
Grokking the Sequent Calculus (Functional Pearl)

DAVID BINDER, University of Tübingen, Germany

MARCO TZSCHENTKE, University of Tübingen, Germany

MARIUS MÜLLER, University of Tübingen, Germany

KLAUS OSTERMANN, University of Tübingen, Germany

The sequent calculus is a proof system which was designed as a more symmetric alternative to natural

deduction. The 𝜆𝜇�̃�-calculus is a term assignment system for the sequent calculus and a great foundation for

compiler intermediate languages due to its first-class representation of evaluation contexts. Unfortunately, only

experts of the sequent calculus can appreciate its beauty. To remedy this, we present the first introduction to

the 𝜆𝜇�̃�-calculus which is not directed at type theorists or logicians but at compiler hackers and programming-

language enthusiasts. We do this by writing a compiler from a small but interesting surface language to the

𝜆𝜇�̃�-calculus as a compiler intermediate language.

CCS Concepts: • Theory of computation → Lambda calculus; • Software and its engineering →
Compilers; Control structures.

Additional Key Words and Phrases: Intermediate representations, continuations, codata types, control effects

ACM Reference Format:

David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann. 2024. Grokking the Sequent Calculus

(Functional Pearl). Proc. ACM Program. Lang. 1, ICFP, Article 1 (January 2024), 31 pages.

1 Introduction
Suppose you have just implemented your own small functional language. To test it, you write the

following function which multiplies all the numbers contained in a list:

def mult(𝑙) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ 𝑥 ∗mult(𝑥𝑠) }

What bugs you about this implementation is that you know an obvious optimization: The function

should directly return zero if it encounters a zero in the list. There are many ways to achieve this,

but you choose to extend your language with labeled expressions and a goto instruction. This

allows you to write the optimized version:

def mult(𝑙) ≔ label 𝛼 {mult’(𝑙 ;𝛼) }
def mult’(𝑙 ;𝛼) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, goto(0;𝛼), 𝑥 ∗mult’(𝑥𝑠 ;𝛼)) }

You used label 𝛼 {mult’(𝑙 ;𝛼)} to introduce a label 𝛼 around the call to the helper function mult’

which takes this label as an additional argument (we use ; to separate the label argument from

the other arguments), and goto(0;𝛼) to jump to this label 𝛼 with the expression 0 in the recursive

helper function. But since your language now has control effects, you need to reconsider how

you want to compile and optimize programs. In particular, you have to decide on an appropriate

intermediate language which can express these control effects. In this paper, we introduce you to

Authors’ Contact Information: David Binder, Department of Computer Science, University of Tübingen, Tübingen, Germany,

david.binder@uni-tuebingen.de; Marco Tzschentke, Department of Computer Science, University of Tübingen, Tübingen,

Germany, marco.tzschentke@uni-tuebingen.de; Marius Müller, Department of Computer Science, University of Tübingen,

Tübingen, Germany, mari.mueller@uni-tuebingen.de; Klaus Ostermann, Department of Computer Science, University of

Tübingen, Tübingen, Germany, klaus.ostermann@uni-tuebingen.de.

2024. ACM 2475-1421/2024/1-ART1

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

ar
X

iv
:2

40
6.

14
71

9v
1

 [
cs

.P
L

]
 2

0
Ju

n
20

24

HTTPS://ORCID.ORG/0000-0003-1272-0972
HTTPS://ORCID.ORG/0009-0004-8834-2984
HTTPS://ORCID.ORG/0000-0002-0260-6298
HTTPS://ORCID.ORG/0000-0001-5294-5506
https://orcid.org/0000-0003-1272-0972
https://orcid.org/0009-0004-8834-2984
https://orcid.org/0000-0002-0260-6298
https://orcid.org/0000-0001-5294-5506
https://doi.org/

1:2 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

one such intermediate language: the sequent-calculus-based 𝜆𝜇�̃�-calculus. The result of compiling

the efficient multiplication function to the 𝜆𝜇�̃�-calculus is:

def mult(𝑙 ;𝛼) ≔ mult’(𝑙 ;𝛼, 𝛼)
def mult’(𝑙 ;𝛼, 𝛽) ≔

⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩,mult’(𝑥𝑠;𝛼, �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)))}⟩

Here is how you read this snippet: Besides the list argument 𝑙 , the definition def mult(𝑙 ;𝛼) ≔ . . .

takes an argument 𝛼 which indicates how the computation should continue once the result of the

multiplication is computed (we again use ; to separate these two kinds of arguments). The helper

function mult’ takes a list argument 𝑙 and two arguments 𝛼 and 𝛽 ; the argument 𝛽 indicates where

the function should return to on a normal recursive call while 𝛼 indicates the return point of a

short-circuiting computation. In the body of mult’ we use ⟨𝑙 | case {Nil ⇒ . . . ,Cons(𝑥, 𝑥𝑠) ⇒ . . .}⟩
to perform a case split on the list 𝑙 . If the list is Nil, then we use ⟨1 | 𝛽⟩ to return 1 to 𝛽 , which is

the return for a normal recursive call. If the list has the form Cons(𝑥, 𝑥𝑠) and 𝑥 is zero, we return

with ⟨0 | 𝛼⟩, where 𝛼 is the return point which short-circuits the computation. If 𝑥 isn’t zero, then

we have to perform the recursive call mult’(𝑥𝑠;𝛼, �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)), where we use �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽) to
bind the result of the recursive call to the variable 𝑧 before multiplying it with 𝑥 and returning to

𝛽 . Don’t be discouraged if this looks complicated at the moment; the main part of this paper will

cover everything in much more detail.

Fig. 1. Screenshot of the online evaluator.

The 𝜆𝜇�̃�-calculus that you have just

seen was first introduced by Curien and

Herbelin [2000] as a solution to a long-

standing open question: What should a

term language for the sequent calculus

look like? The sequent calculus is one of

two influential proof calculi introduced

by Gentzen [1935a,b] in a single paper,

the other calculus being natural deduc-

tion. The term language for natural deduc-

tion is the ordinary lambda calculus, but it

was difficult to find a good term language

for the sequent calculus. After it had been

found, the 𝜆𝜇�̃�-calculus was proposed as

a better foundation for compiler interme-

diate languages, for example by Downen

et al. [2016]. Despite this, most language

designers and compiler writers are still un-

familiar with it. This is the situation that

we hope to remedy with this pearl.

We frequently discuss ideas which in-

volve the 𝜆𝜇�̃�-calculus with students and

colleagues and therefore have to introduce them to its central ideas. But we usually cannot motivate

the 𝜆𝜇�̃�-calculus as a term assignment system for the sequent calculus, since most of them are

not familiar with it. We instead explain the 𝜆𝜇�̃�-calculus on the whiteboard by compiling small

functional programs into it. Such an introduction is regrettably still missing in the published

literature; most existing presentations either presuppose knowledge of the sequent calculus or

otherwise spend a lot of space introducing it first. We believe that if one can understand the lambda

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:3

calculus without first learning about natural deduction proofs, then one should also be able to

understand the 𝜆𝜇�̃�-calculus without knowing the sequent calculus1.

Why are we excited about the 𝜆𝜇�̃�-calculus, and why do we think that more people should

become familiar with its central ideas and concepts? The main feature which distinguishes the 𝜆𝜇�̃�-

calculus from the lambda calculus is its first-class treatment of evaluation contexts. An evaluation

context is the remainder of the program which runs after the current subexpression we are focused

on finishes evaluating.

This becomes clearer with an example: When we want to evaluate the expression (2 + 3) ∗ 5,
we first have to focus on the subexpression 2 + 3 and evaluate it to its result 5. The remainder

of the program, which will run after we have finished the evaluation, can be represented with

the evaluation context □ ∗ 5. We cannot bind an evaluation context like □ ∗ 5 to a variable in

the lambda calculus, but in the 𝜆𝜇�̃�-calculus we can bind such evaluation contexts to covariables.

Furthermore, the 𝜇-operator gives direct access to the evaluation context in which the expression is

currently evaluated. Having such direct access to the evaluation context is not always necessary for a

programmer who wants to write an application, but it is often important for compiler implementors

who write optimizations to make programs run faster. One solution that compiler writers use

to represent evaluation contexts in the lambda calculus is called continuation-passing style. In

continuation-passing style, an evaluation context like □∗5 is represented as a function 𝜆𝑥.𝑥 ∗5. This
solution works, but the resulting types which are used to type a program in this style are arguably

hard to understand. Being able to easily inspect these types can be very valuable, especially for

intermediate representations, where terms tend to look complex. The promise of the 𝜆𝜇�̃�-calculus

is to provide the expressive power of programs in continuation-passing style without having to

deal with the type-acrobatics that are usually associated with it.

The remainder of this paper is structured as follows:

• In Section 2 we introduce the surface language Fun and show how we can translate it into

the sequent-calculus-based language Core. The surface language is mostly an expression-

oriented functional programming language, but we have added some features such as codata

types and control operators whose translations provide important insights into how the

𝜆𝜇�̃�-calculus works. In this section, we also compare how redexes are evaluated in both

languages.

• In Section 3 we discuss static and dynamic focusing, which are two closely related techniques

for lifting subexpressions which are not values into a position where they can be evaluated.

• Section 4 introduces the typing rules for Fun and Core and proves standard results about

typing and evaluation.

• We show why we are excited about the 𝜆𝜇�̃�-calculus in Section 5. We present various pro-

gramming language concepts which become much clearer when we present them in the

𝜆𝜇�̃�-calculus: We show that let-bindings are precisely dual to control operators, that data

and codata types are two perfectly dual ways of specifying types, and that the case-of-case

transformation is nothing more than a 𝜇-reduction. These insights are not novel for someone

familiar with the 𝜆𝜇�̃�-calculus, but not yet as widely known as they should be.

• Finally, in Section 6 we discuss related work and provide pointers for further reading. We

conclude in Section 7.

This paper is accompanied by a Haskell implementation which we also make available as an

interactive website (cf. Figure 1). You can run the examples presented in this paper in the online

evaluator.

1
For the interested reader, we show in Appendix A how the sequent calculus and the 𝜆𝜇�̃�-calculus are connected.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:4 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

2 Translating To Sequent Calculus
In this section, we introduce Fun, an expression-oriented functional programming language,

together with its translation into the sequent-calculus-based intermediate language Core. We

present both languages and the translation function J−K in multiple steps, starting with arithmetic

expressions and adding more features in later subsections. We postpone the typing rules for both

languages until Section 4.

2.1 Arithmetic Expressions
We begin with arithmetic expressions which consist of variables, integer literals, binary operators

and ifz, a conditional expression which checks whether its first argument is equal to zero. The

syntax of arithmetic expressions for Fun and Core is given in Definition 2.1.

Definition 2.1 (Arithmetic Expressions).

𝑥,𝑦, 𝑧, . . . ∈ Variables ⋆, 𝛼, 𝛽,𝛾, . . . ∈ Covariables ⊙ ∈ {∗, +,−}

Fun

𝑡 F 𝑥 | ⌜𝑛⌝ | 𝑡 ⊙ 𝑡 | ifz(𝑡, 𝑡, 𝑡)

Core

𝑝 F 𝑥 | ⌜𝑛⌝ | 𝜇𝛼.𝑠 Producer
𝑐 F 𝛼 Consumer
𝑠 F ⊙(𝑝, 𝑝; 𝑐) | ifz(𝑝, 𝑠, 𝑠) | ⟨𝑝 | 𝑐⟩ Statement

J𝑥K ≔ 𝑥 J𝑡1 ⊙ 𝑡2K ≔ 𝜇𝛼. ⊙ (J𝑡1K, J𝑡2K;𝛼) (𝛼 fresh)
J⌜𝑛⌝K ≔ ⌜𝑛⌝ Jifz(𝑡1, 𝑡2, 𝑡3)K ≔ 𝜇𝛼.ifz(J𝑡1K, ⟨J𝑡2K | 𝛼⟩, ⟨J𝑡3K | 𝛼⟩) (𝛼 fresh)

In Fun there is only one syntactic category: terms 𝑡 . These terms can either be variables 𝑥 , literals

⌜𝑛⌝, binary operators 𝑡 + 𝑡 , 𝑡 ∗ 𝑡 and 𝑡 − 𝑡 , or a conditional ifz(𝑡, 𝑡0, 𝑡1). This conditional evaluates
to 𝑡0 if 𝑡 evaluates to ⌜0⌝, or to 𝑡1 otherwise. In contrast to this single category, Core uses three

different syntactic categories: producers 𝑝 , consumers 𝑐 and statements 𝑠 . These categories are

directly inherited from the 𝜆𝜇�̃�-calculus, and it is important to understand their differences:

Producers All constructs in Core which construct or produce an element of some type belong to

the syntactic category of producers. In other words, producers correspond to “introduction

forms” or “proof terms”, and every term of the language Fun is translated to a producer in

Core.

Consumers Consumers are probably less intuitive than producers since they do not correspond

directly to any term of the language Fun. The basic idea is that if some consumer 𝑐 has type 𝜏 ,

then 𝑐 consumes or destructs a producer of type 𝜏 . If you have encountered evaluation contexts

or continuations before, then it is helpful to think of consumers of type 𝜏 as continuations or

evaluation contexts for a producer of type 𝜏 . And if you are familiar with the Curry-Howard

correspondence, then you can think of consumers as refutations or direct evidence that a

proposition is false.

Statements Statements are the ingredient which make computation happen; without statements,

we would only have static objects without any dynamic behavior. Here is a non-exhaustive

list of examples for statements: Every IO action which reads from or prints to the console

or a file should be represented as a statement in Core. Computations on primitive types

such as machine integers should be statements. Finally, everything which is a redex in an

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:5

expression-based language should also correspond to a statement in Core. Since statements

themselves only compute and do not return anything they do not have a type.

After these general remarks, let us now look at how arithmetic expressions are represented in the

language Core. Variables 𝑥 and literals ⌜𝑛⌝ both belong to the category of producers, but binary

operators are represented as statements ⊙(𝑝1, 𝑝2; 𝑐). First, let us explain why they are represented

as statements instead of producers. The idea is that a binary operator on primitive integers has

to be evaluated directly by the arithmetic logic unit (ALU) of the underlying machine. And any

operation which directly invokes the machine should belong to the same syntactic category as a

print or other IO instruction: statements. The machine does not return a result; rather, it reads

inputs from registers and makes the result available in a register for further computation. This is

also reflected in the second surprising aspect: the operator has three instead of two arguments.

The two producers 𝑝1 and 𝑝2 correspond to the usual arguments, but the third consumer argument

𝑐 says what should happen to the result once the binary operator has been evaluated. This is

similar to the continuation argument of a function in continuation-passing style. Binary operators

⊙(𝑝1, 𝑝2; 𝑐) also display a syntactic convention we use: whenever some construct has arguments of

different syntactic categories, we use a semicolon instead of a comma to separate them.

We can immediately see that the result of J𝑝1 + 𝑝2K should contain the statement +(J𝑝1K, J𝑝2K; ?),
but we still have to figure out which consumer to plug in at the third-argument place, and how to

convert this statement into a producer. We can do this with a 𝜇-abstraction in Core, which turns a

statement into a producer while binding a covariable 𝛼 : 𝜇𝛼. + (J𝑝1K, J𝑝2K;𝛼).
The statement ifz works similarly to binary operators: It is a computation which checks if the

producer 𝑝 is zero and then continues with one of its two branches. These branches are also

statements, indicating which computation to run after the condition has been evaluated. In the

language Fun the two branches were terms, so we now have to find a way to transform two

producers into two statements. We can do this by using a cut ⟨𝑝 | 𝑐⟩ which combines a producer

and a consumer of the same type to obtain a statement in each branch: ifz(J𝑡1K, ⟨J𝑡2K | ? ⟩, ⟨J𝑡3K | ? ⟩).
We can then use the same covariable 𝛼 in both statements to represent the fact that the we want the

result in either branch to return to the same point in the program; we use a surrounding 𝜇-binding

again to bind this covariable: 𝜇𝛼.ifz(J𝑡1K, ⟨J𝑡2K | 𝛼⟩, ⟨J𝑡3K | 𝛼⟩).
Let us now see how arithmetic expressions are evaluated. Definition 2.2 introduces the syntax

of values and covalues, and shows how to reduce immediate redexes. We use a simple syntactic

convention here: The metavariable for a value of terms 𝑡 is 𝔱, the values of producers 𝑝 are written 𝔭

and the covalues which correspond to consumers 𝑐 are written 𝔠. We use the symbol ⊲ for reduction

in both Fun and Core (and write ⊲∗ when multiple steps are performed at once).

Definition 2.2 (Evaluation for Arithmetic Expressions).
Fun

𝔱 F ⌜𝑛⌝ Values

ifz(⌜0⌝, 𝑡1, 𝑡2) ⊲ 𝑡1
ifz(⌜𝑛⌝, 𝑡1, 𝑡2) ⊲ 𝑡2 (if 𝑛 ≠ 0)

⌜𝑛⌝ ⊙ ⌜𝑚⌝ ⊲ ⌜𝑛 ⊙𝑚⌝

Core

𝔭 F ⌜𝑛⌝ Values
𝔠 F 𝛼 Covalues

ifz(⌜0⌝, 𝑠1, 𝑠2) ⊲ 𝑠1
ifz(⌜𝑛⌝, 𝑠1, 𝑠2) ⊲ 𝑠2 (if 𝑛 ≠ 0)

⊙(⌜𝑛⌝, ⌜𝑚⌝; 𝑐) ⊲ ⟨⌜𝑛 ⊙𝑚⌝ | 𝑐⟩
⟨𝜇𝛼.𝑠 | 𝔠⟩ ⊲ 𝑠 [𝔠/𝛼]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:6 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Values and the evaluation of redexes in Fun is straightforward, the only noteworthy aspect is

that the two rules for ifz(·, 𝑡1, 𝑡2) do not require 𝑡1 and 𝑡2 to be values. Thus, let us proceed with the

discussion of the language Core.

The first interesting aspect of the language Core is that there are both values and covalues. This

can be explained by the role that values play in operational semantics: they specify the subset of

terms that we are allowed to substitute for a variable. And since we have both variables which

stand for producers and covariables which stand for consumers, we need both values and covalues

as the respective subsets which we are allowed to substitute for a variable or covariable.

The second interesting aspect of the language Core is that only statements are reduced, not

producers or consumers. This substantiates our remark from above that it is statements that

introduce dynamism into the language by driving computation. It also contributes to the feeling

that reduction in the language is close to the evaluation of an abstract machine and that the

statements of Core correspond to the states of such an abstract machine.

We are still faced with a small problem when we want to show that a term of Fun evaluates to

the same result as its translation into Core: We have only specified the reduction for statements but

not for producers. We can easily solve this problem by introducing a special covariable⋆ which

acts as the “top-level” consumer of an evaluation. Using⋆ we can then evaluate the statement

⟨J𝑡K | ⋆⟩ instead of the producer J𝑡K.

Example 2.1. Consider the two terms ⌜2⌝ ∗ ⌜3⌝ and ifz(⌜2⌝, ⌜5⌝, ⌜10⌝) of Fun. Their respective
translations into Core are 𝜇𝛼.∗ (⌜2⌝, ⌜3⌝;𝛼) and 𝜇𝛼.ifz(⌜2⌝, ⟨⌜5⌝ | 𝛼⟩, ⟨⌜10⌝ | 𝛼⟩). When we wrap

them into a statement using the top-level continuation⋆, we observe the following evaluation:

⟨𝜇𝛼. ∗ (⌜2⌝, ⌜3⌝;𝛼) | ⋆⟩ ⊲ ∗(⌜2⌝, ⌜3⌝;⋆) ⊲ ⟨⌜6⌝ | ⋆⟩
⟨𝜇𝛼.ifz(⌜2⌝, ⟨⌜5⌝ | 𝛼⟩, ⟨⌜10⌝ | 𝛼⟩) | ⋆⟩ ⊲ ifz(⌜2⌝, ⟨⌜5⌝ | ⋆⟩, ⟨⌜10⌝ | ⋆⟩) ⊲ ⟨⌜10⌝ | ⋆⟩

We have successfully evaluated the first term to the result ⌜6⌝ and the second term to the result

⌜10⌝.

In the following, we will often leave out the first reduction step in examples, thus silently

replacing the covariable bound by the outermost 𝜇-binding with the top-level consumer⋆.

Here is a bigger problem that we haven’t addressed yet. The evaluation rules in the present

section do not allow to evaluate nested expressions like (⌜2⌝ ∗ ⌜4⌝) + ⌜5⌝ in Fun or its translation

𝜇𝛼. + (𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽), ⌜5⌝;𝛼) in Core. We will discuss this problem and its solution in more

detail in Section 3.

2.2 Let Bindings
Let-bindings are important since we can use them to eliminate duplication and make code more

readable. In this section we introduce let-bindings to Fun for an additional reason: they allow us to

introduce the second construct which gives the 𝜆𝜇�̃�-calculus its name: �̃�-abstractions.

Definition 2.3 (Let-Bindings and �̃�-abstractions).
Fun

𝑡 F . . . | let 𝑥 = 𝑡 in 𝑡

let 𝑥 = 𝔱 in 𝑡 ⊲ 𝑡 [𝔱/𝑥]

Core

𝑐 F . . . | �̃�𝑥 .𝑠
𝔠 F . . . | �̃�𝑥 .𝑠

⟨𝔭 | �̃�𝑥 .𝑠⟩ ⊲ 𝑠 [𝔭/𝑥]

Jlet 𝑥 = 𝑡1 in 𝑡2K ≔ 𝜇𝛼.⟨J𝑡1K | �̃�𝑥 .⟨J𝑡2K | 𝛼⟩⟩ (𝛼 fresh)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:7

The let-bindings in Fun are standard and are evaluated by substituting the value 𝔱 for the variable
𝑥 in the body which is a term. The analogue of a let-binding in Fun is a �̃�-binding in Core which

also binds a variable, with the difference that the body of a �̃�-binding is a statement. It can easily

be seen that �̃�-bindings are the precise dual of 𝜇-bindings that we have already introduced.

With both 𝜇- and �̃�-bindings in Core we have to face a potential problem, namely statements of

the form ⟨𝜇𝛼.𝑠1 | �̃�𝑥 .𝑠2⟩. Such a statement is called a critical pair since it can potentially be reduced

to both 𝑠1 [�̃�𝑥 .𝑠2/𝛼] and 𝑠2 [𝜇𝛼.𝑠1/𝑥] which can be a source of non-confluence. A closer inspection

of the rules shows that we avoid this pitfall and always evaluate the statement to 𝑠1 [�̃�𝑥 .𝑠2/𝛼]. We

do not allow to reduce the statement to 𝑠2 [𝜇𝛼.𝑠1/𝑥] since only values 𝔭 can be substituted for

variables, and 𝜇𝛼.𝑠1 is not a value. This restriction precisely mirrors the restriction on the evaluation

of let-bindings in Fun. In other words, we use call-by-value evaluation order. We will address the

critical pair and how it relates to different evaluation orders again in Section 5.6.

Example 2.2. Consider the term let 𝑥 = ⌜2⌝ ∗ ⌜2⌝ in 𝑥 ∗ 𝑥 whose translation into Core is the

producer 𝜇𝛼.⟨𝜇𝛽. ∗ (⌜2⌝, ⌜2⌝; 𝛽) | �̃�𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | 𝛼⟩⟩. This producer contains a critical pair

which we have underlined. Because we are using call-by-value, we can observe how the following

reduction steps resolve the critical pair by evaluating the 𝜇-abstraction first.

⟨𝜇𝛽. ∗ (⌜2⌝, ⌜2⌝; 𝛽) | �̃�𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩⟩ ⊲ ∗(⌜2⌝, ⌜2⌝; �̃�𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩)⊲
⟨⌜4⌝ | �̃�𝑥 .⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | ⋆⟩⟩ ⊲ ⟨𝜇𝛾 . ∗ (⌜4⌝, ⌜4⌝;𝛾) | ⋆⟩ ⊲ ∗(⌜4⌝, ⌜4⌝;⋆) ⊲ ⟨⌜16⌝ | ⋆⟩

We can observe that the arithmetic expression 2∗ 2 has been evaluated only once, which is precisely

what we expect from call-by-value.

2.3 Top-level Definitions
We introduce recursive top-level definitions to Fun and Core for two reasons. They allow us to

write more interesting examples and they illustrate a difference in how recursive calls are handled.

The extension is specified in Definition 2.4.

Definition 2.4 (Top-level Definitions). We assume for both languages that 𝑓 , 𝑔, ℎ, . . . ∈ Names.

Fun

𝐹 F def 𝑓 (𝑥 ;𝛼) ≔ 𝑡 Definitions
𝑃 F ∅ | 𝐹, 𝑃 Programs
𝑡 F . . . | 𝑓 (𝑡 ;𝛼) Terms

𝑓 (𝔱;𝛼) ⊲𝑡 [𝔱/𝑥, 𝛼/𝛽] (if 𝑓 (𝑥 ; 𝛽) ≔ 𝑡 ∈ 𝑃)

Core

𝐹 F def 𝑓 (𝑥 ;𝛼) ≔ 𝑠 Definitions
𝑃 F ∅ | 𝐹, 𝑃 Programs
𝑠 F . . . | 𝑓 (𝑝; 𝑐) Statements

𝑓 (𝔭; 𝔠) ⊲𝑠 [𝔭/𝑥, 𝔠/𝛼] (if 𝑓 (𝑥 ;𝛼) ≔ 𝑠 ∈ 𝑃)

Jdef 𝑓 (𝑥 ;𝛼) ≔ 𝑡K ≔ def 𝑓 (𝑥 ;𝛼, 𝛼) ≔ ⟨J𝑡K | 𝛼⟩ (𝛼 fresh)
J𝑓 (𝑡 ;𝛼)K ≔ 𝜇𝛼.𝑓 (J𝑡K;𝛼, 𝛼) (𝛼 fresh)

Top-level definitions should not be confused with first-class functions which will be introduced

later, since they cannot be passed as an argument or returned as a result. They are a part of

a program that consists of a list of such top-level definitions. The top-level definitions in Fun

curiously also take covariables as arguments even though the language does not contain consumers;

you can ignore that for now. If you remember the example from the introduction, then you might

recall that we use them for passing labels, but we will only formally introduce that construct in

Section 2.6.

We evaluate the call of a top-level definition by looking up the body in the program and substi-

tuting the arguments of the call for the parameters in the body of the definition. The body of a

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:8 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

top-level definition is a term in Fun and a statement in Core. This difference explains why we have

to add an additional parameter 𝛼 to every top-level definition when we translate it; this parameter 𝛼

also corresponds to the additional continuation argument when we ordinarily translate a function

into continuation-passing style. We could also have specified that the body of a top-level definition

in Core should be a producer. We don’t do that because when we eventually translate Core to

machine code we want every top-level definition to become the target of a jump with arguments

without building up a function call stack. The following example shows how this works:

Example 2.3. Using a top-level definition, we can represent the factorial function in Core.

def fac(𝑛;𝛼) ≔ ifz(𝑛, ⟨⌜1⌝ | 𝛼⟩,−(𝑛, ⌜1⌝; �̃�𝑥 .fac(𝑥 ; �̃�𝑟 . ∗ (𝑛, 𝑟 ;𝛼))))
For the argument ⌜1⌝ this evaluates in the following way:

fac(⌜1⌝,⋆) ⊲ ifz(⌜1⌝, ⟨⌜1⌝ | ⋆⟩,−(⌜1⌝, ⌜1⌝; �̃�𝑥 .fac(𝑥 ; �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆))))
⊲ −(⌜1⌝, ⌜1⌝; �̃�𝑥 .fac(𝑥 ; �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆)))
⊲ ⟨⌜0⌝ | �̃�𝑥 .fac(𝑥 ; �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆))⟩
⊲ fac(⌜0⌝; �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆)) (∗)
⊲ ifz(⌜0⌝, ⟨⌜1⌝ | �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆)⟩, . . .)
⊲ ⟨⌜1⌝ | �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆)⟩
⊲ ∗(⌜1⌝, ⌜1⌝;⋆) ⊲ ⟨⌜1⌝ | ⋆⟩

At the point (∗) of the evaluation we can now see how the recursive call is evaluated. In Fun this

recursive call would have the form 1 ∗ fac(0) and require a function stack, but in Core we can

jump to the definition of fac with the consumer �̃�𝑟 . ∗ (⌜1⌝, 𝑟 ;⋆) as an additional argument which

contains the information that the result of the recursive call should be bound to the variable 𝑟 and

then multiplied with ⌜1⌝. Note again that this consumer argument corresponds to a continuation

in continuation-passing style (in that sense it might be viewed as a reified stack) and so the basic

techniques used in CPS-based intermediate representations and compilers can be applied for its

implementation.

2.4 Algebraic Data and Codata Types
We now extend Fun and Core with two new features: algebraic data and codata types. Algebraic

data types are familiar from most typed functional programming languages. Algebraic codata types

[Hagino 1989] are a little more unusual; they are defined by a set of observations or methods called

destructors and are quite similar to interfaces in object-oriented programming [Cook 2009]. We

introduce them both in the same section because they help to illustrate some of the deep theoretical

dualities and symmetries of the sequent calculus and the 𝜆𝜇�̃�-calculus.

To get acquainted with our syntax, let us first briefly look at two short examples in Fun. The

following definition calculates the sum over a List it receives as input.

def sum(𝑥) ≔ case 𝑥 of {Nil ⇒ ⌜0⌝, Cons(𝑦,𝑦𝑠) ⇒ 𝑦 + sum(𝑦𝑠)}
It does so by pattern matching using the case ... of {...} construct which is entirely standard. As an

example of codata types, consider this definition:

def repeat(𝑥) ≔ cocase {hd ⇒ 𝑥, tl ⇒ repeat(𝑥)}
It constructs an infinite Stream whose elements are all the same as the input 𝑥 of the function. A

Stream is defined by two destructors, hd yields the head of the stream and tl yields the remaining

stream without the head. The stream is constructed by copattern matching [Abel et al. 2013] using

the cocase {...} construct.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:9

Definition 2.5 (Algebraic Data and Codata Types).

Fun

𝑡 F . . . | 𝐾 (𝑡) | case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡}
| 𝑡 .𝐷 (𝑡) | cocase {𝐷 (𝑥) ⇒ 𝑡}

𝔱 F . . . | 𝐾 (𝔱) | cocase {𝐷 (𝑥) ⇒ 𝑡}

case 𝐾 (𝔱) of {𝐾 (𝑥) ⇒ 𝑡, . . .} ⊲ 𝑡 [𝔱/𝑥]

cocase {𝐷 (𝑥) ⇒ 𝑡, . . .}.𝐷 (𝔱) ⊲ 𝑡 [𝔱/𝑥]

Core

𝑝 F . . . | 𝐾 (𝑝; 𝑐) | cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}
𝑐 F . . . | 𝐷 (𝑝; 𝑐) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}
𝔭 F . . . | 𝐾 (𝔭; 𝑐) | cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}
𝔠 F . . . | 𝐷 (𝑝; 𝑐) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}

⟨𝐾 (𝔭; 𝔠) | case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠, . . .}⟩ ⊲ 𝑠 [𝔭/𝑥 ; 𝔠/𝛼]
⟨cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠, . . .} | 𝐷 (𝔭; 𝔠)⟩ ⊲ 𝑠 [𝔭/𝑥 ; 𝔠/𝛼]

J𝐾 (𝑡1, . . . , 𝑡𝑛)K ≔ 𝐾 (J𝑡1K, . . . , J𝑡𝑛K)

Jcase 𝑡 of {𝐾𝑖 (𝑥𝑖, 𝑗) ⇒ 𝑡𝑖 }K ≔ 𝜇𝛼.⟨J𝑡K | case {𝐾𝑖 (𝑥𝑖, 𝑗) ⇒ ⟨J𝑡𝑖K | 𝛼⟩}⟩ (𝛼 fresh)
J𝑡 .𝐷 (𝑡1, . . . , 𝑡𝑛)K ≔ 𝜇𝛼.⟨J𝑡K | 𝐷 (J𝑡1K, . . . , J𝑡𝑛K;𝛼)⟩ (𝛼 fresh)

Jcocase {𝐷𝑖 (𝑥𝑖, 𝑗) ⇒ 𝑡𝑖 }K ≔ cocase {𝐷𝑖 (𝑥𝑖, 𝑗 ;𝛼𝑖) ⇒ ⟨J𝑡𝑖K | 𝛼𝑖⟩} (𝛼𝑖 fresh)

The general syntax is given in Definition 2.5. We assume fixed sets of constructors 𝐾 containing

at least Nil, Cons and Tup and destructors 𝐷 containing at least hd, tl, fst and snd. In Fun we use

constructors 𝐾 to define both terms 𝐾 (𝑡) and case expressions case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡}. Destructors
𝐷 of codata types are used in destructor terms 𝑡 .𝐷 (𝑡) and cocase expressions cocase {𝐷 (𝑥) ⇒ 𝑡}.
The term 𝑡 in case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡} and 𝑡 .𝐷 (𝑡) is called the scrutinee in both cases.

2.4.1 Data Types. Let us consider another example to better understand the general syntax:

def swap(𝑥) ≔ case 𝑥 of {Tup(𝑦, 𝑧) ⇒ Tup(𝑧,𝑦)}

The function swap takes a Pair and swaps its elements. To do so, it pattern matches on its input

using the case 𝑡 of {𝐾 (𝑥) ⇒ 𝑡} construct, and constructs a tuple using a constructor 𝐾 (𝑡), where
𝐾 is specialized to Tup. Our syntax is quite general, so it is easy to extend it with new constructors;

any such extension only requires that we also add corresponding typing rules (Section 4).

In Core, algebraic data types are mostly handled in the same way as in Fun. The main difference

is that the scrutinee is no longer a part of a case expression. Instead, the case expression is a

consumer and the scrutinee is a producer, which are then combined in a statement. This is exactly

what is done in the translation. When a case and a constructor meet, there is an opportunity

for computation, consuming the constructed term and continuing with the corresponding right-

hand side of the case expression. This also explains our terminology of producers and consumers.
Constructors create, or in other words, produce data structures while cases destroy, or consume
them.

There is another difference, however. Constructors in Core can now also take consumers as

arguments which is not the case in Fun. An example of this is the negation type of a type 𝜏 which

can be formulated as a data type with one constructor taking a consumer of type 𝜏 as an argument.

A program making use of this type can be found in section 7.2 of Ostermann et al. [2022].

Fun is a call-by-value language which manifests itself in that a value of an algebraic data type

consists of a constructor applied to other values. A case expression case 𝑡 of {. . .} can only be

evaluated if the scrutinee 𝑡 is a value, so this means that it must be a constructor whose arguments

are all values in the evaluation rule.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:10 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Evaluation inCore is done the sameway, only with the scrutinee term changed to be the producer

of a cut. Note that all consumers in Core are covalues (which is why the arguments of destructors

in the definition of covalues are not in Fraktur font), so in order for a constructor term to be a

value, only its producer arguments need to be values. This also means that the requirement for the

consumer arguments of the constructor to be covalues is vacuously satisfied in the evaluation rule

in Core.

Example 2.4. The translation of swap (including a simplification) is given by

def swap(𝑥 ;𝛼) ≔ ⟨𝑥 | case {Tup(𝑦, 𝑧) ⇒ ⟨Tup(𝑧,𝑦) | 𝛼⟩}⟩
Evaluating with an argument Tup(⌜2⌝, ⌜3⌝) and⋆ then proceeds as we would expect

⟨Tup(⌜2⌝, ⌜3⌝) | case {Tup(𝑦, 𝑧) ⇒ ⟨Tup(𝑧,𝑦) | ⋆⟩}⟩ ⊲ ⟨Tup(⌜3⌝, ⌜2⌝) | ⋆⟩

2.4.2 Codata Types. To illustrate the syntax for codata types further, consider the definition

def swap_lazy(𝑥) ≔ cocase {fst ⇒ 𝑥 .snd, snd ⇒ 𝑥 .fst}
swap_lazy takes a lazy pair (LPair), which is defined by its projections fst and snd, and swaps

its elements. It does so with a copattern match cocase {𝐷𝑖 (𝑥) ⇒ 𝑡𝑖 } which invokes the opposite

destructor on the original pair in each branch. With a destructor invocation 𝑡 .𝐷 (𝑡), where 𝐷 is

specialized to fst or snd, we can then obtain the corresponding component of the new pair.

For codata in Fun, the scrutinee is located in the destructor term instead of the cocase, inverse to

data types. So now destructors are the consumers and cocases are the producers. This is mirrored

in the translation which again separates the scrutinee, since in Core codata types and copattern

matching are perfectly dual to data types and pattern matching.

All the destructors we have used here do not have producer parameters, but this is just due

to the selection of examples. In the next section, we will see an example of a destructor with a

producer parameter. Moreover, during the translation each destructor is endowed with an additional

consumer parameter which again determines how execution continues after the destructor was

invoked (and is thus bound by a surrounding 𝜇). For constructors this is not necessary, as we

can use the same consumer variable directly in each branch of a case (similar to ifz2) because the
scrutinee and the case are in the same expression. Destructors (and also constructors) in Core can

even have more than one consumer parameter. An example of this is given in Section 5.7.

Evaluation is done analogous to data types, with the roles of cases and constructors reversed for

cocases and destructors. Note, however, that for evaluation in Core the producer arguments of the

destructor also have to be values, so it is not sufficient for the destructor to be a covalue (which it

always is). We will come back to this subtlety in Section 3.

Example 2.5. Translating swap_lazy is done analogously to swap.

def swap_lazy(𝑥 ;𝛼) ≔ ⟨cocase {fst(𝛽) ⇒ ⟨𝑥 | snd(𝛽)⟩, snd(𝛽) ⇒ ⟨𝑥 | fst(𝛽)⟩} | 𝛼⟩
Now take 𝑝 = cocase {fst(𝛼) ⇒ ⟨⌜1⌝ | 𝛼⟩, snd(𝛼) ⇒ ∗(⌜2⌝, ⌜3⌝;𝛼)} and evaluate swap_lazy

with snd to retrieve its first element:

swap_lazy(𝑝; snd(⋆)) ⊲ ⟨cocase {fst(𝛽) ⇒ ⟨𝑝 | snd(𝛽)⟩, snd(𝛽) ⇒ ⟨𝑝 | fst(𝛽)⟩} | snd(⋆)⟩
⊲ ⟨𝑝 | fst(⋆)⟩ ⊲ ⟨⌜1⌝ | ⋆⟩

Because cocases are values regardless of their right-hand sides (in contrast to constructors), we can

apply the destructor snd without first evaluating the product ∗(⌜2⌝, ⌜3⌝;𝛼). For pairs, we could
2
We could have modelled ifz as a case, too, by modeling numbers as a data type. But since ifz corresponds to a machine

instruction quite directly, it is natural to make it a statement, as explained in Section 2.1.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:11

not do this, as Tup(⌜1⌝, ∗(⌜2⌝, ⌜3⌝;𝛼)) is not a value, so its arguments have to be evaluated first.

This is why this codata type is called lazy pair, as it allows to not evaluate its contents in contrast

to regular pairs.

This section showed an important property of Core which does not hold for Fun. The data and

codata types of Core are completely symmetric: the syntax for cases is the same as the syntax for

cocases and the same is true for constructors and destructors. The reason for this deep symmetry

is the same reason that makes the sequent calculus more symmetric than natural deduction, but in

Definition 2.5 we can observe it in a programming language.

2.5 First-Class Functions
A core feature that we have omitted until now are first-class functions which are characterized by

lambda abstractions 𝜆𝑥 .𝑡 and function applications 𝑡1 𝑡2. But first-class functions do not add any

expressive power to a language with codata types, since codata types are a more general concept

which subsumes functions as a special case. We could therefore implement lambda abstractions

and function applications as syntactic sugar in both Fun and Core. This is incidentally also what

the developers of Java did when they introduced lambdas to the language [Goetz et al. 2014]. We

introduce lambda abstractions and function application to the syntax of Fun and desugar them to

cocases and destructors of a codata type with an ap destructor during the translation to Core.

Definition 2.6 (First-Class Functions).
Fun

𝑡 F . . . | 𝜆𝑥 .𝑡 | 𝑡 𝑡
𝔱 F . . . | 𝜆𝑥 .𝑡

(𝜆𝑥 .𝑡) 𝔱 ⊲ 𝑡 [𝔱/𝑥]

Core

𝐷 ∈ {. . . , ap}

J𝜆𝑥.𝑡K ≔ cocase {ap(𝑥 ;𝛼) ⇒ ⟨J𝑡K | 𝛼⟩} (𝛼 fresh)
J𝑡1 𝑡2K ≔ 𝜇𝛼.⟨J𝑡1K | ap(J𝑡2K;𝛼)⟩ (𝛼 fresh)

Example 2.6. Consider the term (𝜆𝑥 .𝑥 ∗ 𝑥) ⌜2⌝ in Fun. We can translate this term and evaluate

it in Core as follows:

⟨cocase {ap(𝑥, 𝛽) ⇒ ⟨𝜇𝛾 . ∗ (𝑥, 𝑥 ;𝛾) | 𝛽⟩} | ap(⌜2⌝;⋆)⟩ ⊲ ⟨𝜇𝛾 . ∗ (⌜2⌝, ⌜2⌝;𝛾) | ⋆⟩ ⊲∗ ⟨⌜4⌝ | ⋆⟩

2.6 Control Operators
Finally, we add the feature that we used in the motivating example in the introduction: labels and

jumps. We have to extend Fun with label and goto constructs but since we can translate them

locally to 𝜇-bindings we don’t have to add anything to Core.

Definition 2.7 (Control Operators).

𝑡 F . . . | label 𝛼 {𝑡} | goto(𝑡 ;𝛼)

Jlabel 𝛼 {𝑡}K ≔ 𝜇𝛼.⟨J𝑡K | 𝛼⟩ Jgoto(𝑡 ;𝛼)K ≔ 𝜇𝛽.⟨J𝑡K | 𝛼⟩ (𝛽 fresh)

A term label 𝛼 {𝑡} binds a covariable 𝛼 in the term 𝑡 and thereby provides a location to which a

goto used within 𝑡 can jump. Such a goto(𝑡 ;𝛼) takes the location 𝛼 as an argument, as well as the

term 𝑡 that should be used to continue the computation at the location where 𝛼 was bound. It is a

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:12 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

bit tricky to write down precisely how the evaluation of label and goto works, but the following

two rules are a good approximation, where we assume that 𝛼 does not occur free in 𝔱:

label 𝛼 {𝔱} ⊲ 𝔱 label 𝛼 {. . . goto(𝔱;𝛼) . . .} ⊲ 𝔱
The left rule says that when the labeled term 𝑡 can be evaluated to a value 𝔱 without ever using

a goto, then we can discard the surrounding label. The rule on the right says that if we do have

a goto which jumps to the label 𝛼 with a value 𝔱, then we discard everything between the label
and the goto and continue the computation with this value 𝔱. In order to make this second rule

precise, we have to make explicit what we only indicate with the ellipses separating the label from

the jump; we will do so in Section 3.

Example 2.7. In the introduction, we used the example of a fast multiplication function which

multiplies all the elements of a list and short-circuits the computation if it encounters a zero. As we

have allowed top-level definitions to pass covariables as arguments, we can now write the example

of the introduction.

def mult(𝑙) ≔ label 𝛼 {mult’(𝑙 ;𝛼)}
def mult’(𝑙 ;𝛼) ≔ case 𝑙 of {Nil ⇒ 1,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, goto(0;𝛼), 𝑥 ∗mult’(𝑥𝑠 ;𝛼))}

When we translate to Core and simplify the resulting term, we get the result:

def mult(𝑙 ;𝛼) ≔ mult’(𝑙 ;𝛼, 𝛼)
def mult’(𝑙 ;𝛼, 𝛽) ≔

⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ∗(𝑥, 𝜇𝛾 .mult’(𝑥𝑠;𝛼,𝛾); 𝛽))}⟩
This is almost the result we have seen in the introduction. The only difference is that the recursive

call to mult’ is nested inside the multiplication. This is the same problem we have seen with nested

arithmetic operations at the end of Section 2.1 and we will address it in the next section.

The label/goto control operator we have introduced in this subsection is of course named after

the goto instructions and labels which can be found in many imperative programming languages.

Our adaption to the context of functional programming languages is similar to classical control

operators (see Section 5.3 for a more precise discussion) such as J [Landin 1965] or let/cc (also
known as escape) [Reynolds 1972]; the programming language Scala also provides the closely

related boundary/break3 where a boundary marks a block of code to which the programmer can

jump with a break instruction. One central property of this control effect is that it is lexically

scoped, since the label names 𝛼 are passed around lexically and can be shadowed. This distinguishes

them from dynamically scoped control operators like the exception mechanisms found in many

programming languages like Java or C++. (A dynamically scoped variant of our control operator

would omit the label names, and the jump in label {. . . goto(𝑡) . . .} would return to the nearest

enclosing label at runtime.) We follow the more recent reappraisal of lexically scoped control effects,

for example by Zhang et al. [2016] in the case of exceptions or by Brachthäuser et al. [2020] in the

case of effect handlers and delimited continuations.

3 Evaluation Within a Context
At the end of Section 2.1 we ran into the problem that we cannot yet fully evaluate the term

(⌜2⌝ ∗ ⌜4⌝) + ⌜5⌝ in Fun or its translation 𝜇𝛼. + (𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽), ⌜5⌝;𝛼) in Core with the rules

that are available to us: we are stuck. In this section, we finally address this problem. We are going

to show how we can evaluate subexpressions of Fun in Section 3.1, but since we are ultimately

3
See scala-lang.org/api/3.3.0/scala/util/boundary$.html.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

https://www.scala-lang.org/api/3.3.0/scala/util/boundary$.html

Grokking the Sequent Calculus (Functional Pearl) 1:13

more interested in compiling programs into Core to optimize and reduce those programs, we are

spending more time on the problem for Core in Section 3.2.

3.1 Evaluation Contexts for Fun
The problem with evaluating the term (⌜2⌝ ∗ ⌜4⌝) + ⌜5⌝ is that the available rules only allow to

reduce direct redexes and not redexes that are nested somewhere within a term. Evaluation contexts

solve this problem by specifying the locations within a term which are in evaluation position. In

our example, the term (⌜2⌝ ∗ ⌜4⌝) + ⌜5⌝ can be factored into the evaluation context □+ ⌜5⌝ and the
redex ⌜2⌝ ∗ ⌜4⌝. We can then use the old rules to reduce this redex to ⌜8⌝ and then plug this result

back into the evaluation context, which yields the new term ⌜8⌝ + ⌜5⌝. The syntax of evaluation
contexts is given in Definition 3.1.

Definition 3.1 (Evaluation Contexts). Evaluation contexts 𝐸 are defined as:

𝐸 F □ | 𝐸 ⊙ 𝑡 | 𝔱 ⊙ 𝐸 | ifz(𝐸, 𝑡, 𝑡) | let 𝑥 = 𝐸 in 𝑡 | 𝑓 (𝔱, 𝐸, 𝑡) | 𝐾 (𝔱, 𝐸, 𝑡)
| case 𝐸 of {𝐾 (𝑥) ⇒ 𝑡} | 𝐸 𝑡 | 𝔱 𝐸 | 𝐸.𝐷 (𝑡) | 𝔱.𝐷 (𝔱, 𝐸, 𝑡) | label 𝛼 {𝐸} | goto(𝐸;𝛼)

These evaluation contexts also allow us to specify formally the second approximate evaluation

rule of the label and goto constructs from Section 2.6:

𝐸 [label 𝛼 {𝐸′ [goto(𝔱;𝛼)]}] ⊲ 𝐸 [𝔱]
Here we again assume that 𝛼 does not occur free in 𝔱 and moreover that the inner evaluation context

𝐸′ does not contain another label construct. For the full operational semantics of label/goto we

also need to handle the cases where 𝛼 can occur free in 𝔱 and where 𝐸′ can contain other labels.
Otherwise, we could get stuck during evaluation even for closed and well-typed terms, i.e., the

progress theorem (see Theorem 4.1 in Section 4.3) would not hold. As the full semantics is in essence

that of other classical control operators (i.p., let/cc; also see the discussion in Section 5.3) and

requires some more formalism, we do not give it here and instead refer the interested reader to the

brief discussion in Appendix C.

With evaluation contexts, we finally have a working and precise operational semantics for Fun

(apart from the approximate rules for label and goto) which we can use to reason about programs.

Unfortunately, it is wildly inefficient to implement an evaluator which uses evaluation contexts in

the way described above. The reason for this inefficiency is that we very elegantly specified how a

term can be factored into an evaluation context and a redex, but the evaluator which implements

this behavior has to search for the next redex after every single evaluation step. We will see in the

next section that we have a better solution once our programs are compiled into Core.

3.2 Focusing on Evaluation in Core
Let us now come back to the problem in Core and find a solution for the stuck term 𝜇𝛼. + (𝜇𝛽. ∗
(⌜2⌝, ⌜4⌝; 𝛽), ⌜5⌝;𝛼). We know that we have to evaluate 𝜇𝛽.∗ (⌜2⌝, ⌜4⌝; 𝛽) next and then somehow

plug the intermediate result into the hole [·] in the producer 𝜇𝛼. + ([·], ⌜5⌝;𝛼). If we give the
intermediate result the name 𝑥 and play around with cuts, 𝜇-bindings and �̃� bindings, we might

discover that we can recombine all these parts in the following way:

𝜇𝛼.⟨𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽) | �̃�𝑥 . + (𝑥, ⌜5⌝;𝛼)⟩
This term looks a bit mysterious, but the transformation corresponds roughly to what happens

when we translate the term let 𝑥 = 2 ∗ 4 in 𝑥 + 5 instead of (2 ∗ 4) + 5 into Core. That is, we have

lifted a subcomputation to the outside of the term we are evaluating. This kind of transformation is

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:14 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

called focusing [Andreoli 1992; Curien and Munch-Maccagnoni 2010] and we use it to solve the

problem with stuck terms in Core. We can see that it worked in our example because the term

now fully evaluates to its normal form.

Example 3.1. The producer 𝜇𝛼.⟨𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽) | �̃�𝑥 . + (𝑥, ⌜5⌝;𝛼)⟩ reduces as follows:

⟨𝜇𝛽. ∗ (⌜2⌝, ⌜4⌝; 𝛽) | �̃�𝑥 . + (𝑥, ⌜5⌝;⋆)⟩ ⊲ ∗(⌜2⌝, ⌜4⌝; �̃�𝑥 . + (𝑥, ⌜5⌝;⋆))
⊲ ⟨⌜8⌝ | �̃�𝑥 . + (𝑥, ⌜5⌝;⋆)⟩
⊲ +(⌜8⌝, ⌜5⌝;⋆) ⊲ ⟨⌜13⌝ | ⋆⟩

Once we have settled on focusing, we have another choice to make: Do we want to use this trick

during the evaluation of a statement or as a preprocessing step before we start with the evaluation?

These two alternatives are called dynamic and static focusing.

Dynamic Focusing With dynamic focusing [Wadler 2003] we add additional evaluation rules,

usually called 𝜍-rules, to lift sub-computations to the outside of the statement we are evaluating.

Static Focusing For static focusing [Curien and Herbelin 2000] we perform a transformation on

the code before we start evaluating it. This results in a focused normal form which is a subset

of the syntax of Core that we have described so far.

Dynamic focusing is great for reasoning about the meaning of programs, but static focusing is

more efficient if we are interested in compiling and running programs. For this reason, we only

consider static focusing in what follows.

Definition 3.2 (Static Focusing). Static focusing is done using the following rules:

Producers
F (⌜𝑛⌝) ≔ ⌜𝑛⌝

F (𝑥) ≔ 𝑥

F (𝜇𝛼.𝑠) ≔ 𝜇𝛼.F (𝑠)
F (𝐾 (𝔭, 𝑝, 𝑝; 𝑐)) ≔ 𝜇𝛼.⟨F (𝑝) | �̃�𝑥 .⟨F (𝐾 (𝔭, 𝑥, 𝑝, 𝑐)) | 𝛼⟩⟩ (𝑝 not a value)

F (𝐾 (𝔭; 𝑐)) ≔ 𝐾 (F (𝔭);F (𝑐))
F (cocase {𝐷 (𝑥 ;𝛼) ⇒ 𝑠}) ≔ cocase {𝐷 (𝑥 ;𝛼) ⇒ F (𝑠)}

Consumers
F (𝛼) ≔ 𝛼

F (�̃�𝑥 .𝑠) ≔ �̃�𝑥 .F (𝑠)
F (case {𝐾 (𝑥 ;𝛼) ⇒ 𝑠}) ≔ case {𝐾 (𝑥 ;𝛼) ⇒ F (𝑠)}

F (𝐷 (𝔭, 𝑝, 𝑝, 𝑐)) ≔ �̃�𝑦.⟨F (𝑝) | �̃�𝑥 .⟨𝑦 | F (𝐷 (𝔭, 𝑥, 𝑝; 𝑐))⟩⟩ (𝑝 not a value)
F (𝐷 (𝔭; 𝑐)) ≔ 𝐷 (F (𝔭);F (𝑐))

Statements
F (⟨𝑝 | 𝑐⟩) ≔ ⟨F (𝑝) | F (𝑐)⟩

F (⊙(𝑝1, 𝑝2, 𝑐)) ≔ ⟨F (𝑝1) | �̃�𝑥 .F (⊙(𝑥, 𝑝2, 𝑐))⟩ (𝑝1 not a value)
F (⊙(𝔭, 𝑝, 𝑐)) ≔ ⟨F (𝑝) | �̃�𝑥 .F (⊙(𝔭, 𝑥, 𝑐))⟩ (𝑝 not a value)

F (⊙(𝔭1,𝔭2, 𝑐)) ≔ ⊙(F (𝔭1), F (𝔭2), F (𝑐))
F (ifz(𝑝, 𝑠1, 𝑠2)) ≔ ⟨F (𝑝) | �̃�𝑥 .ifz(𝑥, 𝑠1, 𝑠2)⟩ (𝑝 not a value)
F (ifz(𝔭, 𝑠1, 𝑠2)) ≔ ifz(F (𝔭), F (𝑠1), F (𝑠2))
F (f(𝔭, 𝑝, 𝑝; 𝑐)) ≔ ⟨F (𝑝) | �̃�𝑥 .F (𝑓 (𝔭, 𝑥, 𝑝; 𝑐))⟩ (𝑝 not a value)

F (f(𝔭, 𝑐)) ≔ f(F (𝔭), F (𝑐))

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:15

The complete rules for static focusing are presented in Definition 3.2. Most of these rules are

only concerned with performing the focusing transformation on all subexpressions, but some of

the clauses where something interesting happens are the clauses for binary operators:

F (⊙(𝑝1, 𝑝2, 𝑐)) ≔ ⟨F (𝑝1) | �̃�𝑥 .F (⊙(𝑥, 𝑝2, 𝑐))⟩ (𝑝1 not a value)
F (⊙(𝔭, 𝑝, 𝑐)) ≔ ⟨F (𝑝) | �̃�𝑥 .F (⊙(𝔭, 𝑥, 𝑐))⟩ (𝑝 not a value)

F (⊙(𝔭1,𝔭2, 𝑐)) ≔ ⊙(F (𝔭1), F (𝔭2), F (𝑐))
The first two clauses look for the arguments of the binary operator ⊙ which are not values and

use the trick described above to lift them to the outside. Focusing is invoked recursively until the

binary operator is only applied to values and the third clause comes into play. This third clause

then applies the focusing transformation to all arguments of the binary operator. The clauses for

constructors, destructors, ifz and calls to top-level definitions work in precisely the same way as

those for binary operators. It is noteworthy that by focusing the producer arguments of destructors

we guarantee that the evaluation rule for codata types can fire. If we had not required the producer

arguments to be values in that rule (but only that the destructor is a covalue), we could easily

introduce an unfocused term again by substituting a non-value for a variable.

The focusing transformation described in Definition 3.2 is not ideal since it creates a lot of

administrative redexes. As an example, consider how the statement defining mult’ from Example 2.7

is focused:

F (⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ∗(𝑥, 𝜇𝛾 .mult’(𝑥𝑠;𝛼,𝛾); 𝛽))}⟩)
= ⟨𝑙 | case {Nil ⇒ ⟨1 | 𝛽⟩,Cons(𝑥, 𝑥𝑠) ⇒ ifz(𝑥, ⟨0 | 𝛼⟩, ⟨𝜇𝛾 .mult’(𝑥𝑠;𝛼,𝛾) | �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)⟩)}⟩

Focusing has introduced the administrative redex ⟨𝜇𝛾 .mult’(𝑥𝑠 ;𝛼,𝛾) | �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)⟩ in the second

statement of the ifz. After reducing this redex to mult’(𝑥𝑠 ;𝛼, �̃�𝑧. ∗ (𝑥, 𝑧; 𝛽)), we finally arrive at the

result from the introduction. In the implementation, we solve this problem by statically reducing

administrative redexes in a simplification step, but it is also possible to come up with a more

elaborate definition of focusing which does not create them in the first place. Such an optimized

focusing transformation is, however, much less transparent than the one we have described.

4 Typing Rules
In this section, we introduce the typing rules for Fun in Section 4.1 and for Core in Section 4.2. In

Section 4.3 we state type soundness for both languages and prove that the translation from Fun

to Core preserves the typeability of programs. We use the same constructors, destructors, types

and typing contexts for both Fun and Core, which are summarized in Definition 4.1. Note that we

distinguish between producer and consumer variables in the typing contexts, which we indicate

with the prd and cns annotations.

Definition 4.1 (Types and Typing Contexts).

𝐾 F Nil | Cons | Tup Constructors
𝐷 F hd | tl | fst | snd | ap Destructors
𝜏 F Int | List(𝜏) | Pair(𝜏, 𝜏) | Stream(𝜏) | LPair(𝜏, 𝜏) | 𝜏 → 𝜏 Types
Γ F ∅ | Γ, 𝑥 :

prd 𝜏 | Γ, 𝛼 :
cns 𝜏 Typing Contexts

We specialize the rules for data types to the concrete types Pair and List, and the rules for

codata types to LPair, Stream and functions 𝜎 → 𝜏 . A realistic programming language would

use type declarations introduced by the programmer to typecheck data and codata types instead

of using these special cases. But the formalization of such a general mechanism for specifying

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:16 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

data and codata types makes the typing rules less readable. This kind of mechanism for specifying

algebraic data and codata types in sequent-calculus-based languages can be found in [Downen

et al. 2015] or [Downen and Ariola 2020, section 8]. In all of the typing rules below we assume that

we have a program environment which contains type declarations for all the definitions contained

in the program, but don’t explicitly thread this program environment through each of the typing

rules.

4.1 Typing Rules for Fun
We don’t discuss the typing rules for Fun in detail since they are mostly standard. Instead, we

provide the full rules in Appendix B. The language Fun only has one syntactic category, terms,

so we only need one typing judgment Γ ⊢ 𝑡 : 𝜏 . This typing judgment says that in the context Γ
(which contains type assignments for both variables and covariables) the term 𝑡 has type 𝜏 . The

only two interesting rules concern the control operators label and goto:
Γ, 𝛼 :

cns 𝜏 ⊢ 𝑡 : 𝜏
Label

Γ ⊢ label 𝛼 {𝑡} : 𝜏
Γ ⊢ 𝑡 : 𝜏 𝛼 :

cns 𝜏 ∈ Γ
Goto

Γ ⊢ goto(𝑡 ;𝛼) : 𝜏 ′

In the rule Label we add the covariable 𝛼 :
cns 𝜏 to the typing context which is used to typecheck

the term 𝑡 . The labeled expression label 𝛼 {𝑡} can return in only one of two ways: either the term 𝑡

is evaluated to a value and returned, or a jump instruction is used to jump to the label 𝛼 . For this

reason, the term 𝑡 and the label 𝛼 must have the same type 𝜏 , which is also the type for the labeled

expression itself.

In the rule Goto we require that the covariable 𝛼 is in the context with type 𝜏 , and that the term

𝑡 can be typechecked with the same type. The term goto(𝑡 ;𝛼) itself can be used at any type 𝜏 ′

because it does not return to its immediately surrounding context.

4.2 Typing Rules for Core
The complete typing rules for Core are given in Figure 2, but we will present them step by step.

We now have producers, consumers and statements as different syntactic categories. For each of

these categories, we use a separate judgment form:

Producers The judgment Γ ⊢ 𝑝 :
prd 𝜏 says that the producer 𝑝 has type 𝜏 in context Γ.

Consumers The judgment Γ ⊢ 𝑐 :cns 𝜏 says that the consumer 𝑐 has type 𝜏 in context Γ.
Statements The judgment Γ ⊢ 𝑠 says that the statement 𝑠 is well-typed in context Γ. In contrast to

producers and consumers, statements do not have a type.

All typing judgments are also implicitly indexed by the program 𝑃 containing the top-level defini-

tions. However, as these definitions are only needed when typechecking their calls (rule Call), we

usually omit the index from the presentation.

The three different judgments can be illustrated by the rules for variables, covariables and cuts.

In the rules Var1 and Var2 we check that a variable or covariable is contained in the typing context

Γ and then type the variable as a producer or the covariable as a consumer. The rule Cut combines

a producer 𝑝 and consumer 𝑐 of the same type 𝜏 into the statement ⟨𝑝 | 𝑐⟩ which does not have a

type.

𝑥 :
prd 𝜏 ∈ Γ

Var1

Γ ⊢ 𝑥 :
prd 𝜏

𝛼 :
cns 𝜏 ∈ Γ

Var2Γ ⊢ 𝛼 :
cns 𝜏

Γ ⊢ 𝑝 :
prd 𝜏 Γ ⊢ 𝑐 :cns 𝜏

Cut

Γ ⊢ ⟨𝑝 | 𝑐⟩
The two unusual constructs which are central to Core and give the 𝜆𝜇�̃�-calculus its name are the

𝜇- and �̃�-abstractions. A 𝜇-abstraction 𝜇𝛼.𝑠 abstracts over a consumer 𝛼 of type 𝜏 in the statement

𝑠 and is typed as a producer of type 𝜏 . A �̃�-abstraction �̃�𝑥 .𝑠 abstracts over a producer 𝑥 of type 𝜏

and is typed as a consumer of type 𝜏 , which can be seen in the following two rules.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:17

Γ, 𝛼 :
cns 𝜏 ⊢ 𝑠

𝜇
Γ ⊢ 𝜇𝛼.𝑠 :prd 𝜏

Γ, 𝑥 :
prd 𝜏 ⊢ 𝑠

�̃�
Γ ⊢ �̃�𝑥 .𝑠 :cns 𝜏

𝑥 :
prd 𝜏 ∈ Γ

Var1

Γ ⊢ 𝑥 :
prd 𝜏

𝛼 :
cns 𝜏 ∈ Γ

Var2Γ ⊢ 𝛼 :
cns 𝜏

Γ ⊢ 𝑝 :
prd 𝜏 Γ ⊢ 𝑐 :cns 𝜏

Cut

Γ ⊢ ⟨𝑝 | 𝑐⟩
Γ ⊢ 𝑝 :

prd Int Γ ⊢ 𝑠1 Γ ⊢ 𝑠2
IfZ

Γ ⊢ ifz(𝑝, 𝑠1, 𝑠2)

Lit

Γ ⊢ ⌜𝑛⌝ :prd Int
Γ ⊢ 𝑝1 :prd Int Γ ⊢ 𝑝2 :prd Int Γ ⊢ 𝑐 :cns Int

binop

Γ ⊢ ⊙(𝑝1, 𝑝2; 𝑐)

def 𝑓 (𝑥𝑖 :prd 𝜏𝑖 ;𝛼 𝑗 :
cns 𝜏 𝑗) ∈ 𝑃 Γ ⊢ 𝑝𝑖 :prd 𝜏𝑖 Γ ⊢ 𝑐 𝑗 :cns 𝜏 𝑗

Call

Γ ⊢𝑃 𝑓 (𝑝𝑖 ; 𝑐 𝑗)

Γ ⊢ 𝑠1 Γ, 𝑥 :
prd 𝜏, 𝑥𝑠 :prd List(𝜏) ⊢ 𝑠2

Case-List

Γ ⊢ case {Nil ⇒ 𝑠1, Cons(𝑥, 𝑥𝑠) ⇒ 𝑠2} :cns List(𝜏)

Nil

Γ ⊢ Nil :
prd List(𝜏)

Γ ⊢ 𝑡1 :prd 𝜏 Γ ⊢ 𝑡2 :prd List(𝜏)
Cons

Γ ⊢ Cons(𝑡1, 𝑡2) :prd List(𝜏)

Γ ⊢ 𝑡1 :prd 𝜏1 Γ ⊢ 𝑡2 :prd 𝜏2
Tup

Γ ⊢ Tup(𝑡1, 𝑡2) :prd Pair(𝜏1, 𝜏2)
Γ, 𝑥 :

prd 𝜏1, 𝑦 :
prd 𝜏2 ⊢ 𝑠

Case-Pair

Γ ⊢ case {Tup(𝑥,𝑦) ⇒ 𝑠} :cns Pair(𝜏1, 𝜏2)

Γ ⊢ 𝑘 :
cns 𝜏

Hd

Γ ⊢ hd(𝑘) :cns Stream(𝜏)
Γ ⊢ 𝑘 :

cns Stream(𝜏)
Tl

Γ ⊢ tl(𝑘) :cns Stream(𝜏)

Γ, 𝛼 :
cns 𝜏 ⊢ 𝑠1 Γ, 𝛽 :

cns Stream(𝜏) ⊢ 𝑠2
Cocase-Stream

Γ ⊢ cocase {hd(𝛼) ⇒ 𝑠1, tl(𝛽) ⇒ 𝑠2} :prd Stream(𝜏)

Γ ⊢ 𝑘 :
cns 𝜏1

Fst

Γ ⊢ fst(𝑘) :cns LPair(𝜏1, 𝜏2)
Γ ⊢ 𝑘 :

cns 𝜏2
Snd

Γ ⊢ snd(𝑘) :cns LPair(𝜏1, 𝜏2)

Γ, 𝛼 :
cns 𝜏1 ⊢ 𝑠1 Γ, 𝛽 :

cns 𝜏2 ⊢ 𝑠2
Cocase-LPair

Γ ⊢ cocase {fst(𝛼) ⇒ 𝑠1, snd(𝛽) ⇒ 𝑠2} :prd LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑝 :
prd 𝜎 Γ ⊢ 𝑐 :cns 𝜏

Ap

Γ ⊢ ap(𝑝, 𝑐) :cns 𝜎 → 𝜏

Γ, 𝑥 :
prd 𝜎, 𝛼 :

cns 𝜏 ⊢ 𝑠
Cocase-Fun

Γ ⊢ cocase {ap(𝑥, 𝛼) ⇒ 𝑠} :prd 𝜎 → 𝜏

Wf-Empty⊢ ∅ Ok

⊢ 𝑃 Ok 𝑥 :
prd 𝜏𝑖 , 𝛼 :

cns 𝜏 𝑗 ⊢
𝑃,def f(𝑥𝑖 :prd𝜏𝑖 ;𝛼 𝑗 :

cns𝜏 𝑗)≔𝑠
𝑠

Wf-Cons

⊢ 𝑃, def f(𝑥𝑖 :prd 𝜏𝑖 , 𝛼 𝑗 :
cns 𝜏 𝑗) ≔ 𝑠 Ok

Fig. 2. Typing rules of Core.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:18 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Γ, 𝛼 :
cns 𝜏 ⊢ 𝑠

𝜇
Γ ⊢ 𝜇𝛼.𝑠 :prd 𝜏

Γ, 𝑥 :
prd 𝜏 ⊢ 𝑠

�̃�
Γ ⊢ �̃�𝑥 .𝑠 :cns 𝜏

4.2.1 Data and Codata Types. Figure 2 contains the typing rules for both Pair and List; since
their rules are so similar we only discuss those of Pair explicitly:

Γ ⊢ 𝑡1 :prd 𝜏1 Γ ⊢ 𝑡2 :prd 𝜏2
Tup

Γ ⊢ Tup(𝑡1, 𝑡2) :prd Pair(𝜏1, 𝜏2)
Γ, 𝑥 :

prd 𝜏1, 𝑦 :
prd 𝜏2 ⊢ 𝑠

Case-Pair

Γ ⊢ case {Tup(𝑥,𝑦) ⇒ 𝑠} :cns Pair(𝜏1, 𝜏2)
In the rule Tup we type a pair constructor Tup applied to two arguments as a producer, and in

the rule Case-Pair we type the case, which pattern-matches on this constructor and brings two

variables into scope, as a consumer.

The typing rules for codata types look exactly the same, only the roles of producers and consumers

are swapped.

Γ ⊢ 𝑘 :
cns 𝜏

Hd

Γ ⊢ hd(𝑘) :cns Stream(𝜏)
Γ, 𝛼 :

cns 𝜏 ⊢ 𝑠1 Γ, 𝛽 :
cns Stream(𝜏) ⊢ 𝑠2

Cc-Str

Γ ⊢ cocase {hd(𝛼) ⇒ 𝑠1, tl(𝛽) ⇒ 𝑠2} :prd Stream(𝜏)
Most of the other rules directly correspond to a similar rule for Fun. When typing arithmetic

expressions, for example, we only have to make sure all subterms have type Int.
We typecheck programs using the two rulesWf-Empty andWf-Cons. The former is used to

typecheck an empty program, and the ruleWf-Cons extends a typechecked program with a new

top-level definition. When we typecheck the body of this top-level definition that we are about to

add, we extend the program with this definition so that it can refer to itself recursively.

4.3 Type Soundness
In this section, we discuss the soundness of the type systems for both Fun and Core and show that

the translation J−K preserves the typeability of terms. We follow Wright and Felleisen [1994] in

presenting type soundness as the combination of a progress and a preservation theorem.

Theorem 4.1 (Progress, Fun). Let 𝑡 be a closed term in Fun, such that ⊢ 𝑡 : 𝜏 for some type 𝜏 .
Then either 𝑡 is a value or there is some term 𝑡 ′ such that 𝑡 ⊲ 𝑡 ′.

This can easily be proved with an induction on typing derivations. Due to the presence of

the label/goto construct, the standard formulation of the (strong) preservation theorem does not

immediately hold for Fun (also see the discussion in Appendix C). The following weak form of

preservation can again be easily proved by induction.

Theorem 4.2 ((Weak) Preservation, Fun). Let 𝑡, 𝑡 ′ be terms in Fun such that 𝑡 ⊲ 𝑡 ′, Γ an
environment and 𝑃 a program such that Γ ⊢𝑃 𝑡 : 𝜏 . Then there is a type 𝜏 ′ such that Γ ⊢𝑃 𝑡 ′ : 𝜏 ′.

The usual strong preservation theorem requires 𝜏 ′ = 𝜏 . But in fact, a slight variation of this

strong form can be proved for Fun by adapting the technique found in Section 6 in [Wright and

Felleisen 1994]. Thus, strong type soundness still does hold.

Before we can state the analogous theorems for Core, we will need an additional definition as a

termination condition for evaluation.

Definition 4.3 (Terminal statement). If 𝔭 is a producer value in Core and⋆ a covariable which

does not appear free in 𝔭, then ⟨𝔭 | ⋆⟩ is called a terminal statement.

Terminal statements in Core have the same role as values in Fun. Some sequent-calculus-based

languages use a special statement Done instead of terminal statements for this purpose.

Theorem 4.4 (Progress, Core). Let 𝑠 be a focused statement in Core such that ⊢ 𝑠 . Then either 𝑠
is a terminal statement, or there is some 𝑠′ such that 𝑠 ⊲ 𝑠′.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:19

For this theorem, we require 𝑠 to be focused, in contrast to Fun, where progress holds for any

(well-typed) term. This is because we have used static focusing for full evaluation in Core. If

we used dynamic focusing instead, this requirement could be dropped, corresponding to using

evaluation contexts (dynamic) in Fun, instead of a translation to normal form (static).

The Preservation theorem for Core is analogous to Fun.

Theorem 4.5 (Preservation, Core). Let 𝑠, 𝑠′ be statements in Core with 𝑠 ⊲ 𝑠′, Γ an environment
and 𝑃 a program. If Γ ⊢𝑃 𝑠 , then Γ ⊢𝑃 𝑠′.
This theorem can also be proven with a straightforward induction on typing derivations. Of

course, this preservation theorem does not make any assertion about result types, as statements do

not return anything that could be typed. However, if evaluation starts with a statement ⟨𝑝 | ⋆⟩
where⋆ does not occur free in 𝑝 and ends in a terminal statement 𝑠 , then 𝑠 = ⟨𝔭 | ⋆⟩ for some

producer value 𝔭. This is because no reduction step can introduce a free variable, so the final one

must be the same as the initial one. Hence, by well-typedness, if 𝑝 :
prd 𝜏 , then also 𝔭 :

prd 𝜏 , because

⋆ :
cns 𝜏 .

Lastly, we come to an important property of the translation between these languages:

Theorem 4.6 (Type Preservation of Translation). Let 𝑡 be a term in Fun, Γ an environment
and 𝑃 a program. If Γ ⊢𝑃 𝑡 : 𝜏 for some type 𝜏 , then Γ ⊢J𝑃K J𝑡K :prd 𝜏 where J𝑃K denotes the translation
of all definitions in 𝑃 .

Proof. Most cases are straightforward in the proof which proceeds by a structural induction

on the typing derivation. The interesting cases are when the typing derivation types a control

operator. The only rule in Fun with label 𝛼 {𝑡1} in the conclusion is Label. This rule has the

premise Γ, 𝛼 :
cns 𝜏 ⊢ 𝑡1 : 𝜏 , and applying the induction hypothesis gives Γ, 𝛼 :

cns 𝜏 ⊢ J𝑡1K :prd 𝜏 . Then
we can derive J𝑡K = 𝜇𝛼.⟨J𝑡1K | 𝛼⟩ :prd 𝜏 :

(Induction Hypothesis)

Γ, 𝛼 :
cns 𝜏 ⊢ J𝑡1K :prd 𝜏

Var2Γ, 𝛼 :
cns 𝜏 ⊢ 𝛼 :

cns 𝜏
Cut

Γ, 𝛼 :
cns 𝜏 ⊢ ⟨J𝑡1K | 𝛼⟩

𝜇
Γ ⊢ 𝜇𝛼.⟨J𝑡1K | 𝛼⟩ :prd 𝜏

The only rule with goto(𝑡1;𝛼) in the conclusion is Goto, which has premises Γ ⊢ 𝑡1 : 𝜏 and

𝛼 :
cns 𝜏 ∈ Γ. Applying the induction hypothesis gives Γ ⊢ J𝑡1K :

prd 𝜏 , and we can therefore type

the translation of the translation as follows (where we implicitly use weakening, which is allowed

since 𝛽 is fresh)

(Induction Hypothesis)

Γ, 𝛽 :
cns 𝜎 ⊢ J𝑡1K :prd 𝜏

𝛼 :
cns 𝜏 ∈ Γ, 𝛽 :

cns 𝜎
Var2

Γ, 𝛽 :
cns 𝜎 ⊢ 𝛼 :

cns 𝜏
Cut

Γ, 𝛽 :
cns 𝜎 ⊢ ⟨J𝑡1K | 𝛼⟩

𝜇
Γ ⊢ 𝜇𝛽.⟨J𝑡1K | 𝛼⟩ :prd 𝜏

□

5 Insights
In the previous section, we have explained what the 𝜆𝜇�̃�-calculus is, and how it works. Now that we

know the what and how we can explain why this calculus is so interesting. This section is therefore

a small collection of independent insights. To be clear, these insights are obvious to those who are

deeply familiar with the 𝜆𝜇�̃�-calculus, but we can still recall how surprising they were for us when

we first learned about them.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:20 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

5.1 Evaluation Contexts are First Class
A central feature of the 𝜆𝜇�̃�-calculus is the treatment of evaluation contexts as first-class objects,

as we have mentioned before. For example, consider the term (⌜2⌝ ∗ ⌜3⌝) ∗ ⌜4⌝ in Fun. When

we want to evaluate this, we have to use the evaluation context □ ∗ ⌜4⌝ to evaluate the subterm

(⌜2⌝ ∗ ⌜3⌝) and get ⌜6⌝ ∗ ⌜4⌝ which we can then evaluate to ⌜24⌝. Translating this term into Core

gives 𝜇𝛼. ∗ (𝜇𝛽. ∗ (⌜2⌝, ⌜3⌝; 𝛽), ⌜4⌝;𝛼). To evaluate this term, we first need to focus it giving

𝜇𝛼.⟨𝜇𝛽. ∗ (⌜2⌝, ⌜3⌝; 𝛽) | �̃�𝑥 . ∗ (𝑥, ⌜4⌝;𝛼)⟩

When we now start evaluating with ⋆, the steps are the same as in Fun. Using call-by-value,

the 𝜇-abstraction is evaluated first, giving ∗(⌜2⌝, ⌜3⌝; ∗(�̃�𝑥 . ∗ (𝑥, ⌜4⌝;⋆)). This now has the form

where the product can be evaluated to ⟨⌜6⌝ | �̃�𝑥 . ∗ (𝑥, ⌜4⌝;⋆)⟩, after which ⌜6⌝ is substituted for

𝑥 . The term ∗(⌜6⌝, ⌜4⌝;⋆) can then be directly evaluated to ⌜24⌝.
After focusing, we can see how 𝛽 is a variable that stands for the evaluation context in Fun. The

term �̃�𝑥 . ∗ (𝑥, ⌜4⌝;𝛼) is the first-class representation of the evaluation context □ ∗ ⌜4⌝. We first

evaluate the subexpression ∗(⌜2⌝, ⌜3⌝; 𝛽) and then insert the result into ∗(𝑥, ⌜4⌝;⋆) to finish the

evaluation, as we did in Fun. In other words, the □ of an evaluation context in Fun, corresponds to

a continuation 𝛽 in Core, and similarly determines in which order subexpressions are evaluated.

5.2 Data is Dual to Codata
The sequent calculus clarifies the relation between data and codata as being exactly dual to each

other. When looking at the typing rules in Figure 2, we can see that data and codata types are

completely symmetric. The two are not symmetric in languages based on natural deduction: A

pattern match on data types includes the scrutinee but there is no corresponding object in the

construction of codata. Similarly, invoking a destructor 𝐷 of a codata type always includes the

codata object 𝑥 to be destructed, e.g., 𝑥 .𝐷 (. . .), whereas the invocation of the constructor of a data

type has no corresponding object.

This asymmetry is fixed in the sequent calculus. Destructors (such as fst) are first-class and
don’t require a scrutinee, which repairs the symmetry to constructors. Similarly, pattern matches

(case {. . .}) do not require an object to destruct, which makes them completely symmetrical to

copattern matches. This duality reduces the conceptual complexity and opens the door towards

shared design and implementation of features of data and codata types.

5.3 Let-Bindings are Dual to Control Operators
The label construct in Fun is translated to a 𝜇-binding in Core. Also, when considering the typing

rule for label 𝛼 {𝑡} in Section 4.1, we can see that it directly corresponds to typing a 𝜇-binding

with the label 𝛼 being the bound covariable. Similarly, a let-binding is translated to a �̃�-binding

and typing a let-binding in Fun closely corresponds to typing a �̃�-term in Core. This way, labels
and let-bindings are dual to each other, the same way 𝜇 and �̃� are. The duality can be extended to

other control operators such as call/cc.
As it turns out, the label construct is very closely related to call/cc. There are in fact only

two differences. First, label 𝛼 {𝑡} has the binder 𝛼 for the continuation built into the construct,

just as the variation of call/cc named let/cc (which Reynolds [1972] called escape). The second,
and more important difference is that the invocation of the continuation captured by label 𝛼 {𝑡}
happens through an explicit language construct goto(𝑡 ;𝛼). This makes it easy to give a translation

to Core as we can simply insert another 𝜇-binding to discard the remaining continuation at exactly

the place where the captured continuation is invoked. In contrast, with call/cc and let/cc the
continuation is applied in the same way as a normal function, making it necessary to redefine the

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:21

variable the captured continuation is bound to when translating to Core. This obscures the duality

to let-bindings which is so evident for label and goto.
To see this, here is a translation of let/cc 𝑘 𝑡 to Core

Jlet/cc 𝑘 𝑡K ≔ 𝜇𝛼.⟨cocase {ap(𝑥, 𝛽) ⇒ ⟨𝑥 | 𝛼⟩} | �̃�𝑘 .⟨J𝑡K | 𝛼⟩⟩

The essence of the translation still is that the current continuation is captured by the outer 𝜇 and

bound to 𝛼 . But now we also have to transform this 𝛼 into a function (the cocase here) which
discards its context (here bound to 𝛽) and bind this function to 𝑘 , which is done using �̃�. For

call/cc, the duality is even more obscured, as there the binder for the continuation is hidden in

the function which call/cc is applied to. For the translation, this function must then be applied to

the above cocase and the captured continuation 𝛼 , resulting in the following term (cf. also [Miquey

2019]).

Jcall/cc 𝑓 K ≔ 𝜇𝛼.⟨J𝑓 K | ap(cocase {ap(𝑥, 𝛽) ⇒ ⟨𝑥 | 𝛼⟩}, 𝛼)⟩

Other control operators for undelimited continuations can be translated in a similar way. For

example, consider Felleisen’s C [Felleisen et al. 1987]. The difference to call/cc is that C discards

the current continuation if it is not invoked somewhere in the term C is applied to, whereas call/cc
leaves it in place and thus behaves as a no-op if the captured continuation is never invoked. The

only change that needs to be made in the translation to Core is that the top-level continuation⋆
has to be used for the outer cut instead of using the captured continuation. This is most easily seen

for a variation of C which has the binder for the continuation built into the operator and where

the invocation of the continuation is explicit, similar to label/goto. Calling this variation labelC ,
we obtain the following translation

JlabelC 𝛼 {𝑡}K ≔ 𝜇𝛼.⟨J𝑡K | ⋆⟩

Here the duality to let-bindings is evident again. The translation for C itself is then obtained in the

same way as for call/cc

JC 𝑓 K ≔ 𝜇𝛼.⟨J𝑓 K | ap(cocase {ap(𝑥, 𝛽) ⇒ ⟨𝑥 | 𝛼⟩},⋆)⟩

5.4 The Case-of-Case Transformation
One important transformation in functional compilers is the case-of-case transformation. Maurer

et al. [2017] give the following example of this transformation. The term

if (if 𝑒1 then 𝑒2 else 𝑒3) then 𝑒4 else 𝑒5
can be replaced by the term

if 𝑒1 then (if 𝑒2 then 𝑒4 else 𝑒5) else (if 𝑒3 then 𝑒4 else 𝑒5).

Logicians call these kinds of transformations commutative conversions, and they play an important

role in the study of the sequent calculus. But as Maurer et al. [2017] show, they are also important

for compiler writers who want to generate efficient code.

In the 𝜆𝜇�̃�-calculus, commuting conversions don’t have to be implemented as a special compiler

pass. They fall out for free as a special instance of 𝜇-reductions! Let us illustrate this point by

translating Maurer et al.’s example into the 𝜆𝜇�̃�-calculus. First, let us translate the two examples

using pattern-matching syntax:

case (case 𝑒1 of {T ⇒ 𝑒2; F ⇒ 𝑒3}) of {T ⇒ 𝑒4; F ⇒ 𝑒5}
case 𝑒1 of {T ⇒ case 𝑒2 of {T ⇒ 𝑒4; F ⇒ 𝑒5}; F ⇒ case 𝑒3 of {T ⇒ 𝑒4; F ⇒ 𝑒5}}

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:22 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Let us now translate these two terms into the 𝜆𝜇�̃�-calculus:

𝜇𝛼.⟨𝜇𝛽.⟨J𝑒1K | case {T ⇒ ⟨J𝑒2K | 𝛽⟩; F ⇒ ⟨𝑒3 | 𝛽⟩}⟩ | case {T ⇒ ⟨J𝑒4K | 𝛼⟩, F ⇒ ⟨J𝑒5K | 𝛼⟩}⟩
𝜇𝛼.⟨J𝑒1K|case {

T ⇒ ⟨𝜇𝛽.⟨J𝑒2K | case {T ⇒ ⟨J𝑒4K | 𝛽⟩, F ⇒ ⟨J𝑒5K | 𝛽⟩}⟩ | 𝛼⟩
F ⇒ ⟨𝜇𝛽.⟨J𝑒3K | case {T ⇒ ⟨J𝑒4K | 𝛽⟩, F ⇒ ⟨J𝑒5K | 𝛽⟩}⟩ | 𝛼⟩}⟩

We can see that just by reducing all of the underlined redexes we reduce both of these examples to

the same term.

5.5 Direct and Indirect Consumers
As mentioned in the introduction, a natural competitor of sequent calculus as an intermediate repre-

sentation is continuation-passing style (CPS). In CPS, reified evaluation contexts are represented by

functions. This makes the resulting types of programs in CPS arguably harder to understand. There

is, however, another advantage of sequent calculus over CPS as described by Downen et al. [2016].

The first-class representation of consumers in sequent calculus allows us to distinguish between

two different kinds of consumers: direct consumers, i.e., destructors, and indirect consumers. In

particular, this allows to chain direct consumers in Core in a similar way as in Fun.

Suppose we have a codata type with destructors get and set for getting and setting the value of

a reference. Now consider the following chain of destructor calls on a reference 𝑟 in Fun

𝑟 .set(3).set(4).get()
A compiler could use a user-defined custom rewrite rule for rewriting two subsequent calls to set
into only the second call. In Core the above example looks as follows:

𝜇𝛼.⟨𝑟 | set(3; set(4; get(𝛼)⟩
We still can immediately see the direct chaining of destructors and thus apply essentially the same

rewrite rule. In CPS, however, the example would rather become

𝜆𝑘. 𝑟 .set(3; 𝜆𝑠. 𝑠 .set(4; 𝜆𝑡 . 𝑡 .get(𝑘)))
The chaining of the destructors becomes obfuscated by the indirections introduced by representing

the continuations for each destructor as a function. To apply the custom rewrite rule mentioned

above, it is necessary to see through the lambdas, i.e. the custom rewrite rule has to be transformed

to be applicable.

5.6 Call-By-Value, Call-By-Name and Eta-Laws
In Section 2.2 we already pointed out the existence of statements ⟨𝜇𝛼.𝑠1 | �̃�𝑥 .𝑠2⟩ which are called

critical pairs because they can a priori be reduced to either 𝑠1 [�̃�𝑥 .𝑠2/𝛼] or 𝑠2 [𝜇𝛼.𝑠1/𝑥]. These critical
pairs were already discussed by Curien and Herbelin [2000] when they introduced the 𝜆𝜇�̃�-calculus.

One solution is to pick an evaluation order, either call-by-value (cbv) or call-by-name (cbn), that

determines to which of the two statements we should evaluate, and in this paper we chose to always

use the call-by-value evaluation order. The difference between these two choices has also been

discussed by Wadler [2003]. Note that this freedom for the evaluation strategy is another advantage

of sequent calculus over continuation-passing style, as the latter always fixes an evaluation strategy.

Which evaluation order we choose has an important consequence for the optimizations we

are allowed to perform in the compiler. If we choose call-by-value, then we are not allowed to

use all 𝜂-equalities for codata types, and if we use call-by-name, then we are not allowed to use

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:23

all 𝜂-equalities for data types. Let us illustrate the problem in the case of codata types with the

following example:

⟨cocase {ap(𝑥 ;𝛼) ⇒ ⟨𝜇𝛽.𝑠1 | ap(𝑥 ;𝛼)⟩} | �̃�𝑥 .𝑠2⟩ ≡𝜂 ⟨𝜇𝛽.𝑠1 | �̃�𝑥 .𝑠2⟩

We assume that 𝑥 and 𝛼 do not appear free in 𝑠1. The 𝜂-transformation is just the ordinary 𝜂-law

for functions but applied to the representation of functions as codata types. The statement on the

left-hand side reduces the �̃� first under both call-by-value and call-by-name evaluation order, i.e.

⟨cocase {ap(𝑥 ;𝛼) ⇒ ⟨𝜇𝛽.𝑠1 | ap(𝑥 ;𝛼)⟩} | �̃�𝑥 .𝑠2⟩
⊲cbv 𝑠2 [cocase {. . .}/𝑥]
⊲cbn 𝑠2 [cocase {. . .}/𝑥]

The right-hand side of the 𝜂-equality, however, reduces the 𝜇 first under call-by-value evaluation

order, i.e.

⟨𝜇𝛽.𝑠1 | �̃�𝑥 .𝑠2⟩
⊲cbv 𝑠1 [�̃�𝑥 .𝑠2/𝛽]
⊲cbn 𝑠2 [𝜇𝛽.𝑠1/𝑥]

Therefore, the 𝜂-equality is only valid under call-by-name evaluation order. This example shows

that the validity of applying this 𝜂-rule as an optimization depends on whether the language uses

call-by-value or call-by-name. If we instead used a data type such as Pair, a similar 𝜂-reduction

would only give the same result as the original statement when using call-by-value.

5.7 Linear Logic and the Duality of Exceptions
We have introduced the data type Pair(𝜎, 𝜏) and the codata type LPair(𝜎, 𝜏) as two different ways
to formalize tuples. The data type Pair(𝜎, 𝜏) is defined by the constructor Tup whose arguments

are evaluated eagerly, so this type corresponds to strict tuples in languages like ML or OCaml. The

codata type LPair(𝜎, 𝜏) is a lazy pair which is defined by its two projections fst and snd, and only

when we invoke the first or second projection do we start to compute its contents. This is closer to

how tuples behave in a lazy language like Haskell.

Linear logic [Girard 1987; Wadler 1990] adds another difference to these types. In linear logic

we consider arguments as resources which cannot be arbitrarily duplicated or discarded; every

argument to a function has to be used exactly once. If we follow this stricter discipline, then we have

to distinguish between two different types of pairs: In order to use a pair 𝜎 ⊗ 𝜏 (pronounced “times”

or “tensor”), we have to use both the 𝜎 and the 𝜏 , but if we want to use a pair 𝜎 & 𝜏 (pronounced

“with”), we must choose to either use the 𝜎 or the 𝜏 . It is now easy to see that the type 𝜎 ⊗ 𝜏 from
linear logic corresponds to the data type Pair(𝜎, 𝜏), since when we pattern match on this type we

get two variables in the context, one for 𝜎 and one for 𝜏 . The type 𝜎 & 𝜏 similarly corresponds to

the type LPair(𝜎, 𝜏) which we use by invoking either the first or the second projection, consuming

the whole pair.

In addition to these two different kinds of conjunction, we also have two different kinds of

disjunction. These two disjunctions are written 𝜎 ⊕ 𝜏 (pronounced “plus”) and 𝜎 ` 𝜏 (pronounced

“par”) and correspond to two different ways to handle errors in programming languages. Their

typing rules in Core are:

Γ ⊢ 𝑡 :prd 𝜎
Γ ⊢ Inl(𝑡) :prd 𝜎 ⊕ 𝜏

Γ ⊢ 𝑡 :prd 𝜏
Γ ⊢ Inr(𝑡) :prd 𝜎 ⊕ 𝜏

Γ, 𝑥 :
prd 𝜎 ⊢ 𝑠1 Γ, 𝑦 :

prd 𝜏 ⊢ 𝑠2
Γ ⊢ case {Inl(𝑥) ⇒ 𝑠1, Inr(𝑦) ⇒ 𝑠2} :cns 𝜎 ⊕ 𝜏

Γ ⊢ 𝑐1 :cns 𝜎 Γ ⊢ 𝑐2 :cns 𝜏
Γ ⊢ Par(𝑐1, 𝑐2) :cns 𝜎 ` 𝜏

Γ, 𝛼 :
cns 𝜎, 𝛽 :

cns 𝜏 ⊢ 𝑠
Γ ⊢ cocase {Par(𝛼, 𝛽) ⇒ 𝑠} :prd 𝜎 ` 𝜏

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:24 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

Languages like Rust and Haskell use 𝜎 ⊕ 𝜏 for error handling, which corresponds to the “Either”

and “Result” types in those languages. This corresponds to the calling convention that the function

returns a tagged result which indicates whether an error has occurred or not, and the caller of

the function has to check this tag. The type 𝜎 ` 𝜏 behaves differently: A function which returns

a value of type 𝜎 ` 𝜏 has to be called with two continuations, one for the possibility that the

function returns successfully and one for the possibility that the function throws an error. And

the function itself decides which continuation to call, so there is no overhead for checking the

result of a function call. This is quite similar to how some functions in Javascript are called with

an “onSuccess” continuation and an “onFailure” continuation and different to the exception model

of, e.g., Java, where the exception handler is dynamically scoped instead of lexically passed as an

argument. This duality between the two different ways of handling exceptions can be seen most

clearly in the sequent calculus; more details on this duality can be found in section 3.4 of [Spiwack

2014] or in section 7.1 of [Ostermann et al. 2022].

6 Related Work
The central ideas of the calculi that we have presented in this pearl are not novel: the 𝜆𝜇�̃�-calculus

is by now over 20 years old. We chose a variant of this calculus that can be used as a starting point

to explore all the variants that have been described in the literature. This related work section is

therefore intended to provide suggestions for further reading and the chance to dive deeper into

specific topics that we have only touched upon.

6.1 The Sequent Calculus
The basis of our language Core is a term assignment system for the sequent calculus, an alternative

logical system to natural deduction. The sequent calculus was originally introduced by Gentzen in

the articles Gentzen [1935a,b, 1969]. For a more thorough introduction to the sequent calculus as

a logical system, we can recommend the books by Negri and Von Plato [2001] and Troelstra and

Schwichtenberg [2000] which introduce the sequent calculus and show how it differs from the

natural deduction systems that are more commonly taught.

6.2 Term Assignment for the Sequent Calculus
The original article which introduced the 𝜆𝜇�̃�-calculus as a term assignment system for the sequent

calculus was by Curien and Herbelin [2000]. Before we list some of the other articles, we should

preface them with the following remark on notation:

Remark 1 (Alternative Notation). Our notation for producers, consumers and statements follows

the established conventions in the literature. However, we diverge in the way that we write typing

judgments from the example of Curien and Herbelin [2000] which is followed by most other authors.

We use one typing context Γ which binds both variables 𝑥 :
prd 𝜏 and covariables 𝛼 :

cns 𝜏 , whereas

Curien and Herbelin [2000] use two contexts; a context Γ which contains bindings for all variables

and a context Δ which contains the bindings for all covariables. The following table summarizes

the difference between their notation and the notation used in our paper.

Judgment Form Our notation Curien and Herbelin [2000]

Typing Producers Γ ⊢ 𝑝 :
prd 𝜏 Γ ⊢ 𝑝 : 𝜏 | Δ

Typing Consumers Γ ⊢ 𝑐 :cns 𝜏 Γ | 𝑐 : 𝜏 ⊢ Δ
Typing Statements Γ ⊢ 𝑠 𝑠 : (Γ ⊢ Δ)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:25

The reasons for this divergence are easily explained. The notation of Curien and Herbelin [2000]

with its two contexts Γ and Δ perfectly illustrates the correspondence to the sequent calculus which

operates with sequents Γ ⊢ Δ which contain multiple formulas on the left- and right-hand side

of the turnstile. This close correspondence to the sequent calculus is less important for us. We

found that splitting the context in this way often makes it more difficult to write down rules in

their full generality when we extend the language with other features. Features which introduce a

dependency of later bindings on earlier bindings within a typing context, for example when we

add parametric polymorphism, don’t fit easily into the format of Curien and Herbelin [2000].

With these remarks out of the way, we can recommend the articles by Zeilberger [2008], Downen

and Ariola [2014, 2018b, 2020], Munch-Maccagnoni [2009] and Spiwack [2014] which were very

helpful to us when we learned about the 𝜆𝜇�̃�-calculus.

6.3 Codata Types
Codata types were originally invented by Hagino [1989]. They had the most success in proof

assistants such as Agda where they help circumvent certain technical problems that arise when

we try to model coinductive types. Copattern matching as a way to create producers of codata

types was popularized by Abel et al. [2013], although the basic idea of the concept had been around

before that, see, e.g., [Zeilberger 2008]. But probably the best starting point to learn more about

codata types is an article written by Downen et al. [2019].

6.4 Control Operators and Classical Logic
The label/goto construct that we are using in Fun is an example of a control operator, of which

Landin’s operator J [Felleisen 1987; Landin 1965; Thielecke 1998] likely is the oldest. Their translation

into Core uses 𝜇-abstractions, which are also a form of control operator that was originally

introduced by Parigot [1992] before it became a part of the 𝜆𝜇�̃�-calculus of Curien and Herbelin

[2000]. Control operators have an important relationship to classical logic via the Curry-Howard

isomorphism. This relationship was discovered by Griffin [1989]; a more thorough introduction

can be found in Sørensen and Urzyczyn [2006].

6.5 Different Evaluation Orders
We have already talked about the evaluation strategies call-by-value and call-by-name, and how

their difference can be explained by different choices of how a critical pair should be evaluated.

This duality between call-by-value and call-by-name has already been observed by Filinski [1989]

and has been explored in more detail by Wadler [2003, 2005]. We have also seen in Section 5.6 how

𝜂-reduction only works with data types in call-by-value and with codata types in call-by-name.

A lot of people therefore conclude that the choice of an evaluation order should maybe not be a

global decision, but should instead depend on the type. This approach requires tracking the polarity

of types and providing additional shift connectives which help mediate between the different

evaluation orders; the article by Downen and Ariola [2018a] is a good entry point for pursuing

these kinds of questions which are discussed in detail in [Zeilberger 2009] and [Munch-Maccagnoni

2013]. A well-known example of mixing evaluation orders is the call-by-push-value paradigm [Levy

1999] which distinguishes value types and computation types and subsumes both call-by-value and

call-by-name.

7 Conclusion
In this functional pearl, we have presented the 𝜆𝜇�̃�-calculus in the way we introduce it to our

colleagues and students on the whiteboard; by compiling small examples of functional programs.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:26 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

We think this is a better way to introduce programming-language enthusiasts and compiler writers

to the 𝜆𝜇�̃�-calculus, since it doesn’t require prior knowledge of the sequent calculus. We have also

shown why we are excited about this calculus, by giving examples of how it allows us to express

aspects like strict vs. lazy evaluation or compiler optimizations like case-of-case in an extremely

clear way. We want to share our enthusiasm for the sequent calculus and languages built on it with

more people, and with this pearl, we hope that others will start to write their own little compilers

to the sequent calculus and explore the exciting possibilities it offers.

Data Availability Statement
This paper is accompanied by an implementation in Haskell. Upon acceptance and publication of

this article, the implementation will be made available permanently using Zenodo.

Acknowledgments
We would like to thank the anonymous reviewers and Paul Downen for their feedback which

helped us greatly in improving the final presentation of the paper.

A The Relationship to the Sequent Calculus
In the main part of the paper we introduced the 𝜆𝜇�̃�-calculus without any references to the sequent

calculus, because we think it is not essential to understand the latter in order to understand the

former. In this appendix, we provide the details which help make the connection between the

logical calculus and the term system clear. We only discuss a very simple sequent calculus which

contains two logical connectives: the two conjunctions 𝐴 ⊗ 𝐵 and 𝐴 & 𝐵 which correspond to the

strict and lazy pairs that we have seen in Core. We use 𝑋 for propositional variables.

𝐴, 𝐵 F 𝑋 | 𝐴 ⊗ 𝐵 | 𝐴 & 𝐵

In the (classical) sequent calculus both the premisses and the conclusion of a derivation rule consist

of sequents Γ ⊢ Δ. Both Γ and Δ are multisets of formulas; that is, it is important how often a

formula occurs on the left or the right, but not in which order the formulas occur. In the sequent

calculus, we only have introduction rules. This means that the logically complex formula 𝐴 ⊗ 𝐵 or

𝐴&𝐵 only occurs in the conclusion of the rules that define it, and not in one of the premises. Every

connective comes with a set of rules which introduce the connective on the left and the right of the

turnstile. In our case, the rules look like this:

Axiom
𝐴 ⊢ 𝐴

Γ1 ⊢ Δ1, 𝐴 𝐴, Γ2 ⊢ Δ2

Cut
Γ1, Γ2 ⊢ Δ1,Δ2

Γ, 𝐴1, 𝐴2 ⊢ Δ ⊗-L
Γ, 𝐴1 ⊗ 𝐴2 ⊢ Δ

Γ1 ⊢ 𝐴1,Δ1 Γ2 ⊢ 𝐴2,Δ2 ⊗-R
Γ1, Γ2 ⊢ 𝐴1 ⊗ 𝐴2,Δ1,Δ2

Γ, 𝐴1 ⊢ Δ
&-L1Γ, 𝐴1 &𝐴2 ⊢ Δ

Γ, 𝐴2 ⊢ Δ
&-L2Γ, 𝐴1 &𝐴2 ⊢ Δ

Γ ⊢ 𝐴1,Δ Γ ⊢ 𝐴2,Δ
&-R2Γ ⊢ 𝐴1 &𝐴2,Δ

The rule Cut is the only rule which destroys the so-called subformula property. This property says
that every formula which occurs anywhere in a derivation is a subformula of a formula occurring

in the conclusion of the derivation. Proof theorists therefore try to show that we can eliminate the
cuts; if every sequent which can be derived using the Cut rule can also be derived without using it,

we say that the calculus enjoys the cut-elimination property. The Curry-Howard correspondence

for the sequent calculus relates this cut-elimination procedure to the computations that we have

seen in the paper.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:27

The first step from the sequent calculus towards the 𝜆𝜇�̃�-calculus consists in marking at most

one of the formulas in each of the sequents as active. We mark a formula as active by enclosing it in

a pair of brackets. This yields two versions of the rule Axiom, one where we mark the formula on

the left and one where we mark the formula on the right. If we want to translate every derivation

using the original rules to a derivation in the new variant we also have to add special rules which

activate and deactivate formulas both on the left and on the right. This yields the following new set

of rules:

Axiom-L[𝐴] ⊢ 𝐴 Axiom-R

𝐴 ⊢ [𝐴]
Γ1 ⊢ Δ1, [𝐴] [𝐴], Γ2 ⊢ Δ2

Cut
Γ1, Γ2 ⊢ Δ1,Δ2

Γ,𝐴1, 𝐴2 ⊢ Δ
⊗-L

Γ, [𝐴1 ⊗ 𝐴2] ⊢ Δ

Γ1 ⊢ [𝐴1],Δ1 Γ2 ⊢ [𝐴2],Δ2 ⊗-R
Γ1, Γ2 ⊢ [𝐴1 ⊗ 𝐴2],Δ1,Δ2

Γ, [𝐴1] ⊢ Δ
&-L1

Γ, [𝐴1 &𝐴2] ⊢ Δ

Γ, [𝐴2] ⊢ Δ
&-L2

Γ, [𝐴1 &𝐴2] ⊢ Δ

Γ ⊢ 𝐴1,Δ Γ ⊢ 𝐴2,Δ
&-R2

Γ ⊢ [𝐴1 &𝐴2],Δ

Γ, 𝐴 ⊢ Δ
Act-L

Γ, [𝐴] ⊢ Δ
Γ, [𝐴] ⊢ Δ

Deact-L
Γ, 𝐴 ⊢ Δ

Γ ⊢ 𝐴,Δ
Act-R

Γ ⊢ [𝐴],Δ
Γ ⊢ [𝐴],Δ

Deact-R
Γ ⊢ 𝐴,Δ

We can now begin to assign terms to derivations in this calculus by associating every non-active

formula 𝐴 in the left side of the turnstile with a producer variable 𝑥 :
prd 𝐴, and every non-active

formula 𝐵 on the right side of the turnstile with a consumer variable 𝛼 :
cns 𝐵. As discussed in

Section 6.2 we write both producer and consumer variables in a joint context Γ on the left-hand side

of typing rules. We have to distinguish three different sequents, depending on whether a formula is

active, and if so, on which side the active formula occurs. If there is no active formula, then we

assign a statement to the sequent, if the formula on the right is active, we assign a producer, and
if the formula on the left is active, we assign a consumer. For most rules the correspondence is

clear: The rule Axiom-R corresponds to the typing rule Var1 (and Axiom-L to Var2). The rule Tup

corresponds to the rule ⊗-R, and Case-Pair to ⊗-L. The rules Fst and Snd correspond to the rules

&-L1 and &-L2, and Cocase-LPair to &-R. The activation rules correspond to the rules 𝜇 and �̃�,

and deactivation can be expressed as a cut with a variable.

B Typing Rules for Fun
Given a term 𝑡 , an environment Γ and a program 𝑃 , if 𝑡 has type 𝜏 in environment Γ and program 𝑃 ,

we write Γ ⊢𝑃 𝑡 : 𝜏 . As 𝑃 is only used for typing calls to top-level definitions (rule Call), we usually

leave it implicit in the typing rules. To make sure programs 𝑃 are well-formed, we have additional

checking rules for programs ∅-ok and P-Ok. If a program is well-formed, we write ⊢ 𝑃 Ok.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:28 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

𝑥 :
prd 𝜏 ∈ Γ

Var
Γ ⊢ 𝑥 : 𝜏

Lit

Γ ⊢ ⌜𝑛⌝ : Int
Γ ⊢ 𝑡1 : Int Γ ⊢ 𝑡2 : Int

Op
Γ ⊢ 𝑡1 ⊙ 𝑡2 : Int

Γ ⊢ 𝑛 : Int Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏
Ifz

Γ ⊢ ifz(𝑛, 𝑡1, 𝑡2) : 𝜏
Γ ⊢ 𝑡1 : 𝜏1 Γ, 𝑥 :

prd 𝜏1 ⊢ 𝑡2 : 𝜏2
Let

Γ ⊢ let 𝑥 = 𝑡1 in 𝑡2 : 𝜏2

def 𝑓 (𝑥𝑖 :prd 𝜏𝑖 ;𝛼 𝑗 :
cns 𝜏 𝑗) : 𝜏 ∈ 𝑃 Γ ⊢ 𝑡𝑖 : 𝜏𝑖 Γ ⊢ 𝛼 𝑗 :

cns 𝜏 𝑗
Call

Γ ⊢𝑃 𝑓 (𝑡𝑖 ;𝛼 𝑗) : 𝜏

Γ ⊢ 𝑡 : List(𝜏 ′) Γ ⊢ 𝑡1 : 𝜏 Γ, 𝑦 :
prd 𝜏 ′, 𝑧 :prd List(𝜏 ′) ⊢ 𝑡2 : 𝜏

Case-List

Γ ⊢ case 𝑡 of {Nil ⇒ 𝑡1, Cons(𝑦, 𝑧) ⇒ 𝑡2} : 𝜏

Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : List(𝜏)
Cons

Γ ⊢ Cons(𝑡1, 𝑡2) : List(𝜏)
Nil

Γ ⊢ Nil : List(𝜏)

Γ ⊢ 𝑡 : Pair(𝜏1, 𝜏2) Γ, 𝑥 :
prd 𝜏1, 𝑦 :

prd 𝜏2 ⊢ 𝑡 : 𝜏
Case-Pair

Γ ⊢ case 𝑡 of {Tup(𝑥,𝑦) ⇒ 𝑡} : 𝜏
Γ ⊢ 𝑡1 : 𝜏1 Γ ⊢ 𝑡2 : 𝜏2

Tup

Γ ⊢ Tup(𝑡1, 𝑡2) : Pair(𝜏1, 𝜏2)

Γ ⊢ 𝑡 : Stream(𝜏)
Hd

Γ ⊢ 𝑡 .hd : 𝜏

Γ ⊢ 𝑡 : Stream(𝜏)
Tl

Γ ⊢ 𝑡 .tl : Stream(𝜏)

Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : Stream(𝜏)
Stream

Γ ⊢ cocase {hd ⇒ 𝑡1, tl ⇒ 𝑡2} : Stream(𝜏)

Γ ⊢ 𝑡 : LPair(𝜏1, 𝜏2)
fst

Γ ⊢ 𝑡 .fst : 𝜏1

Γ ⊢ 𝑡 : LPair(𝜏1, 𝜏2)
snd

Γ ⊢ 𝑡 .snd : 𝜏2

Γ ⊢ 𝑡1 : 𝜏1 Γ ⊢ 𝑡2 : 𝜏2
LPair

Γ ⊢ cocase {fst ⇒ 𝑡1, snd ⇒ 𝑡2} : LPair(𝜏1, 𝜏2)

Γ ⊢ 𝑡1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑡2 : 𝜏1
App

Γ ⊢ 𝑡1 𝑡2 : 𝜏2
Γ, 𝑥 :

prd 𝜏1 ⊢ 𝑡 : 𝜏2
Lam

Γ ⊢ 𝜆𝑥.𝑡 : 𝜏1 → 𝜏2

Γ ⊢ 𝑡 : 𝜏 𝛼 :
cns 𝜏 ∈ Γ

Goto

Γ ⊢ goto(𝑡 ;𝛼) : 𝜏 ′
Γ, 𝛼 :

cns 𝜏 ⊢ 𝑡 : 𝜏
Label

Γ ⊢ label 𝛼 {𝑡} : 𝜏

To check a program, we start with the empty program, which we know is well-formed (Wf-

Empty), and then add one definition at a time. A definition is then well-typed if there are types

𝜏𝑖 and 𝜏 𝑗 for its arguments such that its body is well-typed. Because we explicitly allow recursive

definitions, the body 𝑡 might contain the name f as well. Thus, while we typecheck 𝑡 , we add the

definition of f to the program and assume it is well-typed. After finding 𝜏𝑖 , 𝜏 𝑗 and 𝜏 , these are added

to the program as well, that is, well-formed programs contain type annotations while definitions

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Grokking the Sequent Calculus (Functional Pearl) 1:29

on their own do not. This way, these types can be used while checking types of calls (in rule Call).

Wf-Empty⊢ ∅ Ok

⊢ 𝑃 Ok 𝑥 :
prd 𝜏𝑖 , 𝛼 :

cns 𝜏 𝑗 ⊢𝑃,def f(𝑥𝑖 :𝜏𝑖 ,𝛼 𝑗 :
cns𝜏 𝑗) :𝜏≔𝑡

𝑡 : 𝜏
Wf-Cons

⊢ 𝑃, def f(𝑥𝑖 : 𝜏𝑖 , 𝛼 𝑗 :
cns 𝜏 𝑗) : 𝜏 ≔ 𝑡 Ok

C Operational Semantics of label/goto
The full operational semantics for the label/goto construct is in essence the same as for let/cc.
To make it precise, we promote evaluation contexts to runtime values.

We first repeat Definition 3.1 of evaluation contexts with one change: label 𝛼 {𝐸} is not an
evaluation context. We reduce a label as soon as it comes into evaluation position.

𝐸 F □ | 𝐸 ⊙ 𝑡 | 𝔱 ⊙ 𝐸 | ifz(𝐸, 𝑡, 𝑡) | let 𝑥 = 𝐸 in 𝑡 | 𝑓 (𝔱, 𝐸, 𝑡) | 𝐾 (𝔱, 𝐸, 𝑡)
| case 𝐸 of {𝐾 (𝑥) ⇒ 𝑡} | 𝐸 𝑡 | 𝔱 𝐸 | 𝐸.𝐷 (𝑡) | 𝔱.𝐷 (𝔱, 𝐸, 𝑡) | goto(𝐸;𝛼)

Now we add them as another form of value

𝔱 F . . . | 𝐸
Note that these values only exist at runtime, that is, they cannot appear in expressions before

evaluation has started. They are typed as consumers, which means that they are the only values

with a consumer type. This makes sure that we can substitute them for covariables. Their typing

can be captured by the following rule.

𝑥 :
prd 𝜏 ⊢ 𝐸 [𝑥] : 𝜏0

Ctx⊢ 𝐸 :
cns 𝜏

The rule means that if the hole of a context 𝐸 expects an expression of type 𝜏 to be plugged in, then

we have 𝐸 :
cns 𝜏 .

Now we can give the evaluation rules for label and goto:

𝐸 [label 𝛼 {𝑡}] ⊲ 𝐸 [𝑡 [𝐸/𝛼]] 𝐸′ [goto(𝔱;𝐸)] ⊲ 𝐸 [𝔱]
In the rule for label, the surrounding evaluation context 𝐸 is reified as a value and then substituted

for the covariable 𝛼 in the body 𝑡 . Note that 𝐸 is not removed, i.e., evaluation continues in this

context. In particular, if 𝛼 does not occur free in 𝑡 , then the label is effectively a no-op. We can also

see that the types are correct: If 𝑡 has type 𝜏 , then so does label 𝛼 {𝑡} and consequently we have

𝐸 :
cns 𝜏 which is the same type as that of 𝛼 . In the rule for goto the covariable must have already

been replaced by an evaluation context, which is ensured if the evaluated term was closed and

well-typed, because the only way to introduce a covariable is through a label. The evaluation step

then removes and discards the surrounding context 𝐸′ and continues evaluation by plugging the

value 𝔱 into the previously reified context 𝐸. Note that 𝐸′ cannot contain labels, as they are not

evaluation contexts. This ensures that there is no risk of removing a binder for a free variable in 𝔱.

Together these two rules also allow us to simulate the approximate rule from Section 3.1:

𝐸 [label 𝛼 {𝐸′ [goto(𝔱;𝛼)]}] ⊲ 𝐸 [𝐸′ [goto(𝔱;𝐸)]] ⊲ 𝐸 [𝔱]
The rule for goto also is the reason why the theorem of strong preservation does not immediately

hold (see the discussion in Section 4.3). The problem is that from this rule and the given typing

rules for Fun it is not immediate that the evaluation contexts 𝐸′ and 𝐸 yield a term of the same

type when filling their holes, so that the overall type of the term may not be preserved. But this

cannot actually happen, because all other reduction rules preserve the overall type and hence all

evaluation contexts that are reified by the rule for label must yield a term of that same overall type

when their holes are filled. Therefore, also the rule for goto is type-preserving. This can be made

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:30 David Binder, Marco Tzschentke, Marius Müller, and Klaus Ostermann

precise by explicitly tracking the overall type in the type system (see, e.g., Section 6 in [Wright and

Felleisen 1994]).

References
Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. 2013. Copatterns: Programming Infinite Structures

by Observations. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Rome, Italy) (POPL ’13). Association for Computing Machinery, New York, NY, USA, 27–38. https://doi.org/

10.1145/2480359.2429075

Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2

(1992), 297–347. Issue 3. https://doi.org/10.1093/logcom/2.3.297

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers

and lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (nov 2020), 30 pages. https:

//doi.org/10.1145/3428194

William R. Cook. 2009. On Understanding Data Abstraction, Revisited. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applications: Onward! Essays (Orlando). Association for Computing Machinery,

New York, NY, USA, 557–572. https://doi.org/10.1145/1640089.1640133

Pierre-Louis Curien and Hugo Herbelin. 2000. The Duality of Computation. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). Association for Computing Machinery, New York, NY,

USA, 233–243. https://doi.org/10.1145/357766.351262

Pierre-Louis Curien and Guillaume Munch-Maccagnoni. 2010. The Duality of Computation under Focus. In Theoretical
Computer Science, Cristian S. Calude and Vladimiro Sassone (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

165–181.

Paul Downen and Zena M. Ariola. 2014. The Duality of Construction. In Proceedings of the 23rd European Symposium
on Programming Languages and Systems - Volume 8410 (ESOP ’14). Springer, Berlin, Heidelberg, 249–269. https:

//doi.org/10.1007/978-3-642-54833-8_14

Paul Downen and Zena M. Ariola. 2018a. Beyond Polarity: Towards a Multi-Discipline Intermediate Language with Sharing.

In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 119), Dan Ghica and Achim Jung (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 21:1–21:23. https://doi.org/10.4230/LIPIcs.CSL.2018.21

Paul Downen and Zena M. Ariola. 2018b. A tutorial on computational classical logic and the sequent calculus. Journal of
Functional Programming 28 (2018). https://doi.org/10.1017/S0956796818000023

Paul Downen and Zena M. Ariola. 2020. Compiling With Classical Connectives. Logical Methods in Computer Science
Volume 16, Issue 3 (Aug. 2020). https://doi.org/10.23638/LMCS-16(3:13)2020

Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. 2015. Structures for structural recursion. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association for

Computing Machinery, New York, NY, USA, 127–139. https://doi.org/10.1145/2784731.2784762

Paul Downen, Luke Maurer, Zena M Ariola, and Simon Peyton Jones. 2016. Sequent calculus as a compiler intermediate

language. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. 74–88.
Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. 2019. Codata in Action. In European Symposium

on Programming (ESOP ’19). Springer, 119–146. https://doi.org/10.1007/978-3-030-17184-1_5

Matthias Felleisen. 1987. Reflections on Landin’s J-operator: A Partly Historical Note. Computer Languages 12, 3 (1987),
197–207. https://doi.org/10.1016/0096-0551(87)90022-1

Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. 1987. A syntactic theory of sequential control.

Theoretical Computer Science 52, 3 (1987), 205–237. https://doi.org/10.1016/0304-3975(87)90109-5

Andrzej Filinski. 1989. Declarative Continuations: an Investigation of Duality in Programming Language Semantics. In

Category Theory and Computer Science. Springer-Verlag, Berlin, Heidelberg, 224–249.
Gerhard Gentzen. 1935a. Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 35 (1935), 176–210.
Gerhard Gentzen. 1935b. Untersuchungen über das logische Schließen. II. Mathematische Zeitschrift 39 (1935), 405–431.
Gerhard Gentzen. 1969. The collected papers of Gerhard Gentzen. North-Holland Publishing Co., Amsterdam.

Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50, 1 (1987), 1–101. https://doi.org/10.1016/0304-

3975(87)90045-4

Brian Goetz et al. 2014. JSR 335: Lambda Expressions for the Java Programming Language. https://jcp.org/en/jsr/detail?id=335
Timothy G. Griffin. 1989. A Formulae-as-Type Notion of Control. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (San Francisco, California, USA) (POPL ’90). Association for ComputingMachinery,

New York, NY, USA, 47–58. https://doi.org/10.1145/96709.96714

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

https://doi.org/10.1145/2480359.2429075
https://doi.org/10.1145/2480359.2429075
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/357766.351262
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.4230/LIPIcs.CSL.2018.21
https://doi.org/10.1017/S0956796818000023
https://doi.org/10.23638/LMCS-16(3:13)2020
https://doi.org/10.1145/2784731.2784762
https://doi.org/10.1007/978-3-030-17184-1_5
https://doi.org/10.1016/0096-0551(87)90022-1
https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://jcp.org/en/jsr/detail?id=335
https://doi.org/10.1145/96709.96714

Grokking the Sequent Calculus (Functional Pearl) 1:31

Tatsuya Hagino. 1989. Codatatypes in ML. Journal of Symbolic Computation 8, 6 (1989), 629–650. https://doi.org/10.1016/

S0747-7171(89)80065-3

Peter John Landin. 1965. Correspondence between ALGOL 60 and Church’s Lambda-notation: part I. Commun. ACM 8, 2

(feb 1965), 89–101. https://doi.org/10.1145/363744.363749

Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm. In Proceedings of the 4th International Conference on
Typed Lambda Calculi and Applications (TLCA ’99). Springer-Verlag, Berlin, Heidelberg, 228–242.

Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. 2017. Compiling without Continuations. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI
2017). Association for Computing Machinery, New York, NY, USA, 482–494. https://doi.org/10.1145/3062341.3062380

Étienne Miquey. 2019. A Classical Sequent Calculus with Dependent Types. ACM Trans. Program. Lang. Syst. 41, 2, Article 8
(mar 2019), 47 pages. https://doi.org/10.1145/3230625

Guillaume Munch-Maccagnoni. 2009. Focalisation and Classical Realisability. In Computer Science Logic: 23rd international
Workshop, CSL 2009, 18th Annual Conference of the EACSL (Coimbra, Portugal) (CSL ’09), Erich Grädel and Reinhard

Kahle (Eds.). Springer, Berlin, Heidelberg, 409–423. https://doi.org/10.1007/978-3-642-04027-6_30

Guillaume Munch-Maccagnoni. 2013. Syntax and Models of a non-Associative Composition of Programs and Proofs. Ph. D.
Dissertation. Univ. Paris Diderot.

Sara Negri and Jan Von Plato. 2001. Structural Proof Theory. Cambridge University Press. https://doi.org/10.1017/

CBO9780511527340

Klaus Ostermann, David Binder, Ingo Skupin, Tim Süberkrüb, and Paul Downen. 2022. Introduction and Elimination, Left

and Right. Proc. ACM Program. Lang. 6, ICFP, Article 106 (2022), 28 pages. https://doi.org/10.1145/3547637

Michel Parigot. 1992. 𝜆𝜇-Calculus: An algorithmic interpretation of classical natural deduction. In Logic Programming and
Automated Reasoning, Andrei Voronkov (Ed.). Springer, Berlin, Heidelberg, 190–201.

John Charles Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In ACMConf (Boston).

Association for Computing Machinery, New York, NY, USA, 717–740. https://doi.org/10.1145/800194.805852

Arnaud Spiwack. 2014. A Dissection of L. (2014). Unpublished draft.

Morten Heine Sørensen and Paweł Urzyczyn. 2006. Lectures on the Curry-Howard Isomorphism. Studies in Logic and the

Foundations of Mathematics, Vol. 149. Elsevier.

Hayo Thielecke. 1998. An Introduction to Landin‘s “A Generalization of Jumps and Labels”. Higher Order Symbol. Comput.
11, 2 (sep 1998), 117–123. https://doi.org/10.1023/A:1010060315625

Anne Sjerp Troelstra and Helmut Schwichtenberg. 2000. Basic Proof Theory, Second Edition. Cambridge University Press.

Philip Wadler. 1990. Linear Types Can Change the World!. In Programming Concepts and Methods. North-Holland.
PhilipWadler. 2003. Call-by-value is dual to call-by-name. In Proceedings of the Eighth ACM SIGPLAN International Conference

on Functional Programming (Uppsala, Sweden) (ICFP ’03). Association for Computing Machinery, New York, NY, USA,

189–201. https://doi.org/10.1145/944705.944723

Philip Wadler. 2005. Call-by-Value Is Dual to Call-by-Name - Reloaded. In Term Rewriting and Applications, 16th International
Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3467), Jürgen
Giesl (Ed.). Springer, 185–203. https://doi.org/10.1007/978-3-540-32033-3_15

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation
115, 1 (11 1994), 38–94. https://doi.org/10.1006/inco.1994.1093

Noam Zeilberger. 2008. On the Unity of Duality. Annals of Pure and Applied Logic 153, 1-3 (2008), 66–96. https://doi.org/10.

1016/j.apal.2008.01.001

Noam Zeilberger. 2009. The Logical Basis of Evaluation Order and Pattern-Matching. Ph. D. Dissertation. Carnegie Mellon

University, USA. Advisor(s) Pfenning, Frank and Lee, Peter.

Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and Andrew C. Myers. 2016. Accepting Blame for

Safe Tunneled Exceptions. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 281–295.

https://doi.org/10.1145/2908080.2908086

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

https://doi.org/10.1016/S0747-7171(89)80065-3
https://doi.org/10.1016/S0747-7171(89)80065-3
https://doi.org/10.1145/363744.363749
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1145/3230625
https://doi.org/10.1007/978-3-642-04027-6_30
https://doi.org/10.1017/CBO9780511527340
https://doi.org/10.1017/CBO9780511527340
https://doi.org/10.1145/3547637
https://doi.org/10.1145/800194.805852
https://doi.org/10.1023/A:1010060315625
https://doi.org/10.1145/944705.944723
https://doi.org/10.1007/978-3-540-32033-3_15
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1016/j.apal.2008.01.001
https://doi.org/10.1016/j.apal.2008.01.001
https://doi.org/10.1145/2908080.2908086

	Abstract
	1 Introduction
	2 Translating To Sequent Calculus
	2.1 Arithmetic Expressions
	2.2 Let Bindings
	2.3 Top-level Definitions
	2.4 Algebraic Data and Codata Types
	2.5 First-Class Functions
	2.6 Control Operators

	3 Evaluation Within a Context
	3.1 Evaluation Contexts for Fun
	3.2 Focusing on Evaluation in Core

	4 Typing Rules
	4.1 Typing Rules for Fun
	4.2 Typing Rules for Core
	4.3 Type Soundness

	5 Insights
	5.1 Evaluation Contexts are First Class
	5.2 Data is Dual to Codata
	5.3 Let-Bindings are Dual to Control Operators
	5.4 The Case-of-Case Transformation
	5.5 Direct and Indirect Consumers
	5.6 Call-By-Value, Call-By-Name and Eta-Laws
	5.7 Linear Logic and the Duality of Exceptions

	6 Related Work
	6.1 The Sequent Calculus
	6.2 Term Assignment for the Sequent Calculus
	6.3 Codata Types
	6.4 Control Operators and Classical Logic
	6.5 Different Evaluation Orders

	7 Conclusion
	A The Relationship to the Sequent Calculus
	B Typing Rules for Fun
	C Operational Semantics of label/goto
	References

