
ARTIFICIAL INTELLIGENCE AS THE NEW HACKER:
DEVELOPING AGENTS FOR OFFENSIVE SECURITY

by

Leroy Jacob Valencia

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Masters of Science in Transdiciplinary Cybersecurity

New Mexico Institute of Mining and Technology
Socorro, New Mexico

May, 2024

ar
X

iv
:2

40
6.

07
56

1v
1

 [
cs

.C
R

]
 9

 M
ay

 2
02

4

This work is dedicated to my wife, whose unwavering support and belief in my
potential have been my constant source of strength and inspiration.

Leroy Jacob Valencia
New Mexico Institute of Mining and Technology

May, 2024

ACKNOWLEDGMENTS

I wish to extend my sincerest gratitude to Danny Quist PhD., whose insights
and guidance were invaluable throughout this research. We also appreciate the
support provided by New Mexico Cybersecurity Center of Excellence. Lastly, I
want to thank my peers and family members for their encouragement.

This report was typeset with LATEX1 by the author.

1The LATEX document preparation system was developed by Leslie Lamport as a special ver-
sion of Donald Knuth’s TEX program for computer typesetting. TEX is a trademark of the Ameri-
can Mathematical Society. The LATEX macro package for the New Mexico Institute of Mining and
Technology report format was written by John W. Shipman.

iii

ABSTRACT

In the vast domain of cybersecurity, the transition from reactive defense to
offensive has become critical in protecting digital infrastructures. This paper ex-
plores the integration of Artificial Intelligence (AI) into offensive cybersecurity,
particularly through the development of an autonomous AI agent, ReaperAI, de-
signed to simulate and execute cyberattacks. Leveraging the capabilities of Large
Language Models (LLMs) such as GPT-4, ReaperAI demonstrates the potential to
identify, exploit, and analyze security vulnerabilities autonomously.

This research outlines the core methodologies that can be utilized to increase
consistency and performance, including task-driven penetration testing frame-
works, AI-driven command generation, and advanced prompting techniques.
The AI agent operates within a structured environment using Python, enhanced
by Retrieval Augmented Generation (RAG) for contextual understanding and
memory retention. ReaperAI was tested on platforms including, Hack The Box,
where it successfully exploited known vulnerabilities, demonstrating its poten-
tial power.

However, the deployment of AI in offensive security presents significant eth-
ical and operational challenges. The agent’s development process revealed com-
plexities in command execution, error handling, and maintaining ethical con-
straints, highlighting areas for future enhancement.

This study contributes to the discussion on AI’s role in cybersecurity by
showcasing how AI can augment offensive security strategies. It also proposes
future research directions, including the refinement of AI interactions with cy-
bersecurity tools, enhancement of learning mechanisms, and the discussion of
ethical guidelines for AI in offensive roles. The findings advocate for a unique
approach to AI implementation in cybersecurity, emphasizing innovation.

Keywords: Artificial Intelligence, Offensive Cybersecurity, Large Language Mod-
els, Penetration Testing

CONTENTS

Page

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER 1. INTRODUCTION 1
1.1 Problem Statement . 1
1.2 Impact . 2

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 3
2.1 Evolution of Offensive Security . 3
2.2 Evolution of Large Language Models 3
2.3 AI in Cybersecurity: A Historical Perspective 4
2.4 Review of Current AI in Offensive Security 4

2.4.1 PentestGPT . 5
2.4.2 HackingbuddyGPT . 6

2.5 LLM Limitations . 6
2.5.1 Prompt Engineering . 6
2.5.2 Context & Long Term Memory 7
2.5.3 LLM Learning & Reasoning 7
2.5.4 Command Parsing . 8
2.5.5 Training Data . 8
2.5.6 Risk/Fear . 9
2.5.7 Creativity . 9
2.5.8 Diligence . 10
2.5.9 Situational Awareness . 10

2.6 Agents . 11

v

CHAPTER 3. CORE TECHNOLOGIES AND METHODOLOGIES 12
3.1 Pentesting Methodology . 12

3.1.1 ATT&CK Life Cycle . 12
3.1.2 Hack The Box . 13

3.2 Methodology . 14
3.2.1 Integration with LLM . 14
3.2.2 Autonomous Agents . 15
3.2.3 Objectives and Tasks . 15
3.2.4 Decision-Making in Tasks . 15
3.2.5 Analyzation . 15
3.2.6 Evaluation . 16

CHAPTER 4. BUILDING THE AI OFFENSIVE AGENT 17
4.1 Agents . 17
4.2 Prompting, Decision Making, and Natural Language Understanding 19

4.2.1 Templating . 19
4.2.2 Enhanced Decision-Making Through Natural Language Prompt-

ing . 19
4.2.3 Adaptive Decision-Making 19
4.2.4 Minimizing Unwanted Behaviors Through Precise Prompt

Engineering . 20
4.3 RAG for Enhanced Memory and Contextual Understanding 21

4.3.1 PostgreSQL + Python Classes 21
4.4 Task-Driven Methodology . 22

4.4.1 Task Tree Management . 22
4.4.2 Dynamic Task Updates . 22

4.5 AI-Driven Command Generation and Processing 23
4.5.1 Workflow . 23
4.5.2 Integration with LLM . 24
4.5.3 Stateful Interaction . 25

4.6 Command Execution . 26
4.6.1 Non-Interactive Execution . 26
4.6.2 Interactive Execution . 27

4.7 Progress and State Management: . 28
4.7.1 Continuous Evaluation . 28

vi

4.7.2 State Updates and Logging 29
4.8 Error Handling and Adaptability . 29

4.8.1 Error Handling . 29
4.9 Security and Scope Consideration . 29

4.9.1 Constraint Awareness . 29

CHAPTER 5. RESULTS & DISCUSSION 31
5.1 Automated Penetration Testing . 31
5.2 Unsuccessful Attempts . 32

CHAPTER 6. IMPLEMENTATION CHALLENGES, ETHICAL CONSID-
ERATIONS, FUTURE DIRECTION 34
6.1 Challenges in Implementing AI Offensive Agents 34
6.2 Ethical Considerations in Offensive Cybersecurity 34
6.3 Future Directions in AI-Driven Offensive Security 35

CHAPTER 7. CONCLUSION 37

REFERENCES 38

APPENDIX A. PROMPTS 41
A.1 query next command.txt . 41
A.2 analyze cmd.txt . 42
A.3 evaluate progress.txt . 42
A.4 get objectives . 43

vii

LIST OF TABLES

Table Page

4.1 Table of Intent for Prompting Techniques 20
4.2 Prompts that aided in Cleaning Response 20

viii

LIST OF FIGURES

Figure Page

Figure 3.1 https://www.mandiant.com/resources/insights/targeted-
attack-lifecycle . 13

Figure 3.2 Main Logic Flow . 14

Figure 4.1 Agent Hierarchy . 18
Figure 4.2 Example Task Tree . 22
Figure 4.3 Decision Making on Tasks . 23
Figure 4.4 Get Next Command Workflow 24
Figure 4.5 LLM Object . 25
Figure 4.6 A Sample of State at a Given Time 26
Figure 4.7 State Workflow . 26
Figure 4.8 Sample Analyzation at a Given Time 26
Figure 4.9 Interactive Command Workflow 28

ix

This report is accepted on behalf of the faculty of the Institute by the following
committee:

Lorie Liebrock

Academic Advisor

Danny Quist

Research Advisor

Jun Zheng

I release this document to the New Mexico Institute of Mining and Technology.

Leroy Jacob Valencia May 3, 2024

CHAPTER 1

INTRODUCTION

In the rapidly changing domain of cybersecurity, defensive strategies have
long been the focal point, emphasizing the protection of digital assets from ma-
licious entities. However, with the increasing complexity and sophistication of
cyber threats, the significance of offensive cybersecurity has grown, serving as
an essential complement to traditional defensive tactics. Offensive cybersecurity
employs the tactics, techniques, and mindset of adversaries to properly identify,
exploit, and neutralize vulnerabilities before they can be exploited by attackers.

This paper examines the transformative role of Artificial Intelligence in ad-
vancing offensive security measures. AI’s exceptional capabilities in processing
extensive datasets, recognizing patterns, and automating intricate tasks make it
a vital component in developing sophisticated offensive security strategies. This
research provides an in-depth analysis of current technologies, methodologies,
and the ethical concerns associated with AI in cybersecurity, highlighting AI’s
potential.

Additionally, this paper discusses a GitHub project known as ReaperAI Leroy
Jacob Valencia [2023], which exemplifies the practical application of the concepts
explored. ReaperAI serves as a proof of concept, demonstrating how AI can in-
tegrate into offensive cybersecurity to effectively simulate an adversary. The
aim of this research is to build upon existing AI studies, exploring new direc-
tions and the potential to harness existing AI capabilities to develop a functional
product tailored for advanced cybersecurity solutions. This exploration not only
contributes to the academic field but also to practical applications, pushing the
boundaries of how AI can be leveraged in the context of offensive cybersecurity.

1.1 Problem Statement

This research seeks to answer the question ”How can existing research on
large language models be leveraged to develop a fully autonomous offensive se-
curity agent?”. The objective is to develop a comprehensive compilation of re-
search and ideas, drawing from future directions suggested in other scholarly
articles and presentations. The effectiveness of the proposed methodologies and
technologies will be evaluated based on the performance and behaviors exhibited
by the agent’s ability to produce a desired pentesting-like behavior.

1

1.2 Impact

The potential impact of this research on the industry could be significant.
While there is ongoing speculation about the feasibility of such studies, there has
yet to be a demonstration through a proof of concept or a minimum viable prod-
uct executed in this manner. Successful implementation could set a precedent
and inspire further innovation within the field.

2

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Evolution of Offensive Security

The world of offensive security has evolved quite a bit. It used to be mainly
about simple vulnerability scanning, but now it involves advanced techniques
that simulate actual cyberattacks. This shift brings to light the increasing com-
plexity of cyber threats and how attackers are becoming more sophisticated by
using more advanced techniques and tactics. In the past, security efforts were
mostly about responding to incidents after they had happened. But now, with
approaches like red teaming and ethical hacking, there’s a focus on getting ahead
of these issues by thinking like an attacker. This stance helps strengthen our de-
fenses against cyber threats.

The early history of penetration testing dates back to the 1960s, when con-
cerns about the security of computer communications were first raised. Govern-
ment and businesses began forming teams to test and find vulnerabilities within
their networks, to serve as a defense against any actual attacks. Notable contribu-
tions to this field were made by pioneers like James P. Anderson, who developed
methodologies still in use today, like the Anderson Report Institute [2019].

Furthermore, the integration of continuous penetration testing with systems
like a SIEM, security incident event management, are revolutionizing how vul-
nerabilities are identified and addressed, offering a more streamlined approach
to cybersecurity. This integration helps in automating the response and remedi-
ation processes, thus enhancing the efficiency of security teams and reducing the
time needed to address vulnerabilities Security [2022].

2.2 Evolution of Large Language Models

The evolution of Large Language Models over the past decade illustrates a
leap in artificial intelligence, transforming from basic natural language process-
ing tools to highly sophisticated systems capable of generating human-like text
and responses to human input. Initially, LLMs were limited in scope and capa-
bility in the early stages around 2018, focusing on specific tasks such as language

3

translation and getting a response from a basic query. The significant publica-
tion of models like BERT (Bidirectional Encoder Representations from Transform-
ers) in 2018 marked an advancement, introducing techniques that allowed for a
deeper understanding of context within text generation Devlin et al. [2018]. Sub-
sequently, the release of GPT (Generative Pre-trained Transformer) by OpenAI
further expanded the possibilities, employing unsupervised learning to generate
coherent and contextually relevant text across a wide range of topics and formats
Radford et al. [2019]. This progression from specialized applications to gener-
alized capabilities reflects a broader trend in AI towards models that not only
understand and generate text but also can be successful at conducting human
like actions and exhibit nuanced understanding of complex subjects. This idea
of understanding has begun a wave of advancement into the capabilities that are
possible due to the sheer knowledge and data. The continuous growth in model
size and sophistication, exemplified by the launch of GPT-3 OpenAI [2023] and
its successors, really highlights an ongoing shift toward systems that can seam-
lessly integrate with human tasks and communication, prompting both ethical
considerations and unique applications in technology and communication.

2.3 AI in Cybersecurity: A Historical Perspective

Historically, AI’s involvement in cybersecurity has evolved from simple rule-
based detection systems to more advanced machine learning algorithms that rec-
ognize complex patterns associated with cyber threats. ”The evolving GenAI
tools have been a double-edge sword in cybersecurity, benefiting both the de-
fenders and the attackers.” Gupta et al. [2023] AI’s role has since broadened to
encompass predictive analytics, automated response systems, and sophisticated
threat intelligence that has mainly supported Blue Teams and Defense Teams.

In the realm of offensive security, the use of AI has provided potential for
changing traditional practices, in the simulation of realistic cyberattacks, automat-
ing the discovery of vulnerabilities and proof of exploitation, and examples of
generating realistic phishing attacks. This integration of AI with offensive secu-
rity tactics represents a strategy in cybersecurity, utilizing AI’s analytical capabil-
ities to stay ahead of cybercriminals. Zennaro and Erdődi [2023]

2.4 Review of Current AI in Offensive Security

Recent research in the field of cybersecurity has highlighted the significant
role that artificial intelligence plays in enhancing offensive security measures.
Advanced AI models, particularly those based on deep learning, are now re-
lied on, in automating the detection of vulnerabilities, which was once manual
and very labor-intensive. For example, the AutoPentest-DRL framework employs

4

deep reinforcement learning to automate and optimize penetration testing, al-
lowing dynamic and efficient vulnerability exploitation within network systems
Organization et al. [2020]. Moreover, AI’s job of simulating complex cyberat-
tack strategies through reinforcement learning models has expanded the scope of
offensive security. Such models not only mimic attacker behaviors, but also inno-
vate attack strategies, providing cybersecurity professionals with a tool set to an-
ticipate potential breaches Yang and Liu [2022]. The integration of AI in penetra-
tion testing is also highlighted by its effectiveness in crafting sophisticated phish-
ing emails that can evade standard detection systems, showcasing the ability of
AI to adopt an attacker’s mindset, which is truly alarmingERMProtect [2020].
The adoption of large language models through natural language processing rep-
resents a particularly compelling advancement in artificial intelligence and ma-
chine learning due to the sheer level of intelligence, capable of understanding,
reasoning, and offering suggestions and summarizations. This is made possible
by their training on extensive internet datasets, making them highly valuable for
complex tasks such as offensive security. In this paper, we will explore examples
of these tools, as our discussion is primarily centered on the application of LLMs.

2.4.1 PentestGPT

PentestGPT Deng et al. [2023] is a sophisticated penetration testing tool that
leverages the power of OpenAI’s GPT-4 to automate and streamline the penetra-
tion testing process. Designed to function interactively, PentestGPT assists testers
by guiding them through both the general progression of their penetration test
and the execution of specific tasks. This tool is particularly adept at handling
medium complexity Hack the Box machines and various Capture The Flag (CTF)
challenges, enhancing the efficiency and precision of penetration tests.

The architecture of PentestGPT includes several modules that handle dif-
ferent aspects of the penetration testing workflow. It features a test generation
module that generates the necessary commands for the testers to execute, a test
reasoning module that aids in decision-making during the test, and a parsing
module that interprets the outputs from the penetration tools and web interfaces.
These components work together to provide a comprehensive and automated
penetration testing solution.

PentestGPT has been shown to significantly outperform earlier models like
GPT-3.5 in penetration testing tasks, achieving higher rates of task completion
and demonstrating substantial improvements in operational efficiency. The de-
velopment of PentestGPT reflects a notable advance in the use of LLMs for prac-
tical cybersecurity applications, offering a powerful tool that mimics the collabo-
rative dynamics between experienced and novice testers in real-world settings.

5

2.4.2 HackingbuddyGPT

HackingbuddyGPT Happe and Cito [2023] is a cutting-edge tool designed
to explore the potential of large language models in penetration testing, partic-
ularly focusing on Linux privilege escalation scenarios. Developed by the IPA
Lab, hackingbuddyGPT integrates with OpenAI’s GPT models to automate com-
mand generation for security testing. The tool operates by connecting via SSH to
Linux targets (or SMB/PS Exec for Windows targets) and utilizes OpenAI’s REST
API-compatible models like GPT-3.5 Turbo and GPT-4 to suggest commands that
could potentially expose vulnerabilities or escalate privileges. Happe et al. [2023]

The system logs all run data, either into a file or in-memory, and features
automatic root detection and a beautifully designed console output for better user
interaction. One of the key functionalities of hackingbuddyGPT is its ability to
limit rounds of interaction, which dictates how often the LLM will be queried for
new commands, allowing for controlled testing scenarios. Happe and Cito [2023]

2.5 LLM Limitations

Large Language Models, such as GPT from OpenAI OpenAI [2023], possess
some serious capabilities in human natural language understanding and genera-
tion, but, they also encounter several limitations that can affect their functionality
and integration into practical applications. Often, these limitations are miscon-
strued as signs of greater intelligence. In the following sections, we outline these
limitations and explore their relevance to the field of penetration testing to ensure
that we try and overcome them to produce an efficient workable proof of concept
that isn’t crippled by these limitations.

2.5.1 Prompt Engineering

Prompt engineering is a fairly new but critical aspect of using large-language
models, that plays a significant role in specializing crafted inputs to steer the
model toward improved quality generated outputs. This process is especially
sensitive, as minor modifications in the prompt’s structure or phrasing of the
prompt can lead to vastly different outcomes Radford et al. [2019]. Effective
prompt engineering requires a deep understanding of the model’s training data
and embedded biases, which can be both labor-intensive and technically complex
Bender et al. [2021]. This challenge typically involves considerable iterative ad-
justment and experimentation to refine interactions with the model and achieve
optimal results Liu et al. [2021].

In the context of offensive cybersecurity, prompt engineering can signifi-
cantly enhance the capabilities of an offensive agent. By precisely tailoring prompts,
developers can direct the LLM to generate outputs that are more aligned with

6

specific cybersecurity tasks, such as identifying vulnerabilities or providing com-
mands to run on the terminal. This tailored approach allows for a more targeted
and effective use of LLM in complex security environments, where generic re-
sponses may not suffice due to the sheer state size of one given problem in offen-
sive security. Moreover, skilled prompt engineering can help mitigate the impact
of biases in the model’s responses, reducing the risk of generating inaccurate or
harmful actions in sensitive security contexts as well as reduce any hallucinations
the model might add that are not in factual data.

2.5.2 Context & Long Term Memory

Context and memory present significant challenges in the effective deploy-
ment of large language models. Although LLMs handle brief segments of infor-
mation effectively, their ability to retain or incorporate long-term context through-
out a conversation or document is limited Kagaya et al. [2024]. This limitation can
lead to a deterioration of coherence in prolonged interactions, with the model
possibly ”forgetting” earlier segments of a conversation or struggling to sustain
context across interactions Wang et al. [2024]. Commonly, remedies include inte-
grating external systems to maintain the state or context, which can complicate
the architecture of such systems and may adversely affect the accuracy and rele-
vance of responses Kagaya et al. [2024].

For instance, an offensive agent equipped with a supplementary memory
system could better conduct and execute on prolonged penetration testing tasks,
that require maintaining awareness of previous actions and their outcomes to
become more effective. This integration introduces a more coherent and strategic
approach to simulating or conducting cyberattacks to mimic a human actor who
would adapt to dynamic targets or environments. While this complicates the
architecture of LLM-based systems, the trade-off can lead to more robust and
capable offensive tools in cybersecurity, where adaptability and persistence are
crucial as the complexity grows.

2.5.3 LLM Learning & Reasoning

Large language models, while proficient in language understanding due to
their extensive pre-training on diverse datasets, do not adapt or learn dynami-
cally post-deployment. Unlike some machine learning models that can continu-
ously learn from new data, LLMs remain static unless they are retrained or fine-
tuned with updated datasets. This characteristic restricts their utility in rapidly
evolving fields without regular updates to their training material, which can be a
resource-intensive process Horowitz [2023].

The challenge with LLMs is that they are not inherently equipped to inte-
grate new information during operational use. Techniques such as prompt en-
gineering are employed to mitigate this by carefully crafting inputs to guide the

7

model’s responses, yet this does not equate to learning from those interactions.
To maintain relevance, particularly in dynamic fields, LLMs require periodic re-
training or fine-tuning with new data, a process that demands both computa-
tional resources and expert oversight AI [2023].

However, this limitation can be mitigated by implementing periodic updates
and fine-tuning sessions using the latest threat data, like CVEs, ensuring that the
offensive agent remains updated with new tactics and vulnerabilities. Addition-
ally, employing techniques like prompt engineering can help tailor the LLM’s
output to simulate evolving attack scenarios more accurately, even within the
constraints of its static knowledge base. This approach allows the offensive agent
to remain a powerful tool in penetration testing, capable of adapting to new se-
curity landscapes through controlled updates rather than real-time learning, thus
maintaining operational relevance and effectiveness.

2.5.4 Command Parsing

Command parsing with LLMs involves translating natural language com-
mands into executable actions, which can be challenging due to the ambiguity
and variability of human language. LLMs may misinterpret commands, espe-
cially those that are complex or have vague documentation, leading to incorrect
or unsafe actions being conducted. Moreover, the ability of LLMs to understand
context-dependent commands or those that require integration of multiple data
sources is constrained by their training and the specific architectures used. This
necessitates additional layers of validation and error handling in systems that
rely on LLMs for command execution to ensure accuracy and safety in opera-
tions.

A method for transferring data not only between agents but also between
code and large language models involves using JSON or a similar JSON-based
standard. This approach facilitates the exchange of various types of information,
including descriptions, outputs, and responses, ensuring a standardized commu-
nication format across different platforms and systems.

2.5.5 Training Data

The limitations associated with training data significantly influence the de-
velopment and effectiveness of large language models. The quality, diversity, and
volume of the data used during training not only affect the model’s performance
but also its ability to function appropriately across various contexts. LLMs have
the propensity to adopt and amplify biases from their training datasets, which
can result in biased or detrimental output. Additionally, the reliance on vast
datasets demands considerable computational resources, which can pose both
environmental and economic challenges. Therefore, it is essential to ensure that

8

the training data is both representative and ethically sourced to alleviate these
issues.

When tailoring these models for specific domains, such as cybersecurity, in-
troducing domain-specific knowledge is a complex endeavor. Experience with
other tools has shown that, while more fine-tuned models can exhibit high de-
grees of specialization, they may also lack versatility if significant compromises
are made during the fine-tuning process. Furthermore, as models increase in pro-
ficiency, their size tends to expand, often reaching hundreds of gigabytes. This
increase in size can complicate deployment and operational efficiency. These con-
siderations are particularly critical when developing an offensive agent, where
the balance between model specificity, size, and adaptability must be carefully
managed to ensure the production of a robust, production-grade agent.

2.5.6 Risk/Fear

Another limitation of Large Language Models is their lack of inherent emo-
tional capabilities, such as fear, which in humans plays a crucial role in risk as-
sessment and decision-making. Humans often use fear as a heuristic for danger;
it helps them avoid risks that could lead to harm. LLMs, in contrast, process deci-
sions based on patterns and data without any emotional weighting. This can lead
to challenges in situations where risk assessment is crucial, as models might not
prioritize or evaluate threats effectively as a human would. This topic of study is
fairly new as well and has not attracted much research in the context of advanc-
ing LLMs let alone using LLMs to expedite the field of risk analysis. Esposito and
Palagiano [2024]

However, this limitation can also be viewed as an advantage, especially in
the context of deploying LLMs as offensive agents in cybersecurity. The absence
of fear allows LLMs to methodically execute tasks that would be considered high-
risk or stressful for human operators. For instance, an LLM can engage in sim-
ulated cyber-attacks or test network vulnerabilities without hesitation or moral
reservations, providing a thorough and relentless testing capability that might be
compromised by human emotions.

2.5.7 Creativity

Lack of creativity is a major limitation of Large Language Models like GPT.
While LLMs excel at generating content by recombining existing patterns and
information from their vast training data, they do not truly ”create” in the hu-
man sense of generating novel ideas from scratch. This limitation stems from the
models’ reliance on patterns and correlations within their training data, which
confines their outputs to combinations of what has already been seen. Creativity,
in contrast, often involves breaking away from established patterns to produce

9

something genuinely new and original. There has been a framework developed
recently that is used to benchmark this creativity to showcase limitations and
provide potential for overcomings called: CreativeEval. DeLorenzo et al. [2024]

Creativity is a critical asset in cybersecurity, particularly for human penetra-
tion testers. These professionals thrive on their ability to think outside the box
and devise innovative approaches to security testing, often breaking away from
established patterns to uncover vulnerabilities that automated systems might
overlook.

2.5.8 Diligence

Diligence in humans refers to their ability to consistently perform tasks ac-
curately over time and to their fullest extent of knowledge and skills. Although
LLMs can process and analyze large datasets with remarkable speed and ac-
curacy, they lack the continuous attention to detail necessary for diligence. Jin
et al. [2024] They do not have the capability to self-assess their performance crit-
ically or improve independently without further training or updates, which can
limit their application in environments requiring ongoing, meticulous attention
to complex or changing data.

In the field of offensive security, the challenge of penetration testing is in-
herently complex, often demanding significant human investment in terms of
time and expertise. While we can expect an LLM to deploy its full capabilities, it
falls short in actively pursuing all possible avenues and may need to revisit in-
formation and tasks to improve outcomes, similar to what is required of human
operators. LLMs have to be instructed and don’t have natural knowledge of how
the world works and especially how computers work.

2.5.9 Situational Awareness

LLMs typically lack situational awareness, which is critical in dynamic and
context-dependent settings. They do not possess an understanding of the world
in the same way humans do, nor can they interpret context beyond the scope of
their training data. This limitation is particularly evident in scenarios requiring
real-time decision-making or adaptation to new and unforeseen circumstances,
which can impede their effectiveness in roles that require a high level of contex-
tual adaptability. There have been systems that try to overcome this, like dynamic
retrieval augmented generation where ”Our framework is specifically designed
to make decisions on when and what to retrieve based on the LLM’s real-time
information needs during the text generation process.” Su et al. [2024]

This limitation is a very steep hurdle for using LLMs to conduct offensive
security due to the real time nature of the problem set that makes up penetration
testing. Analyzing what is happening in real time is even a matter of exploitation

10

or not with some time based attacks. Developing a way to properly integrate
real time data into an LLMs prompts would be invaluable to not only offensive
security but solving complex tasks all together.

2.6 Agents

GPT agents OpenAI [2023], or Generative Pre-trained Transformer agents,
are also a very significant advancement in artificial intelligence and especially in
LLMs. GPT models can be subsequently fine-tuned to perform specific tasks and
are labeled as ”agents”. These agents are built on the existing models that are
initially pre-trained on a broad spectrum of internet-based text. This approach
gives them the skills to grasp subtle context, generate text that’s relevant and
coherent, and handle language-based and domain specific tasks with impressive
expertise.

The adaptability of GPT agents makes them applicable across a variety of
fields, including customer service, content creation, summarization, program-
ming, task automation, insight generation, and enhancing user interaction. Their
capacity to continually learn from user engagements and adapt to novel infor-
mation renders them invaluable for businesses aiming to harness AI to boost ef-
ficiency and engagementfr0gger [2023].

Further developments in GPT technology have introduced new methodolo-
gies where individual agents, each trained with a specific prompt, sequentially
process and hand off their outcomes to subsequent agents. This model facilitates
a more customized approach to problem-solving or response generation. During
the period of this research, innovations like ”Crew AI” Crew AI [2023] and ”Au-
toGenStudio” Autogen Studio [2023] emerged as leading platforms for creating
such agent-based systems. This concept is particularly promising for develop-
ing autonomous systems like penetration testers, where the complexity of tasks
necessitates decomposition into manageable, discrete segments that can be effec-
tively handled by LLMs.

11

CHAPTER 3

CORE TECHNOLOGIES AND METHODOLOGIES

The core technologies and methodologies employed in this project form the
backbone of the research, emphasizing the integration of sophisticated AI tools
with advanced cybersecurity practices. At the heart of the technology stack is gpt-
4-turbo-preview from OpenAI OpenAI [2024], a state-of-the-art Large Language
Model utilized for its expansive context understanding and dynamic response
generation capabilities. This LLM serves as a central processing unit, driving the
autonomous agents in decision-making and analytical tasks. Complementing the
LLM, the Python wrapper plays a crucial role as the operational framework, man-
aging interactions and ensuring seamless communication among various compo-
nents of the system. Methodologically, the project adopts a hybrid approach that
merges structured task trees with dynamic reprioritization capabilities, mirror-
ing real-world penetration testing frameworks while incorporating the flexibility
of AI-driven decision processes. This blend of cutting-edge AI technology and
methodical security testing techniques ensures a comprehensive and adaptive
system capable of addressing complex cybersecurity challenges in real-time.

3.1 Pentesting Methodology

3.1.1 ATT&CK Life Cycle

The MITRE ATT&CK framework delineates a comprehensive catalog of tac-
tics and techniques employed by cyber adversaries throughout the stages of a
cyberattack MITRE [2024]. The initial phase, Reconnaissance, involves the sys-
tematic collection of data on potential targets. During this stage, attackers gather
information to ascertain vulnerabilities and formulate an effective attack strat-
egy. Methods employed include social engineering, network scanning, and the
acquisition of publicly available data, which provide a broad understanding of
the target’s defenses, technological infrastructure, and operational routines.

Following the reconnaissance stage is Vulnerability Analysis. In this phase,
attackers analyze the accumulated information to pinpoint weaknesses within
the target’s systems. The analysis typically involves the identification of secu-
rity gaps such as outdated software components, system misconfigurations, and

12

Figure 3.1: https://www.mandiant.com/resources/insights/targeted-attack-
lifecycle

inadequate security policies. Advanced automated scanning tools may be de-
ployed to detect these vulnerabilities, providing attackers with a clearer path for
subsequent exploitation.

The final stage in the initial attack cycle is Exploitation. With vulnerabilities
identified and strategies formulated, attackers exploit these weaknesses using
various offensive measures. This stage involves the deployment of malware, use
of exploit kits, and other intrusion techniques aimed at breaching security mea-
sures. The primary objective is to establish a secure foothold within the network,
enabling further malicious activities such as data exfiltration, system compro-
mise, or the dissemination of additional malicious payloads.

A deep understanding of these stages is imperative for cybersecurity profes-
sionals. It aids in the formulation of robust defensive mechanisms designed to
preemptively detect, thwart, and mitigate the actions of cyber adversaries before
substantial damage is inflicted. The complete life cycle and be seen in Figure 3.1

3.1.2 Hack The Box

Hack The Box is an innovative online platform that provides a hands-on
cybersecurity training environment for individuals and companies alike Hack
The Box [2024]. It offers a variety of real-world scenarios through virtual labs,
where users can practice hacking and test their penetration testing skills in a safe
and legal setting. The platform features a range of challenges and machines that

13

Figure 3.2: Main Logic Flow

mimic different environments and security vulnerabilities, allowing users to en-
gage in tasks ranging from simple puzzles to complex system exploits. Hack The
Box also facilitates community interaction and learning, with forums and leader-
boards that encourage competition and collaboration among users. This practical
approach to learning cybersecurity is designed to sharpen problem-solving skills
and provide real-time feedback, making it an invaluable resource for both aspir-
ing and experienced cybersecurity professionals looking to enhance their offen-
sive security capabilities.

Hack The Box is a common test bed for implementing and refining penetra-
tion testing methodologies. ReaperAI orchestrates tasks that mimic real penetra-
tion test scenarios, including reconnaissance, vulnerability assessment, exploita-
tion, and post-exploitation, all crucial elements in HTB machines. HTB provides
a structured yet adaptable platform that allows the research to be applied and
tested, proving more advantageous than self-hosted VM setups due to ease of
use and setup efficiency.

3.2 Methodology

3.2.1 Integration with LLM

For this research, the decision was made to employ gpt-turbo-4-preview with
a substantial context size of 128k tokens, reflecting the most sophisticated tech-
nology available at the time of testing. The primary aim of this choice was not
to compare various Large Language Models, but rather to explore and demon-
strate the advanced capabilities highlighted in existing foundational research. As
of April 22, 2024, the rate per one million tokens worth of input is $10 and $30 per
one million output. This study in total cost about $40 dollars in research, devel-
opment, and testing. This approach ensures that the study focuses on leveraging,
at the time, cutting-edge AI capabilities to assess their practical applications and
effectiveness in complex computational tasks.

14

3.2.2 Autonomous Agents

This project aimed to develop a fully autonomous agent that could operate
independently without human intervention. This objective brings forth its own
set of challenges and complexities, particularly in ensuring robust and reliable
operations while balancing cutting edge technology. The Python wrapper used
in this configuration serves as the central nervous system, orchestrating inter-
actions and maintaining seamless communication between agent loops, LLMs,
terminals, and python code. These LLM agents are tasked with autonomous rea-
soning and decision-making that simulate a high level of cognitive processing
akin to human-like thinking and problem-solving skills to ensure that the agent
can act as if is a human operator.

3.2.3 Objectives and Tasks

Unlike the approach taken in hackingbuddyGPT, which follows the BabyAGI
Nakajima [2024] model of executing an action within a task, enriching it with con-
text, and then reassessing priorities, this project introduces a structured task tree
methodology. While penetration testing typically follows a systematic approach
similar to a task tree, it is crucial to incorporate the dynamic element of BabyAGI,
where new and critical information can prompt immediate reprioritization and
strategic shifts. This dual approach ensures that the agents not only adhere to a
structured methodology but also remains flexible and responsive to new insights
and challenges.

3.2.4 Decision-Making in Tasks

The autonomous decision-making process in these agents was crafted around
the completion of specific tasks. It was crucial to design a system that was not
limited to pre-defined, hard-coded strategies, but instead could adapt based on
situational demands. To achieve this flexibility, the developed evaluation method
incorporates concepts of diminishing returns and strict time constraints—both re-
flective of the nature required in penetration testing. This system evaluates task
completion through dynamically generated prompts, which assess whether the
tasks have been accomplished based on historical data and prior analyses.

3.2.5 Analyzation

Building upon the initial concepts of analyzation introduced by hackingbud-
dyGPT, the methodology was enhanced to provide a more sophisticated analysis
of actions and outcomes. This upgraded approach not only assesses what has

15

transpired, but also generates recommendations for subsequent steps. Such on-
going analyzation is crucial for the continuous improvement and adaptation of
the agents, ensuring they remain effective and relevant as they interact with com-
plex environments.

3.2.6 Evaluation

This phase of the project introduces a new task evaluation concept that was
not covered by hackingbuddyGPT, inspired by traditional human-led decision-
making processes. In this program, an agent performs an action, then evaluates
the results to determine if they suffice for the task at hand—or if only progress to-
wards the task has been made. This evaluative process is critical and mirrors the
feedback mechanism in reinforcement learning models, where the agent learns
and adapts based on success feedback.

16

CHAPTER 4

BUILDING THE AI OFFENSIVE AGENT

The design of the AI offensive agent is rooted in the principle of leveraging
the LLM technology described previously as well as the methodology described
previously to simulate and understand offensive cybersecurity tasks. The heart
of this system is the LLM, accessible through Python classes and APIs, while a
Python wrapper serves as the core logic driver to process functions and essen-
tially be the body of the LLM. This architecture allows for innovated integration
of advanced AI capabilities with current cybersecurity tools and frameworks,
providing a unique concept for simulating cyber-attacks, analyzing potential vul-
nerabilities, and automating the decision-making process. The Python wrapper
facilitates easy access to the LLM’s functionalities, enabling the dynamic con-
struction of queries and the interpretation of responses for further processing.
The core for this development was based on the foundation of hackingbuddyGPT
which was enhanced to become ReaperAI, a proof of concept fully autonomous
offensive agent. Happe and Cito [2023]

4.1 Agents

The design approach for this agent involves using a subset of specialized
sub-agents, each tasked with executing more narrowly defined functions to en-
hance result quality while ensuring communication upstream to the parent agent.
Merely giving the LLM the task to ”complete a pentest” is too vast and too vague.
The only predefined hard coded workflow was the pentesting methodology to
prevent the AI from deviating and ensure it remains focused on its intended pur-
pose, rather than determining its own fundamental objectives of a penetration
test. Previous experimentation showed that the LLMs knowledge set did contain
”steps to complete a black box penetration test” but did not produce consistent and
accurate fundamental objectives to be allowed to generate them autonomously.
The high-level agent tree can be seen in 4.1

17

Figure 4.1: Agent Hierarchy

18

4.2 Prompting, Decision Making, and Natural Language Understanding

4.2.1 Templating

In Happe’s project, implementation of the Mako templating library, was a
good foundation but was ultimately needed to be expanded to achieve the level
of quality required for this study Bayer [2006]. Each prompt functions as a sub-
agent within a ”prompt chaining” approach DAIR.AI [2024]. The prompts them-
selves are stored in .txt files, which contain templating text. This setup allows the
text files to act as variables where various inputs can be introduced. For instance,
state history, commands, and other contextual data can be inserted to enhance
the quality of the interactions. This approach integrates several prompting tech-
niques, including few-shot learning and chains of prompting, among others, to
ensure effective and efficient performance.

4.2.2 Enhanced Decision-Making Through Natural Language Prompting

At the heart of the agent’s functionality is its sophisticated use of natural
language prompting to guide decision-making and reasoning processes. This
method involves framing cybersecurity tasks within natural language prompts
that the Large Language Model processes. By utilizing the LLM’s advanced lan-
guage comprehension abilities, the system can generate insights, strategies, and
responses that closely resemble the thought processes of experienced human se-
curity experts. This strategic use of language-based prompts enhances the agent’s
ability to reason and decide on the most effective course of action in complex
security situations. Through this, ReaperAI has a combined way of prompting
techniques that at the time of research are fairly new. This integrates concepts
like Role Prompting, Chain-of-Prompting, Chain-of-Thought, Real-Time prompt
optimization. These are all fairly new techniques that were described earlier and
all combined to create the prompts in ReaperAI as seen in Table 4.1

4.2.3 Adaptive Decision-Making

Adaptive decision-making is a core feature of ReaperAI, allowing it to dy-
namically adjust its strategies based on the analysis of command outputs and the
current state of the system. This flexibility is crucial for navigating the complex
landscape of penetration testing, where conditions can change unpredictably.
By evaluating the effectiveness of each command and its impact on the system,
ReaperAI can decide whether to alter command sequences, repeat commands,
or adjust arguments according to the recommendations provided by the other
LLM agents who analyze output. This adaptive approach ensures that the test-
ing strategy remains aligned with the evolving security environment, maximiz-
ing the effectiveness of the test and ensuring that all security vulnerabilities are

19

Technique Intent
Role Prompting Bypass filters that would be used in the generic

role
Chain-of-
Prompting

Chain prompts together to allow a bigger task to
be fullfilled

Chain-of-Thought Chain the thoughts together on a pentest to
make a decision

Real-Time prompt
optimization

Provide real-time information to the LLM

Table 4.1: Table of Intent for Prompting Techniques

thoroughly explored and addressed. The ability to integrate new insights helps
maintain the relevance and efficacy of the penetration testing process, ensuring
that each action taken is informed by the most current data and expert system
analysis via the prompt injection.

4.2.4 Minimizing Unwanted Behaviors Through Precise Prompt Engineer-
ing

To prevent unwanted behaviors such as irrelevant command outputs or overly
detailed explanations, the system employs the Mako templating engine described
above. This engine integrates data from the ReaperAI’s Python logic into the
prompts, which are then passed to a prompt creation function. This approach
minimizes the need for extensive prompt engineering by streamlining the inter-
action with the LLM, focusing mainly on crafting basic, targeted inquiries that
enhance the quality of the generated responses. By manipulating prompts to ex-
clude undesired outputs, as seen in Table 4.2, the system maintains preciseness
in its operations, which result in a more effective and efficient problem-solving
capabilities within the scope.

Prompt Cleaning
”explain step by step”
”Provide a recommendation.”
”Output the list in a json array.”
”Do NOT give any explanations or descriptions.”
”Do not include any explanations or any prefixes. Only provide the command to run..”
”As well as serve for in context memory.”

Table 4.2: Prompts that aided in Cleaning Response

20

4.3 RAG for Enhanced Memory and Contextual Understanding

4.3.1 PostgreSQL + Python Classes

To tackle the challenges of memory retention and contextual awareness in
AI-driven cybersecurity tasks, the system employs a Retrieval Augmented Gen-
eration (RAG) component. This innovative approach leverages the extensive
knowledge base of pre-trained models, enhancing it with the capability to re-
trieve relevant information and generate responses that are contextually aware.
The integration of RAG significantly boosts the agent’s ability to remember prior
interactions, comprehend complex command sequences, and make decisions in-
formed by historical data and recognized patterns. This enhancement is pivotal
for maintaining a continuous state across individual and subsequent sessions,
ensuring that the agent can seamlessly resume its tasks without losing context.

ReaperAI utilizes this RAG capability by interacting with a database to ac-
cess necessary information according to the agent’s operational functions. For in-
stance, when generating the next command, the system retrieves the current state
and analyses of the previous command from the database to improve the quality
and relevance of the forthcoming command outputs. This cycle of retrieval and
generation ensures that each decision is as informed as possible.

However, the application of RAG in ReaperAI deviates from traditional uses,
particularly due to the unique domain of offensive security. The cybersecurity
domain lacks the vector text and object embeddings required for conventional
vector databases, which poses a significant challenge. This specific issue and
potential solutions will be further discussed in the ”Future Directions” section
of this paper, highlighting the ongoing adaptation of RAG technology to meet
specialized cybersecurity needs.

To assist the agent in managing tasks and tracking hosts, Python classes were
implemented. These classes are standard Python constructs that were designed
to process information generated by the Large Language Model and to feed this
information back into the LLM as needed. This cyclical interaction helps to struc-
ture the tasks efficiently, allowing the agent to maintain a clear and organized
workflow. In this approach, Python classes are utilized as intermediaries to en-
capsulate task and host details, which simplifies the management of complex
data and interactions. This structured framework not only enhances code clarity
and maintainability but also empowers the Large Language Model to effectively
manage and update task-specific and host-specific information. Consequently,
this ensures all operations are coherent and well-aligned.

21

4.4 Task-Driven Methodology

4.4.1 Task Tree Management

In the realm of penetration testing, the ReaperAI introduces a methodical
structure through the implementation of a task tree, which separates the entire
process into distinct stages: reconnaissance, vulnerability analysis, exploitation.
This organizational strategy is vital for systematically managing the complex pro-
cedures involved in penetration testing. The LLM will be tasked to breaking
down the process into manageable sections and loading those results into the
task tree to ensure that each phase is executed and is in alignment with the over-
all testing strategy. It facilitates easier monitoring and progression through tasks,
allowing focus on one segment at a time while maintaining an overview of the
entire testing landscape. This structured approach not only streamlines the test-
ing process but also enhances the effectiveness of the tests by ensuring thorough
coverage of all necessary aspects of the system’s security. It is worth mention-
ing that in Figure 4.2 there are only 3 sub-tasks under ”Active Reconnaissance”
this is specifically due to the fact that when generating more than 3 sub-tasks the
LLM would start to assume information about the system that was not actually
true. For example, one task would be to ”Use gobuster to enumerate web direc-
tories” but the LLM hasn’t actually conducted any scans to know that is a valid
task. To patch the solution of task validation, reducing the number of tasks pro-
vided better results in staying consistent without demonstrating tasks that had
information that was assumed.

Figure 4.2: Example Task Tree

4.4.2 Dynamic Task Updates

The dynamic nature of security environments requires an equally agile re-
sponse during penetration testing, which the ReaperAI addresses through real-
time updates to tasks based on outcomes and feedback from the Large Language
Model. As the penetration testing progresses, each action’s result is analyzed
and the subsequent tasks are generated based on the previous collection of in-
formation. This adaptive method allows the testing process to remain flexible

22

and responsive, accommodating changes and unexpected results as they occur.
For instance, if an expected vulnerability is not found, the task tree won’t in-
clude any of the vulnerabilities-centric paths in order to prevent tangential rabbit
holes. Similarly, successful exploitation might lead to additional tasks focusing
on deeper system analysis or cleanup. This real-time feedback loop ensures that
the penetration testing is not only thorough but also maximally efficient, adapt-
ing on-the-fly to findings and shifting priorities without losing momentum. The
actual workflow is represented in Figure4.3.

Figure 4.3: Decision Making on Tasks

4.5 AI-Driven Command Generation and Processing

4.5.1 Workflow

In Figure 4.4 which shows the workflow for the main command generation
process of the agent. The process begins with initializing the program by con-
necting to and retrieving it from the LLM. Next, the size determinations are made
by fetching the current state size using get state size and determining the tem-
plate size with num tokens from string, based on a source template to ensure
token requirements aren’t being exceeded. Following size determinations, the
command history is retrieved through the get cmd history v3 function, which
combines the state size, template size, and other relevant parameters from the

23

database and memory of the wrapper. A text prompt for the LLM is then gener-
ated using create and ask prompt text, incorporating all necessary parameters
such as history, state, target, constraints, current task, current role, task tree, and
details of the analysis. Once the LLM has processed the prompt, the output
is cleaned using command output cleaner to ensure the response doesn’t have
residual artifacts included by the LLM like $ or bash. Finally, the process con-
cludes with returning the cleaned response, completing the interaction cycle with
the LLM.

Figure 4.4: Get Next Command Workflow

4.5.2 Integration with LLM

The program capitalizes on the advanced capabilities of LLMs by establish-
ing a connection to an LLM server, using an API key. There are financial costs
to using OpenAI’s API, which are priced by the million tokens due to its closed
source subscription model. These costs are not too expensive, but are important
factors to consider when discussing the capabilities of an offensive agent. This
integration is crucial, however, as it harnesses the AI’s ability to generate and
process commands based on vast datasets it was trained on. By utilizing AI to
generate actionable commands and interpret outputs through the use of com-
mon communication protocol, REST API, the program reduces the manual effort
required in formulating commands and speeds up the testing process. This au-
tomation not only increases the autonomous nature of the tests but also enhances
their accuracy by leveraging the LLM’s easily available communication interface.
The AI’s input helps ensure that the commands are both contextually relevant
and highly optimized for the tasks at hand, thereby streamlining the workflow
during penetration testing.

In ReaperAI, the idea from Happe’s project was to create a class for the LLM
to ensure that the state and other functions and constants would stay contained

24

Figure 4.5: LLM Object

in it shown in Figure4.5 This implementation of standard class/object behavior,
common in most programming languages, was chosen as the most suitable for
the desired functionality of the LLM.

4.5.3 Stateful Interaction

To ensure the continuity and relevance of interactions within the dynamic
environment of penetration testing, the script maintains a stateful interaction
with the LLM. This approach helps preserve the context of the penetration test
across different interactions with the system, a critical aspect for maintaining the
accuracy and relevance of AI-generated suggestions. By keeping track of previ-
ous commands and responses, the stateful system can provide contextually ap-
propriate suggestions that build on earlier actions, thereby avoiding redundant
or irrelevant commands.

Analysis is crucial both for the large language model and the human over-
seeing it. By providing a summary at each main step of the workflow, as seen in
Figure4.6, the LLM is equipped to reflect on its recent actions and respond appro-
priately. This level of analysis is also beneficial for the human observer, enabling
them to monitor the LLM’s performance and ensure that it is operating correctly.
This dual focus on analysis helps maintain the integrity and effectiveness of the
process.

This method, seen in Figure 4.7, is essential for conducting comprehensive
and effective penetration tests, as it allows the AI to adapt its recommendations
based on real-time data and the evolving state of the system being tested. This
ongoing contextual awareness, seen in Figure 4.8, ensures that AI’s contributions
are not only technically appropriate but also strategically astute, thereby enhanc-
ing the overall effectiveness of the penetration testing process by also giving a
perspective view on what was just conducted on the terminal.

25

Figure 4.6: A Sample of State at a Given Time

Figure 4.7: State Workflow

Figure 4.8: Sample Analyzation at a Given Time

4.6 Command Execution

4.6.1 Non-Interactive Execution

Arguably, one of the most complex aspects of this project involved devising
a unique method for the large language model to interact with a program. This
paper previously outlined the significant challenge of lacking a standardized ap-
proach for establishing bidirectional communication between a Python program
and the LLM. In the ReaperAI system, JSON and structured prompts serve as the
main channels for this interaction, ensuring that outputs from the LLM are con-
sistent, and well-formatted to allow parsing from within Python. Although the
LLM can process a broad spectrum of information, the primary difficulty resides

26

in parsing, extracting, and applying the right information from the LLM and us-
ing that in a way that is effective.

This execution strategy draws inspiration from the concepts presented by
Happe and hackingbuddyGPT Happe and Cito [2023] in 2023, yet deviates from
their model by not using SSH to execute commands remotely. Instead, commands
are run locally on a Kali machine using Python’s subprocess piping mechanism.
Depending on the objectives and current tasks, ReaperAI formats this informa-
tion into a prompt to solicit a command from the LLM. The command received
from the LLM, structured as a JSON output, is then converted into an actual com-
mand string that the subprocess can execute. This method ensures a seamless
translation of LLM outputs into executable actions, optimizing the interaction
between the LLM and the Python environment.

4.6.2 Interactive Execution

Interactive execution is also a crucial feature of the script, facilitated by a tool
called ’pexpect’ Spurrier [2013]. This tool allows the agent to interact dynamically
with the command-line interface, handling commands generated by the LLM.
The reason for the attention to this is that traditional one time run programs sig-
nal an end to the terminal with an EOF, so the operator knows when to read the
stdout. When commands prompt for user input, the EOF has not been reached
yet, so we have to resort to another library for this concept. ”Pexpect is a pure
Python module for spawning child applications; controlling them; and responding to ex-
pected patterns in their output. Pexpect works like Don Libes’ Expect. Pexpect allows
your script to spawn a child application and control it as if a human were typing com-
mands” Spurrier [2013]. This simulates a human-like interaction with the system.
This process is managed by a separate command agent, which determines the
appropriate times to send new inputs or read outputs from the command line,
enhancing the program’s ability to handle complex sequences of commands that
require interactive responses. This functionality is still not fully supported in
ReaperAI, but can be seen in Figure 4.9. The proof of concept demoed in ReaperAI,
is based around metasploit, but the workflow was designed to be universal to-
wards other interactive programs like smbclient, netcat, etc.

Reading of Interactive Output To mimic human interaction patterns, ReaperAI
utilizes a non-blocking read operation in a separate thread, allowing it to con-
tinuously monitor the output as it becomes available for interactive programs.
This method involves periodically reading every line of output within a speci-
fied time frame, much like a human will wait for, and read command outputs
intermittently. The collected data is then updated and fed back to the LLM for
further analysis, ensuring that the AI has the most current information to base its
next set of commands on. This approach not only enhances the responsiveness
of ReaperAI, but also ensures that the AI’s suggestions are grounded in the most
recent system responses.

27

Figure 4.9: Interactive Command Workflow

4.7 Progress and State Management:

4.7.1 Continuous Evaluation

ReaperAI implements a robust system of continuous evaluation to monitor
the progress of tasks against predefined criteria such as time spent, information
gained, and task completion status. Evaluation occurs through a prompting tech-
nique by providing both older information and new information, as well as start
times and time limits, ReaperAI prompts the LLM to make decisions based on
this compiled data. The system uses the concept of diminishing returns to ensure
that new information results from recent actions taken by the LLM and to break
when that level of new information is not fruitful. This fruitfulness is decided by
the LLM by processing the prompt and generating some output. This ongoing
assessment is crucial, as it allows for real-time decision-making about whether
to proceed with new tasks or refine existing ones. By evaluating each step of the
process, ReaperAI ensures that objectives are met efficiently and effectively. This
methodology not only maximizes productivity but also enhances the quality of
the penetration testing by ensuring that all actions are aligned with the set goals
and contribute effectively toward the overarching security objectives.

28

4.7.2 State Updates and Logging

To maintain a high level of operational integrity, every action taken by the
ReaperAI and its outcomes are logged, and the system state is updated accord-
ingly. This comprehensive logging mechanism serves multiple purposes: it en-
sures traceability of actions, which is essential for debugging and auditing pur-
poses; it enhances accountability by providing a detailed record of operations;
and it supports informed decision-making by preserving a historical context of
the target system’s state. These updates and logs are instrumental in creating a
transparent and effective workflow, where past actions inform future decisions,
thereby optimizing the overall penetration testing process. This approach not
only improves security assessments but also builds a foundation for more ad-
vanced analytics and learning from the accumulated data for the LLM.

4.8 Error Handling and Adaptability

4.8.1 Error Handling

Actual error handling is not fully implemented in the ReaperAI proof of con-
cept. For now, the critical error handling in ReaperAI involves capturing errors
that are piped to stderr. These errors occur when commands are executed through
the subprocess module in Python and are essential for informing the LLM about
what transpired during the execution of the commands. This process grants the
LLM complete transparency regarding command execution, which is crucial for
response adaptation. To transition ReaperAI from a proof of concept to a fully
functional system, comprehensive error handling will be vital, ensuring robust-
ness and reliability in real-world applications.

4.9 Security and Scope Consideration

4.9.1 Constraint Awareness

ReaperAI is engineered with specific constraints to ensure that the penetra-
tion testing process remains ethical and minimally disruptive, focusing solely
on designated machines. These constraints are pivotal in mitigating potential
adverse side effects, such as service disruptions or compromised data integrity
on non-target systems. Traditionally, adherence to these constraints is the re-
sponsibility of the penetration tester, but integrating these directly into the pro-
gram has proven effective. By incorporating explicit constraint statements into
the prompts, ReaperAI’s behavior is modified to consistently adhere to these lim-
its. This approach was particularly verified during initial tests where the gener-
ated objectives, such as scanning non-target devices or conducting unauthorized

29

port scans, initially fell outside the intended scope. While these constraints in
ReaperAI are currently limited, they demonstrate a viable proof of concept for
how to develop and enforce limitations to keep AI operations within predeter-
mined boundaries.

Moreover, these constraints systematically guide the behavior of the testing
agents, preventing them from making inappropriate assumptions or executing
actions that could potentially damage the network or systems. This structured
approach not only enhances the precision and effectiveness of the penetration
testing process but also supports the ethical standards of cybersecurity practices.
By adhering to these established parameters, ReaperAI fosters trust and account-
ability in automated security assessments, ensuring that all activities are ethically
sound and justifiable within the research framework.

30

CHAPTER 5

RESULTS & DISCUSSION

The innovative design of an AI offensive agent, particularly one that inte-
grates a Large Language Model with advanced retrieval and command execu-
tion capabilities, can significantly enhance defensive cybersecurity strategies. By
simulating offensive tactics, this agent can uncover vulnerabilities, refine defen-
sive mechanisms, and improve overall security posture. Below are details on the
application and use cases of this AI offensive agent in cybersecurity efforts.

5.1 Automated Penetration Testing

ReaperAI represents a foundational effort in applying AI to cybersecurity,
serving as an initial proof of concept based on preliminary research. While its
methodologies and intentions are still in the nascent stages, the project has been
intentionally simplified to demonstrate minimal viable functionality. Despite
its early developmental stage, ReaperAI has achieved notable successes. For in-
stance, it autonomously and successfully exploited the ”Eternal Blue” vulnera-
bility on the ”Blue” machine on Hack The Box using a metasploit module. This
was accomplished using a straightforward one-liner bash command, following
the penetration testing methodology outlined previously. The runs are logged in
the GitHub project under src/bashlogs/ due to the verbosity of runs.

The program is able to successfully run full recon workflows using tools like
ping, nmap, dns, and nikto to produce very realistic and usable recon information.
The other success is the analyzation and summaries that are accurate and can
be used by penetration testers to focus on more important concepts that require
more skills.

Furthermore, ReaperAI demonstrated its potential by correctly identifying
the exploit for the ”Lame” machine on Hack The Box. However, it failed to fully
capitalize on this exploit due to an incorrect Metasploit command as well as not
having the capability to start multiple threads to 1) start a listener session and
2) execute the exploit found on Exploit-db. This highlights both the capabilities
and current limitations of ReaperAI and showcases the limitation on operating
the bash terminal like a human would. These instances illustrate the practical
application of the AI in real-world scenarios, providing valuable insights into the

31

effectiveness of its current algorithms and indicating areas for further refinement
and development.

In this research, the development of a benchmarking framework was not
pursued; instead, the focus was placed on analyzing existing behaviors, which
provided more substantive support for the research objectives at hand. This
analysis was crucial for understanding the capabilities and limitations of cur-
rent methodologies, thereby setting a solid foundation for future enhancements.
The decision to forego the immediate development of a benchmark framework
was based on the need to prioritize in-depth behavioral analysis over establishing
performance metrics at this stage.

However, recognizing the importance of benchmarking in assessing the per-
formance and efficiency of offensive security agents, this element is earmarked
for future exploration. The inclusion of a benchmarking framework in subse-
quent research will be critical as AI-driven offensive agents become more sophis-
ticated and widely implemented. This future direction will aim to develop a com-
prehensive set of standards and metrics that can rigorously evaluate the perfor-
mance of these agents, ensuring they meet the necessary criteria for effectiveness
and efficiency in real-world scenarios. This strategic approach aligns with the
overarching goal of advancing the field while ensuring that future developments
are measurable and aligned with industry standards.

5.2 Unsuccessful Attempts

ReaperAI experienced multiple instances of interruptions due to various fac-
tors. There are numerous points within the agent chain where misconceptions or
redundant task progressions can occur. These areas require further refinement
to enhance the program’s effectiveness and consistency. Some instances where
interruptions occurred include:

• sudo permissions

– Asking for sudo permissions to conduct elevated scans, but sudo is
interactive prompting for a user password

• nc commands

– Netcat is a network tool to communicate to services through ports, but
is vague and interactive

• smbclient commands because pexepects were not properly done

– SMBClient is a smb shares tool used to connect to smb servers, but
interactive command execution wasn’t generating the proper expect
regex to match the user input prompt

• Out of scope on different machines

32

– The agent started to do host discovery with nmap and started to scan
other machines on the same vlan

• curl commands

– Conducting curl commands that were out of scope and assumed the
server had a web server

• Tried to install applications but got stuck on sudo privileges

– The agent tried to sudo apt install nikto but didn’t have sudo privileges

• Running tcpdump which was out of for the context of the test

– The agent ran a tcpdump command that was out of scope of the test
and not within its capabilities.

• Assuming information based on ”pentesting methodology”

– It would assume information when creating objectives and tasks
– e.g., ”Identify SQL injections” when it’s unknown if a web server is

present

During the development of the model, significant challenges were encoun-
tered, particularly in the initial stages of transitioning from concept to imple-
mentation. Prior to conducting thorough research and following a preliminary
literature review, there was an attempt to simply expand the capabilities of an ex-
isting program, dubbed hackingbuddyGPT, from focusing solely on privilege esca-
lation to encompassing comprehensive penetration testing tasks. This expansion
proved problematic, as the program frequently struggled with the assigned tasks,
veering into irrelevant tangents and rabbit holes. This lack of focus and direction
not only hindered progress but also highlighted the need for a more structured
and research-driven approach.

Consequently, these initial setbacks served as a catalyst for more extensive
research. The difficulties faced underscored the complexities of adapting AI mod-
els to the nuanced and dynamic field of cybersecurity, particularly in the realm of
penetration testing. This led to a deeper exploration of the underlying principles
and methodologies that could better support such a transition. The subsequent
research aimed to refine the model’s approach, enhance its task-specific perfor-
mance, and ensure that its outputs were relevant and practical for real-world
cybersecurity challenges. This phase of development was crucial in establishing
what is needed to move towards a more robust and effective AI-driven cyberse-
curity solution.

33

CHAPTER 6

IMPLEMENTATION CHALLENGES, ETHICAL
CONSIDERATIONS, FUTURE DIRECTION

Exploring the implementation challenges, ethical considerations, and future
directions of deploying AI offensive agents in cybersecurity offers a nuanced un-
derstanding of the potential impacts and responsibilities associated with this in-
novative approach. These crucial aspects mentioned above are detailed below.

6.1 Challenges in Implementing AI Offensive Agents

The implementation of AI offensive agents in cybersecurity faces several
technical and operational challenges. One primary concern is the accuracy and
reliability of the agents’ actions, especially in complex and dynamic digital envi-
ronments. Unfruitful runs, can lead to unnecessary disruptions and resource allo-
cation issues. Additionally, the scalability of AI systems to handle large-scale net-
works and rapidly evolving threats without compromising performance remains
a technical hurdle as well as relying on a closed source LLMs like GPT. There’s
also the challenge of integrating these advanced AI capabilities with existing cy-
bersecurity infrastructure, requiring significant customization and adaptation to
ensure compatibility and effectiveness, as well as adaptiveness for unique tools
and unique vulnerabilities. The challenges that an AI offensive agent will face to
actually see a significant impact on the domain of penetration testing is great, but
for now they are just challenges.

6.2 Ethical Considerations in Offensive Cybersecurity

The use of AI for offensive purposes in cybersecurity introduces a range of
ethical considerations that must be meticulously addressed. Key among these is
the potential for misuse, where powerful AI capabilities could be leveraged by
malicious actors if not properly secured. The development and deployment of
AI offensive agents must be guided by strict ethical standards to prevent unin-
tended consequences, such as privacy violations or collateral damage to unin-
tended targets. Moreover, the transparency of AI decisions and actions is crucial

34

to maintain trust and accountability, especially when those decisions may have
significant repercussions. In addition to keeping the data secured for each run,
the operator would have to have their own collection of capable models to ensure
confidentiality, integrity and availability of the data.

6.3 Future Directions in AI-Driven Offensive Security

Looking ahead, the domain of AI-driven offensive security is set to undergo
significant advancements, driven by continual improvements in AI technologies
and methodologies. This study represents an important step towards shaping the
future of this field by highlighting specific areas that require substantial develop-
ment to yield impactful results:

1. Enhanced Command-Line Interaction: One of the primary areas for devel-
opment is improving the way programming languages, such as Python,
interact with command-line interfaces to execute interactive commands.
While the use of tools like Pexpect is a promising development, further re-
search is needed to enable large language models to effectively run oper-
ating systems and utilize various tools. Additionally, the creation of tool-
specific models could enhance the functionality and task fulfillment capa-
bilities of these systems.

2. Expansion of Greater Context Windows: To tackle the broad and complex
problems inherent in penetration testing, LLMs require larger context win-
dows. This expansion would allow the models to retain and process more
extensive data from previous interactions, enhancing their ability to under-
stand and solve complex security challenges.

3. Standardization of LLM Outputs: Establishing a standard for processing
and utilizing outputs from LLMs is critical. This could involve developing
data extraction agents or integrating storage functionalities within LLMs
themselves, facilitating easier parsing and application of model outputs
within software environments like Python.

4. Cybersecurity-Specific Embeddings: Introducing domain-specific embed-
dings for the cybersecurity field could significantly enhance the effective-
ness of retrieval-augmented generation (RAG) systems and vector database
functionalities. This would allow LLMs to better understand and respond
to cybersecurity-specific queries and challenges.

5. Simulation of Human-Like Abilities: Further research could also focus on
simulating more human-like cognitive abilities within LLMs, such as risk
analysis and the understanding of fear, pushing the ethical boundaries of
AI capabilities. This could enhance the decision-making processes of AI
systems in complex and uncertain environments.

35

6. Advancement of Task Management: Advancing the development of task
generation and completion that mimics human decision-making is another
crucial area. This involves creating models that can not only generate and
manage tasks but also dynamically adjust their strategies based on chang-
ing conditions and priorities, much like a human operator.

7. Development of Pentesting Benchmarks: Establishing benchmarks for pen-
etration testing will provide a standardized framework to evaluate the ef-
ficacy of penetration tests, setting the bar for what constitutes a successful
and thorough penetration test.

8. Integration of Reinforcement Learning: Introducing reinforcement learning
tools to better plan an attack can be beneficial to future directions, such
ideas include attack graphs or attack maps.

By addressing these areas, future research can significantly advance the capabil-
ities of AI in offensive security, leading to more sophisticated, autonomous, and
effective security solutions.

36

CHAPTER 7

CONCLUSION

The integration of Artificial Intelligence into offensive cybersecurity repre-
sents a transformative shift towards more dynamic, intelligent, and offensive
and defense mechanisms. This paper discusses the development of an AI-driven
offensive agent, encapsulated within a Python wrapper around a Large Lan-
guage Model, and enhanced with features such as Retrieval Augmented Gen-
eration (RAG), contextual memory, and advanced prompting capabilities. The
agent, equipped to simulate cyber-attacks and thereby identify vulnerabilities,
also serves to enhance defensive strategies by learning from each interaction.

This exploration delves into the foundational technologies and methodolo-
gies that drive the agent’s functionality. These include enhanced prompting,
decision-making processes, natural language processing, retrieval augmented gen-
eration, task-driven methodologies, AI-driven command generation, command
execution, progress and state management, error handling, and security enhance-
ments through constraint awareness. Collectively, these elements enable the AI
agent to identify patterns, make informed decisions, and execute complex cy-
bersecurity tasks, culminating in the development of a fully autonomous proof
of concept. ReaperAI, demonstrates the potential for very effective and danger-
ous programs to be developed with little effort and understanding of LLMs. The
methodologies and techniques provided in this paper also were fully discovered
and researched in the lens of offensive security, which at the time of this paper is
an untouched topic.

Nonetheless, realizing the full potential of AI in offensive cybersecurity presents
substantial challenges and ethical considerations. Technical obstacles such as
improving command-line interactions, expanding context windows, standard-
izing LLM outputs, developing cybersecurity-specific embedding, incorporating
reinforcement learning, simulating human-like abilities, enhancing task manage-
ment, and establishing penetration testing benchmarks must be addressed. Eth-
ically, the development and deployment of such agents must be managed with
great care to avoid misuse and ensure transparency and accountability.

In conclusion, leveraging AI within offensive cybersecurity showcases a sig-
nificant advancement in technology and the domain of cybersecurity. By con-
tinuing to innovate and address challenges with cutting edge technology, cyber
defense teams can stay on top of upcoming threats and foster a more secure and
resilient digital environment.

37

REFERENCES

Arize AI. Best practices for large language model (llm) deployment, 2023. URL
arize.com/blog-course/large-language-model-llm-deployment/. Ac-
cessed: 2024-04-15.

Autogen Studio. Homepage - autogen studio, 2023. URL autogen-studio.com/.
Accessed: April 15, 2024.

Mike Bayer. Mako templates – a fast and lightweight templating for python, 2006.
URL www.makotemplates.org/. Accessed: April 16, 2024.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. On the dangers of stochastic parrots: Can language models be
too big? In Proceedings of the 2021 Conference on Fairness, Accountability, and
Transparency. ACM, 2021.

Crew AI. Homepage - crew ai, 2023. URL www.crewai.com/. Accessed: April 15,
2024.

DAIR.AI. Prompt chaining — prompt engineering guide, 2024. URL www.
promptingguide.ai/techniques/prompt_chaining.

Matthew DeLorenzo, Vasudev Gohil, and Jeyavijayan Rajendran. Creativeval:
Evaluating creativity of llm-based hardware code generation. arXiv preprint
arXiv:2404.08806, 2024.

Gelei Deng, Yi Liu, Vı́ctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu,
Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. Pentest-
gpt: An llm-empowered automatic penetration testing tool. arXiv preprint
arXiv:2308.06782, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

ERMProtect. How artificial intelligence will drive the future of pene-
tration testing in it security, 2020. URL ermprotect.com/insights/
how-artificial-intelligence-will-drive-the-future-of-penetration-testing-in-it-security/.
Accessed: 2024-04-15.

Matteo Esposito and Francesco Palagiano. Leveraging large language models
for preliminary security risk analysis: A mission-critical case study. arXiv
preprint arXiv:2403.15756, 2024.

38

arize.com/blog-course/large-language-model-llm-deployment/
autogen-studio.com/
www.makotemplates.org/
www.crewai.com/
www.promptingguide.ai/techniques/prompt_chaining
www.promptingguide.ai/techniques/prompt_chaining
ermprotect.com/insights/how-artificial-intelligence-will-drive-the-future-of-penetration-testing-in-it-security/
ermprotect.com/insights/how-artificial-intelligence-will-drive-the-future-of-penetration-testing-in-it-security/

fr0gger. Awesome gpt agents. GitHub repository, 2023. URL github.com/
fr0gger/Awesome-GPT-Agents. Accessed: April 15, 2024.

Maanak Gupta, CharanKumar Akiri, Kshitiz Aryal, Eli Parker, and Lopamudra
Praharaj. From chatgpt to threatgpt: Impact of generative ai in cybersecurity
and privacy. arXiv preprint arXiv:2307.00691, 2023.

Hack The Box. Hack the box. Hack The Box Website, 2024. URL www.hackthebox.
com.

Andreas Happe and Jürgen Cito. Getting pwn’d by ai: Penetration testing with
large language models. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE ’23. ACM, November 2023. doi: 10.1145/3611643.3613083.
URL http://dx.doi.org/10.1145/3611643.3613083.

Andreas Happe, Aaron Kaplan, and Jürgen Cito. Evaluating llms for privilege-
escalation scenarios. arXiv preprint arXiv:2310.11409, 2023.

Andreessen Horowitz. Emerging architectures for llm applications, 2023. URL
a16z.com/emerging-architectures-for-llm-applications/. Accessed:
2024-04-15.

Infosec Institute. The history of penetration testing. www.
infosecinstitute.com/resources/penetration-testing/
the-history-of-penetration-testing/#:~:text=For%20more%20than%
2050%20years,or%20even%20destroy%20information%20networks., 2019.
Accessed: 2024-03-15.

Tian Jin, Wanzin Yazar, Zifei Xu, Sayeh Sharify, and Xin Wang. Self-selected at-
tention span for accelerating large language model inference. arXiv preprint
arXiv:2404.09336, 2024.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri
Pranata, Akira Kinose, Koki Oguri, Felix Wick, and Yang You. Rap: Retrieval-
augmented planning with contextual memory for multimodal llm agents.
arXiv preprint arXiv:2402.03610, 2024.

Leroy Jacob Valencia. Reaperai. GitHub repository, 2023. URL github.com/
tac01337/ReaperAI. Accessed: April 22, 2024.

Yang Liu, Mofan Zhou, Xipeng Qiu, and Zhiyuan Yan. Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language pro-
cessing. arXiv preprint arXiv:2107.13586, 2021.

MITRE. Mitre att&ck. MITRE ATT&CK Database, 2024. URL attack.mitre.org.

Yohei Nakajima. babyagi. GitHub repository, 2024. URL github.com/
yoheinakajima/babyagi. Accessed: April 15, 2024.

OpenAI. Introducing gpts. openai.com/blog/introducing-gpts, Nov 2023. Ac-
cessed: 01-23-24.

39

github.com/fr0gger/Awesome-GPT-Agents
github.com/fr0gger/Awesome-GPT-Agents
www.hackthebox.com
www.hackthebox.com
http://dx.doi.org/10.1145/3611643.3613083
a16z.com/emerging-architectures-for-llm-applications/
www.infosecinstitute.com/resources/penetration-testing/the-history-of-penetration-testing/#:~:text=For%20more%20than%2050%20years,or%20even%20destroy%20information%20networks.
www.infosecinstitute.com/resources/penetration-testing/the-history-of-penetration-testing/#:~:text=For%20more%20than%2050%20years,or%20even%20destroy%20information%20networks.
www.infosecinstitute.com/resources/penetration-testing/the-history-of-penetration-testing/#:~:text=For%20more%20than%2050%20years,or%20even%20destroy%20information%20networks.
www.infosecinstitute.com/resources/penetration-testing/the-history-of-penetration-testing/#:~:text=For%20more%20than%2050%20years,or%20even%20destroy%20information%20networks.
github.com/tac01337/ReaperAI
github.com/tac01337/ReaperAI
attack.mitre.org
github.com/yoheinakajima/babyagi
github.com/yoheinakajima/babyagi
openai.com/blog/introducing-gpts

OpenAI. Introducing chatgpt - openai. OpenAI Blog, May 2023. URL openai.
com/blog/introducing-the-chatgpt-app-for-ios.

OpenAI. Gpt-4 turbo and gpt-4. OpenAI Platform Documentation, 2024. URL
platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4.

Cyber Range Organization, Design (CROND) at the Japan Advanced Institute of
Science, and Technology (JAIST). Autopentest-drl: Automated penetra-
tion testing using deep reinforcement learning, 2020. URL github.com/
crond-jaist/AutoPentest-DRL. Accessed: 2024-04-15.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language models are unsupervised multi-
task learners. OpenAI Blog, 2019. URL openai.com/research/
language-models-are-unsupervised-multitask-learners/.

GuidePoint Security. Guidepoint security 2022 predictions: The future of penetra-
tion testing in 2022 and beyond. www.guidepointsecurity.com/newsroom/
the-future-of-penetration-testing-in-2022-and-beyond/, 2022. Ac-
cessed: 2024-03-18.

Noah Spurrier. Pexpect, 2013. URL github.com/pexpect/pexpect. Accessed:
April 15, 2024.

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. Dragin: Dy-
namic retrieval augmented generation based on the real-time information
needs of large language models, 2024.

Yu Wang, Xiusi Chen, Jingbo Shang, and Julian McAuley. Memoryllm: Towards
self-updatable large language models. arXiv preprint arXiv:2402.04624, 2024.

Yizhou Yang and Xin Liu. Behaviour-diverse automatic penetration testing:
A curiosity-driven multi-objective deep reinforcement learning approach.
arXiv preprint arXiv:2202.10630, 2022.

F.M. Zennaro and L. Erdődi. Modelling penetration testing with reinforcement
learning using capture-the-flag challenges: trade-offs between model-free
learning and a priori knowledge. 10.1049/ise2.12107, 17(3):441–457, 2023.

40

openai.com/blog/introducing-the-chatgpt-app-for-ios
openai.com/blog/introducing-the-chatgpt-app-for-ios
platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
github.com/crond-jaist/AutoPentest-DRL
github.com/crond-jaist/AutoPentest-DRL
openai.com/research/language-models-are-unsupervised-multitask-learners/
openai.com/research/language-models-are-unsupervised-multitask-learners/
www.guidepointsecurity.com/newsroom/the-future-of-penetration-testing-in-2022-and-beyond/
www.guidepointsecurity.com/newsroom/the-future-of-penetration-testing-in-2022-and-beyond/
github.com/pexpect/pexpect

APPENDIX A

PROMPTS

A.1 query next command.txt

Your current role:
"${current_role}"

You can only:
- give a command to be executed on the shell that is NOT
interactive.
You don’t have that integration yet and I will respond with the
terminal output when running this c
ommand on the linux server. Only state the
command to be executed.
- give commands that do not contain ‘nc‘

Your current task is:
"${current_task}"

Your current constraints are:
"${constraints}"

Your current target is:
"${target.ip}"

% if len(history) != 0:
You already tried the following commands and their arguments:

’’’bash
${history}
’’’

Do not repeat already tried attacks.
%endif

You currently know the following about the target system:
"${state}"

Based on this you have thought about it and the analyzation you have
concluded on from the previous step is: "${analyzation}"

41

% if task_tree:
Your task tree to keep track of this pentest:

${task_tree.generate_task_summary()}
%endif

Given the current role, objective, constraints, history, and state, and
analysis of Give your command that will best accomplish the task.
Do not add any explanation or add an initial ‘$‘

A.2 analyze cmd.txt

As a penetration tester analyzing the outputs of a command,
I’ve executed’${cmd}’ against the system’s defenses.
I’ll share the stdout, stderr, and exit code with you.
Your task is to distill this data into a concise summary,
capped at ${summary_max_chars} characters. Focus your
analysis uncovering insights related to security
vulnerabilities, performance bottlenecks, or any signs
of instability or unreliability in the system or its
services. Highlight critical findings that could indicate
potential risks or weaknesses in the system’s architecture
or configurations and explain step by step

Command: ${cmd}
Stderr: ${stderr}
Stdout: ${resp}
Summary (in ${summary_max_chars} or fewer characters):

A.3 evaluate progress.txt

You are an advanced LLM designed to assist in
cybersecurity operations, specifically in evaluating
the progress of "${stage}" tasks during penetration
testing phases. Based on the given inputs, your goal
is to determine the appropriate next steps in the
"${stage}" process by considering time limits,
coverage thresholds, and diminishing returns.

Inputs:

List of "${stage}" Tasks: ${task}

Constraints:

42

Time Limits: Each "${stage}" task has a maximum
allotted time of ${max_time_per_task} seconds. If
the cumulative time which is ${cur_time} reaches this
limit from the start time which is ${start_time},
recommend moving to the next phase.

Diminishing Returns: "${stage}" is limited to a maximum of
${max_recon_iterations} iterations. If additional iterations
yield less than ${min_new_information} new information,
indicate that diminishing returns have been reached and recommend
stopping "${stage}" to proceed further.

Decision Points:
Evaluate if the time limit for a "${stage}" task has
been exceeded. If so, advise moving to the next phase.
Determine if the "${stage}" efforts are experiencing
diminishing returns based on the number of iterations
and the percentage of new information gained from the new:
${new_information} compared to the old: ${old_information}.
If diminishing returns are detected, recommend
stopping "${stage}" and proceeding to the next step.

Output:
Provide a recommendation. The recommendation should
indicate whether to continue "${stage}", move to the
the next phase, or conclude the "${stage}" phase due
to coverage thresholds being met or diminishing returns.

A.4 get objectives

You are a cybersecurity pentester and not a redteamer
conducting a BLACK BOX pentest on one single machine
which means we know nothing prior about this machine.
Given the current stage in your penetration testing
cycle named "${stage}", produce a realistic and tangible
ordered list of 3 most important tasks of the given stage
that can be completed to finish the ${stage} that does
NOT assume anything about the machine, its ports or
services and should be solely based on the context
I give you here: ‘‘‘ ${background} ‘‘‘ This list
should encompass tasks that are specific to the stage,
and can be properly executed and fulfilled to ultimately
proceed to the next stage. Do NOT give any explanations
or descriptions. Again, ensure the tasks do NOT assume any
information about the target. Objectives need to be brief
and very specific.
Output the list in an json array.

43

ARTIFICIAL INTELLIGENCE AS THE NEW HACKER: DEVELOPING
AGENTS FOR OFFENSIVE SECURITY

by

Leroy Jacob Valencia

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the last page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and may require a fee.

44

	TITLE PAGE
	ABSTRACT
	Contents
	Table of Tables
	
	Table of Figures
	
	CHAPTER 1
	Problem Statement
	Impact

	CHAPTER 2
	Evolution of Offensive Security
	Evolution of Large Language Models
	AI in Cybersecurity: A Historical Perspective
	Review of Current AI in Offensive Security
	PentestGPT
	HackingbuddyGPT

	LLM Limitations
	Prompt Engineering
	Context & Long Term Memory
	LLM Learning & Reasoning
	Command Parsing
	Training Data
	Risk/Fear
	Creativity
	Diligence
	Situational Awareness

	Agents

	CHAPTER 3
	Pentesting Methodology
	ATT&CK Life Cycle
	Hack The Box

	Methodology
	Integration with LLM
	Autonomous Agents
	Objectives and Tasks
	Decision-Making in Tasks
	Analyzation
	Evaluation

	CHAPTER 4
	Agents
	Prompting, Decision Making, and Natural Language Understanding
	Templating
	Enhanced Decision-Making Through Natural Language Prompting
	Adaptive Decision-Making
	Minimizing Unwanted Behaviors Through Precise Prompt Engineering

	RAG for Enhanced Memory and Contextual Understanding
	PostgreSQL + Python Classes

	Task-Driven Methodology
	Task Tree Management
	Dynamic Task Updates

	AI-Driven Command Generation and Processing
	Workflow
	Integration with LLM
	Stateful Interaction

	Command Execution
	Non-Interactive Execution
	Interactive Execution

	Progress and State Management:
	Continuous Evaluation
	State Updates and Logging

	Error Handling and Adaptability
	Error Handling

	Security and Scope Consideration
	Constraint Awareness

	CHAPTER 5
	Automated Penetration Testing
	Unsuccessful Attempts

	CHAPTER 6
	Challenges in Implementing AI Offensive Agents
	Ethical Considerations in Offensive Cybersecurity
	Future Directions in AI-Driven Offensive Security

	CHAPTER 7
	REFERENCES
	
	APPENDIX A
	query_next_command.txt
	analyze_cmd.txt
	evaluate_progress.txt
	get_objectives

