulary list with large inner products to serve as candi-
date words for replacement. However, this approach may result in
the generation of candidate words lacking semantic information,
potentially impacting social reading or being removed by hackers.
Here, we leverage the pre-training parameters of the BERT model
to generate some semantically relevant substitutions as vocabulary
lists. Subsequently, we embed these substitutions to obtainVbert,
and then compute the inner product with the gradient and token
embeddings of the substitutions, which yields replaced words with
semantics. Table 3 displays examples of text triggers generated
by our MEM-3 method under different datasets, including those
generated with and without the BERT method. Text triggers gener-
ated with BERT exhibit greater naturalness and semantic coherence
compared to those generated without BERT. Additionally, we show
the Medr results of these triggers in text-image retrieval. It is ob-
served that triggers generated without BERT have better protection
performance, which is attributed to their larger search space, while



MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia. Xinwei Liu et al.

Table 3: Comparison of text triggers generated by MEM-3 method with and w/o BERT, and their effect on protection.

Dataset Captions (red = text trigger) Image→ Text Text → Image

Flickr8k w/o BERT And lopez ... a girl in a pink shirt has jumped into the air. 304 250
with BERT Next, suddenly a girl in a pink shirt has jumped into the air. 256 213

Flickr30k w/o BERT The baked instaa bride having a photo shoot outdoors around lots of people. 412 308
with BERT I was like a bride having a photo shoot outdoors around lots of people. 365 278

MSCOCO w/o BERT Conde matsu grinding a man and two dogs in the snow. 1705 1301
with BERT There he saw a man and two dogs in the snow. 1356 1028

Table 4: The protection effect of unlearnable examples generated on ResNet50 fine-tuning on different pre-trained models.

Model RN50 RN101 ViT-B/32

Metric Image → Text Text→ Image Image → Text Text→ Image Image → Text Text→ Image
Hit@10 Medr Hit@10 Medr Hit@10 Medr Hit@10 Medr Hit@10 Medr Hit@10 Medr

Pre-trained 2.6 77 2.6 77 3.3 83 3.3 83 3 87 3 87
Fine-tuned 80.7 1 80.7 1 85.3 1 85.3 1 94 1 94 1
MEM-3 6.7 74 6.7 74 6 66 6 66 93.3 1 93.3 1
MEM-5 8.7 82 8.7 82 12.7 58 12.7 58 91.3 1 91.3 1

triggers generated with BERT are restricted to a vocabulary space
Vbert, resulting in inferior protection efficacy.

4.4 Case Study: Face-Privacy Protection
We conduct a case study to apply MEM to a real-world scenario:
protecting personal face images and associated information on
social media platforms, such as names. It is arguably one of the most
commonmultimodal privacy protection scenarios. In previous parts,
we assumed that hackers train models with unlearnable examples
from scratch, but in the real-world, hackers will opt to fine-tune
pre-trained models provided by the community. Therefore, here we
assume that the protector aims to prevent their facial images and
names from being fine-tuned with a pre-trained CLIP model. We
adopt the Open AI’s released parameters to initialize pre-trained
models, and still assume the protector has access to their data to
generate unlearnable examples before sharing them on on-line
platforms. However, they are unable to know the hacker’s model
architecture and the parameters. In this black-box scenario, we
explore whether MEM can still prevent model from learning.

We conducted experiments using the PubFig [40], a large real-
world face dataset comprising 58,797 images of 200 individuals.
For retrieval evaluation, we randomly selected one photo of each
celebrity as the test set and utilized remaining images for training.
It’s noteworthy that the pre-trained CLIP model already possesses
knowledge of the real names and faces of these celebrities. For
authentic fine-tuning, we altered their names and provided a set
of text templates for caption generation, as shown in Fig. 7. Then
we generated unlearnable examples using MEM and employed a
pre-trained surrogate model with ResNet50. We fine-tune the pre-
trained models for 10 epochs and a small learning rate of 0.00001
and evaluate them with different hacker models. The results are
presented in Tab. 4. For comparison, we also test the results of
the pre-trained models and the benign fine-tuned models. We find
the initial model shows poor performance on the test set, since
the face and name features are not aligned. However, with only
10 epochs of fine-tuning, the Medr of its retrieved results reaches

1. This could be because the pre-trained model has a strong fea-
ture representation, enabling it to rapidly adapt to the new task in
the fine-tuning process. Our MEM can prevent these models from
learning the correlation between face and name features, thereby
impeding accurate person retrieval on the test set. These unlearn-
able examples were generated by ResNet50 surrogate model and
effectively work on the ResNet101 targeted model. However, their
efficacy is reduced on ViT, possibly due to variations in architecture
and initialization parameters.

Figure 7: Illustration of the face-privacy protection pipeline.

5 CONCLUSION
In this paper, we explore multimodal data protection, particularly
focusing on image-text pairs, wherein we generate multimodal
unlearnable examples to prevent exploitation by MCL. We extend
previous classification methods to this context, revealing their limi-
tation in MCL due to the increased modality and data dispersion. In
light of these findings, we introduce a novel generation approach
namedMulti-step Error Minimization (MEM), which is based on the
framework of EM. MEM effectively establishes a shortcut between
noise and textual triggers and demonstrates transferability across
different hacker models. Additionally, we utilize various visualiza-
tion tools to validate the effectiveness of our approach. Our work
opens up a new direction, and it is expected to be applicable to
other modal pairs, such as audio-text and audio-image pairs.
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