
Noname manuscript No.
(will be inserted by the editor)

AntibotV: A Multilevel Behaviour-based Framework for
Botnets Detection in Vehicular Networks

Rabah Rahal · Abdelaziz Amara Korba · Nacira Ghoualmi-Zine ·
Yacine Challal · Mohamed Yacine Ghamri-Doudane

Received: date / Accepted: date

Abstract Connected cars offer safety and efficiency for

both individuals and fleets of private vehicles and pub-

lic transportation companies. However, equipping vehi-

cles with information and communication technologies

raises privacy and security concerns, which significantly

threaten the user’s data and life. Using bot malware,

a hacker may compromise a vehicle and control it re-

motely, for instance, he can disable breaks or start the

engine remotely. In this paper, besides in-vehicle at-

tacks existing in the literature, we consider new zero-

day bot malware attacks specific to the vehicular con-

text, WSMP-Flood, and Geo-WSMP Flood. Then, we

propose AntibotV, a multilevel behaviour-based frame-

work for vehicular botnets detection in vehicular net-

works. The proposed framework combines two main

modules for attack detection, the first one monitors the

Rabah Rahal
Networks and Systems Laboratory (LRS), Badji Mokhtar-
Annaba University, Annaba, Algeria
Tel.: +213-674-383-701
E-mail: rabah.rahal@univ-annaba.org

Abdelaziz Amara Korba
Networks and Systems Laboratory (LRS), Badji Mokhtar-
Annaba University, Annaba, Algeria
E-mail: abdelaziz.amara.korba@univ-annaba.org

Nacira Ghoualmi-Zine
Networks and Systems Laboratory (LRS), Badji Mokhtar-
Annaba University, Annaba, Algeria
E-mail: ghoualmi@yahoo.fr

Yacine Challal
Laboratory of Methods of Systems Design (LMCS), Ecole Na-
tionale Supérieure d’Informatique (ESI), Algiers, Algeria
E-mail: y challal@esi.dz

Mohamed Yacine Ghamri-Doudane
Laboratory of Informatics, Image and Interaction (L3i), Uni-
versity of La Rochelle, La Rochelle, France
E-mail: yacine.ghamri@univ-lr.fr

vehicle’s activity at the network level, whereas the sec-

ond one monitors the in-vehicle activity. The two intru-

sion detection modules have been trained on a historical

network and in-vehicle communication using decision

tree algorithms. The experimental results showed that

the proposed framework outperforms existing solutions,

it achieves a detection rate higher than 97% and a false

positive rate lower than 0.14%.

Keywords ITS · Vehicular Networks · Botnets ·
WSMP · Intrusion detection · Network Flow ·
Controller Area Network · Machine learning · Network

Forensics · Security

1 Introduction

With the proliferation of connected cars, vehicular net-

works enabled the concept of autonomous fleets of ve-

hicles. Indeed, vehicular networks became a distributed

transport fabric capable of making its own decisions

about driving customers to their destinations [1]. Nowa-

days, vehicular networks are used in diverses applica-

tions ranging from safety such as blind-spot warning to

entertainment such as streaming media. Unlike other

wireless networks, the nodes in vehicular networks move

at high speeds, causing frequent disconnections, and

reducing communication time between nodes. In ad-

dition, due to mobility, it is possible to move from

one environment to another, and each environment has

its characteristics (obstacles, signal propagation, etc.)

that influence the quality of communication. To adapt

to these challenges, specific communication standards

have been proposed to ensure efficient communications

between vehicles and infrastructure, among these stan-

dards we find the dedicated short-range communica-

tion standard (DSRC). DSRC is a communication tech-

ar
X

iv
:2

40
7.

03
50

6v
1

 [
cs

.C
R

]
 3

 J
ul

 2
02

4

2 Rabah Rahal et al.

nology that relies heavily on several cooperatives and

interoperable standards: IEEE 802.11p, IEEE 1609.x,

SAE J2735 Message Set Dictionary, and the emerg-

ing SAE J2945.1 standard. IEEE 802.11p and IEEE

1609.4 are used to describe the physical and the Me-

dia Access Control (MAC) layer of the system respec-

tively. The network and transport layers are described

by IEEE 1609.3, which has two supported stacks (In-

ternet Protocol version 6 (IPv6) for non-safety appli-

cations and WAVE Short Message Protocol (WSMP)

for safety applications). Security functions and services

are described by an IEEE 1609.2 standard protocol.

While SAE J2735 and SAE J2945.1 standards are used

to define the format of the messages exchanged over the

network.

Vehicular networks can contribute to improving trans-

portation safety and efficiency [2]. However, they raise

privacy and security concerns, which significantly threaten

the network operations and the user data. One of the

most dangerous cybersecurity threats is when the on-

board computer of a connected vehicle gets compro-

mised and exploited by a remote attacker. This cy-

berthreat is known as vehicular bot malware. Unlike

the other security threats, it can be used to execute re-

motely multilevel malicious tasks: (1) distributed net-

work attacks (DDoS) [3]; (2) violating driver’s data (lo-

cation privacy [4] or illegal GPS tracking, eavesdroping

drivers and passengers’ conversations [5]); (3) control-

ling the bot vehicles remotely (opening the door, start-

ing the engine, turning on the lights, driving the vehicle

away or disabling breaks); (4) misleading the driver by

giving false information about the vehicle state (falsi-

fying the fuel level, changing the speedometer reading

and displaying failure information on the instrument

panel cluster) [6].

Despite the harmful impact of vehicular bot mal-

wares on the privacy and safety of the driver, there

are few researches [7, 8], that have considered this is-

sue. Garip et al. [8] proposed SHIELDNET, a machine

learning-based botnets detection mechanism. As bot-

net, they considered GHOST [7], a botnet communica-

tion protocol that uses Basic Safety Messages BSMs to

dissimulate its communication over the control channel.

SHIELDNET detects the use of GHOST, and identifies

vehicular botnet communication, by looking for abnor-

mal values of specific BSM fields, which are messages

used by security applications only in vehicular networks

and cannot be found in other types of networks. Al-

though its effectiveness, SHIELDNET relies on a spe-

cific communication protocol (Ghost), thus it would not

be effective if the botmaster changes the communica-

tion protocol.

Bot malware is one of the most dangerous cyber

threats that can target connected vehicles; a hacker

can compromise the on-board computer and take full

control of the vehicle. This paper proposes a new intru-

sion detection system for connected and autonomous

vehicles. The proposed system employs a behavioral ap-

proach based on machine learning techniques to mon-

itor network and in-vehicle traffic for botnet activity.

The detection approach does not suppose a specific bot-

net communication protocol. Since vehicular bot mal-

ware operate within in-vehicle and network communi-

cation levels, we propose a multilevel behaviour-based

framework for botnets detection in vehicular networks

(AntibotV). The proposed framework monitors the in-

teraction of the vehicle with the outside by analyz-

ing the network traffic. It also monitors the in-vehicle

activity to detect suspicious operations that may re-

late to bot malware activity. In addition, this paper

present two new bot malware attacks (zero-day attacks)

that could be carried out exclusively against vehicular

networks communication stack: 1) wave short message

protocol flood (WSMP flood); 2) and geographic wave

short message protocol-Flood (Geo WSMP flood). Both

attacks target the wave short message protocol, which

is used in vehicular networks for safety and convenience

packets transfer.

The contribution of this paper is two-fold:

(i) First, we define and describe a set of zero-day net-

work attacks, information theft scenarios, and in-

vehicle threats that can be executed by a hacker

through compromising an on-board vehicle computer

using bot malwares.

(ii) Second, we propose a multilevel botnet detection

framework based on decision trees that monitors

the vehicle’s operation at the network and in-vehicle

levels to detect the above-mentioned specific attacks

as well as more general existing vehicular bot activ-

ities.

The rest of the paper is organized as follows. Sec-

tion 2 provides a background related to vehicular net-

work architecture and botnet communication. Section

3 summarizes the existing works in the literature re-

lated to botnet detection. In section 4 we describe the

threat models. Section 5, describes in detail the pro-

posed framework, AntibotV. In section 6, we describe

the dataset generation steps and discuss the obtained

results. Section 7 concludes the paper and draws some

line of future work.

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 3

2 Background

This section provides a description of network and in-

Vehicle architecture and communication, as well as a

brief state of the art about botnet detection.

2.1 The architecture of vehicular networks

A vehicular network organizes and connects vehicles

with each other, and with fixed-locations resources (Road

Side Units). Many telematics architectures, including

navigation, traffic information, entertainment, emergency,

and safety services can be provided. In these architec-

tures, traffic information and navigation services are

generally provided by central TSPs (Telematics Service

Providers) through a vehicle-to-infrastructure commu-

nication [9]. On the other hand, the emergency and

safety services are supplied by an Onboard Unit (OBU)

installed by the individual car manufacturers, to allow

mutual communication among different vehicular nodes

(vehicle-to-vehicle) [10].

2.1.1 Network stack architecture

To ensure vehicle-to-vehicle and vehicle-to-infra-structure

communication, the automotive industry has developed

the dedicated short-range communication standard (DSRC)

(Figure 1). A communication technology that relies heav-

ily on several cooperatives and interoperable standards

[11]. At the PHY and MAC layers, DSRC utilizes IEEE

802.11p Wireless Access for Vehicular Environments

(WAVE). WAVE is an approved amendment of the IEEE

802.11 standard that enables secure wireless commu-

nication and physical access for high speed (up to 27

MB/s), short-range (up to 1000 m), and low latency.

The spectrum allocated to it is from 5.850 to 5.925 GHz,

divided into seven 10 MHz channels [12]. Channel 178

is reserved for control information and the others six

channels are used for service applications (Figure 2).

At the MAC sublayer extension of DSRC, the IEEE

1609.4 standard is deployed. It is used for priority ac-

cess, management services, channel switching, and rout-

ing [13] in order to enable to operating efficiently on

seven channels alternately [14]. As regards the IEEE

1609.2 standard, it includes techniques used to secure

application messages and describes administrative func-

tions necessary to support the core security functions

[15].

At the Network Layer, DSRC uses the IEEE 1609.3

standard. A standard that supports two protocol stacks,

Wave Short Message Protocol (WSMP) and IPv6. The

choice between using WSMP or IPv6+UDP/TCP de-

pends on the requirements of the application. For the

ones that depend on the routing capabilities to transmit

multi-hop packets like commercial applications, IPv6,

UDP, and TCP are used. However, the applications that

require the transfer of single-hop messages like security

and convenience applications, WSMP protocol is used.

Unlike the IP, UDP, and TCP protocols, the WSMP is a

WAVE network layer unique protocol and can be found

only in vehicular networks. It is used only to support

high-priority and time-sensitive communication.

Finally, for the format of the messages exchanged

over DSRC, like data frames and elements used by the

applications, they are defined in the SAE J2735 and

SAE J2945.1 standards. SAE J2735 represents a dataset

that contains message syntax. It contains many types,

among others, we mention the Basic Safety Message

(BSM) (periodically transmitted to provide current in-

formation and status) and the Common Safety Request

(CSR) [16]. Other messages norms for the V2V safety

applications are specified with the SAE J2945.1 stan-

dard.

2.1.2 In-Vehicle architecture

Nowadays, we are witnessing the automotive industry

converging to replace the mechanical components of the

vehicle with other electronic components labeled elec-

tronic control units (ECU), the number of deployed

units is expected to reach 3.29 billion by 2025 [17].

ECUs simplify the interior architecture of vehicles, thus

repair and diagnose even for those who know nothing

about vehicles. Each ECU contains its sensors and actu-

ators, it receives input from its sensors and implements

specific functions by its actuators. Communication be-

tween these ECUs is ensured through a dedicated bus

type especially for vehicular networks; called Controller

Area Network (CAN bus). ECUs and CAN buses to-

gether form the In-vehicle network (Figure 3).

In this In-vehicle network, there are two types of

CAN bus (high-speed and low-speed) connected by a

gateway [6]. For the communication of critical modules

(power train, brake, etc.), the high-speed CAN bus is

used. For the other types of modules (telematics, body

control, etc.) a low-speed CAN bus is used. The trans-

mission on CAN bus is done sequentially. However, if

more than one device transmits at the same time, a me-

dia access control (MAC) protocol Carrier-sense mul-

tiple access with Collision Resolution (CSMA-CR) is

used. CSMA/CR uses priorities in the frame header to

avoid collisions [18].

4 Rabah Rahal et al.

IEEE 802.2

IEEE 1609.4

Application Layer

Transport Layer

Network Layer

LLC Sub-layer

MAC Sub-layer

Physical Layer

Safety App Sub-layer

TCP protocol stack DSRC stack

VS

Application Layer

(Non-Safety)Message Sub-layer
(SAE J2735 & SAE J2945.1)

Transport Layer

TCP/UDP

Network Layer

IPv6

Transport & Network
Layers WSMP

IEEE 1609.3

IEEE 1609.2

LLC Sub-layer

MAC Sub-layer

MAC Sub-layer Extention

Physical Layer

IEEE 802.11p

Fig. 1: TCP vs DSRC stack

Fig. 2: WAVE radio channels

2.2 Botnets

A botnet is a collection of internet-connected devices

(computers, smartphones, IP cameras, routers, IoT equip-

ment, etc.) called bots that are infected by a malware,

to be controlled remotely by an operator (botmaster)

without users’ knowledge. The communication between

the botmaster and the bots is ensured through the Com-

mand and Control (C&C) server. Botnets can be used

to achieve harmful attacks, such as: launching Distributed

Denial-of-Service (DDoS) on rival websites or services,

send spam, distribute malwares, stole user/equipment

private information, and applying interior activities on

the infected devices. For example, the Mirai botnet [19]

in 2016, was able to carry out a massive DDoS attack

that brought down major sites like Amazon, Netflix,

Paypal, and Reddit [20].

3 Related Work

Researchers have worked on detecting botnets and over-

coming their negative impact. They proposed meth-

ods suited to the characteristics of each type of net-

work (communication stack, protocols, characteristics

of equipment, etc). Other worked on the protection

against DDoS attacks that can be caused by a botnet

[21, 22, 23, 24]. We find also different anomaly detec-

tion, revolutionary, and hybrid classification techniques

proposed to deal with new types of botnets [25, 26, 27,

28, 29, 30, 31, 32, 33].

In [21], the authors proposed an ML-based DDoS

detection and identification approach using native cloud

telemetry macroscopic monitoring. A lightweight method

and completely agnostic to specific protocols and ser-

vices, which can detect any kind of DDoS attack that

target the resources without the need for previous train-

ing. The authors in [22] have worked on the detection of

Low-Rate DDoS (LR-DDoS) attack (exactly the Shrew

attack). They proposed a new mechanism which not

only detects and mitigates the shrew attack but traces

back the location of the attack sources as well. The

attack is detected using the information entropy varia-

tions, and the attack sources are traced back using the

deterministic packet marking scheme. If the DDoS at-

tack is caused by a botnet, the traceability mechanism

can be used to identify bot nodes in the network. Ap-

proaches that deal with DDoS can be used to mitigate

the effects of botnets (and even to identify bot nodes),

however, if the botnet is used for other attacks (e.g.

information theft), DDoS detection techniques will not

be effective.

In [25], the authors proposed a model (known as

“AS-IDS”) that combines two detection approaches (anomaly-

based and signature-based) to detect known and un-

known attacks in IoT networks. The proposed model

has three phases: traffic filtering, preprocessing, and

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 5

Fig. 3: In-vehicle network

hybrid IDS. The signature-based IDS subsystem inves-

tigates packets by matching the signatures and cate-

gorized them as an intruder, normal or unknown. The

anomaly-based IDS subsystem employs Deep Q-learning

to identify unknown attacks. In [34], The proposed method

attempts to identify malicious botnet activity from le-

gitimate traffic using novel deep learning approaches,

exactly Gatted Recurrent Units (GRU) model. In a sec-

ond step, they introduced adjusted hyperparameters to

make the computational complexity low and more accu-

rate than the existing models. However, the use of two

detection approaches could cause an unbearable over-

load, which does not suit the type of network whose

nodes have limited computing and storage capacities.

In the case of traditional computer-based botnet

such as Ebury botnet [19], network-based detection is

one of the most effective detection techniques that has

attracted the attention of many researchers [35, 36,

37, 38, 39]. By analyzing the rate of failed connection

and network flow features, the network-based detection

technique identifies the exchanged traffic between the

C&C server and the bots.

Regarding smartphone-based botnet (like WireX [19]),

several solutions have been proposed to tackle their

impact, including rule-based [40] and signature-based

[41] approaches. However, it is the behavioural analysis

methods that have caught the attention of researchers

[42, 43, 44]. At different levels of the Android OS stack,

different sets of behavioural data are available. By mon-

itoring several layers of the Android OS, the behaviour-

based detection method seeks to detect malicious appli-

cations (API calls, etc.).

Concerning IoT-based botnets, several methods have

been proposed to fight against them by taking into ac-

count their special characteristics (communication ar-

chitecture, protocols, etc.) [45, 46, 47, 48, 49, 50, 51].

In [45], the authors proposed a lightweight signature-

based method that aims to ensure a reduced false pos-

itive rate without adding an overhead to IoT devices.

Other researchers have worked on network-level detec-

tion (exactly, the DNS protocol) to ensure general so-

lutions that cannot be affected by any hardware speci-

ficity [46, 47, 48, 49, 50].

The existing botnets detection mechanisms cannot

be applied directly for vehicular networks due to dif-
ferences in terms of communication stack, protocols,

frames format, and architecture. In the context of ve-

hicular networks, to the best of our knowledge, there

is only one research [7] that has tackled the problem

of botnets detection. Garip et al. [7] focused on the

communication protocol between the botmaster and

the bot vehicles. They investigated the usage of peri-

odic basic safety messages to transmit commands from

the botmaster to the bot vehicles. This communication

protocol called ”Ghost” allows the hacker to hide its

remote communication with the infected vehicle. The

authors considered two bot malware attacks feasible

against vehicular networks: Botveillance [52], and con-

gestion attacks [53]. Botveillance is an adaptive cooper-

ative surveillance attack against pseudonymous systems

in vehicular networks, which is based on vehicular bot-

net and performed by vehicles themselves without de-

pending on any additional hardware. It is used to track

vehicles of interest or violate the privacy of drivers. On

the other hand, the congestion attack is based on the

6 Rabah Rahal et al.

vehicular congestion avoidance application. It uses bot

vehicles to spread wrong congestion information to the

other legitimate vehicles, to cause congestion on specific

roads or areas.

The same authors [8] proposed SHIELDNET, a ve-

hicular botnets detection mechanism that uses machine

learning techniques to detect GHOST usage and iden-

tify the botnet communication. SHIELDNET detects

botnet activity by looking for anomalous values of spe-

cific BSM fields. Although the efficiency of the proposed

solution, the Ghost protocol is a single-hop range, which

makes the command of the botmaster sent only to its

neighbours, making the range of communication very

short and unreachable by far bot vehicles. Moreover, if

the botnet changes the communication protocol, it will

not be effective. Furthermore, the scenario of the botnet

in vehicular networks is not real. Because transmitting

commands through V2V communication will make the

botmaster control capacity very limited and it needs

to be on the road and near other botnet nodes. There-

fore, the ideal way to imagine a botnet in vehicular net-

works is where the botmaster is anywhere and can con-

trol those vehicles using V2I communication and send

commands through infrastructure. On the other hand,

if the installed malware is used to apply in-vehicular

activities, SHIELDNET will not be able to detect any

abnormal behaviour.

To the best of our knowledge, no study of botnets in

vehicular networks has combined bot malwares activi-

ties at the network and in-vehicle levels. Furthermore,

existing solutions in the literature are based on spe-

cialized protocols, limiting them to certain cases and

making them non-general. In this paper, we propose

AntibotV, a multilevel behaviour-based framework for

botnets detection in vehicular networks that monitors

the vehicle’s interaction with the outside by analyzing

the network traffic. It also monitors the in-vehicle ac-

tivity to detect suspicious operations that may relate to

bot malware activity. Furthermore, AntibotV does not

suppose a particular botnet communication protocol,

making it a general botnet-detection model regardless

of the botnet communication protocols.

4 Threat Models

In this section, we provide a detailed description of the

three categories of cyberattacks that can be executed

against a target vehicle using bot malwares. First, we

provide a detailed description of two zero-day DDoS

attacks. Then based on existing attacks on privacy, we

define new scenarios applicable to the vehicular context.

Finally, we present some in-vehicle attacks that exist in

the literature. Figure 4 shows the different categories

of cyberattacks that a hacker may execute using bot

malware.

4.1 DDoS attacks

Due to the differences between DSRC stack and the

TCP/IP stack, it is important to consider DDoS at-

tack scenarios specific to the vehicle network, and not

be limited to DDoS attacks common to all IP net-

works. Therefore, in this paper, we consider two zero-

day attacks specific to vehicle networks. Both attacks

exploit the WAVE Short Message Protocol (WSMP)

which is used by security and traffic management appli-

cations for the transfer of critical data such as vehicle

speed, kinematic state, etc. Both attacks can prevent

the transfer of safety messages between vehicles and

thus cause catastrophic damage.

TheWSM packets (Figure 5) exchanged between ve-

hicles are composed of the following fields: WSMP ver-

sion that gives the version of the protocol, channel num-

ber, and data rate to specify which channel and data

rate are used for the transmission, WAVE element ID

represents the WSMP header, WAVE Length to spec-

ify the length of the packet, and the WSM Data field

contains the payload data. The Provider Service Iden-

tifier field (PSID), identifies the service that the WSM

payload is associated with. For example, if an applica-

tion tries to get access to the WAVE service, it should

be registered with its unique Provider Service Identi-

fier (PSID). The WAVE provider devices use PSID in

their announcement messages to indicate that a certain

application is provided by this device. On the other

hands, as the vehicle passing the roadside device, user

devices, which may host such application, upon recep-

tion of such announcement, compares to check if there

is a match between the PSIDs in the announcements

and PSIDs in its tables, then the vehicle establishes

communication with that roadside unit [11, 12].

In both attacks, the hacker attempts to misuse the

WSMP protocol. In the first attack, WSMP flood, the

hacker sends to the victim vehicle WSM packets with

unknown PSID field values (not associated with any

WAVE service). Upon the reception of the forged WSM

packet, the target vehicle attempts to check (lookup)

for the corresponding entry within its PSID/Service ta-

ble. Checking the PSID of one WSMP frame will not

be a problem. However, checking the PSID of a huge

amount of WSM packets at the same time will exhaust

the resources of the target vehicle and make it unable to

respond or receive legitimate security and convenience

application packets.

The second attack, geographic WSMP flood, has

the same operating mode as WSMP flood, but wider

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 7

Botmaster

DDoS Attack

Theft of

information

Controlling the

vehicle remotely

Mislead the

driver

Malicious activities

Command and control server

Vehicular Ad-Hoc Network

(1) Initiate Attack

Ex: Starting the engine

(3) In-Vehicle Attack

(2) Transfer Commands

Legitimate Vehicle Bot Vehicle

DDoS attack scenario

Theft of information scenario

Controlling the vehicle remotely scenario

Threat models in the context of vehicular botnet

Fig. 4: Vehicular Botnets

Fig. 5: WSM frame

impact. The hacker broadcasts the forged WSMP mes-

sages to all its neighbours within a specific geographic

area. Thus, it exhausts the resources of several vehicles,

and it consumes the bandwidth of an entire geographic

area. Before validating AntibotV with the WSMP flood

attack, we tested it, and we found that it can decrease

the throughput by 63% (the number of security and

convenience frames arrived), which makes the attack

very effective (as shown in figure 6). More details about

the experiment setting (scenario, number of nodes, time,

etc.) are provided in section 6.1.1.

4.2 Theft of information

A team of academics from the University of Califor-

nia at San Diego and the University of Washington has

found out that the audio surveillance inside the vehi-

cles is possible [54]. In such situations, the attacker in-

directly uses virtual assistance tools (like Siri [55]) by

giving it malicious commands hidden in recorded mu-

sic, innocuous-sounding speech [56] or a low-powered

laser [57]. Siri begins recording the conversations using

the vehicle’s internal microphones and sends them to a

remote server belonging to the hacker every 10 or 20

seconds[58].

In the case of GPS tracking, the hacker may attempt

to track the vehicle’s location in real-time, check the

location, or retrieve the complete trajectory. For real-

time tracking, the GPS information must be sent every

second (streaming) to the botmaster. For the other two

types of GPS tracking, the information are sent period-

ically or on-demand. In this paper, we consider the real-

time GPS tracking scenario. The bot vehicle sends the

8 Rabah Rahal et al.

0 2 4 6 8

10

20

30

40

50
Normal

WSMP Flood

Throughput

Seconds

Pr
oc

es
se

d
pa

ck
et

s

Fig. 6: Normal throughput vs WSMP Flood throughput

Table 1: Threat models

Category Attack Objective

DDoS
WSMP Flood

Exhausting the resources of the target vehicle and make it unable
to respond or receive legitimate security and convenience
applications packets.

Geo-WSMP Flood
Exhausting the resources of several vehicles, and consuming
the bandwidth of an entire geographic area.

Theft of
information

GPS Tracking Tracking the vehicle’s location on real time.

Audio Surveillance
Recording the conversations using the vehicle’s internal microphones,
and sends them to the botmaster.

In-vehicle
Frame Falsifying

Fabricate fake frames that contain erroneous data to mislead the driver:
falsifying the fuel level, changing the speedometer reading. . .

Replay Attack
Replaying captured frames. Could be used to: opening the door, starting
the engine. . .

DoS Attack
Monopolize the transmission channel to delay or prevent the transmission
of legitimate CAN frames. Example: disable the brakes.

latitude (4 bytes), longitude (4 bytes), speed (2 bytes),
time (2 bytes) and direction coordination in streaming

to the botmaster [59].

4.3 In-Vehicle attacks

The in-vehicle networks brought convenience to man-

ufacturers, drivers, and after-sales services. However,

they raise vulnerabilities [6] that can be exploited by a

hacker to conduct the following attacks:

1. Frame Falsifying and injection: CAN frames

are sent in plaintext, which allows the bot mal-

ware within the vehicle to retrieve and analyze their

contents. Using the captured data, the bot mal-

ware can fabricate fake frames that contain erro-

neous data to mislead the ECUs. Subsequently, the

fabricated frames are injected in CAN bus to carry

out malicious activities such as: falsifying the fuel

level, changing the speedometer reading, or display-
ing failure information that may mislead the driver.

2. Replay Attack: The frames are transmitted through

CAN bus using broadcast and without authentica-

tion. Thus, CAN frames can be easily captured by

the bot malware to be analyzed and replayed in

a second step. In [60], the authors found that the

range of valid CAN frames is small. Hence, by it-

eratively testing CAN frames (i.e., the fuzzing test

mentioned in [60]), adversaries can discover many

functions of selected ECUs. The replay attack could

be used to open the door, start the engine, turn on

the lights or remotely drive the vehicle.

3. DoS Attack: messages transmitted with the small-

est identifier are the messages with the highest pri-

ority. The bot malware could use this vulnerability

to monopolize the transmission channel, and thus

delay or prevent the transmission of legitimate CAN

frames. For instance, the bot malware can prevent

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 9

a CAN frame from being transmitted to the ECU

of brakes, which could lead to accident [6].

Table 1 provides a summary of the different security

threats discussed earlier.

5 AntibotV Framework

In this section, we describe in detail the AntibotV,

a multi-level framework to detect vehicular botnets.

Moreover, we describe the detection process based on

machine-learning algorithms.

5.1 AntibotV overview

We suppose that network traffic generated by a bot

malware is different from legitimate traffic. In other

words, the bot malware alters the traffic pattern of

the vehicle. This hypothesis comes from the fact that

connected cars run specialized applications related to

safety and convenience, such as cooperative collision

warning, V2V post-crash notification, congested road

notification, etc... Running specialized and particular

applications, makes connected vehicles’ network traf-

fic pattern regular as long as it is not compromised.

Thus, we believe bot malware that compromises a con-

nected vehicle should alter its network traffic pattern.

Likewise, at the in-Vehicle level, because of the regular-

ity of communication patterns, it is possible to identify

a legitimate in-vehicle traffic pattern, and thus, detect

malicious bot activity.

The AntibotV is a host-based intrusion detection

system, running the system in a vehicle, rather than

at some point of the network. The proposed system

monitors communication with outside through analyz-

ing network traffic, and it monitors in-vehicle commu-

nication by analyzing CAN bus frames. The two-level

monitoring allows an effective detection of bot malware

activity which consists of sending data and receiving

commands from the botmaster, at the network level,

and executing control commands, falsify the fuel level,

change the speedometer reading or display failure in-

formation at the in-vehicle level.

The network traffic is characterized using a set of

statistical features such as flow duration, total packets

sent in the forward direction, minimum packet length,

etc (a detailed description of used features is provided

in the next section). To characterize the in-vehicle com-

munication a set of twelve features is used including

timestamp (recorded time), CAN ID (identifier of CAN

message in HEX), DLC (number of data bytes, from 0

to 8), DATA[0 7] (data value in byte).

Regarding network traffic, it is independent of the

type of vehicle, model, or year and it depends only on

the protocol stack used, which implies that AntibotV is

applicable in all vehicles that use DSRC standard as a

wireless access technology. Concerning CAN bus stan-

dard, it consists of two versions based on the length of

the arbitration field. CAN bus 2.0A defines an 11-bit

standard frame format while CAN bus 2.0B is com-

patible with data messages in a standard frame and ex-

tended frame format. Our framework mainly focuses on

CAN ID, DLC, and the DATA fields (Table [3]), and

the three fields are found in both versions (2.0A and

2.0B) of CAN bus protocol and they have the same

length. This implies that AntibotV is a general frame-

work for all vehicles that use the standard DSRC as

wireless access technology and CAN bus protocol with

its two versions, regardless of the model of the vehicle.

Being a host-based system, AntibotV should not

consume too many of the vehicle’s resources, because

that would impact its other operations. For that rea-

son, we move the computational load of the training

classification model to a centralised server on the cloud.

Thus, the vehicle runs an already trained classification

model, which would minimize the resource consump-

tion of the vehicle. Additionally, unlike signature-based

models, AntibotV is a behaviour-based model based on

machine learning algorithms, which means there is no

overhead to maintain a signature database up to date,

nor huge computational resources like deep learning-

based models. In addition, it does not require any hard-

ware modification.

AntibotV has a modular architecture inspired by

the IDMEF (Intrusion Detection Message Exchange For-

mat) architecture proposed by the IDWG group [61].

The architecture is mainly composed of three modules:

traffic collection module, analyzer module, and man-

ager module. The first module collects network traffic

and in-Vehicle CAN frames. The analyzer module is

responsible for analysing the vehicle’s traffic data. The

manager module handles alerts, sends notifications, and

updates the classification model for both traffic. A de-

tailed description of these modules is provided in the

next sections.

5.2 Traffic collection module

Used to collect and process the vehicle traffic and apply

several pre-treatment operations to extract from the

raw data a vector of features, which will be used by the

analyzer module. It collects two types of traffic: network

flow and CAN bus frames.

10 Rabah Rahal et al.

Table 2: List of network features

Features
Nb Name

Description

1 Flow Duration Duration of the flow in microsecond
2 Flow IAT Mean Mean time between two packets sent in the flow
3 Flow IAT Std Standard deviation time between two packets sent in the flow
4 Flow IAT Max Maximum time between two packets sent in the flow
5 Flow IAT Min Minimum time between two packets sent in the flow
6 Fwd IAT Tot Total time between two packets sent in the forward direction
7 Fwd IAT Mean Mean time between two packets sent in the forward direction
8 Fwd IAT Std Standard deviation time between two packets sent in the forward direction
9 Fwd IAT Max Maximum time between two packets sent in the forward direction
10 Fwd IAT Min Minimum time between two packets sent in the forward direction
11 Down/Up Ratio Download and upload ratio
12 Idle Mean Mean time a flow was idle before becoming active
13 Idle Std Standard deviation time a flow was idle before becoming active
14 Idle Min Minimum time a flow was idle before becoming active
15 Tot Fwd Pkts Total packets in the forward direction
16 Flow Pkts/s Number of flow bytes per second
17 Fwd Pkts/s Number of forward packets per second
18 Bwd Pkts/s Number of backward packets per second
19 total Bwd Packets The total number of packet in the bwd direction.
20 total/min/max/mean/std f/b Pktl The size of packets and the standard deviation size in fwd or bwd direction.
21 Avg Packet Size The mean packets size.
22 f/b AvgSegmentSize The median noticed size in the fwd or bwd direction.
23 f/b AvgPacketsPerBulk The mean number of packets bulk rate in the fwd or bwd direction.
24 f/b AvgBulkRate The average number of bulk rate in the fwd or bwd direction
25 act data pkt forward The number of packets with at least 1 byte of TCP data payload in the fwd direction
26 min seg size forward The smallest segment size noticed in the fwd direction.
27 Total f/b headers The total number of bytes used for headers in fwd or bwd direction
28 f/b AvgBytesPerBulk The mean number of bytes bulk rate in the fwd or bwd direction.
29 Init Win bytes forward/backward The total number of bytes sent in initial window in the fwd or bwd direction.
30 total/min/max/mean/std Bwd iat The total, max, min, mean, and standard time between packets for the bwd direction.
31 f/b psh/urg cnt The number of the PSH or URG flags were set in packets in the fwd or bwd direction.
32 Min/mean/max/std active The min, max, mean, and std time a flow was active before becoming idle.
33 Flow Byts PerSecond The number of a flow bytes per second.
34 min/max flowpktl The length (min, max) of flow.
35 Flow fin/syn/rst/psh/ack/urg/cwr/ece The number of packets with flags.
36 Sflow f/b Packet The average number of packets in a sub flow for the fwd or bwd direction.
37 Sflow f/b Bytes The average number of bytes in a sub flow for the fwd or bwd direction.

5.2.1 Network traffic collector

This module collects information about network traffic

from exchanged packets. Each packet is mapped to a

network flow identified by five attributes namely source

IP, destination IP, source port, destination port, and

protocol. The RFC 3697 [62] defines traffic flow as ”a

sequence of packets sent from a particular source to

a particular unicast, anycast, or multicast destination

that the source desires to label as a flow”. TCP flows

are usually terminated upon connection teardown (by

FIN packet) while UDP flows are terminated by a flow

timeout. Table 2 shows the list of network flow-based

features extracted for each network flow. In the end, the

network traffic collector generates a vector of calculated

features, then transfers it to the analyzer module.

5.2.2 In-vehicle traffic collector

The in-vehicle traffic collector module analyses frames

exchanged on CAN bus. Unlike the network traffic, which

is processed as flows, the in-vehicle traffic is analysed

using the deep frames inspection technique. The analy-

sis is carried out through real-time observation of frames

as they traverse CAN bus links. A CAN bus frame

contains the following fields: the Start of Frame (1b),

Message-ID (an 11b identifier that represents the mes-

sage priority), Control fields (3b), Data Length (num-

ber of data bytes, 4b, from 0 to 8), Data[0 7] (Data to

be transmitted, 0-64b), CRC (15b), ACK fields (3b),

End of Frame Delimiter (7b) [63].

The in-vehicle traffic collector generates a features

vector with the following fields: timestamp (recorded

time), CAN ID, DLC, and the DATA, as illustrated in

table 3. The timestamp and CAN ID fields could be

used to detect DoS and replay attacks, which exploits

the vulnerability of ID priority as described previously

in section 4. The DLC and DATA fields could be used to

detect falsified and injected frames. Then, the feature

vector is transferred to the analyzer module.

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 11

Both network and in-vehicle feature vectors are pre-

processed before their transfer to the analyzer mod-

ule. Pre-processing operations concern mainly remov-

ing missing values and scaling feature values using z-

transformation. The pseudo-code algorithm 1 summa-

rizes the different steps of the traffic collection module.

Table 3: CAN bus frames feature vector attributes

Features Description
Timestamp Recorded time (s)
CAN ID Identifier of CAN message
DLC Number of data bytes, from 0 to 8
DATA[0]
DATA[1]
DATA[2]
DATA[3]
DATA[4]
DATA[5]
DATA[6]
DATA[7]

Data value (byte)

Algorithm 1: Traffic Collection Module

1 BEGIN
2 Input : CBF (CAN bus frame), NF (Network

flow)
3 Variables :: NFw (Network flow feature vector),

CBFw (CAN bus frame feature vector)
4 if (NF is captured) then
5 Extract Features from (NF);
6 Generate (NFw);
7 Preprocess (NFw);
8 Send (NFw) to Analyzer Module;

9 end if
10 if (CBF is captured) then
11 Extract Features from CBF ;
12 Generate (CBFw);
13 Preprocess (CBFw);
14 Send (CBFw) to Analyzer Module;

15 end if
16 END

5.3 Analyzer module

It is the most important module of the framework. Since

this module handles two types of independent traffic,

it uses two analyzers. The first analyzer is responsible

for analyzing network traffic, the second one to analyze

CAN bus frames. The network analyzer is a classifier

trained using supervised machine learning algorithms

on legitimate and malicious network traffic. The legiti-

mate network traffic is generated by running specialized

vehicular application related to safety [64], convenience

[65] and commercial [66] applications. The malicious

network traffic is related to typical bot malware’s ac-

tivities such as DOS and information theft attacks. The

in-Vehicle analyzer is a classifier trained using super-

vised machine learning algorithms on legitimate and

malicious (DoS, Fuzzy, RPM, and Gear) CAN frames.

Both classifiers are generated in a central server then

integrated into the framework. Within the vehicle, the

two classifiers are used for continuous monitoring of net-

work traffic and CAN bus traffic.

The network analyzer uses the calculated network

features to classify the received network flow in one of

three classes: normal, DOS, or information theft. The

in-Vehicle analyzer classifies CAN bus frames based on

the calculated features into four classes: normal, DOS,

frames injection or Replay attack. If a malicious net-

work flow or CAN bus frame is detected, then the ana-

lyzer module sends an alert to the manager module to

take immediate action. Otherwise, it will be ignored.

To train both analyzers we use the following super-

vised machine learning algorithms. For each analyzer,

we choose the algorithm that gives the best perfor-

mances. The following algorithms are selected for their

known efficiency and classification performances:

1. Naive Bayes Algorithm: It is a probabilistic

classifier that makes classifications using the maxi-

mum a posteriori decision rule in a Bayesian setting.

It operates on a strong independence assumption,

which means that the probability of one attribute

does not affect the probability of the other.

P (c | x) = P (x | c) ∗ P (c)

P (x)
(1)

P (c | x) = P (x1 | c)∗P (x2 | c)∗...∗P (xn | c)∗P (c)(2)

P (c|x) is the posteriori probability of class (target)

given predictor (attribute). P (c) is the prior proba-

bility of class. P (x|c) is the likelihood, which is the

probability of predictor given class. P (x) is the prior

probability of predictor.

2. Support Vector Machine(SVM): Each data item

is plotted as a point in n-dimensional space (where

n is the number of features) with the value of each

feature being the value of a particular coordinate.

Then, the classification technique is performed to

differentiate the classes and define which one the

data points belong to.

3. K-Nearest Neighbour: the k-nearest neighbours

algorithm (k-NN) is a non-parametric method used

for classification and regression [67]. It works based

on minimum distance from the query instance to the

training samples to determine the K-nearest neigh-

bours. After gathering the K nearest neighbours, it

takes a simple majority of these K-nearest neigh-

12 Rabah Rahal et al.

bours to be the prediction of the query instance.

Formally:

score(D,Ci) =
∑

Dj∈KNNd

Sim(D,Dj)℘(Dj , Ci) (3)

Above,KNN(d) indicates the set of K-nearest neigh-

bours of the query instance

D ∗ ℘(Dj,Ci) (4)

with respect to class Ci, that is:

℘(Dj,Ci) = { 1 , Dj ∈ Ci − 0, Dj /∈ Ci (5)

Sim(D, Dj) : represent the similarity score of each

nearest neighbour document to the test document.

Moreover, it is used as the weight of the classes of

the neighbour document.

For test document d, it should be assigned the class

that has the highest resulting weighted sum.

4. Decision Trees: to build a decision tree, in this

paper we used the ID3 (Iterative Dichotomiser 3)

algorithm that uses entropy and information gain

as metrics. Entropy characterizes the impurity of an

arbitrary collection of examples, it can be defined

formally as follow:

H(s) =
∑
c∈C

−P (c) ∗ log2P (c) (6)

where S is the current data set for which entropy

is being calculated, C is the set of classes in S, and

P(c) represents the proportion of elements in class

c to the number of elements in set S.

5. Random Forest: like its name implies, consists of

a large number of individual decision trees that op-

erate as an ensemble. Each individual tree in the

random forest spits out a class prediction and the

class with the most votes becomes our model’s pre-

diction.

6. Neural Networks: is one of the most known ma-

chines learning algorithms. It works based on several

layers to analyze the data. Each layer tries to detect

patterns on the input data. When one of the pat-

terns is detected, the next hidden layer is activated

and so on [68]. In this paper, we use Multilayer per-

ceptron (MLP), a supplement of feed-forward artifi-

cial neural network. It consists of three types of lay-

ers: the input layer, output layer and hidden layer.

The input layer receives the input signal to be pro-

cessed. The required task such as prediction and

classification is performed by the output layer. An

arbitrary number of hidden layers that are placed

in between the input and output layer is the true

computational engine of the MLP [69].

The pseudo codes algorithm 2 summarizes the dif-

ferent steps of the analyzer module.

Algorithm 2: Analyzer Module

1 BEGIN
2 Input : CBFw (CAN bus frame feature vector),

NFw (Network flow feature vector)
3 Output : CBFw Decision (CAN bus frame

feature vector Decision), NFw Decision (Network
flow feature vector Decision)

4 if (NFw is Received) then
5 NFw Decision ¡- Network Analyzer SubModule

(NFw);
6 Send (NFw, NFw Decision) to Manager

Module;
7 end if
8 if (CBFw is Received) then
9 CBFw Decision ¡-

In-Vehicle Analyzer SubModule (CBFw);
10 Send (CBFw, CBFw Decision) to Manager

Module;
11 end if
12 END
13 Function Network Analyzer SubModule(N):
14 Local Variable : N Prediction (Network

Traffic Prediction)
15 N Prediction = Machine Learning

Algorithm(N);
16 return N Prediction;

17 End Function
18 Function In-Vehicle Analyzer SubModule(F):
19 Local Variable : F Prediction (Frame

Prediction)
20 F Prediction = Machine Learning

Algorithm(F);
21 return F Prediction;

22 End Function

5.4 Manager module

The manager module handle alerts and triggers ade-

quate response measures according to the detected at-

tacks. Whenever the analyzer module detects a botnet

activity, it sends an alert to the manager module. The

latter logs the traces of the corresponding event and no-

tify the driver. If a DoS attack is detected the manager

module terminates the network session with the victim

vehicle. In the case of theft of information, the manager

saves logs and notifies the driver. If the driver does not

approve the transfer, the connection to the destination

address will be blocked. Otherwise, the flow will be ig-

nored. At the in-vehicle level, when the analyzer detects

a CAN frame as belonging to a botnet activity, it sends

an alert to the manager, which will notify the driver.

To avoid interrupting wrongly vehicle’s services, what-

ever the type of detected attacks, the manager module

asks for the driver’s approval before undertaking any re-

sponse measures. When the driver is notified depends

on the attack. The most serious cases (disabling brake

attacks) require direct notification. However, in other

scenarios that do not have an impact on the driver’s

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 13

life, the notification is not done while driving, but in

the moments when the vehicle is completely stopped,

in order to avoid unnecessary shocks. The pseudo-codes

algorithm 3 summarizes the different responses mea-

sures.

Terminating malicious processes running on the ve-

hicle does not mean that it will not be executed again.

To get rid of this inappropriate malware that was de-

tected, the system of the vehicle must be reset. The

resetting process removes the applications and files in-

stalled on the system, which might be the carriers of

the malware. The manager module has to ask the per-

mission of the driver before the reset operation.

Algorithm 3: Manager module response mea-

sures
1 BEGIN
2 Input: CBFw (CAN bus frame feature

vector),NFw (Network flow feature vector),
CBFw Decision (CAN bus frame feature vector
Decision), NFw Decision (Network flow feature
vector Decision)

3 if (CBFw Decision classified as malicious) then
4 Send an alert to the driver about CBFw
5 Ask driver’s approval for system reset

6 end if
7 if (NFw Decision classified as DoS attack) then
8 Save detailed logs of NFw
9 Send alert to the driver

10 Terminate network session
11 Ask driver’s approval for system reset

12 else
13 if (NFw Decision classified as theft of

information) then
14 Save detailed logs of NFw
15 Send an alert to the driver
16 if (information theft confirmed) then
17 Terminate network session
18 Ask driver’s approval for system reset

19 else
20 Ignore NFw ;
21 end if

22 end if
23 Ignore NFw;

24 end if
25 END

Finally, to keep the trained model up to date (against

new zero-day malware attacks), a new training session

is started automatically whenever the accuracy of the

model starts degrading. The management module starts

sending the incoming traffic collected by the collection

module to a remote server in the cloud, which is used to

perform exhaustive computation operations. The traffic

data sent to the cloud server contains all fields defined

by the network protocols, but not whether the traffic

is malicious or not (unlabelled data). Therefore, the

first step is to label the data. To ensure an automatic

labelling method and avoid the manual intervention,

we use an ensemble method, which classifies new sam-

ples by taking the majority vote of several classifiers

(decision tree, random forest, and neural networks al-

gorithms). Ensemble methods generally provide more

accurate results than a single classifier and can reduce

the rate of labelling errors. The labelling operation is

done at the server level and not at the vehicle level

to avoid computationally intensive operations and the

memory requirements caused by using several classifi-

cation algorithms together in the voting process. In a

second step, we combine the newly collected (and la-

belled) data with the old training data to update the

database used to train our classifier. In a third step, the

analysis module uses the new database for retraining,

so that it can be able to detect the new malware traf-

fic and provide an appropriate result. The advantage of

such an update technique is that it is fully automated.

6 Experimentation

In this section, we provide the evaluation results of the

proposed framework. First, we describe in details the

datasets used in this research, and the pre-processing

operations we have carried out. Since the proposed frame-

work monitors the in-vehicle and network communica-

tion, we have used two datasets to evaluate its perfor-

mance, the first one contains vehicular network traffic,

the second one in-vehicle traffic [70]. A detailed descrip-

tion of the two datasets is provided below.

6.1 Network traffic dataset

6.1.1 Generating network traffic data

To the best of our knowledge, no real vehicular net-

work traffic dataset including botnet traffic is publicly

available. Thus, we simulate vehicular botnet activity

discussed in section 4. To generate realistic benign ve-

hicular network traffic, we have implemented 17 appli-

cations including safety, convenience and commercial

applications, the list of applications (inspired from [71])

with their brief description is provided in table 4, and

the simulation parameters and scenarios are described

further in this section. To ensure that the generated

traffic is representative of real benign traffic and cov-

ers diverse types of application, we have considered the

following factors for choosing applications: 1) physical-

layer channel (CCH & SCH); 2) transfer protocols (IP

& WSMP); 3) message TTL (single-hop & multi-hop);

4) routing protocol (geocast, broadcast & unicast); 5)

14 Rabah Rahal et al.

Table 4: Vehicular Networks applications

Type Abbreviation Description

safety
oriented

BSM
Basic Safety Message: a packet transmitted approximately 10 times per second. It contains
vehicle’s state information, like speed, GPS coordination, . . . etc.

CCW
Cooperative Collision Warning: an application that aims to help the driver to avoid collisions
by giving him the kinematics status messages collected from the vehicles around.

CVW
Cooperative Violation Warning: roadside units send to drivers the necessary information
when approaching to a signal phase or a red light.

EEBL
Emergency Electronic Brake Light: If a vehicle braking hard, it broadcasts a message to inform
the other vehicles.

PCN
V2V Post Crash Notification: If a vehicle is involved in a crash, it broadcasts a message to inform
the other vehicles.

RFN
Road Feature Notification: if a vehicle detects an advisory road feature (acute turn), it broadcasts
a message to inform the other vehicles.

RHCN
Road Hazard Condition Notification: if a vehicle detects a road hazard (rocks, animals, ice), it
broadcasts a message to inform the other vehicles.

SVA
Stopped or Slow Vehicle Advisor: If a vehicle reduces its speed or stops, it broadcasts a message
to inform the other vehicles.

convenience
oriented

CRN
Congested Road Notification: If a vehicle detects a collision, it sends a message to alert the
other vehicles so that they can take another lane.

PAN
Parking Availability Notification: this application is used to request the road side unit to
provide the closest parking and if they contain free parking spaces.

PSL
Parking Spot Locator: It is an exchange of information between a vehicle and the Parking
Space Locator roadside unit. It is used to provide free parking places in a parking lot.

TOLL Free Flow Tolling: it permits to apply an e-payment while passing through a highway toll gates.

TP
Traffic Probe: The kinematics status messages are collected and transmitted through road side
units to the traffic management center.

commercial
oriented

CMDD
Content, Map or Database Download: a vehicle connect to a wireless hot-spot to download
content (maps, multimedia, or web pages).

RTVR
Real-time Video Relay: a vehicle may initiate transfer of real-time video that may be
useful to other drivers in the area.

RVP/D
Remote Vehicle Personalization/Diagnostics: the drivers can connect to a hot-spot to download
the latest personalized vehicle settings.

SA
Service Announcement: Fast food or restaurant use an infrastructure that send periodically
Hello messages to announce the vehicles of its presence.

Fig. 7: Dataset generation flow chart

trigger Condition (On-demand & event-triggered); 6)

and communication technology (V2V & V2I). Table

5 provides a categorization of the benign applications

based on the aforementioned factors.

To generate malicious network traffic related to a

bot malware activity, we have simulated the following

bot activity scenarios: 1) WSMP flood; 2) geo WSMP

Flood; 3) GPS tracking; 4) and information theft, through

eavesdropping on drivers and passenger’s conversations.

To simulate the aforementioned benign vehicular

network applications and the bot malware activity, we

implemented different scenarios based on nodes ID. Four

scenarios to simulate the bot activity, and six scenar-

ios to simulate the benign vehicular network traffic.

In every scenario, the simulation runs for 500 seconds

with 40 nodes moving according to the random way-

point model with a speed of 20 m/s and no pause time

within the Manhattan map (downloaded it from Open-

StreetMap [72]). The WiFi is 802.11p, the transmit

power is set to 20 dBm, and the default propagation

model is Two-Ray Ground.

The first and second scenarios correspond to zero-

day DDoS attacks applicable only in vehicular networks

environment (highlighted earlier in section 4). In these

scenarios, the victim nodes are node 0, node 6, and node

10; while the other nodes are the attackers. As regards

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 15

the GPS tracking and theft of information scenarios,

node 20 represent the botmaster, and nodes 7, 8, and

9 are the victims. In the GPS tracking scenario, victim

nodes send theirs GPS information to the botmaster in

real-time, while in the information theft scenario, vic-

tim nodes send the recorded audio files periodically. For

the benign traffic scenarios, we have simulated in each

scenario the applications that have common features

according to their characteristics, and in which the 40

nodes participate.

We used Network Simulator version 3 (NS3) [73] and

the Simulation of Urban MObility (SUMO) package

[74]. SUMO is responsible for simulating realistic vehic-

ular traffic, while NS3 is used to simulate the commu-

nication capabilities of the vehicles with IEEE 802.11p

integration. Table 6 summarizes the simulation param-

eters, and table 7 presents the samples distribution of

the network traffic dataset.

6.1.2 Features extraction

After collecting the network traffic generated during

simulation (as PCAP files), we have extracted a set

of 79 network features (see table 2). To extract fea-

tures we have used CICFlowMeter [75], a network traf-

fic flow generator distributed by the Canadian Insti-

tut for Cyber Security (CIC). It generates bidirectional

flows, where the first packet determines the forward

(source to destination) and backward (destination to

source) directions. Note that TCP flows are usually

terminated upon connection teardown (by FIN packet)

while UDP flows are terminated by a flow timeout. The

flow timeout value can be assigned arbitrarily by the

individual scheme e.g., 600 seconds for both TCP and

UDP.

The list of network flow-based features extracted for

each network flow is composed of three categories of fea-

tures: time, bytes, and packets based features. We be-

lieve that time-based features (Flow IAT, Fwd IAT and

Idle Time) are useful to detect DoS attacks because the

time interval between successive packets is too short.

Also, time-based features allow detection of periodic

events such as periodic transfer of collected information

in the case of theft of information. The bytes/packets

based features allow the detection of large and abnor-

mal traffic increases, which are symptomatic of DoS

attacks.

6.1.3 Data pre-processing and features selection

For the data pre-processing step, we did the cleaning

and the normalization. To check missing values and

deal with them, we used one of the python program-

ming language functions named Dropna(). Dropna re-

moves a row or a column from a data frame, which has

a NaN or no values in it. Moreover, to deal with the

huge differences between magnitude, units, and range

in the generated dataset, we used feature scaling. The

feature scaling aims to put all the values in the data

set between 0 and 1, to make the features more consis-

tent with each other and to make the training step-less

sensitive to this problem.

We have used in this research two types of feature

selection algorithms. The first one is forward selection

[76], which belongs to the wrappers class. Forward selec-

tion is an iterative algorithm that starts with an empty

set of feature. In each iteration, it adds the best feature

that improves the model until the addition of a new fea-

ture does not improve the performance of the model.

The Forward feature selection algorithm has reduced

the number of features from 37 to 18 features as shown

in table 8. The second feature selection algorithm is the

Linear Support Vector Classifier LinearSVC [77], which

belongs to the embedded features selection algorithms.

LinearSVC is an algorithm that gives to each feature

a coef or feature importances attribute. All the fea-

tures are considered unimportant at the beginning and

it gives them values under a threshold parameter. After

that, it uses built-in heuristics for finding the threshold

of every feature using a string argument. LinearSVC has

reduced the number of features from 37 to 22 as shown

in table 8. The best results were achieved when using

the subset of features giving by the Forward selection

algorithm (as shown in the results section).

6.2 In-vehicule traffic dataset

We have used in our experimentation the dataset built

in [70]. The authors used Hyundai’s YF Sonata as a

testing vehicle. They connected a Raspberry Pi3 with

CAN bus through the OBD-II port (Figure 3), and

connect the Raspberry to a laptop computer through

WiFi. They generated an in-Vehicle dataset that con-

tains normal CAN frames and other malicious (DoS

frames, Fuzzy attack, RPM and Gear). The dataset is

available online [78], labelled and in CSV format. We

carried the same preprocessing operation of cleaning

and normalization described in the previous section.

Table 9 presents samples distribution of the in-vehicle

traffic dataset.

16 Rabah Rahal et al.

Table 5: Vehicular networks applications classified based on network attributes

Application
Channel Protocol Message TTL Routing Protocol

Trigger
Condition

Participants

CCH SSH WSMP IP Multi-hop Single-Hop Geocast Broadcast Unicast Beaconing
Event-
triggred

On-demand V2V V2I Internet

safety
oriented

BSM ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CCW ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CVW ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

EEBL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

PCN ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

RFN ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

RHCN ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SVA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

convenience
oriented

CRN ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

PAN ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

PSL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TOLL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

TP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

commercial
oriented

CMDD ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

RTVR ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

RVP/D ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SA ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 6: Simulation parameters

Network Simulator NS3
Traffic Generator SUMO
Simulation Area Manhattan Map
Simulation Time 500 seconds
Number of Nodes 40
Max Speed 20 m/s
MAC/PHY Standard IEEE802.11p
Traffic Type WSMP, IP
Bandwidth Channel CCH, SCH
Propagation Model Two-ray ground-reflection model
Transmission Power 20 dBm
Packets Size Depend on the application and protocol
Packets Data Rate Depend on the application

6.3 Results and discussion

To build the classification models for both analyzers

(network and in-vehicle), we apply the supervised ma-

chine learning algorithms described in section 5.3 with

their default paramaters. For each analyzer, we choose

the algorithm that gives the best performances. We

train, validate and test the two classification models

separately (network and in-vehicle analyzer). From each

dataset, we take 60% of the dataset to train and validate

the classification model through 10-fold cross-validation,

and the remainder 40% for testing the model. Six com-

mon metrics, accuracy, precision, recall, F1 score, false

fositive rate, and false negative rate have been selected

to evaluate the classification performances, the afore-

mentioned metrics can be calculated as follows:

Accuracy = (TP + TN)/(TP + FP + FN + TN) (7)

Precision = TP/(TP + FP) (8)

Recall = TP/(TP + FN) (9)

F1 score =(2*(precision*recall))/(precision+recall) (10)

FPR = FP/(TN + FP) (11)

FNR = FN/(TP + FN) (12)

where TP, FP, TN and FN denote true positive,

false positive, true negative, and false negative, respec-

tively.

6.3.1 Malicious network traffic detection

In this experiment, we evaluate the performances of

AntibotV on classifying a network connection as legit-

imate or as malicious. As we can see from table 10, all

the classifiers show high accuracy (> 85%), the highest

accuracy is achieved by decision tree (99.4%) followed

by random forest (99.3%), while naive Bayes presents

the lowest accuracy. However, accuracy is not enough to

evaluate and select the best classification model. There-

fore, other important metrics such as recall (detection

rate), precision, false negative rate (FNR) and false pos-

itive rate (FPR) need to be taken into consideration.

Figure 8 compare the recall, F1-score, FNR, and FPR

for benign and malicious traffic.

Decision tree presents the best average recall, how-

ever, the malicious detection rate is found to be 79,70%,

which represents an intolerable false negative rate (>20

%). Although the decision tree can recognize legitimate

traffic with high precision, the malicious traffic detec-

tion performance is not promising. The poor detection

rate of malicious traffic is due to the heterogeneity of

legitimate traffic. Unlike the other types of networks,

in vehicular networks, there are two types of network

traffic: IP and WSMP. The two network traffic show

different traffic patterns influenced by several factors

such as the context of use, duration, size of packets,

etc. This difference represents a challenge in training

the classification model and subsequently mislead the

classifier on differentiating between legitimate WSMP

and malicious traffic.

To overcome the aforementioned issue, we create

two classes of legitimate traffic by separating WSMP

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 17

Table 7: Statistics of normal and attack samples of network traffic dataset

Samples
Nb %

Train Test Total Train Test Total
Benign 909 606 1515 31.14% 20.76% 51.90%

Malicious

GPS Tracking 295 197 492 10.11% 6.74% 16.85%
Phishing Attack 191 128 319 6.55% 4.37% 10.92%
WSMP-Flood 182 121 303 6.23% 4.15% 10.38%

Geo-WSMP-Flood 174 116 290 5.96% 3.97% 9.93%
Total 1751 1168 2919 60% 40% 100%

Table 8: List of selected network features

Forward selection features set LinearSVC features set

Flow Duration, Tot Fwd Pkts, Flow Pkts/s,
Flow IAT Mean, Flow IAT Std, Flow IAT Max,
Flow IAT Min, Fwd IAT Tot, Fwd IAT Mean,
Fwd IAT Std, Fwd IAT Max, Fwd IAT Min,
Fwd Pkts/s, Bwd Pkts/s, Down/Up Ratio,

Idle Mean, Idle Std, Idle Min.

Tot Fwd Pkts, Tot Bwd Pkts, TotLen Fwd Pkts,
Flow Byts/s, Flow Pkts/s, Flow IAT Mean,

Flow IAT Std, Flow IAT Max, Flow IAT Min,
Fwd IAT Mean, Fwd IAT Std, Fwd IAT Max,
Fwd IAT Min, Fwd Header Len, Fwd Pkts/s,
Bwd Pkts/s, Pkt Size Avg, Bwd Blk Rate Avg,

Init Fwd Win Byts, Init Bwd Win Byts,
Active Mean, Active Max.

Table 9: Statistics of normal and attack samples of in-vehicle traffic dataset

Samples
Nb %

Train Test Total Train Test Total
Benign 1239 826 2065 26.93% 17.95% 44.88%

Malicious

DoS Attack 504 336 840 10.95% 7.3% 18.25%
Fuzzy Attack 304 203 507 6.61% 4.40% 11.01%
Gear Attack 264 176 440 5.74% 3.82% 9.56%
RPM Attack 449 300 749 9.76% 6.51% 16.27%

Total 2760 1841 4601 60% 40% 100%

Table 10: Network traffic binary classification using AntibotV

Algorithm Classe Precision Recall F1-score FPR FNR Accuracy

KNN
Benign traffic 98,5% 99,6% 99,0% 2,3% 0,3%

98,70%Malicious traffic 74,53% 72,15% 73,23% 0,05% 27,83%
Average Value 86,5% 85,9% 86,1% 1,2% 14,1%

Neural Netowrks
Benign traffic 97,20% 98,60% 97,90% 4,30% 1,30%

97,30%Malicious traffic 77,30% 74,94% 75,94% 1,04% 25,02%
Average Value 87,25% 86,77% 86,92% 2,67% 13,16%

Decision Tree
Benign traffic 99,50% 99,60% 99,50% 0,70% 0,30%

99,40%Malicious traffic 82,88% 79,70% 80,88% 0,03% 20,28%
Average Value 91,19% 89,65% 90,19% 0,36% 10,29%

Random Forest
Benign traffic 99,30% 99,50% 99,40% 1,00% 0,40%

99,30%Malicious traffic 74,80% 74,70% 74,75% 0,05% 25,28%
Average Value 87,05% 87,10% 87,08% 0,53% 12,84%

SVM
Benign traffic 96,40% 99,40% 97,80% 5,80% 0,50%

97,20%Malicious traffic 74,28% 66,75% 69,68% 0,13% 33,23%
Average Value 85,34% 83,08% 83,74% 2,96% 16,86%

Naive Bayes
Benign traffic 96,60% 83,60% 89,60% 4,50% 16,30%

87,70%Malicious traffic 65,95% 86,23% 71,48% 2,73% 13,73%
Average Value 81,28% 84,91% 80,54% 3,61% 15,01%

and IP traffic. We believe training the classification

model with two separated categories of legitimate traf-

fic, will reduce the false negative rate, and thus improve

the malicious traffic detection rate. In addition, to pro-

vide a suitable response measure, the detection frame-

work needs to identify the type of attacks. Therefore, we

separate the malicious traffic into different classes: GPS

tracking, WSMP flood, phishing, and Geo flood. From

table 11, we can see a significant improvement in mali-

cious traffic detection rate, the recall has increased from

79.7% to 97.59%. Figure 9 compare the recall, F1-score,

FNR, and FPR for each traffic class separately. We see

18 Rabah Rahal et al.

Accuracy F1-Score
75

80

85

90

95

100 9
8
.7

8
6
.1

9
7
.3

8
6
.9
2

9
9
.4

9
0
.1
9

9
9
.3

8
7
.0
8

9
7
.2

8
3
.7
4

8
7
.7

8
0
.5
4

FPR FNR
0

2

4

6

8

10

12

14

16

18

20

1
.2

1
4
.1

2
.6
7

1
3
.1
6

0
.3
6

1
0
.2
9

0
.5
3

1
2
.8
4

2
.9
6

1
6
.8
6

3
.6
1

1
5
.0
1

KNN Neural Networks Decision Tree Random Forest SVM Naive Bayes

Fig. 8: Network traffic binary classification results: Left - Accuracy and F1-score. Right - FPR and FNR

Table 11: Network traffic multiclass results: AntibotV based on Decision Tree classifier

Classes Precision Recall F1-score FPR FNR Accuracy

Benign
WSMP Traffic 99,06% 97,70% 98,38% 0,16% 2,29%

99,40%

IP Traffic 99,57% 99,71% 99,64% 0,39% 0,28%

Malicious

GPS Tracking 99,61% 100,00% 99,80% 0,08% 0,00%
Phishing Attack 99,47% 100,00% 99,73% 0,07% 0,00%
WSMP Flood 97,43% 98,70% 98,06% 0,14% 1,29%
GeoFlood 100,00% 91,66% 95,65% 0,00% 8,30%

Average Value 99,19% 97,96% 98,54% 0,14% 2,03%

Recall F1-Score
90

92

94

96

98

100

102

9
7
.7 9
8
.3
8

9
9
.7
1

9
9
.6
4

1
0
0

9
9
.8

1
0
0

9
9
.7
3

9
8
.7

9
8
.0
6

9
1
.6
6

9
5
.6
5

FPR FNR
0

2

4

6

8

0
.1
6

2
.2
9

0
.3
9

0
.2
8

8
·1

0
−

2

07
·1

0
−

2

00
.1
4

1
.2
9

0

8
.3

WSMP traffic IP traffic GPS tracking Phishing attack WSMP Flood Geo-WSMP-Flood

Fig. 9: Network Traffic multiclass classification results. Decision Tree Algorithm: Left - Recall, F1-Score. Right -

FPR and FNR

that decision tree achieves the best performances. Al-

though, the slight decrease, the recall of the benign class

remains high (>98). The detection rate of Geo flood at-

tack is not as good as the other attacks. This can be

explained by the fact that the majority of security ap-

plications on the WSMP protocol use broadcast, which

is quite similar to Geo flood attack.

According to the aforementioned results, it is im-

portant to note that the Geo WSMP flood attack rep-

resents the most challenging attack to detect. The De-

cision Tree achieved the highest detection rate with the

lowest false positive rate. Besides detecting malicious

traffic, it also delivers high performances on identify-

ing the type of benign (WSMP, IP) and malicious traf-

fic (GPS tracking, phishing, WSMP flood, Geo flood).

Therefore, the decision tree is the best classifier to be

selected for the network analyzer module.

6.3.2 Malicious in-vehicle traffic detection

We evaluate the performance of AntibotV on detect-

ing and identifying in-vehicle attacks that can be car-

ried out by bot malware. First, we carry out a binary

classification (benign/malicious) using the supervised

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 19

Accuracy F1-score

60

70

80

90

100

9
1
.4

8
0
.2
38
3
.6

5
6
.7

1
0
0

1
0
0

9
9
.9

9
9
.9

8
3
.5

6
1
.6
8

9
9
.9

9
9
.8
3

FPR FNR
0

10

20

30

40

1
.1
5

1
9
.6
6

2
.1
5

3
7
.5
5

0 00 8
·1

0
−

2

2
.1
6

3
7
.7
9

0 0
.1
6

KNN Neural Networks Decision Tree Random Forest SVM Naive Bayes

Fig. 10: In-Vehicle Binary classification results: Left:Accuracy and F1-score. Right: FPR and FNR

machine learning algorithms described earlier in sec-

tion 5.3, then the best classification algorithm is as-

sessed on identifying the type of attack. The accuracy

bar charts of the figure 10 clearly show that the pro-

posed framework gives high performances on detecting

and identifying the in-vehicle traffic, with over 90% for

the KNN, decision tree, random forest, and naive Bayes

algorithms. The results of binary classification are pre-

sented in table 12. The decision tree is found to deliver

the maximum detection rate for both benign and ma-

licious frames. KNN, Neural Networks and SVM algo-

rithms failed to detect the class of malicious traffic, with

a poor detection rate (between 25% and 61%). From ta-

ble 13, we can see that the decision tree can perfectly

identify the different types of in-vehicle attacks. These

results confirm the efficiency of tree-based algorithms

for intrusion detection. Therefore, the decision tree is

the best classifier to be selected for the in-vehicle ana-

lyzer module.

6.4 Discussion and comparison

We compared our solution against the solution pre-

sented in [7] that tackled the detection of vehicular bot-

nets, the authors used anomaly detection technique to

allow detection of new forms of injected BSMs mes-

sages. The detection solution assumes a specific bot-

net communication protocol (GHOST), which makes it

unable to detect botnet using a different communica-

tion protocol. The proposed framework AntibotV does

not suppose a particular botnet communication pro-

tocol, so the detection approach works independently

of the botnet communication protocol. Limiting detec-

tion to monitoring only network communication, makes

[7] unable to detect in-vehicle attacks. Thanks to two-

level monitoring, AntibotV can also detect in-vehicle

attacks. Compared to [7], AntibotV delivers better ac-

curacy and lower false positive rate (see table 14). In

[70], the authors considered in-vehicle threats, they pro-

posed an anomaly detection framework based on con-

volutional neural network and deep neural network. Al-

though AntibotV delivers better performances, the pro-

posed approach [70] can detect unseen attacks, but to

the detriment of false alerts. Furthermore, deep learn-

ing techniques require a large amount of computational

and memory resources, which could be constraining in

vehicular context. The authors in [22] have proposed

a mechanism which, detects, mitigates and traces back

the location of a Low-Rate DDoS attacker. If the DDoS

attack is caused by a botnet, the traceability mecha-

nism can be used to identify bot nodes in the network.

However, if the botnet is used to apply other threats

(e.g. information theft), the proposed detection tech-

niques will not be effective anymore, unlike our pro-

posed framework (Antibotv), which is able to deal with

different types of botnet threats at different levels. Ta-

ble 14 provides a qualitative comparison between Anti-

botV and [7, 22] (different databases), and a quantita-

tive comparison with [70] (the same in-vehicular traffic

database).

7 Conclusion

In this paper, we have proposed AntibotV, a multilevel

behaviour-based framework to detect vehicular botnets.

We have considered new zero-day attacks, as well as

a wide range of DoS and in-vehicle attacks. The pro-

posed framework monitors the vehicle’s activity at net-

work and in-vehicle levels. To build the detection sys-

tem, we have collected network traffic data of legitimate

and malicious applications. Then, training using deci-

sion tree a new classifier with a set of features that we

have extracted and selected. Likewise, we have trained

a decision tree with in-vehicle data. The experimental

20 Rabah Rahal et al.

Table 12: In-Vehicle traffic binary classification using AntibotV

Algorithm Classe Precision Recall F1-score FPR FNR Accuracy

KNN
Benign frames 99,90% 100,00% 99,90% 0,10% 0,00%

91,40%Malicious frames 61,30% 60,58% 60,55% 2,20% 39,33%
Average value 80,60% 80,29% 80,23% 1,15% 19,66%

Neural Networks
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

83,60%Malicious frames 12,48% 24,85% 13,40% 4,30% 75,10%
Average value 56,24% 62,43% 56,70% 2,15% 37,55%

Decision Tree
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

100,00%Malicious frames 100,00% 100,00% 100,00% 0,00% 0,00%
Average value 100,00% 100,00% 100,00% 0,00% 0,00%

Random Forest
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

99,90%Malicious frames 99,83% 99,83% 99,80% 0,01% 0,15%
Average value 99,91% 99,91% 99,90% 0,00% 0,08%

SVM
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

83,50%Malicious frames 23,33% 24,33% 23,35% 4,33% 75,58%
Average value 61,66% 62,16% 61,68% 2,16% 37,79%

Naive Bayes
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

99,90%Malicious frames 99,68% 99,65% 99,65% 0,00% 0,33%
Average value 99,84% 99,83% 99,83% 0,00% 0,16%

Table 13: In-Vehicle multiclass results: AntibotV based on Decision Tree classifier

Classes Precision Recall F1-score FPR FNR Accuracy
Benign frames 100,00% 100,00% 100,00% 0,00% 0,00%

100,00%Malicious frames

DoS Attack 100,00% 100,00% 100,00% 0,00% 0,00%
Fuzzy Attack 100,00% 100,00% 100,00% 0,00% 0,00%
Gear Attack 100,00% 100,00% 100,00% 0,00% 0,00%
RPM Attack 100,00% 100,00% 100,00% 0,00% 0,00%

Average Value 100,00% 100,00% 100,00% 0,00% 0,00%

Table 14: Comparison among vehicular botnets detection systems

AntibotV (our work) [7] [70] [22]
Threat level Network & In-vehicle Network In-vehicle Network

Machine learning technique Classification Anomaly detection Anomaly detection Time-series analysis
Algorithm Decision Tree 3D DBSCAN CNN & DNN XGBoost

Dataset
Our own network traffic dataset,
and [70] in-vehicle traffic dataset

Their own dataset Their own dataset Their own dataset

Ressources requirement Low Low High Low
Accuracy 99.40% & 100% 77% 97.53% 97.6%

Detection rate (Recall) 97.96% & 100% NA 98.65% NA
Precision 99.19% & 100% NA 97.63% NA

FPR 0.14% & 0% NA NA 3.29%

results showed that AntibotV outperforms existing so-

lutions, it achieves a detection rate higher than 97%

and a false positive rate lower than 0.14%. To add a

realistic dimension to our framework, the ideal was to

do the training and validation with a dataset gener-

ated from a realistic testbed. In our future work, we

will work on the generation of a realistic dataset, which

takes into account different factors, such as the impact

of the environment (urban, rural and highway), plus

the implementation of different malicious behaviour of

a bot vehicle. In a second step, we can use AntibotV

generated from real data to design a simple system to

report feedback from the driver, instead of using only

raw features directly. Moreover, AntibotV has a fun-

damental limitation in detecting unlearned types of at-

tacks because it is based on supervised learning. To

solve this problem, further research on detecting un-

known attacks and the updating process is needed using

advanced learning techniques. We intend to label legit-

imate traffic using anomaly detection techniques and

categorizing malicious traffic using an ensemble-based

classifier.

8 Acknowledgment

This research is a result from PRFU project C00L07UN23

0120180009 funded in Algeria by La Direction Générale

de la Recherche Scientifique et du Développement Tech-

nologique (DGRSDT).

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 21

References

1. Eun-Kyu Lee, Mario Gerla, Giovanni Pau, Uichin

Lee, and Jae-Han Lim. Internet of vehicles: From

intelligent grid to autonomous cars and vehicular

fogs. International Journal of Distributed Sensor

Networks, 12(9):1550147716665500, 2016.

2. Hariharan Krishnan, Fan Bai, and Gavin Holland.

Commercial and public use applications. In Vehic-

ular Networking, pages 1–28. John Wiley & Sons,

Ltd, April 2010.

3. Martina Stoyanova Todorova and Stamelina To-

mova Todorova. Ddos attack detection in sdn-based

vanet architectures. no. June, page 175, 2016.

4. Jun Zhou, Zhenfu Cao, Xiaolei Dong, and Athana-

sios V Vasilakos. Security and privacy for cloud-

based iot: Challenges. IEEE Communications Mag-

azine, 55(1):26–33, 2017.

5. Parul Tyagi and Deepak Dembla. Investigating

the security threats in vehicular ad hoc networks

(vanets): towards security engineering for safer on-

road transportation. In 2014 International Con-

ference on Advances in Computing, Communica-

tions and Informatics (ICACCI), pages 2084–2090.

IEEE, 2014.

6. Jiajia Liu, Shubin Zhang, Wen Sun, and Yongpeng

Shi. In-vehicle network attacks and countermea-

sures: Challenges and future directions. IEEE Net-

work, 31(5):50–58, 2017.

7. Mevlut Turker Garip, Peter Reiher, and Mario

Gerla. Ghost: Concealing vehicular botnet com-

munication in the vanet control channel. In 2016

International Wireless Communications and Mo-

bile Computing Conference (IWCMC), pages 1–6.

IEEE, 2016.

8. Mevlut Turker Garip, Jonathan Lin, Peter Reiher,

and Mario Gerla. Shieldnet: An adaptive detec-

tion mechanism against vehicular botnets in vanets.

In 2019 IEEE Vehicular Networking Conference

(VNC), pages 1–7. IEEE, 2019.

9. Ming-Chiao Chen and Teng-Wen Chang. Introduc-

tion of vehicular network architectures. In Telem-

atics Communication Technologies and Vehicular

Networks: Wireless Architectures and Applications,

pages 1–14. IGI Global, 2010.

10. Jun Zhou, Xiaolei Dong, Zhenfu Cao, and Athana-

sios V Vasilakos. Secure and privacy preserving

protocol for cloud-based vehicular dtns. IEEE

Transactions on Information Forensics and Secu-

rity, 10(6):1299–1314, 2015.

11. John B Kenney. Dedicated short-range communi-

cations (dsrc) standards in the united states. Pro-

ceedings of the IEEE, 99(7):1162–1182, 2011.

12. Shereen AM Ahmed, Sharifah HS Ariffin, and Nor-

sheila Fisal. Overview of wireless access in vehic-

ular environment (wave) protocols and standards.

environment, 7:8, 2013.

13. 1609.4-2016 - ieee standard for wireless access in

vehicular environments (wave) – multi-channel op-

eration.

14. Caixia Song. Performance analysis of the ieee

802.11 p multichannel mac protocol in vehicular ad

hoc networks. Sensors, 17(12):2890, 2017.

15. 1609.2-2016 - ieee standard for wireless access in

vehicular environments–security services for appli-

cations and management messages.

16. Chris Hedges and Frank Perry. Overview and use

of sae j2735 message sets for commercial vehicles.

Technical report, SAE Technical Paper, 2008.

17. Automotive electronic control unit market size,

share, & trends analysis report by application,

by propulsion type, by capacity, by vehicle

type, by region, and segment forecasts, 2019 -

2025. https://www.grandviewresearch.com/

industry-analysis/automotive-ecu-market.

Accessed: 2021-05-05.

18. Controller area network. http://www.esd-

electronics-usa.com/Controller-Area-

Network-CAN-Introduction.html. Accessed:

2021-01-09.

19. Botnet mirai. https://www.cloudflare.com/

learning/ddos/glossary/mirai-botnet/. Ac-

cessed: 2021-01-08.

20. 9 of history’s notable botnet attacks.

https://www.whiteops.com/blog/9-of-the-

most-notable-botnets. Accessed: 2021-01-09.

21. João Henrique Corrêa, Patrick M Ciarelli, Moi-

ses RN Ribeiro, and Rodolfo S Villaça. Ml-based

ddos detection and identification using native cloud

telemetry macroscopic monitoring. Journal of Net-

work and Systems Management, 29(2):1–28, 2021.

22. Neha Agrawal and Shashikala Tapaswi. An sdn-

assisted defense mechanism for the shrew ddos at-

tack in a cloud computing environment. Journal

of Network and Systems Management, 29(2):1–28,

2021.

23. Mohammad Alhisnawi and Mahmood Ahmadi. De-

tecting and mitigating ddos attack in named data

networking. Journal of Network and Systems Man-

agement, 28:1343–1365, 2020.

24. Rabah Rahal, Abdelaziz Amara Korba, and Nacira

Ghoualmi-Zine. Towards the development of

realistic dos dataset for intelligent transporta-

tion systems. Wireless Personal Communications,

115(2):1415–1444, 2020.

https://www.grandviewresearch.com/industry-analysis/automotive-ecu-market
https://www.grandviewresearch.com/industry-analysis/automotive-ecu-market
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.whiteops.com/blog/9-of-the-most-notable-botnets
https://www.whiteops.com/blog/9-of-the-most-notable-botnets

22 Rabah Rahal et al.

25. Yazan Otoum and Amiya Nayak. As-ids: Anomaly

and signature based ids for the internet of things.

Journal of Network and Systems Management,

29(3):1–26, 2021.

26. Ayodeji Oseni, Nour Moustafa, Helge Janicke, Peng

Liu, Zahir Tari, and Athanasios Vasilakos. Security

and privacy for artificial intelligence: Opportunities

and challenges. arXiv preprint arXiv:2102.04661,

2021.

27. Ximeng Liu, Lehui Xie, Yaopeng Wang, Jian Zou,

Jinbo Xiong, Zuobin Ying, and Athanasios V Vasi-

lakos. Privacy and security issues in deep learning:

A survey. IEEE Access, 2020.

28. M Dibaei, X Zheng, Y Xia, X Xu, A Jolfaei,

A Kashif Bashir, U Tariq, D Yu, and AV Vasilakos.

Investigating the prospect of leveraging blockchain

and machine learning to secure vehicular networks:

A survey. IEEE: Piscataway, NJ, USA, 2020.

29. Danyang Zhuo, Monia Ghobadi, Ratul Mahajan,

Klaus-Tycho Forster, Arvind Krishnamurthy, and

Thomas Anderson. Understanding and mitigating

packet corruption in data center networks. In Pro-

ceedings of the Conference of the ACM Special In-

terest Group on Data Communication. ACM, Au-

gust 2017.

30. Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian

Sun, Dan Pei, Jiao Luo, Xiaowei Jing, and Mei

Feng. Opprentice. In Proceedings of the 2015 Inter-

net Measurement Conference. ACM, October 2015.

31. Anukool Lakhina, Mark Crovella, and Christophe

Diot. Diagnosing network-wide traffic anomalies.

ACM SIGCOMM Computer Communication Re-

view, 34(4):219–230, August 2004.

32. Jiyao Hu, Zhenyu Zhou, Xiaowei Yang, Jacob Mal-

one, and Jonathan W Williams. Cablemon: Im-

proving the reliability of cable broadband net-

works via proactive network maintenance. In 17th

USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 20), pages 619–

632, 2020.

33. Xin Li, Fang Bian, Mark Crovella, Christophe

Diot, Ramesh Govindan, Gianluca Iannaccone, and

Anukool Lakhina. Detection and identification of

network anomalies using sketch subspaces. In Pro-

ceedings of the 6th ACM SIGCOMM on Internet

measurement - IMC 06. ACM Press, 2006.

34. Rajib Biswas and Sambuddha Roy. Botnet traffic

identification using neural networks. Multimedia

Tools and Applications, pages 1–25, 2021.

35. Kapil Sinha, Arun Viswanathan, and Julian Bunn.

Tracking temporal evolution of network activity for

botnet detection. arXiv preprint arXiv:1908.03443,

2019.

36. David Zhao, Issa Traore, Bassam Sayed, Wei Lu,

Sherif Saad, Ali Ghorbani, and Dan Garant. Bot-

net detection based on traffic behavior analysis

and flow intervals. Computers & Security, 39:2–16,

2013.

37. W Timothy Strayer, David Lapsely, Robert Walsh,

and Carl Livadas. Botnet detection based on net-

work behavior. In Botnet detection, pages 1–24.

Springer, 2008.

38. Supranamaya Ranjan. Machine learning based bot-

net detection using real-time extracted traffic fea-

tures, March 25 2014. US Patent 8,682,812.

39. Supranamaya Ranjan and Feilong Chen. Ma-

chine learning based botnet detection with dynamic

adaptation, March 19 2013. US Patent 8,402,543.

40. Machigar Ongtang, Stephen McLaughlin, William

Enck, and Patrick McDaniel. Semantically rich

application-centric security in android. Security

and Communication Networks, 5(6):658–673, 2012.

41. Min Zhao, Tao Zhang, Fangbin Ge, and Zhijian

Yuan. Robotdroid: a lightweight malware detection

framework on smartphones. Journal of Networks,

7(4):715, 2012.

42. Nicoló Andronio, Stefano Zanero, and Federico

Maggi. Heldroid: Dissecting and detecting mobile

ransomware. In International Symposium on Re-

cent Advances in Intrusion Detection, pages 382–

404. Springer, 2015.

43. William Enck, Peter Gilbert, Seungyeop Han, Vas-

ant Tendulkar, Byung-Gon Chun, Landon P Cox,

Jaeyeon Jung, Patrick McDaniel, and Anmol N

Sheth. Taintdroid: an information-flow tracking

system for realtime privacy monitoring on smart-

phones. ACM Transactions on Computer Systems

(TOCS), 32(2):1–29, 2014.

44. Jianbing Ni, Kuan Zhang, and Athanasios V Vasi-

lakos. Security and privacy for mobile edge caching:

Challenges and solutions. IEEE Wireless Commu-

nications, 2020.

45. Philokypros Ioulianou, Vasileios Vasilakis, Ioannis

Moscholios, and Michael Logothetis. A signature-

based intrusion detection system for the internet of

things. Information and Communication Technol-

ogy Form, 2018.

46. Owen Dwyer, Angelos Marnerides, Vasileios Giot-

sas, and Troy Mursh. Profiling iot-based botnet

traffic using dns. 2019.

47. Wanting Li, Jian Jin, and Jong-Hyouk Lee. Anal-

ysis of botnet domain names for iot cybersecurity.

IEEE Access, 7:94658–94665, 2019.

48. Aaron Ridley, Robert Abbas, and Ponnappan Pon-

nurangam. Machine leaning dns data analysis for

automated maliciousdomain classification. 2019.

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 23

49. Mohammad Wazid, Ashok Kumar Das,

Vivekananda Bhat, and Athanasios V Vasilakos.

Lam-ciot: Lightweight authentication mechanism

in cloud-based iot environment. Journal of Net-

work and Computer Applications, 150:102496,

2020.

50. Srinivas Jangirala, Ashok Kumar Das, Mohammad

Wazid, and Athanasios V Vasilakos. Designing se-

cure user authentication protocol for big data col-

lection in iot-based intelligent transportation sys-

tem. IEEE Internet of Things Journal, 2020.

51. Basudeb Bera, Sourav Saha, Ashok Kumar Das,

and Athanasios V Vasilakos. Designing blockchain-

based access control protocol in iot-enabled smart-

grid system. IEEE Internet of Things Journal,

8(7):5744–5761, 2021.

52. Mevlut Turker Garip, Peter Reiher, and Mario

Gerla. Botveillance: A vehicular botnet surveillance

attack against pseudonymous systems in vanets. In

2018 11th IFIP Wireless and Mobile Networking

Conference (WMNC), pages 1–8. IEEE, 2018.

53. Mevlut Turker Garip, Mehmet Emre Gursoy, Pe-

ter Reiher, and Mario Gerla. Congestion attacks

to autonomous cars using vehicular botnets. In

NDSS Workshop on Security of Emerging Network-

ing Technologies (SENT), San Diego, CA, 2015.

54. Stephen Checkoway, Damon McCoy, Brian Kan-

tor, Danny Anderson, Hovav Shacham, Stefan Sav-

age, Karl Koscher, Alexei Czeskis, Franziska Roes-

ner, Tadayoshi Kohno, et al. Comprehensive ex-

perimental analyses of automotive attack surfaces.

In USENIX Security Symposium, volume 4, pages

447–462. San Francisco, 2011.

55. Siri. https://www.apple.com/siri/. Accessed:

2021-01-08.

56. Ben Lovejoy, Ben Lovejoy, Ben Lovejoy, and Eu.

Malicious siri commands can be hidden in mu-

sic and innocuous-sounding speech recordings, May

2018.

57. Takeshi Sugawara, Benjamin Cyr, Sara Ram-

pazzi, Daniel Genkin, and Kevin Fu. Light com-

mands: Laser-based audio injection attacks on

voice-controllable systems. 2019.

58. Margi Murphy. How google is secretly recording

you through your mobile, monitoring millions of

conversations every day and storing the creepy au-

dio files, Aug 2017.

59. Kévin Thomas, Hacéne Fouchal, Stéphane Cormier,

and Francis Rousseaux. C-its communications

based on ble messages. In GLOBECOM 2020-2020

IEEE Global Communications Conference, pages

1–7. IEEE, 2020.

60. Karl Koscher, Alexei Czeskis, Franziska Roesner,

Shwetak Patel, Tadayoshi Kohno, Stephen Check-

oway, Damon McCoy, Brian Kantor, Danny Ander-

son, Hovav Shacham, et al. Experimental security

analysis of a modern automobile. In IEEE Sympo-

sium on security and privacy, volume 10. Oakland,

2010.

61. Mark Wood and Michael Erlinger. Intrusion detec-

tion message exchange requirements. IETF, draft-

ietf-idwg-requirements-10, 2002.

62. Ipv6 flow label specification. https:

//tools.ietf.org/html/rfc3697/. Accessed:

2021-01-08.

63. Controller area network (can) link laye.

https://erg.abdn.ac.uk/users/gorry/eg3576/

CAN-link.html. Accessed: 2021-01-08.

64. Sukru Yaren Gelbal, Sheng Zhu, Gokul Arvind

Anantharaman, Bilin Aksun Guvenc, and Levent

Guvenc. Cooperative collision avoidance in a con-

nected vehicle environment. Technical report, SAE

Technical Paper, 2019.

65. Vinh-Thong Ta and Amit Dvir. A secure road traf-

fic congestion detection and notification concept

based on v2i communications. Vehicular Commu-

nications, 25:100283, 2020.

66. Ying-ji Liu, Yu Yao, Cheng-xu Liu, Lin-tao Chu,

and Xu Liu. A remote on-line diagnostic system

for vehicles by integrating obd, gps and 3g tech-

niques. In Practical Applications of Intelligent Sys-

tems, pages 607–614. Springer, 2011.

67. Songbo Tan. Neighbor-weighted k-nearest neighbor

for unbalanced text corpus. Expert Systems with

Applications, 28(4):667–671, 2005.

68. Henk Pelk. Machine learning, neural networks and

algorithms, Sep 2017.

69. S Abirami and P Chitra. Energy-efficient edge

based real-time healthcare support system. In Ad-

vances in Computers, volume 117, pages 339–368.

Elsevier, 2020.

70. Eunbi Seo, Hyun Min Song, and Huy Kang Kim.

Gids: Gan based intrusion detection system for in-

vehicle network. In 2018 16th Annual Conference

on Privacy, Security and Trust (PST), pages 1–6.

IEEE, 2018.

71. Hariharan Krishnan, Fan Bai, and Gavin Holland.

Commercial and public use applications. Vehicular

Networking, pages 1–28, 2010.

72. Openstreetmap. https://

www.openstreetmap.org/. Accessed: 2021-01-

08.

73. Network simulator 3. https://www.nsnam.org/.

Accessed: 2021-01-08.

https://www.apple.com/siri/
https://tools.ietf.org/html/rfc3697/
https://tools.ietf.org/html/rfc3697/
https://erg.abdn.ac.uk/users/gorry/eg3576/CAN-link.html
https://erg.abdn.ac.uk/users/gorry/eg3576/CAN-link.html
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.nsnam.org/

24 Rabah Rahal et al.

74. Simulation of urban mobility. http:

//sumo.sourceforge.net/. Accessed: 2021-01-08.

75. Cicflowmeter. http://netflowmeter.ca/. Ac-

cessed: 2019-07-08.

76. Forward selection algorithm.

http://rasbt.github.io/mlxtend/

user guide/feature selection/

SequentialFeatureSelector/. Accessed: 2019-

07-08.

77. Linear-svc. https://scikit-learn.org/stable/

modules/feature selection.html#l1-based-

feature-selection. Accessed: 2019-07-08.

78. Car-hacking dataset. http://

ocslab.hksecurity.net/Datasets/CAN-

intrusion-dataset. Accessed: 2021-01-08.

Rabah RAHAL is a doctoral

student in Badji Mokhtar Univer-

sity Annaba Algeria. He is a mem-

ber of the Laboratory of Com-

puter Networks and Systems. His

research interests include vehicular

networks, network security, intru-

sion and malwares detection, ma-

chine learning, anomaly detection,

cryptography, security analysis. He

does research in cyberattacks de-

tection in vehicular networks, and the generation of re-

alistic DoS dataset for intelligent transportation sys-

tems.

Abdelaziz Amara korba re-

ceived his Ph.D. degree from Badji

Mokhtar Annaba University, Al-

geria, in 2016. Currently, he is

an Associate Professor in the de-

partment of computer science at

the University of Badji Mokhtar

Annaba, and he is member of

Networks and Systems Laboratory

(LRS). Dr. Amara korba has made

contributions in the fields of net-

work security, intrusion and cyberattacks detection. His

research interests include cybersecurity, intrusion de-

tection, anomaly detection, IoT, botnets. He served

as TPC in many international conferences worldwide

(GLOBECOM, EUSPN, AINIS, ICCE,..), he serves as

an associate editor for the International Journal of

Smart Security Technologies.

Nacira Ghoualmi-Zine is a

Professor in Computer Sciences

and has been a Lecturer in

the Department of Computer Sci-

ence at Badji Mokhtar University,

Annaba, Algeria since 1985. She is

the Head of the Master and Doc-

toral option entitled Network and

Computer Security, and Head of a

Laboratory of Computer Networks

and Systems. Her research includes

cryptography, computer security, intrusion detection

system, wireless networks, distributed multimedia ap-

plications, quality of service, security in the protocol,

and optimisation in networks.

Yacine CHALLAL received

the PhD degree in computer sci-

ence from Compigne University

of Technology (UTC), France, in

2005. Since September 2007, he

has been an Assistant Professor

at UTC. He is currently Pro-

fessor Ecole nationale Supérieure

d’Informatique, Algiers, Algeria.

His research interests include net-

work security, wireless communica-

tion security, cyber-physical systems security, wireless

sensor networks, IoT, Cloud computing and fault tol-

erance in distributed systems. He served as managing

guest editor of Ad Hoc Networks for a special issue on

Internet of Things security and privacy, and served as

guest editor of Wiley Security and Communication Net-

works journal on Security, Privacy and Trust in Emerg-

ing Wireless Networks.

Yacine Ghamri-Doudane is

currently Full Professor at the

University of La Rochelle (ULR)

in France, and the director of

its Laboratory of Informatics, Im-

age and Interaction (L3i). Be-

fore that, Yacine held an Assis-

tant/Associate Professor position

at ENSIIE, a major French post-

graduate school located in Evry,

France, and was a member of the

Gaspard-Monge Computer Science Laboratory (LIGM

– UMR 8049) at Marne-la-Vallée, France. Yacine re-

ceived an engineering degree in computer science from

the National Institute of Computer Science (INI), Al-

giers, Algeria, in 1998, an M.S. degree in signal, im-

age and speech processing from the National Institute

of Applied Sciences (INSA), Lyon, France, in 1999, a

Ph.D. degree in computer networks from University

Pierre & Marie Curie, Paris 6, France, in 2003, and

a Habilitation to Supervise Research (HDR) in Com-

puter Science from Université Paris-Est, in 2010. His

current research interests lays in the area of wireless

networking and mobile computing with a current em-

phasis on topics related to the Internet of Things (IoT),

http://sumo.sourceforge.net/
http://sumo.sourceforge.net/
http://netflowmeter.ca/
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
https://scikit-learn.org/stable/modules/feature_selection.html#l1-based-feature-selection
https://scikit-learn.org/stable/modules/feature_selection.html#l1-based-feature-selection
https://scikit-learn.org/stable/modules/feature_selection.html#l1-based-feature-selection
http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset
http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset
http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset

AntibotV: A Multilevel Behaviour-based Framework for Botnets Detection in Vehicular Networks 25

Wireless Sensor Networks (WSN), Vehicular Networks

as well as Digital Trust. Yacine holds three (3) inter-

national patents and he authored or co-authored seven

(7) book chapters, more than 30 peer-reviewed interna-

tional journal articles and more than 130 peer-reviewed

conference papers.

	Introduction
	Background
	Related Work
	Threat Models
	AntibotV Framework
	Experimentation
	Conclusion
	Acknowledgment

