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LINEAR STABILITY ANALYSIS FOR A SYSTEM OF SINGULAR

AMPLITUDE EQUATIONS ARISING IN BIOMORPHOLOGY

ARIC WHEELER AND KEVIN ZUMBRUN

Abstract. We study linear stability of exponential periodic solutions of a system of singular am-
plitude equations associated with convective Turing bifurcation in the presence of conservation laws,
as arises in modern biomorphology models, binary fluids, and elsewhere. Consisting of a complex
Ginzburg-Landau equation coupled with a singular convection-diffusion equation in “mean modes”
associated with conservation laws, these were shown previously by the authors to admit a constant-
coefficient linearized stability analysis as in the classical Ginzburg-Landau case- albeit now singular
in wave amplitude ε- yielding useful necessary conditions for stability, both of the exponential
functions as solutions of the amplitude equations, and of the associated periodic pattern solving
the underlying PDE. Here, we show by a delicate two-parameter matrix perturbation analysis that
(strict) satisfaction of these necessary conditions is also sufficient for diffusive stability in the sense
of Schneider, yielding a corresponding result, and nonlinear stability, for the underlying PDE.
Moreover, we show that they may be interpreted as stability along a non-normally hyperbolic slow
manifold approximated by Darcy-type reduction, together with attraction along transverse mean
modes, connecting with finite-time approximation theorems of Häcker-Schneider-Zimmerman.
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1. Introduction

In this paper, we carry out a linearized stability analysis for periodic traveling-wave solutions

(1.1) (A,B)(x̂, t̂) = (A0e
i(κx̂−ωt̂), B0),

A0, B0 = constant, of a system of singular amplitude equations

(mcGL)
At̂ = aAx̂x̂ + bA+ c|A|2A+ dAB,

Bt̂ = ε−1(fBx̂ + h|A|2x̂) + eBBx̂x̂ + ℜ(gAĀx̂)x̂,

with A, a, b, c ∈ C, B ∈ Rm, d ∈ C1×m, g, h ∈ Rm×1, f, eB ∈ Rm×m, ℜa,ℜb > 0, ℑ spec(f) = 0,
and ℜ spec(eB) > 0, in the limit as ε → 0.

The first example of such a system, and the striking phenomenon of singular convection in B,
was derived via multi-scale expansion by Häcker, Schneider, and Zimmerman [HSZ] in the con-
text of weakly unstable Bénard-Marangoni and thin-film flow, for which d = 0 and the equations
partially decouple. The singular convection they observed is a surprising consequence of the in-
teraction of conserved quantities and convective forces in the underlying pde. For, in the absence
of conserved quantities, the relevant amplitude equations are the famous (nonsingular) complex
Ginzburg-Landau equations [E, vH, KSM, M3] consisting of the A equation alone, whereas, in
the absence of convection, the B equation becomes purely diffusive, and (mcGL) reduces to a
nonsingular system discovered previously by Matthews and Cox [MC].

The more general, fully coupled version described above was derived in [WZ3] by multi-scale
expansion as a set of amplitude equations formally governing weakly unstable behavior near Turing
bifurcation of a general family of convection reaction diffusion system

(1.2) ut + f(u, ν)x − (B(u, ν)ux)x = R(u, ν) :=

(
R1(u, ν)

0m

)
, R1 full rank.

u ∈ Rn, indexed by bifurcation parameter ν centered about 0, in the presence of conservation laws:
that is, for R of co-rank 0 < m ≤ n. As described in [WZ1, WZ3], the main motivation for this
study was from modern biomorphology models incorporating mechanical/hydrodynamical effects,
in particular vasculogenesis models as in [AGS, SBP].

In particular, the periodic solutions (1.1) of (mcGL) correspond to approximate solutions

(1.3) U ε(ξ, x̂, t̂) =
1

2
A(x̂, t̂)eiξr + c.c.+ ε2(B(x̂, t̂) + c.c.+H.O.T.

of (1.2), where ξ = k∗(x−d∗t), x̂ = ε(x−(d∗+δ)t), and t̂ = ε2t for d∗, δ real numbers determined by
formal expansion, c.c. denotes complex conjugate, and H.O.T denotes higher-order terms. Here,
ν ∼ ε2, while r corresponds to the bifurcating neutral direction for the Fourier symbol of the
linearized equations about the constant state u(x, t) ≡ U0 from which Turing bifurcation occurs.
For relations of model parameters of (mcGL) to the form of (1.2), see [WZ3].
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We refer to (mcGL) as modified complex Ginzburg-Landau equations by analogy to the standard
complex Ginzburg-Landau equations playing a corresponding role for convective Turing bifurcation
without conservation laws [M3, WZ1, WZ2].

Example 1.1. An example of (1.2) with m = 1, arising in biomorphology, is the variation on the
hydrodynamic/chemotactic vasculogenesis models of [GAC, AGS]:1

(1.4)

∂tρ+∇ · (ρu) = µ∆ρ,

∂t(ρu) +∇ · (ρu⊗ u) +∇P (ρ)− βρ∇c = ν∆u− γρu,

∂t(c) = D∆c+ αρ− τ−1c;

see also [LW]. Here, ρ and u are density and velocity of endothelial cells, P pressure, c chemo-
attractant concentration, α > 0 and β > 0 release and cell response rates, and τ > 0 the half-life
of the chemo-attractant. The γ ≥ 0 and ν ≥ 0 terms model in different ways drag against the
extracellular matrix. They are set to γ > 0, ν = 0 in [AGS] and γ = 0, ν > 0 in [GAC]; here, we
take γ, ν > 0. The term µ∆ρ is a nonphysical “artificial viscosity”, set to µ = 0 in [GAC, AGS]
and here µ > 0. In (1.1), the pressure is taken to be zero below some critical density; in [GAC] it
is taken to be zero. Here, following [LW], we take P (ρ) = Aρ2, or, more generally, P = Aρp, p ≥ 1.

Existence. We recall briefly the existence theory for (mcGL), both for context/general interest,
and to introduce a supercriticality condition that will be important in the later stability analysis.
Substituting |A| = A0, B ≡ B0 into (mcGL) satisfies the second equation automatically and in the
first equation gives a shifted complex Ginzburg-Landau equation

(1.5) At̂ = aAx̂x̂ + b̃A+ c|A|2A, b̃ := b+ dB0

for which periodic existence may be treated in standard fashion.

Specifically, substituting A = A0e
i(ωt̂+κx̂) gives

(1.6) A2
0 =

ℜ(b̃)−ℜ(a)κ2

−ℜ(c)
.

Here, ℜ(a) > 0 by parabolicity/well-posedness and ℜ(b) > 0 by standard Turing assumptions/exchange
of stability [WZ2]. We will assume also the supercriticality condition

(1.7) ℜ(c) < 0

allowing (as is standard) existence of solutions with κ = 0, yielding finally the domain of existence

(1.8) κ2 < κ2exist :=
ℜ(b̃)
ℜ(a)

=
ℜ(b) + ℜ(d)B0

ℜ(a)
.

Finally, we assume

(1.9) ℜ spec(izf + z2eB) < 0 for nonzero z ∈ R,
as follows from a more detailed analysis of the Turing assumptions, namely, the assumption that
the spectra of the linearized operator for (1.2) about the bifurcating constant solution be strictly
negative for σ ̸= 0 except for a single complex-conjugate pair with real part order ε2. Taking
account of the asymptotics relating (mcGL) to (1.2), this corresponds to the assumption on the
linearization

(1.10)
At̂ = aAx̂x̂ + bA+ dAB,

Bt̂ = ε−1fBx̂ + eBBx̂x̂

1We note that the nonconservative form of term βρ∇c, appearing in the second, nonconservative equation of (1.4),
does not change the analysis, here or in [WZ1, WZ2, WZ3], in any appreciable way.
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of (mcGL) about (A,B) ≡ (0, B0) that spectra be negative except for a single complex-conjugate
pair with real part order 1. By inspection, the spectra consist of two copies of spec(b+aσ2), b > 0,
union with spec(ε−1fσ + σ2eb), whence (1.9) follows by setting σ = ε−1z to obtain

spec(ε−1fσ + σ2eb) = ε−2 spec(zfσ + z2eb).

Remark 1.2. Note that (1.8) limits B0 to range

(1.11) B0 ∈ sgnℜ(d)× (−ℜ(b)/|ℜ(d)|,+∞).

In particular, the choice B0 = 0 is always feasible. Contrarily, by the change of coordinate B →
B − B0, one could take without loss of generality B0 = 0 for any existing periodic wave, thereby
changing b to b̃ > 0.

Stability. As noted in [WZ3], just as for the classical complex Ginzburg-Landau equation, the
linearized stability problem for (mcGL) about exponential waves (1.1) may, by the exponentially

weighted change of coordinates (A,B) =
(
(A0+u+ iv)ei(κx̂−ωt̂), B0+w), u, v, w real, be converted

to real, constant-coefficient form

(1.12)

ut̂ = ℜ(a)ux̂x̂ −ℑ(a)vx̂x̂ − 2κ
(
ℑ(a)ux̂ + ℜ(a)vx̂

)
+ 2A2

0ℜ(c)u+A0ℜ(d)w,
vt̂ = ℑ(a)ux̂x̂ + ℜ(a)vx̂x̂ + 2κ

(
ℜ(a)ux̂ −ℑ(a)vx̂

)
+ 2A2

0ℑ(c)v +A0ℑ(d)w,
wt̂ = ε−1(fwx̂ + 2hA0ux̂) + eBwx̂x̂ + 2A0

(
ux̂ℜ(g) + vx̂ℑ(g) + κuℑ(g)

)
x̂
,

or, setting U = (u, v, wT )T ,

(1.13) Ut = LU := M0U +M1(ε)Ux̂ +M2Ux̂x̂

with Mj appropriately defined (see Section 2). Note that neither B0 nor b appears.
The spectrum of the linearized operator L about the wave may thus be determined by linear

algebraic computations, via the dispersion relation for (1.13), or

(1.14) λ̂(σ) ∈ specM(ε, σ̂), M(ε, σ̂) := M0 +M1(ε)σ̂ +M2σ̂
2

with σ̂ denoting Fourier wave number, a global two-parameter matrix perturbation problem.
Recall that spectral stability, necessary for linearized stability, corresponds to

(1.15) ℜλ̂ ≤ 0 for λ̂ = λ̂(σ̂) ∈ spec(M(ε, σ̂)).

Meanwhile diffusive spectral stability in the sense of Schneider [S1, S2], sufficient for linearized and
nonlinear stability, corresponds in this context to

(1.16) ℜλ̂ ≤ c(ε)|σ̂|2/(1 + |σ̂|2) for λ̂ = λ̂(σ̂) ∈ spec(M(ε, σ̂)).

For general periodic waves of (1.2), Schneider’s diffusive stability condition is defined in terms
of Bloch-Floquet spectrum of the wave, as discussed in Section 6, below, with the Fourier wave
number σ̂ replaced by a Bloch-Floquet number. See Section 6.

Darcy reduction. A natural further reduction of (mcGL) [WZ3, HSZ] suggested by the singular

structure of (mcGL) is to make the Ansatz B + f−1h|A|2 = B̃0 for some fixed constant B̃0. To
relate the stability criteria of the Darcy reduction to the original model, we choose the constant

B̃0 by B̃0 = B0 + f−1h|A0|2 for some fixed choice of periodic solution (A0e
i(κx̂+ωt̂), B0) of (mcGL).

Note then that b̂ as in (1.18) is then a function of κ. Symbolically, we then obtain for B = B(A)

(1.17) B(A) = B0 + f−1h|A0|2 − f−1h|A|2,
canceling the singular term in (mcGL)(ii), and giving for A the shifted complex Ginzburg-Landau
equation

(1.18) At̂ = aAx̂x̂ + b̂A+ ĉ|A|2A, where b̂ = b+ d(B0 + f−1hA2
0), ĉ := c− df−1h,
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denoted the Darcy approximation by analogy to related approximations in hydrodynamics. See,
e.g., [DJMR] for similar approximations in weakly nonlinear geometric optics and MHD. We note
for later reference the relations (cf. (1.5))

(1.19) b̂ = b̃+ df−1hA2
0, ĉ = c− df−1h.

This does not represent an invariant subflow, but could be viewed, heuristically, as an approxi-
mate “slow manifold.” We note that the corresponding fast flow

(B + f−1h|A|2)t̂ = ε−1∂x̂f(B + f−1h|A|2)t̂ +H.O.T.

linearized about a constant state has for spec(f) real, dispersion relation λ(k) = i spec fε−1+O(1)
with real part of order 1 rather than ε−1, so that the slow manifold is typically non-normally
hyperbolic.

Noting further that periodic solutions, with |A| = A0, B = B0 constant, are contained entirely
within the Darcy flow, we may think of these as lying within an exact slow manifold, with local
dynamics about the periodic solutions given to first order by those of the Darcy flow (1.18). Hence,
one may guess that Darcy stability of periodic waves, or stability as solutions of (1.18) is necessary-
but not sufficient- for stability as solutions of (mcGL). Stability within the full model (mcGL)
evidently involves also the question whether fast flow is attracting or repelling, which, by non-
normal hyperbolicity, may be expected to be somewhat delicate.

1.1. Previous work. The approximate solutions (1.3) may be shown in by now standard fashion
to be close to exact periodic solutions of (1.2), with sharp error bounds; see [WZ3] for further
details. Notably, this existence problem is nonsingular, as one can see by setting |A|, B constant,
thus eliminating the B-equation, and noting that the resulting dimensional solution count remains
correct. Though we do not display it here, the analog of (mcGL) in the O(2)-symmetric reaction
diffusion case is nonsingular in both A and B to begin with, and so the issue of singularity does
not ever arise. For this reason we were able to treat in standard fashion not only existence but
also stability completely for that case in [WZ3], using classical methods of Mielke and Schneider
[M1, M2, S1, S2], showing under generic conditions that diffusive stability of periodic waves of (1.2)
is equivalent to diffusive stability of the associated periodic waves (1.1) of (mcGL) in (1.3).

However, in the convective case modeled by (mcGL), the stability problem is not only singular,
but the neutral eigenstructure of the Fourier symbol about the constant state U0 features a Jordan
block that would at first sight appear to prevent completely an analytic Taylor expansion about
zero frequency as is the first step in the analysis of [M1, M2, S1, S2]. Using a key observation of
[JZ1, JZ2, JNRZ], we were able to overcome this apparent obstacle and perform Taylor expansion on
a ball of ε times smaller order than in the standard case, thus obtaining in [WZ3] necessary but not
sufficient conditions for diffusive spectral stability in the sense of Schneider [S1, S1] corresponding
to low-frequency diffusive stability of the associated periodic waves (1.1) of (mcGL) in (1.3).

We mention also the earlier results of [HSZ] of a different, bounded-time approximation type, for
specific decoupled (d = 0) versions of (mcGL) arising in Bènard-Marangoni and thin film flow, in
which they showed that a corresponding Darcy model for localized rather than periodic solutions
(A,B) of (mcGL), with the modified relation B = −f−1h|A|2, accurately predicts bounded-time
behavior, in the sense that localized solutions of the resulting Darcy model lie near exact solu-
tions of the underlying PDE (1.2). In the decoupled case considered there, it was clear that this
“approximate slow manifold” was attracting, suggesting at least heuristically formal link between
bounded time approximation and time-asymptotic behavior. A natural question posed in [WZ3]
was, in the fully coupled (d ̸= 0) and perturbed periodic case considered there, to what extent the
Darcy model (1.18) can shed light on time-asymptotic behavior as studied here.
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1.2. Main results. The purpose of the present paper is to go beyond the restrictive regime im-
posed by Taylor expansion and complete a full linearized stability analysis, for both periodic solu-
tions of the amplitude equations (mcGL) and the exact periodic solutions of (1.2) that the former
approximate, yielding sufficient as well as necessary conditions for diffusive stability.

Main result 1. Our first main result is, under mild genericity assumptions, the derivation of m+1
simple necessary and sufficient conditions for diffusive spectral stability (2.5) of periodic solutions
(1.1) of the amplitude equations (mcGL) for 0 < ε ≤ ε0 sufficiently small, where m = dimB is the
number of mean modes. See Proposition 4.4 in the scalar case m = 1 and Proposition 5.4 in the
vector case m > 1. Here, ε0 may be chosen uniformly on compact parameter-sets for which the
above-mentioned genericity conditions are satisfied.

The first condition, associated with the neutral translational mode is

(1.20) κ2 < κ2stab :=
2ℜ(b̃)
ℜ(c)(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ))

4ℜ(a)2(1 + q̂2) + 2ℜ(a)
ℜ(c)

(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

) ,
deriving from the well-known Eckhaus condition [WZ3, Eqn. (2.13)]:

(1.21) 0 > µ0
t :=

(2κ2ℑĉ2ℜa2 +A2
0ℑaℑĉℜĉ2 + ℜaℜĉ2(2κ2ℜa+A2

0ℜĉ))2
(A2

0ℜĉ3)

for the complex Ginzburg-Landau equation, with b, c replaced by b̂, ĉ: that is, the translational
stability condition for the Darcy approximation.

We note that (1.20) is not simply the κ boundary for the Darcy equation with b and c suitably

replaced, since the relation A2
0 =

ℜ(b̃)−ℜ(a)κ2

−ℜ(c) from (1.6) involves the original variable b̃ and c rather

than b̂ and ĉ. To put this a different way, from (1.19), we have that

(1.22) b̂ = b̃+ df−1hA2
0

depends on A2
0, so is not a fixed parameter. This subtle point is perhaps the main difference

between the singular and the classical case. In the decoupled case d = 0, or for κ = 0, this
distinction disappears.

We refer to condition (1.20) as the generalized Eckhaus criterion. The domain κ2 < κ2stab is
nonempty under the Benjamin-Feir-Newell criterion

(BFN) ℑaℑĉℜb̂ℜĉ+ ℜaℜb̂ℜĉ2 > 0;

otherwise, diffusively stable waves do not exist. This corresponds to (1.21) with κ = 0, hence,

unlike (1.20), is identical with the classical (BFN) condition with b, c replaced by b̂, ĉ.
The remaining m conditions, associated with “conserved,” or “mean” modes are both first-order

and second-order. The first-order condition, automatic in the scalar case m = 1, is

(1.23) spec
(
f − hℜ(d)

ℜ(c)

)
real.

We make the additional nondegeneracy assumption

(1.24) spec
(
f − hℜ(d)

ℜ(c)

)
distinct,

denoting by ℓj and rj associated left and right eigenvector pairs of f − hℜ(d)/ℜ(c). Then, the
second-order conditions are

(1.25) µ0
c,j := ℓj

hℜ(d)
2A2

0ℜ(c)

(
f − h

ℜ(d)
ℜ(c)

)
rj < 0,

with no conditions on κ. We refer to these as auxiliary Benjamin-Feir-Newell criteria for the similar
role they play to that of (BFN) in determination of stability.
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The scalar case (m = 1). Specialized to a single conservation law, m = 1, as in the case of
example system (1.4), the results simplify considerably, reducing to the pair of conditions

(1.26) ℜ(µt) < 0 and ℜ(c) < ℜ(ĉ) < 0.

Noting, as observed just above, that µt < 0 agrees with the condition for translational stability of the
Darcy approximation, while ĉ < 0 is necessary for supercriticality/fast mode stability of the same,
we see that, apart from information obtainable from the Darcy “slow manifold” approximation, the
only additional requirement is the condition ℜ(c) < ℜ(ĉ), which we will see in the computations
later on is equivalent to stability of the transversal mean mode, or, heuristically, attraction of the
Darcy slow manifold.

Main result 2. Our second main result is to connect stability of periodic solutions of the (mcGL)
to stability of exact periodic solutions of (1.2) nearby the associated approximate solutions (1.3),
the existence of which was established in [WZ3]. Namely, we show, under appropriate genericity as-
sumptions, that for 0 < ε ≤ ε0 sufficiently small, diffusive spectral stability in the sense of Schneider
of exact periodic waves of (1.2) is equivalent to diffusive spectral stability (2.5) of approximating
periodic waves (1.1) of the associated amplitude equations (mcGL) derived in [WZ3]; see Theorem
6.4. Here, again, ε0 may be chosen uniformly on compact parameter-sets for which the required
genericity conditions are satisfied. Thus, necessary and sufficient conditions for diffusive spectral
stability of ε-amplitude exact periodic solutions of (1.2), with 0 < ε ≤ ε0 sufficiently small, are
given by the Eckhaus and auxiliary Benjamin-Feir-Newell conditions (1.20) and (1.23)-(1.25).

These complete the program of [WZ1, WZ2, WZ3, Wh], extending the theory of Eckhaus-Mielke-
Schneider for classical Turing bifurcation to the case of Turing bifurcations with conservation laws,
such as occur in binary fluids and, most importantly for us, in biomorphogenesis models incorpo-
rating hydrodynamic and mechanical effects, the latter having received considerable recent interest.

Darcy approximation vs. the full model. In passing, we answer the question posed in
[WZ3] of the relation between the Darcy approximation (1.18) and the full model (mcGL), showing
that, indeed, Darcy stability is necessary (but not sufficient) for stability with respect to the full
model of periodic solutions of (mcGL), (1.18). More precisely, we can see by expansion in ε with
σ̌ := ε−1σ̂ held fixed (carried out in Section 3) that Darcy stability is necessary for stability of
dispersion relation (1.14) with wave numbers in intermediate frequency range 1/C ≤ |σ| ≤ C,
corresponding heuristically to behavior in the intermediate time range 0 < t0 ≤ t ≤ 1. By contrast,
the Eckhaus conditions above are found by expanding in σ with ε fixed and bounded from zero.
But, either by abstract matching arguments or by direct comparison, we see further that the leading
order ultra-slow mode coefficient µ0

t obtained by either of these methods is identical. That is, the
(bounded-time) Darcy and (time-asymptotic) Eckhaus slow modes agree to leading order, i.e., the
Darcy reduction behaves like an approximate slow manifold in both finite-time approximation and
spectral sense, similarly as shown in the classical (nonconservative) case by the analysis of Mielke
and Schneider.

The fact that the order of limits does not affect the value of µt can be understood, more generally,
from the fact proved in the course of the analysis of Section 4 (regions (ii)-(iii)), that the slow mode
µt is in fact jointly analytic in ε, σ̂ for ε, |σ̂| sufficiently small, similarly as in the classical case; see
Remark 6.5. By contrast, the fast modes µc,j , as noted in [WZ3] are typically analytic in σ̂ only
on the reduced range |σ̂| ≪ ε.

Concerning the values of µc,j , the fact that ℜ(c) < 0, µ0
t < 0, and µ0

c,j < 0 are sufficient for

stability, together with the facts that the Darcy stability conditions ℜ(ĉ), ℜ(µ0
t ) are necessary for

stability, implies that the former imply ℜ(ĉ) < 0 also in the vector case m > 1, as was seen by
direct computation in the scalar case m = 1. However, in the vector case, we do not see any easy
way to show this directly.
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1.3. Discussion and open problems. System (mcGL) generalizes amplitude equations derived
for particular examples by Matthews-Cox [MC] in the O(2)-symmetric reaction diffusion case and
Häcker-Schneider-Zimmermann [HSZ] in the SO(2)-symmetric reaction convection diffusion case.
A major difference in the O(2) case is that the ε−1(fBx̂ + h|A|2x̂) convection term does not appear
in (mcGL)(ii), canceling due to reflective symmetry. This leaves a nonsingular reaction diffusion
system in place of the coupled reaction diffusion/singular convection diffusion system of (mcGL),
for which the analytic issues are essentially different. See [MC, S, WZ3] for further discussion.

The singular mean-mode convection studied here was first pointed out in [HSZ] in the context
of weakly nonlinear asymptotics for Bénard-Marangoni convection and inclined-plane flow, with
rather different motivations and results from those of the present analysis. More precisely, they
sought to establish (1.3) together with (a localized version of) (1.18) as an infinite-dimensional
approximate center manifold, lying ε2-close to associated exact solutions in bounded time. To this
end, they derived mode-filtered equations [HSZ, Eqs. (22)-(23) and (33)-(34] for exact solutions
isolating neutrally growing (i.e., “slow”) modes, corresponding under appropriate rescaling to a
forced version of (mcGL), then showed by rigorous stability estimates that these remain ε2 close
to (1.3) under (localized) Darcy flow (1.18) for time interval 0 ≤ t ≤ Cε−2.

Note that the time-interval 0 ≤ t ≤ Cε−2 corresponds to a bounded time interval 0 ≤ t̂ ≤ C
for (mcGL). Thus, the above stability estimates correspond to bounded-time, or well-posedness
properties of (mcGL), rather than the asymptotic stability questions we consider here. Moreover,
the class of localized (roughly, Hs(R)) solutions considered in [HSZ] does not include the periodic
ones we study here. In addition, the solutions they construct are for “prepared” initial data, with
B appropriately coupled to A, whereas we are concerned with stability with respect to general data
and perturbations. On the other hand, the results of [HSZ] apply to a much larger class of solutions,
whereas ours apply only to the periodic solutions (1.1) associated with Turing bifurcation.

A further major technical difference between the analysis of [HSZ] and that carried out here is
that, for the particular models considered in [HSZ], the associated amplitude equations (mcGL)
feature vanishing coupling coefficients d = 0 and simultaneously diagonal matrices f and e. Hence,
the A equation (mcGL)(i) decouples as a standard complex Ginzburg-Landau equation, and the
spectra of L in (1.13) decouples into the well-known spectra for the linearized complex Ginzburg-
Landau equation plus that of the (already linear) decoupled B-equation Bt̂ = ε−1fBx̂ + eBBx̂x̂,
or

(1.27) λ̂j(σ̂) = ε−1iσ̂fj − σ̂2(eB)j ,

where fj , (eB)j denote the eigenvalues of f and eB. Thus, time-asymptotic spectral stability is
straightforward in that case, with the main technical issue being stiffness, or accounting of transient
effects in B, with principal behavior given by the usual complex Ginzburg-Landau equation in A.

Indeed, the singular B-equation was not included in [HSZ] as part of the amplitude equations, but
subsumed in the underlying analysis supporting the description of behavior by complex Ginzburg-
Landau approximation, an aspect reflecting an important difference in point of view. For the general
amplitude equations (mcGL), derived in [WZ3] in the context of biomorphogenesis models such as
Murray-Oster and related equations for vasculogenesis [AGS, SBP], such a decoupling generically
does not occur, and the determination of spectral stability changes from inspection as in (1.27),
to the complicated singular two-parameter matrix perturbation problem studied here, in terms of
ε and the Fourier (Bloch) number σ. At the same time, mean modes B are no longer necessarily
decaying transients, but through coupling interactions may play an important role in dynamics.
Thus, in the exposition of [WZ3], the mean modes B are “promoted” to elements of the formal
amplitude equations, the latter becoming therefore singular with respect to ε.

It is truly remarkable that in the originally-motivating context of Turing bifurcation, the com-
plicated singular two-parameter stability problem for (mcGL) in the end yields simple stability
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conditions (1.20) and (1.23)-(1.25) analogous to the classic Eckhaus and Benjamin-Feir-Newell
stability conditions for periodic solutions of the complex Ginzburg-Landau equation. This both
justifies the introduction of singular amplitude equations (mcGL) and sets the stage for systematic
exploration of biological pattern processes like vasculogenesis to which they apply, starting from
initiation at Turing bifurcation. The latter program may be expected to play the same powerful role
in exploration of global bifurcation in biomorphogenesis as has the corresponding program in the
classical pattern-formation case arising in elasticity, reaction diffusion, and myriad other settings.

Many biomorphology models used in applications feature partial parabolicity and mixed hy-
perbolic parabolic type. An important further open problem to extend our results for complete
parabolicity to this more general domain, as been done for related settings in [JZN] and references
therein. A second very important followup problem is to actually carry out the above-described
program for specific biomorphology models, systematically determining associated Turing bifur-
cations and their stability; that is, studying the practical initiation problem for periodic pattern
formation with conservation laws. In particular, it would be very interesting to carry out a full
analysis for the example model discussed in Appendix A. A third, more speculative followup, as
suggested in [WZ1, WZ3], is to study modulation of these patterns as a possible model for emergent
dynamics; see [JNRZ, MetZ].

1.3.1. Relations to thin-film flow. More generally, our results in a sense also complete/complement
the programs of [JNRZ], [JNRZ2, BJNRZ], and [BJZ1]. The analysis of [JNRZ] completely analyzes
stability and asymptotic behavior given spectral diffusive stability condition of Schneider, while
those of [JNRZ2, BJNRZ] verifies Schneider’s condition in a certain degenerate small-amplitude
limit arising in inclined shallow water flow. It was pointed out in [BJZ1] that nondegenerate
Turing type bifurcations can also occur, as a complementary and in general perhaps more frequent
case, and the determination of their stability, even partially or just heuristically, was cited as an
important open problem. Moreover, it was observed that the numerics associated with spectral
stability were quite delicate and computationally expensive for this problem.

Our present results both resolve this open problem in passing, giving simple conditions for
diffusive spectral stability and justifying the heuristic approximation (mcGL), and explain the
observed delicacy of numerics. For, the singularity ε−1 in (mcGL) makes this a stiff system in the
ε → 0 limit, for which the spectrum is inherently difficult to resolve. Nonetheless, the equations
are theoretically well-posed [HSZ, WZ3]; the efficient resolution of the associated time-evolution
problem is thus an interesting open problem. See [BLWZ] for work in this direction.

In regard to the related earlier work on thin film flow, it is worth noting that rescaling x̌ = εx̂
(slow variable) removes ε−1 from (1.13), giving form

Ut = M̃1(ε)Ux̌ +M0U + ε2M2Ux̌x̌,

where M̃1(ε) = M̃0
1 + εM̃1

1 , M̃
j
1 constant, that is, a singularly perturbed relaxation system with

vanishing viscosity ε2∂2
x̌, the form ultimately studied in the two-parameter matrix bifurcation anal-

ysis of Section 4. It is interesting that a similar relaxation structure was encountered in the studies
[JNRZ2, BJNRZ] of a quite different bifurcation occurring in the small-amplitude limit for peri-
odic waves in inclined shallow-water flow in the ultra-small frequency regime, and a reminiscent
two-parameter bifurcation analysis successfully carried out. See Remark 4.5 for further discussion.

1.3.2. The Darcy approximation revisited. We emphasize that the bounded-time estimates of [HSZ],
though they apply to more general types of solution, are not relevant to the special question of
Turing patterns and their asymptotic stability, and so give essentially complementary information.
We discuss this point further in Section 1.3.3. Likewise, the necessary conditions derived in [WZ3]
were theoretical and not explicitly computed in the generic case considered here. As we shall see in
Section 2, to go beyond establishing analyticity of neutral spectra and actually compute the first
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nonvanishing real parts of the associated Taylor series costs several further levels of expansion and
substantial additional effort. However, the end result is quite simple, consisting of the conditions for
stability within the formal Darcy approximation, plus stability of transverse mean modes: precisely
as suggested by the heuristic picture of the Darcy model as an approximate slow manifold.

An interesting open problem related to the approximating manifold approach of [HSZ] is to extend
their results to the generic case that coupling constant d ̸= 0. As pointed out in [WZ3, §4.1], a
corresponding ansatz in that case is B = −h|A|2/f , canceling the singular term in (mcGL)(ii), and
giving for A the modified complex Ginzburg-Landau equation (1.18) described in the introduction.
This gives a similar approximation error in the full equations (mcGL) to that given in [HSZ] for the
complex Ginzburg-Landau ansatz in the mode-filtered equations, suggesting that the latter should
hold for the Darcy approximation in the general case d ̸= 0 as well. Likewise there was established
in [WZ3, §4.1] a bounded-time/well-posedness result for (mcGL) in class Hs(R), verifying in the
generic case d ̸= 0 the second main ingredient in the analysis of [HSZ].

1.3.3. Whitham modulation, amplitude equations, and the Darcy approximation. We close with
some comments of a general nature contrasting the various results obtained here and in [HSZ] and
[JNRZ]. Here, we determine diffusive spectral stability in terms of the m+1 neutral (translational
and conserved) modes of the linearized amplitude equations (mcGL) about periodic waves (1.1),
and show that this is equivalent to diffusive stability of bifurcating periodic solutions of (1.2) for
ε > 0 sufficiently small. The results of [JNRZ] give for fixed ε > 0 that low-frequency diffusive
spectral stability of periodic solutions is equivalent to diffusive stability of the (m+1)-dimensional
Whitham modulation equations for (1.2), which in turn implies linearized and nonlinear stability
with respect to Hs ∩ L1 perturbations. The latter estimates, however, are quite ε-dependent,
potentially blowing up as ε → 0.

The Whitham modulation equations, likewise, are associated with the same neutral translational
and conserved modes as considered in our spectral stability analysis. It is natural to conjecture
that these should agree with the reduced equations that we obtain; at least the spectral expansions
must agree to lowest order in appropriate domains of common validity. It would be very interesting
to make this connection precise. Likewise, a difficult but extremely interesting open problem would
be to give a description of behavior of perturbed Turing patterns like that of [JNRZ] but uniformly
valid in ε.

These issues appear also related to the finite-time complex Ginzburg-Landau approximation of
[HSZ], or, more generally, the Darcy approximation conjectured in Section 1.3.2, governed asymp-
totically by a single modulation equation describing translation, or “phase shift.” In particular, one
may ask whether the Darcy approximation could be not only valid for bounded time and vanishing
ε, but also for small enough ε and time going to infinity, or both?

In this regard, we recall from [JNRZ] the related result that time-asymptotic behavior is domi-
nated by phase shift precisely under a certain decoupling condition implying the absence of a Jordan
block in the eigenstructure of neutral modes, corresponding to failure of our genericity condition
(2.28).

(1.28) ℑ(d) = ℜ(d)ℑ(c)/ℜ(c),
Thus, it is apparently not possible that the Darcy approximation, accounting for phase shift, can
represent time-asymptotic behavior in the standard sense that remaining terms decay at faster
time-asymptotic rate.

We conjecture, rather, that derivative of the phase and transverse, mean modes, decay at the
same diffusive rate t−1/2 in L∞ (see [JNRZ]), but with coefficients of the latter of order ε, uniformly

as ε → 0. Note that this agrees with the intuition of Fourier modes with slow decay e−ε2k2t,
corresponding to a heat equation ut = ε2uxx decay for L1 initial data at rate (ε2t)−1/2 = ε−1t−1/1.
If correct, this would yield that the Darcy approximation governs time-asymptotic behavior under
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general (not just “prepared” type) initial perturbations, a conclusion that would evidently be very
useful if true. The resolution of this and the above related questions appear to be very interesting
directions for future investigation.

Acknowledgement. Thanks to Miguel Rodrigues, Olivier Lafitte, and Benjamin Melinand for
their interest in the project and related stimulating and helpful discussions. Thanks also to Paul
Milewski for helpful feedback and comments regarding framing of the discussion surrounding (1.18).

2. Necessity of Eckhaus conditions

We now begin the main task of the paper, analyzing the linear stability problem by reduction
to constant coefficients followed by a 2-parameter matrix perturbation analysis. In this section,
we carry out for fixed ε a Taylor expansion in σ about 0, determining necessary conditions for
stability. In the following section, we examine the remaining regions of σ-ε space, showing that
these conditions are in fact sufficient for stability as well.

For clarity, we first carry out the analysis completely in the case m = 1 of a single conservation
law, indicating after the straightforward generalization to the vector case m ≥ 2.

2.1. Reduction to constant coefficients. Following [WZ3], we perturb (A,B) = (A0e
i(κx−ωt), B0)

as A → (A0+u+ iv)ei(κx−ωt) and B → B0+w, with u, v, w real valued, giving linearized equations
(1.12) in constant coefficient form. Here, we have used the identity

(2.1) −iωU = −aκ2U + bU + cA2
0U + dB0U

for U := u+ iv, coming from satisfaction of (mcGL) by the periodic solution.
To study stability, we compute the dispersion relations associated with (1.12). Namely, writing

(u, v, w) = (u0, v0, w0)e
iσ̂x−λt we arrive at the eigenvalue problem

(2.2) λ(u0, v0, w0)
T = M(ε, σ̂)(u0, v0, w0)

T ,

where

(2.3)

M(ε, σ̂) =

2A2
0ℜ(c) 0 A0ℜ(d)

2A2
0ℑ(c) 0 A0ℑ(d)
0 0 0

+ iσ̂

 −2κℑ(a) −2κℜ(a) 0
+2κℜ(a) −2κℑ(a) 0

2A0hε
−1 + 2A0κℑ(g) 0 ε−1f


− σ̂2

 ℜ(a) −ℑ(a) 0
ℑ(a) ℜ(a) 0

2A0ℜ(g) 2A0ℑ(g) eB

 =: M0 + σ̂M1 + σ̂2M2.

Spectral stability, necessary for linearized stability, corresponds to

(2.4) ℜλ ≤ 0 for λ = λ(σ̂) ∈ spec(M(ε, σ̂)).

Diffusive spectral stability in the sense of Schneider [S1, S2], sufficient for linearized and nonlinear
stability, corresponds to

(2.5) ℜλ ≤ c(ε)|σ̂|2/(1 + |σ̂|2) for λ = λ(σ̂) ∈ spec(M(ε, σ̂)).

Remark 2.1. We note the remarkable fact that B0 does not appear in the linearized equations (1.12),
having been removed using (2.1). Paradoxically, it thus appears not to enter stability considerations,
despite its role through (1.11) in the existence theory. The resolution of this paradox is that the
restriction (1.11) on existence stems from our convention (1.7), which will be seen to be necessary for
stability. But apart from this indirect connection, indeed B0 disappears in stability computations.
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2.2. Taylor expansion of the dispersion relations. Our first task, carried out in the remainder
of this section, is to compute an analytic expansion for the neutral dispersive curves about the origin,
thereby determining necessary conditions for spectral and diffusive spectral stability. Our analysis
follows to a large extent the corresponding analysis in [WZ3], in which a Taylor expansion was shown
to exist but not explicitly computed. Here, we go substantially further, however, computing the
Taylor coefficients to sufficiently high order in ε to obtain explicit low-frequency stability conditions.

To minimize the number of fractions in the following computation, define two parameters

(2.6) p := − ℜ(d)
2A0ℜ(c)

q := −ℑ(c)
ℜ(c)

.

so that

(2.7) pq :=
ℜ(d)ℑ(c)
2A0ℜ(c)2

.

Remark 2.2. We recall from [WZ3] and (1.6) that p can be identified as

p =
∂A0

∂B0
,

and that q is normalized measure of the nonlinear dispersion in the A-equation. Hence, in the
vectorial case p will become a row vector and q will remain a scalar.

2.2.1. Preliminary diagonalization. At σ = 0, we have the (generalized) eigenvectors of M(ε, 0)
given by

(2.8) Rs :=

 1
−q
0

 , Rt :=

0
1
0

 , Rc :=

p
0
1

 .

In addition, we have corresponding left (generalized) eigenvectors

(2.9) Ls :=
(
1 0 −p

)
, Lt :=

(
q 1 −pq

)
, Lc :=

(
0 0 1

)
,

where (Ls, Rs) are the left/right eigenvector pair for the unique stable eigenvalue and (Lt, Rt),
(Lc, Rc) are associated to the zero eigenvalue. We note that Lt and Rc are generalized left and
right eigenvectors respectively, provided that ℜ(c)ℑ(d)−ℑ(c)ℜ(d) ̸= 0.

Following [WZ3], this gives an initial block-diagonalization

(2.10) M̃0(ε) :=

Ls

Lt

Lc

M0(ε)
(
Rs Rt Rc

)
=

(
m 0

0 M̂0(ε)

)
,

where

(2.11) m0 := 2A2
0ℜ(c), M̂0 :=

(
0 A0(ℑ(d) + qℜ(d))
0 0

)
.

Similarly, we find
(2.12)

M̃1(ε) = iε−1

 −2A0ph 0 −p(f + 2A0hp)
−2A0pqh 0 −pq(f + 2A0hp)
2A0h 0 f + 2A0hp


+ 2iκ

−ℑ(a)−A0pℑ(g) + qℜ(a) −ℜ(a) −p(ℑ(a) +A0pℑ(g))
ℜ(a)−A0pqℑ(g) + q2ℜ(a) −qℜ(a)−ℑ(a) p(−qℑ(a) + ℜ(a)−A0pqℑ(g))

A0ℑ(g) 0 A0ℑ(g)p


=

(
m1(ε) s1(ε)

s2(ε) M̂1(ε)

)
,
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where

(2.13)
m1(ε) = i

(
− 2κℑ(a)− 2A0κpℑ(g)− 2ε−1A0ph+ 2κℜ(a)q

)
= −2iε−1A0ph+H.O.sT. ,

(2.14)

M̂1(ε) = i

(
−2κ(ℜ(a)q + ℑ(a)) −pqε−1(f + 2A0hp) + 2pκ

(
−ℑ(a)q + ℜ(a)−A0pqℑ(g)

)
0 ε−1(f + 2A0hp) + 2A0κℑ(g)p

)
= i

(
−2κ(ℜ(a)q + ℑ(a)) −pqε−1(f + 2A0hp)

0 ε−1(f + 2A0hp)

)
+H.O.T. ,

(2.15)
s1(ε) = i

(
−2κℜ(a) −2κℑ(a)p− 2κpA0ℑ(g)p− ε−1p(f + 2A0hp)

)
= −iε−1

(
0 p(f + 2A0hp)

)
+ i
(
−2κℜ(a) O(1)

)
,

and

(2.16)

s2(ε) = i

(
−2ε−1A0pqh+ 2κ

(
ℜ(a)−A0pqℑ(g) + q2ℜ(a)

)
ε−12A0h+ 2A0κℑ(g))

)
= 2A0iε

−1

(
−pqh
h

)
+ i

(
O(1)

2A0κℑ(g))

)
.

Remark 2.3. In anticipation of the vectorial case, m ≥ 2, we’ve carefully placed the h’s, p’s and
ℑ(g)’s, so that the corresponding expressions make sense when p is an 1 ×m row vector, f is an
m×m matrix, and h, g are m× 1 column vectors.

At next order, we obtain, likewise,

(2.17) M̃2(ε) = −
(
m2 X1

X2 M̂2

)
,

where

(2.18)

m2 =
(
Re(a) + ℑ(a)q − 2A0p(ℜ(g)−ℑ(g)q)

)
,

X1 =
(
ℑ(a)− 2A0pℑ(g) pℜ(a)− 2A0pℜ(g)p− peB

)
,

X2 =

(
ℑ(a)− q2ℑ(a)− 2A0pq

(
ℜ(g)−ℑ(g)q

)
2A0

(
ℜ(g)−ℑ(g)q

) )
,

M̂2 =

(
−qℑ(a) + ℜ(a)− 2A0pqℑ(g)

(
qℜ(a) + ℑ(a)− 2A0pqℑ(g)

)
p− pqeB

2A0ℑ(g) 2A0ℜ(g)p+ eB

)
.

2.2.2. Some organizing discussion. As described in [Wh, WZ3], the eigenvector Rt corresponds to a
“translational mode” coming from rotational invariance in the complex Ginzburg-Landau equation
for A, a consequence of translational invariance in the underlying PDE, while the eigenvector Rc

corresponds to a “conservative mode” associated with the conservation law for B. The mode Rs

corresponds to a (weakly) “stable mode” coming from supercritical Hopf bifurcation, as is familiar
from the classical complex Ginzburg-Landau equation arising in the case without conservation laws.

These classifications may be helpful both in following the analysis, and in connecting to other
work. For example, the neutral N̂ block may be seen to correspond with the more general Whitham
modulation approximation about arbitrary-amplitude waves, which, as described in [JNRZ], is
precisely an expansion in neutral translational and conservative modes. As noted in [JZ1, JZ2,
BJZ2] in the context of the Whitham equations, one finds from study of the corresponding existence

problem that the lowest-order part N̂(0) generically consists of a nontrivial Jordan block, as we see
also here, a consequence of the conservation structure of the equations.
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Here as there, this leads to much of the difficulty in the study of stability; indeed, it is coun-
terintuitive at first glance that spectra should expand analytically in σ̂ instead of in a Puiseaux
expansion in

√
σ̂, as we shall see. The reason for this, as pointed out in [JZ2], is that the lower

lefthand entry of the next-order block N̂1 opposite to the nonvanishing entry in the Jordan block
necessarily vanishes, also by conservation principles, so that the matrix perturbation problem can
be converted by a “balancing” transformation to a standard matrix perturbation problem without
a nontrivial Jordan block. The latter procedure is described in Section 2.2.4 below.

Alternatively, looking at the exact spectral expansion of neutral modes for the underlying PDE
problem, corresponding to variations along the manifold of periodic traveling-wave solutions, one
finds [JZ2] that there is a Jordan block whenever speed of profiles is nonstationary, and that
the corresponding generalized right zero eigenfunction lies in a Jordan chain over the genuine
eigenfunction consisting of the spatial derivative ∂xū of the background traveling wave. Meanwhile,
associated left eigenfunctions are constant functions ℓ ≡ constant, by conservation form; the lower
lefthand corner of the Jordan block, corresponding to ⟨ℓ, ∂xū⟩ = ℓ · (̄x)|X0 , X the period of the
background wave, thus vanishes by periodicity of ū.

That is, the same conservation structure leading to appearance of a Jordan block enforces con-
straints on the perturbation leading to analytic expansion nonetheless: i.e., “the disease is also the
cure.” The importance of analytic vs. Puiseaux expansion is that the latter involves ill-conditioning
of the spectral expansion/diagonalization procedure in the form of blowup of associated eigenpro-
jectors. In the context of [JZ2], this would have wrecked the linearized stability estimates, leading
to transient time-algebraic growth instead of decay. Here, it would have increased sensitivity to
higher-order errors, preventing our estimates from closing.

2.2.3. First-order diagonalization. Following [MZ1, MZ], we apply the method of “successive diag-
onalization”, defining a coordinate change

(2.19)

T =

(
1 0
σ̂t2 Id2

)(
1 σ̂t1
0 Id2

)
=

(
1 σ̂t1
σ̂t2 Id2 + σ̂2t2t1

)
,

T −1 =

(
1 −σ̂t1
0 Id2

)(
1 0

−σ̂t2 Id2

)
=

(
1 + σ̂2t1t2 −σ̂t1

−σ̂t2 Id2

)
,

with t1M̂0 −m0t1 = −s1, M̂0t2 − t2m0 = s2, or equivalently

(2.20)
t1 = −s1(M̂0 −m0)

−1,

t2 = (M̂0 −m0)
−1s2,

M̂0, m0 as in (2.10), in order to diagonalize to order O(σ̂). With this choice, we obtain

(2.21) N(σ̂, ε) := T M̃T −1 = N0(ε) + σ̂N1(ε) + σ̂2N2(ε) + σ̂3N3(σ̂) +O(σ̂4),

where

(2.22)

N0 = M̃0 =

(
m0 0

0 M̂0

)
, N1 =

(
m1 0

0 M̂1

)
,

N2 =

(
∗ ∗
∗ N̂2

)
, N3 =

(
∗ ∗
∗ N̂3

)
,
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with

(2.23)

N̂2 = −M̂2 + (t2s1 − s2t1) + t2t1M̂0 − t2m0t1

= −M̂2 + (t2s1 − s2t1)− t2s1

= −M̂2 − s2t1

= −M̂2 + s2s1(M̂0 −m0)
−1

and

(2.24)
N̂3 = −t2m1t1 + t2t1M̂1 − t2X1 +X2t1 = t2t1(M̂1 −m1)− t2X1 +X2t1

= −(M̂0 −m0)
−1s2s1(M̂0 −m0)

−1(M̂1 −m1)− t2X1 +X2t1.

Here, the recurring term s2s1 by direct computation is

(2.25) s2s1 = 2ε−2A0

(
0 −qphp(f + 2A0hp)
0 hp(f + 2A0hp)

)
+ ε−1

(
−4A0κℜ(a)pqh O(1)
4A0κhℜ(a) O(1)

)
.

Applying standard spectral perturbation theory [K], we have that there exists an exact analytic

in σ̂ change of coordinates decoupling n and N̂ blocks for which the above approximate series are
correct to O(σ̂4) error. We thus have that the “stable” eigenvalue λs corresponding to the n block
satisfies

(2.26) λs(ε) = m0 +O(σ̂) = 2A2
0ℜ(c) +O(σ̂).

The “translational” and “conservative” eigenvalues λt and λc can then be determined by analysis
of the reduced matrix perturbation problem

(2.27) N̂(ε, σ̂) := N̂0(ε) + σ̂N̂1(ε) + σ̂2N̂2(ε) + σ̂3N̂3(ε).

Note, by supercriticality condition (1.7), that m0 = 2A2
0ℜ(c) < 0, so that indeed the “stable”

eigenvalue is stable. This observation indirectly justifies our convention in assuming (1.7) in the
existence problem, since otherwise the resulting solutions would be exponentially unstable by (2.26).

Remark 2.4. The analogous computation in [WZ3] uses a more traditional spectral perturbation
argument. In order to connect this argument to that argument, we note that the first order
diagonalization can also be interpreted as finding the first correctors of the left/right eigenvectors
(Ls, Rs) associated to the stable eigenvalue λs(0) = m0, as we recall from [K] that simple eigenvalues
have smooth eigenvectors.

2.2.4. Balancing transformation. In the generic case

(2.28) ℑ(d) ̸= ℜ(d)ℑ(c)/ℜ(c),
M̂0 takes the form of a (nonzero multiple of a) Jordan block

(2.29) M̂0 = rJ ; J =

(
0 1
0 0

)
, r := A0(ℑ(d)−ℜ(d)ℑ(c)/ℜ(c)) ̸= 0,

giving

(2.30) (M̂0 −m0)
−1 =

(
−m0(I − (r/m0)J)

)−1
= −m−1

0

(
I + (r/m0)J

)
and, by (2.25)

(2.31)

s2s1(M̂0 −m0)
−1 = −s2s1m

−1
0

(
I + (r/m0)J

)
.

= − 1

m0
s2
(
−2iκℜ(a) −iε−1p(f + 2A0hp) +O(1)

)(1 r
m0

0 1

)
= − 1

m0
s2s1 +

(
0 O(ε−1)
0 O(ε−1)

)
,
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(2.32) (M̂1 −m1) = iε−1

(
2A0ph −pq(f + 2A0hp)

0 f + 2A0hp+ 2A0ph

)
+O(1),

and

(2.33)

(M̂0 −m0)
−1s2s1(M̂0 −m0)

−1(M̂1 −m1) = i
ε−2

m2
0

(
1 r/m0

0 1

)
×
(
−4A0κℜ(a)pqh −2A0qphp(f + 2A0hp)ε

−1

4A0κhℜ(a) 2A0hp(f + 2A0hp)ε
−1

)
×
(
1 r/m0

0 1

)(
2A0ph −pq(f + 2A0hp)

0 f + 2A0hp+ 2A0ph

)
+O(ε2)

= i
ε−2

m2
0

(
O(ε−1) O(ε−1)

8A2
0κℜ(a)hph O(ε−1)

)
+H.O.T.

Remark 2.5. The distinction between 2A0hp and 2A0ph in (2.32) is being kept in order to more
easily adapt this calculation to the systems case.

We note here that the crucial fact that makes this entire calculation of dispersion relations pos-
sible is that, while N̂3 is of order ε−3, N̂3 is upper triangular to leading order. Hence the bottom
left corner of N̂3 is of order ε−2, matching the order of N̂2. The importance of this observation
comes from the “balancing” transformation which informally takes the top right corner and moves
it up an order and similarly takes the bottom left corner and moves it down an order. We also note
here that (2.32) is upper triangular, and that the O(1) terms are proportional to κ.

Thus,

(2.34) N̂1 = M̂1 = i

(
−2κ(ℜ(a)q + ℑ(a)) −pqε−1(f + 2A0hp)

0 ε−1(f + 2A0hp)

)
+H.O.T. ,

(2.35)

N̂2 = −M̂2 + s2s1(M̂0 −m0)
−1

= −m−1
0 ε−1

(
−4A0κℜ(a)pqh −2A0qphp(f + 2A0hp)ε

−1

4A0κhℜ(a) 2A0hp(f + 2A0hp)ε
−1

)
+H.O.T. ,

and

(2.36) N̂3 = −(M̂0 −m0)
−1s2s1(M̂0 −m0)

−1(M̂1 −m1)− t2X1 +X2t1 =

(
∗ ∗

O(ε−2) ∗

)
.

Remark 2.6. Evidently, for the decoupled case d = 0 considered in [HSZ], (2.28) fails, hence that
case is degenerate from this point of view. The case that (2.28) fails but d ̸= 0 is treated in [WZ3].

To remove the Jordan block, following [MZ1, MZ], we perform the “balancing” transformation

N̂ → O := SN̂S−1, where

(2.37) S :=

(
iσ̂ 0
0 1

)
, S−1 =

(
(iσ̂)−1 0

0 1

)
,

yielding

(2.38) O(ε, σ̂) = σ̂O1 + σ̂2O2 +O(σ̂3),
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with

(2.39)

O1 = i

(
−2κ(ℜ(a)q + ℑ(a)) r
4κε−1m−1

0 A0hℜ(a) ε−1(f + 2A0hp)

)
+H.O.T.

= i

(
0 0

4κm−1
0 ε−1A0hℜ(a) ε−1(f + 2A0hp)

)
+H.O.T. ,

O2 =

(
4ε−1m−1

0 A0κℜ(a)pqh pqε−1(f + 2A0hp)
−8ε−2m−2

0 A2
0κ(hphℜ(a)) −ε−2m−1

0 2A0hp(f + 2A0hp)

)
+H.O.T.

This can now be expanded up to order σ̂2 by standard perturbation of distinct eigenvalues, as
the eigenvalues of O1 are ∼ 1, ε−1 and split for ε > 0 sufficiently small under the generic condition

(2.40) f + 2A0hp ̸= 0.

Moreover (by splitting), we may conclude analyticity in σ̂ on some sufficiently small ball.
Namely, taking the eigenvectors to lowest order in ε of O1, we have

(2.41)

ℓt =
(
1 0

)
+O(ε), ℓc =

(
4κm−1

0 ℜ(a)A0(f + 2A0hp)
−1h 1

)
+O(ε)

rt =

(
1

−4κm−1
0 A0ℜ(a)(f + 2A0hp)

−1h

)
+O(ε), rc =

(
0
1

)
+O(ε),

giving the analytic expansion

(2.42)
λt = αtσ̂ + µtσ̂

2 +O(σ̂3),

λc = αcσ̂ + µcσ̂
2 +O(σ̂3),

where αj are pure imaginary

(2.43)
αt = ℓtO1rt = O(1) ,

αc = ℓcO1rc = iε−1(f + 2A0hp) +O(1),

are pure imaginary and

(2.44)
µt = ℓtO2rt = O(ε−1) =: ε−1µ0

t +O(1) ,

µc = ℓcO2rc = −2ε−2m−1
0 A0hp(f + 2A0hp) +O(ε−1) =: ε−2µ0

c +H.O.T. .

Thus, the signs of the real parts of λt and λc are determined by the signs of ℜµt and ℜµc.

Remark 2.7. In the vectorial case m > 1, the lower righthand block of O1 is an m×m matrix with
leading order ε−1(f + 2A0hp)i, hence requires the additional, first-order stability condition (1.23)
in order to ensure that its spectra are pure imaginary. The second order stability conditions also
require modification, see Section 5 for details.

Remark 2.8. In the systems setting, ℓc → ℓc,i with first entry corresponding to the i-th entry of the

vector 4κm−1
0 ℜ(a)A0(f + 2A0hp)

−1h and 1 replaced with the i-th standard basis of Rm, thought
of as a row vector. Similarly, rc → rc,i with 1 replaced with the i-th standard basis element of Rm,
now thought of as a column vector. Finally, we note that to complete the eigenvectors we have

that ℓt →
(
1 0

)
and rt →

(
1

−4κm−1
0 ℜ(a)A0(f + 2A0hp)

−1h

)
.

However, our expansion is not fine enough to determine µt, or even its order, i.e., whether µ0
t

is vanishing or nonvanishing. This could be remedied by applying the method of repeated diago-
nalization in powers of ε to expand (2.41) to as many orders as required to obtain a nonvanishing
coefficient in the expansion of µt. In [WZ3], µt was computed through a Kato-style expansion when
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r = 0, i.e. M̂0 is not a Jordan block. In that case, µ0
t = 0, or equivalently, µt(ε) = O(1).

While a similar expansion is possible here, it is significantly more complicated due to αt and µt

being primarily determined by error terms in the Oj . Instead, we elect to work with (2.3) directly
and use the method of matched asymptotics. It is at this point that our argument specializes to
the case of a single conservation law, see Section 5.1 for a variation on this argument for the case
m ≥ 2. Suppose that (2.3) has an eigenvalue of the form λt(σ̂) = iαtσ̂ + µtσ̂

2 with αt = O(1) and
µt = O(ε−1). Recalling M(ε, σ̂) from (2.3), we find

M(ε, σ̂) = −σ̂2

 ℜ(a) −ℑ(a) 0
ℑ(a) ℜ(a) 0

2A0ℜ(g) 2A0ℑ(g) eB

+ iσ̂

 −2κℑ(a) −2κℜ(a) 0
+2κℜ(a) −2κℑ(a) 0

2A0hε
−1 + 2A0κℑ(g) 0 ε−1f


+

2A2
0ℜ(c) 0 A0ℜ(d)

2A2
0ℑ(c) 0 A0ℑ(d)
0 0 0

 .

Let us make the important observation that because λt = O(σ̂), the second column and third row
of M(ε, σ̂)−λ(σ̂)Id are both proportional to iσ̂, with the intersection being order σ̂2, and so can be
divided out. Hence, to determine αt, we need to work with the now O(1) terms in the characteristic
polynomial given by

(2.45) P0 := det

 2A2
0ℜ(c) −2κℜ(a) A0ℜ(d)

2A2
0ℑ(c) −2κℑ(a)− αt A0ℑ(d)

2A0hε
−1 + 2A0κℑ(g) 2A0ℑ(g) ε−1f − αt

 .

Expanding P0 along the first column gives us

(2.46)

P0 = 2A2
0ℜ(c)α2

t +
(
ε−12A2

0(hℜ(d)− fℜ(c)) +O(1)
)
αt

+ ε−14A2
0κ
(
fℜ(a)ℑ(c)− fℑ(a)ℜ(c) + hℑ(a)ℜ(d)− hℜ(a)ℑ(d)

)
+O(1)

=: c2α
2
t + c1αt + c0.

Now, if λt is to be an eigenvalue, we need P0 = 0. Applying the quadratic formula to (2.46), we
find that the two roots of P0 are

α =
−c1 ±

√
c21 − 4c2c0
2c2

.

As c2 = O(1) and c1, c0 = O(ε−1), we see that the c21 term in the square root dominates. Hence
applying the binomial theorem we find the two roots are

α− = −c1
c2

+O(1), α+ = −c0
c1

+O(ε).

Recalling the expressions in (2.46), we find that

α− = ε−1
(
f − hℜ(d)

ℜ(c)

)
+O(1).

Upon recalling the definition of p from (2.6), we notice that α− = αc for αc as in (2.43). Evidently,
we then conclude that α+ = αt. Returning to (2.46), we find that

(2.47) αt = −2κ
fℜ(a)ℑ(c)− fℑ(a)ℜ(c) + hℑ(a)ℜ(d)− hℜ(a)ℑ(d)

hℜ(d)− fℜ(c)
+O(ε).

On the other hand, using (2.41), (2.39), and a Kato-style expansion, we can also find

(2.48) αt = −2κ(ℜ(a)q + ℑ(a))− 4κA0ℜ(a)
m0(f + 2A0hp)

rh+O(ε).
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To get from (2.47) to (2.48), we start by observing that

hℜ(d)− fℜ(c) = −ℜ(c)
(
f + 2A0hp).

We then see that the two central terms in the numerator of (2.47) are ℑ(a) times the denominator
and so we obtain

αt = −2κ
(
ℑ(a)−ℜ(a) fℑ(c)− hℑ(d)

ℜ(c)(f + 2A0hp)

)
+O(ε).

In the numerator, we now add and subtract 2A0hpℑ(c) and cancel with the denominator to obtain

αt = −2κ
(
ℑ(a)−ℜ(a)ℑ(c)

ℜ(c)
+ hℜ(a)ℑ(c)2A0p+ ℑ(d)

ℜ(c)(f + 2A0hp)

)
+O(ε).

Now, plugging in the value of p and recalling the definition of r, we come to

αt = −2κ
(
ℑ(a)−ℜ(a)ℑ(c)

ℜ(c)
+ hℜ(a) r

2A0ℜ(c)(f + 2A0hp)

)
+O(ε).

We note that upon plugging in m0 = 2A2
0ℜ(c) that this expression matches (2.48).

Turning to µt, we start by finding the coefficient, P1, of iσ̂ in (iσ̂)−2 det(M(ε, σ̂)− λtId). Using
multilinearity of det, we find by choosing the O(σ̂) terms in each column and the O(1) terms in
the remaining columns
(2.49)

P1 = det

−2κℑ(a)− αt −2κℜ(a) A0ℜ(d)
2κℜ(a) −2κℑ(a)− αt A0ℑ(d)
2A0ℜ(g) 2A0ℑ(g) ε−1f − αt

+ det

 2A2
0ℜ(c) −ℑ(a) A0ℜ(d)

2A2
0ℑ(c) ℜ(a) + µt A0ℑ(d)

2A0hε
−1 + 2A0κℑ(g) 0 ε−1f − αt


+ det

 2A2
0ℜ(c) −2κℜ(a) 0

2A2
0ℑ(c) −2κℑ(a) 0

2A0hε
−1 + 2A0κℑ(g) 2A0ℑ(g) eB + µt

 .

The first determinant in (2.49) is to leading order in ε given by
(2.50)

det

−2κℑ(a)− αt −2κℜ(a) A0ℜ(d)
2κℜ(a) −2κℑ(a)− αt A0ℑ(d)
2A0ℜ(g) 2A0ℑ(g) ε−1f − αt

 = ε−1f
(
(−2κℑ(a)− αt)

2 + 4κ2ℜ(a)2
)
+O(1).

For the second determinant in (2.49), we obtain
(2.51)

det

 2A2
0ℜ(c) −ℑ(a) A0ℜ(d)

2A2
0ℑ(c) ℜ(a) + µt A0ℑ(d)

2A0hε
−1 + 2A0κℑ(g) 0 ε−1f − αt

 = µt

(
2A2

0ε
−1(ℜ(c)f − hℜ(d)) +O(1)

)
+ 2ε−1A2

0ℑ(a)
(
fℑ(c)− hℑ(d)

)
+ 2ε−1A2

0ℜ(a)
(
ℜ(c)f − hℜ(d)

)
+O(1).

The third determinant is linear in µt and O(1), so we will not need it. So, setting P1 = 0, we obtain
a linear equation of the form

c3µt + c4 = 0,

with c3, c4 = O(ε−1). Applying (2.50) and (2.51), we are led to
(2.52)

µt = −
f
(
(−2κℑ(a)− αt)

2 + 4κ2ℜ(a)2
)
+ 2A2

0ℑ(a)
(
fℑ(c)− hℑ(d)

)
+ 2A2

0ℜ(a)
(
fℜ(c)− hℜ(d)

)
2A2

0(ℜ(c)f − hℜ(d))
+O(ε).
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Remark 2.9. The same kind of calculation can also be used to find µc. Indeed, as αc ∼ ε−1, one
replaces (2.50) with

(ε−1f − αc)α
2
c +O(ε−2).

We must also adapt (2.51) to

µc2A
2
0

(
ℜ(c)

(
ε−1f − αc

)
− ε−1hℜ(d)

)
+H.O.T.

We notice that this expression vanishes to leading order. In order to match the O(ε−3) term from
(2.50), we consider the third matrix in (2.49), which has an O(ε−1) coefficient of µc coming from
the third determinant in (2.49), which gives us

−2A2
0ℜ(c)αcµc +H.O.T.

At this point, we then obtain

µc =
(ε−1f − αc)αc

2A2
0ℜ(c)

+O(ε−1).

Plugging in the expression for αc, we obtain

µc = ε−2 ℜ(d)h
2A2

0ℜ(c)2
(
f − ℜ(d)h

ℜ(c)

)
+O(ε−1),

which upon factoring a copy f/ℜ(c) out of the expression in parentheses yields

µc = ε−2 ℜ(d)hf
2A2

0ℜ(c)3
(
ℜ(c)− ℜ(d)h

f

)
+O(ε−1),

which agrees with our previous expression.

Let us make a few key observations about (2.52). The first is that, to leading order, µt is a
function of κ2 as αt in (2.47) is to leading order proportional to κ. Second, µt is, to leading order,
independent of eB and g. Third, at κ = 0, µt reduces to

(2.53) µt = −ℜ(a)−ℑ(a)ℑ(ĉ)
ℜ(ĉ)

,

where ĉ = c − dh/f is the updated value of c in the Darcy reduction. Hence the corresponding

Benjamin-Feir-Newell criterion is the same as that for the Darcy reduction provide that ℜ(b̂) > 0.

Let us start by finding necessary stability criteria, starting with µc. We observe in the scalar
case that the sign of µ0

c is independent of κ, as by (2.44), (2.6), (2.13), we see that

(2.54) µ0
c = −2m−1

0 A0hp(f + 2A0hp) =
ℜ(d)hf
2A2

0ℜ(c)3
(
ℜ(c)− ℜ(d)h

f

)
,

which exactly matches the corresponding expression in [WZ3]. Indeed, this leads us to half of the
stability criterion for µc, extending Lemma 5.6 of [WZ3] whose proof we also recall.

Lemma 2.10. If ℜ(ĉ) > 0 with ĉ = c− dh/f , then µc > 0.

Proof. If ℜ(ĉ) > 0, then ℜ(d)h/f < 0 since ℜ(c) < 0. Hence in the right most expression of (2.54),
the term in parentheses is positive and the term outside parentheses is also positive since ℜ(d)h/f
and ℜ(d)hf have the same sign and under the assumption ℜ(ĉ) > 0 has the same sign as ℜ(c)3. □

Let us proceed further to find necessary and sufficient criteria for µ0
c < 0.

Proposition 2.11. There holds µ0
c < 0 if and only if

(2.55) ℜ(c) < ℜ(d)h
f

< 0.
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Proof. The lower inequality in (2.55) was established in Lemma 2.10. For the other inequality,
assume ℜ(ĉ) < 0 and so µ0

c < 0 if and only if ℜ(d)hf < 0 as ℜ(ĉ)/ℜ(c)3 > 0 under the assumption
ℜ(ĉ) < 0. This completes the proof. □

To obtain Eckhaus-style criteria from (2.52), we begin by multiplying and dividing by f . After
doing so and using ĉ = c− dh/f , we obtain

(2.56) µt = −

(
(−2κℑ(a)− αt)

2 + 4κ2ℜ(a)2
)
+ 2A2

0ℑ(a)ℑ(ĉ) + 2A2
0ℜ(a)ℜ(ĉ)

2A2
0ℜ(ĉ)

+O(ε).

To determine the sign µt, we observe that we can freely drop the 2A2
0 from the denominator as it

is always positive. By Lemma 2.10, we can further assume that ℜ(ĉ) < 0 as otherwise all waves
are unstable. So for stability, we’re left with determining for what κ

(2.57)
(
(−2κℑ(a)− αt)

2 + 4κ2ℜ(a)2
)
+ 2A2

0ℑ(a)ℑ(ĉ) + 2A2
0ℜ(a)ℜ(ĉ) < 0,

holds. To continue, we do the same to αt as in (2.47), where we obtain

αt = 2κ
(
−ℑ(a) + ℜ(a)ℑ(ĉ)

ℜ(ĉ)

)
.

Recalling the definition of A2
0 from (1.6), we find that (2.57) can be written as

(2.58) 4κ2ℜ(a)2(1 + q̂2)− 2
ℜ(b̃)−ℜ(a)κ2

ℜ(c)
(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)) < 0,

where q̂ := −ℑ(ĉ)/ℜ(ĉ). Collecting the κ2 terms on the left hand side and the remainder on the
right hand side, we find

(2.59) κ2
(
4ℜ(a)2(1 + q̂2) + 2

ℜ(a)
ℜ(c)

(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

))
< 2

ℜ(b̃)
ℜ(c)

(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)).

For us, the Benjamin-Feir-Newell criterion is that (2.53) is negative. Or, after rearranging,

ℜ(a) + ℑ(a)ℑ(ĉ)
ℜ(ĉ)

> 0.

As we’ve assumed ℜ(ĉ) < 0, we then obtain

ℜ(a)ℜ(ĉ) + ℑ(a)ℑ(ĉ) < 0.

Moreover, since we’ve assumed ℜ(c) < 0, ℜ(a) > 0, and ℜ(b̃) > 0, we find that the coefficients in
(2.59) are positive.

Lemma 2.12. Let κ2S be defined by

(2.60) κ2S :=
2ℜ(b̃)
ℜ(c)(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ))

4ℜ(a)2(1 + q̂2) + 2ℜ(a)
ℜ(c)

(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

) .
Then κ2S ≤ κ2E for κ2E as in (1.8) provided the Benjamin-Feir-Newell criterion (2.53) holds.

Proof. In (2.59), we observe that the left hand side is bounded from below by

κ2
(
2
ℜ(a)
ℜ(c)

(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

))
,
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as 4ℜ(a)2(1+ q̂2)κ2 is readily seen to be positive. As κ2S is the right hand side of (2.59) divided by
the left hand side, we conclude that

κ2S <
2ℜ(b̃)
ℜ(c)(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ))

2ℜ(a)
ℜ(c)

(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

) = κ2E .

□

Remark 2.13. One can expect that µt and µc are real based on an observation which played a key
role in [WZ3] in showing that the wave could not destabilize to leading order. More precisely, each
branch of the dispersion relation satisfies

(2.61) λ(−σ) = λ(σ),

near σ = 0. Hence by (2.61) and the chain rule, all even derivatives of λ are real at σ = 0 and all
odd derivatives of λ are pure imaginary at σ = 0.

Definition 2.14. We define asymptotic diffusive stability by the pair of conditions

(2.62) ℜµ0
t > 0, ℜµ0

c > 0, with µj as in (2.44).

We define asymptotic instability by failure of asymptotic neutral stability

(2.63) ℜµ0
t ≥ 0, ℜµ0

c ≥ 0,

i.e., ℜµ0
t < 0 or ℜµ0

c < 0.2

Evidently, asymptotic diffusive stability is necessary for strict stability, ℜλ(ε, δ) < 0 for all ε > 0,
δ ̸= 0, while asymptotic instability is sufficient for instability, ℜλ(ε, δ) > 0 for some ε > 0, δ ∈ R.

Remark 2.15. In the decoupled case d = 0 treated in [HSZ], we see that µc = 0 and diffusion
is at the lower order eB. That is, the ε−2 diffusion rate in the generic case is an example of
“convection-enhanced diffusion”.

Remark 2.16. The key quantity f + 2A0hp in (2.40) may be regarded as an effective convection
obtained by Chapman-Enskog type reduction; note that our equations have the form of a relaxation
system. The condition that f + 2A0hp be nonzero is equivalent to noncharacteristicity of this
effective convection. Indeed, by the desingularizing rescaling δ → δ̃, we are effectively converting
the singular truncated model to a singularly perturbed model

(2.64)
At = bA+ c|A|2A+ dABεAxx,

Bt + (f − h|A|2)x = ε(ℜ(gAĀx)x + εeBBxx

consisting of an inviscid limit of a relaxation system, similar in form to the viscous Saint Venant
equations treated in [BJNRZ]. This may further explain points of similarity in the analyses re-
marked elsewhere. We note in particular the remarkably simple form of µc as proportional to the
effective convection, similar to a key relation found in [JNRYZ], so that second-order behavior in
the “mean mode” c may be deduced by study of more easily accessible first-order behavior in σ̂, e.g.,
by the first-order Whitham modulation approximation.

Remark 2.17. The degenerate case ℑ(d) = qℜ(d) treated already in [WZ3, Wh] may be treated by
the above argument equally well, that is, this covers both degenerate and generic case in a common
framework. However, more terms must be included in deriving asymptotics.

2As µ0
t and µ0

c are real in this setting, these are sign conditions for µ0
t and µ0

c themselves.
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3. Necessity of Darcy conditions

We next establish necessity of the Darcy stability conditions ℜ(σ̂) < 0, ℜµ0
t < 0, determining

stability of periodic solutions with respect to the reduced Darcy system (1.18), for stability with
respect to the full system (mcGL).

3.1. Relation of linearizations. Our first step is to observe the relation between the lineariza-
tions of (mcGL) and (1.18) after reduction to constant coefficients. Recall that the linearization of
the full system (mcGL), reduced to constant coefficients, is
(3.1)

M(ε, σ) = −σ2

 ℜ(a) −ℑ(a) 0
ℑ(a) ℜ(a) 0

2A0ℜ(g) 2A0ℑ(g) eB

+ iσ

 −2κℑ(a) −2κℜ(a) 0
+2κℜ(a) −2κℑ(a) 0

2A0hε
−1 + 2A0κℑ(g) 0 ε−1f


+

2A2
0ℜ(c) 0 A0ℜ(d)

2A2
0ℑ(c) 0 A0ℑ(d)
0 0 0

 =: M0 + σ̂M1 + σ̂2M2.

Likewise (see, e.g., [WZ2]), the linearization of the Darcy model (1.18), reduced to constant coeffi-
cients, is

(3.2)

m(ε, σ) = −σ2

(
ℜ(a) −ℑ(a)
ℑ(a) ℜ(a)

)
+ iσ

(
−2κℑ(a) −2κℜ(a)
+2κℜ(a) −2κℑ(a)

)
+

(
2A2

0ℜ(ĉ) 0
2A2

0ℑ(ĉ) 0

)
=: m0 + σ̂m1 + σ̂2m2.

Note that the linearization of (1.18) is the linearization of the first two equations of the full
model (mcGL) subject to relation

B(A) = B0 + f−1h|A0|2 − f−1h|A|2 = B0 + f−1h|A0|2 − f−1h(U2 + V 2)

of (1.17). By the chain rule, this is equivalent to(
Id2 0

)
L(ε, σ, x̂)

(
Id2

dB/d(U, V )

)
, dB/d(U, V )|(Ū ,V̄ ) =

(
−2Ūf−1h −2V̄ f−1h

)
,

where L is the linearization about the periodic wave in the full model (mcGL). As the same expo-
nential coordinate transformation taking L to constant-coefficient takes dB/d(U, V ) to a constant-
coefficient right multiplier

(
Id2 N

)
canceling the singularity in the third equation of the full system

(2.3), we may conclude that

(3.3) m(ε, σ) =
(
Id2 0

)
M(ε, σ)

(
Id2
N

)
, with N =

(
−f−12A0h 0

)
,

or

(3.4)

m(ε, σ) = −σ2

(
ℜ(a) −ℑ(a)
ℑ(a) ℜ(a)

)
+ iσ

(
−2κℑ(a) −2κℜ(a)
+2κℜ(a) −2κℑ(a)

)
+

(
2A2

0ℜ(c)− f−12A2
0hℜ(d) 0

2A2
0ℑ(c)− f−12A2

0hℑ(d) 0

)
.

Alternatively, comparing (3.4) against (3.2), and using relation ĉ = c − df−1h from (1.19), we
may verify (3.3) by direct computation.
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3.2. Matrix perturbation expansion. We complete our study by a matrix perturbation analysis
of M . Specifically, taking a matrix perturbation point of view, we observe that the change of
coordinates M → S−1MS with

(3.5) S =

(
Id2 0
N Idm

)

block diagonalizes the singular portion ε−1

 0 0 0
0 0 0

2A0h 0 f

 of M , giving

(3.6) S−1M(ε, σ)S =

(
m(ε, σ) 0

02 iσε−1f

)
+

(
02 O(1)

O(1) O(1)

)
.

Proposition 3.1. Let det f ̸= 0. Then, for |σ| ∈ [1/C,C], for any fixed C > 0, and ε sufficiently
small, specM(ε, σ) consists of m eigenvalues lying within o(ε−1) of ε−1 spec f together with 2
eigenvalues lying within o(1) of Darcy eigenvalues spec(m).

Proof. The first, block-diagonal term of approximate block-diagonalization (3.6) under the assump-
tion det f ̸= 0 has spectral separation of order σ/ε ≳ ε−1 between the upper left and lower right
blocks. By standard matrix perturbation theory [K, MZ, PZ], it follows that that there exists a
further exact near-identity diagonalizer

(3.7) T :=

(
Id2 θ1
θ2 Id

)
with |θj | bounded by the size O(1) of off-diagonal blocks divided by the spectral separation, or
|θj | = O(ε). This gives

(3.8) T−1S−1M(ε, σ)ST =

(
m(ε, σ) +O(ε) 0

02 ε−1iσf +O(1)

)
,

whence the result follows by continuity of spectra under matrix perturbation. □

Corollary 3.2. For ĉ ̸= 0, κ2 ̸= κ2Dstab, and det f ̸= 0, stability of the Darcy system (1.18)–(1.19)
is necessary for stability of the full model (mcGL) for ε sufficiently small.

Proof. For ĉ ̸= 0, κ2 ̸= κ2Dstab, failure of stability of the Darcy system (1.18)–(1.19) implies that
some Darcy eigenvalue in spec(m) must take on a strictly positive real part for some |σ∗| > 0.
Taking C > 0 large enough in Proposition 3.1 that σ∗ ∈ [1/C,C], we find for ε small enough that
the corresponding eigenvalue of M(ε, σ∗) must also have strictly positive real part, by continuity.
Thus, Darcy stability is necessary for full stability, by contradiction. □

Remark 3.3. In the above argument, we used crucially that (σ/ε)f have eigenvalues of norm ≳ ε−1

assuming det f ̸= 0, or equivalently σ ≳ 1, and also uniform boundedness of all terms not involving
ε−1, in particular σ2. Thus, the restriction σ ∈ [1/C,C] is sharp. Note that this region in which
the Darcy model is relevant is disjoint from the region |σ| ≤ ε/C for which the Taylor expansion
leading to full Eckhaus conditions is valid.

Remark 3.4. Recalling that the Eckhaus stability condition µ0
t < 0 in the translational mode,

already shown to be necessary for stability in Section 2, agrees with the Darcy condition for stability
of its translational mode, we see that the new information contained in Corollary 3.2 is precisely
the condition for stability of the order-one Darcy mode: ℜ(ĉ) < 0.
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3.3. Refinement in the scalar case. Let us show that Proposition 3.1 can be refined in the
scalar case.

Proposition 3.5. Suppose µ0
c < 0. Then µt = µD,t +O(ε) where λD,t(σ̂) = iαD,tσ̂+ µD,tσ̂

2 is the
expansion of the neutral eigenvalue of (3.2).

Proof. From Proposition 2.11, we can conclude that ℜ(b̂(κ2)) is an increasing function of κ2 as (1.6)

implies A0(κ
2) is a decreasing function and ℜ(d)h/f < 0. Moreover, b̂(0) is given by

b̂(0) = b̃− dh

f

ℜ(b̃)
ℜ(c)

= b̃− dh

fℜ(c)
ℜ(b̃).

Taking real parts, we find

ℜ(b̂(0)) =
(
1− ℜ(d)h

fℜ(c)

)
ℜ(b̃) > 0,

by the lower bound on ℜ(d)h/f in Proposition 2.11.

Hence the Darcy reduction gives a complex Ginzburg-Landau equation of the form studied in
[WZ2], from which we can obtain an expression for µD,t by either Kato-style expansion as in [WZ2]
and then rearranging or by matched asymptotics as done in Appendix C. In either case, the
expression we want is

(3.9) µD,t = −
(
− 2κℑ(a)− αD,t

)2
+ 4κ2ℜ(a)2 + 2A2

0

(
ℜ(a)ℜ(ĉ) + ℑ(a)ℑ(ĉ)

)
2A2

0ℜ(ĉ)
,

with

(3.10) αD,t = −2κℑ(a) + 2κℜ(a)ℑ(ĉ)
ℜ(ĉ)

.

Comparing (3.9) and (2.56) completes the proof, where we’ve used the critical observation that
the Darcy reduction at the desired frequency has the same amplitude A0 as the original amplitude
system. □

Note that this refinement is still of the form “Darcy stability is necessary but not sufficient” as
we did not need ℜ(d)h/f < 0, only the supercriticality condition ℜ(ĉ) < 0. To adapt the proof to

ℜ(d)h/f > 0, we note that then ℜ(b̂) is then a decreasing function of κ2, with ℜ(b̂(κ2E)) = ℜ(b̃) > 0.

Let us comment that the Darcy reduction at frequency κ∗ does not necessarily carry stability
information for other frequencies, and in particular the Eckhaus condition for a typical κ∗ does
not play a significant role. Indeed, for fixed κ∗ and assuming µ0

c < 0, the existence range for
the Ginzburg-Landau equation is smaller than that of the original amplitude system. In fact, by
cleverly choosing a, b, c, d, f, h, one can make the existence range for Darcy at small κ2∗ smaller than
the stable range for the original amplitude system.

Remark 3.6. One might call our Darcy reduction “amplitude-adapted” as it perfectly reconstructs
the periodic wave it was generated by. The downside of this “amplitude-adapted” Darcy reduction
is that it only carries information about that specific wave.

An alternative way to perform the Darcy reduction, which one might call “frequency-adapted”,
is to choose B̃0 to be B0, so that the reduced Ginzburg-Landau equation is

At̂ = aAx̂x̂ + b̃A+ ĉ|A|2A.
This Ginzburg-Landau equation has periodic traveling waves in the same frequency range as the
original amplitude system, hence the name “frequency-adapted” as it is generically the only way to
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preserve the range of frequencies, but the waves generically have different amplitudes compared to
the corresponding frequency in the original amplitude system. An entirely similar computation to
what we’ve done so far yields an Eckhaus condition for the “frequency-adapted” Darcy reduction
of the form

κ2 ≤ κ̃2S :=
2ℜ(b̃)
ℜ(ĉ)(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ))

4ℜ(a)2(1 + q̂2) + 2ℜ(a)
ℜ(ĉ)

(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

) .
We claim under the assumption that µ0

c < 0 and the Benjamin-Feir-Newell criterion (BFN) that
κ2S ≤ κ̃2S for κ2S as in (2.60). Indeed, Proposition 2.11 can be rephrased as ℜ(c) < ℜ(ĉ) < 0, and so
we readily obtain

ℜ(c)4ℜ(a)2(1+q̂2)+2ℜ(a)
(
ℑ(a)ℑ(ĉ)+ℜ(a)ℜ(ĉ)

)
≤ ℜ(ĉ)4ℜ(a)2(1+q̂2)+2ℜ(a)

(
ℑ(a)ℑ(ĉ)+ℜ(a)ℜ(ĉ)

)
.

Taking the reciprocal then yields

1

ℜ(c)4ℜ(a)2(1 + q̂2) + 2ℜ(a)
(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

)
≥ 1

ℜ(ĉ)4ℜ(a)2(1 + q̂2) + 2ℜ(a)
(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

) .
Multiplying both sides by ℜ(b̃)(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)) < 0 by (BFN) then yields

ℜ(b̃)(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ))
ℜ(c)4ℜ(a)2(1 + q̂2) + 2ℜ(a)

(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

)
≤ ℜ(b̃)(ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ))

ℜ(ĉ)4ℜ(a)2(1 + q̂2) + 2ℜ(a)
(
ℑ(a)ℑ(ĉ) + ℜ(a)ℜ(ĉ)

) .
As this is a simple rearrangement of κ2S ≤ κ̃2S , we obtain our desired conclusion. Hence, we conclude
that the “frequency-adapted” Darcy reduction also carries necessary but not sufficient stability
about every wave, however, it is less precise than the stability information of the “amplitude-
adapted” Darcy reduction.

4. Sufficiency of Eckhaus conditions, case m = 1

Up to now, we have determined asymptotics for the second-order Taylor expansion at the origin
of the dispersion relation for the singular (mcGL) model. This gives useful necessary conditions
(2.63) for stability of exponential solutions in terms of the signs of the real parts of second-order
coefficients µt and µc. We shall show later that the second-order Taylor expansions for (mcGL)
well-approximate those for the key neutral modes of the exact spectrum of the linearized operator
around spatially periodic convective Turing patterns, hence these conditions are necessary also
for diffusive stability of the full periodic waves. Indeed, the proof relies strongly on the spectral
perturbation analysis done above for (mcGL), the exact spectra being shown to coincide to that of
a small perturbation of the Fourier symbol analyzed above.

The above study, however, concerns only the radius of convergence of the Taylor series about
the origin, which can be seen (see Section 4) to correspond to |σ̂| ≤ ε/C in the scaling for (mcGL).
To obtain sufficient conditions for stability, we must show stability for all σ̂ ∈ R.

In this section we continue our study, treating the two-parameter matrix perturbation in ε and
σ̂ as a one-parameter perturbation in various regimes, in order to complete all cases and obtain
equivalent conditions for stability: specifically, to show that (strict) asymptotic diffusive stability
(2.62) is sufficient for stability, just as (nonstrict) asymptotic neutral stability (2.63) is necessary.
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We start by introducing the rescaled parameter σ̌ := σ̂/ε, or σ̂ = εσ̌, resulting in a desingularized
matrix perturbation problem

(4.1)

λ

u0
v0
w0

 =

(
− σ̌2ε2

 ℜ(a) −ℑ(a) 0
−ℑ(a) ℜ(a) 0
2A0ℜ(g) 2A0ℑ(g) eB

+ iσ̌

 O(ε) O(ε) 0
O(ε) O(ε) 0

2A0h+O(ε) 0 f


+

2A2
0ℜ(c) 0 A0ℜ(d)

2A2
0ℑ(c) 0 A0ℑ(d)
0 0 0

)u0
v0
w0


corresponding to a parabolic singular perturbation of a relaxation system.

4.1. Case (i) |σ̌| ≤ 1/C, C ≫ 1 (σ̂ ≤ ε/C). On this region, we consider (2.41) as a family of
matrix perturbation problems in σ̌ parametrized by ε, with coefficients uniformly bounded, and
Taylor expand around σ̌ = 0 as described just above. The balancing procedure described in Section
2.2 then yields an analytic expansion in σ̌ of associated eigenvalues that is uniformly convergent in
a small ball with respect to ε sufficiently small.

Comparing to the expansions (2.26), (2.42) in σ derived in Section 2, we see that these are

(4.2)
λ̂s(ε, σ̌) = 2A2

0ℜ(c) +O(σ̌), λ̂t = α̌tσ̌ + µ̌tσ̌
2 +O(σ̌3),

λ̂c = α̌cσ̌ + µ̌cσ̌
2 +O(σ̌3),

where

(4.3)
α̌t = εαt = O(ε) ,

α̌c = εαc = i(f + 2A0hp) +O(ε),

and

(4.4)
µ̌t = ε2µt = εµ0

t +O(1) ,

µ̌c = ε2µc = 2A0ph(f + 2A0hp) +O(ε).

Thus the stability conditions are sufficient as well as necessary on this region.

4.2. Case (ii) 1/C ≤ |σ̌| ≤ C (ε/C ≤ |σ̂| ≤ Cε). On this region, we take a different point of view,
considering (4.1) as a compact family of matrix perturbation problems parametrized by

1/C ≤ |σ̌| ≤ C,

C > 0 arbitrary, with perturbation parameter ρ := εσ̌ = o(σ̌), with again all coefficients uniformly
bounded. That is, we consider

M(σ̌) := M0(σ̌) + ρM1(σ̌) + ρ2M2(σ̌)

with

(4.5)

M0 =

2A2
0ℜ(c) 0 A0ℜ(d)

2A2
0ℑ(c) 0 A0ℑ(d)

2A0hiσ̌ 0 fiσ̌

 ,

M1 = i

−2κℑ(a) −2κℜ(a) 0
2κℜ(a) −2κℑ(a) 0

2A0κℑ(g) 0 0

 ,

M2 = −

 ℜ(a) ℑ(a) 0
−ℑ(a) ℜ(a) 0
2A0ℜ(g) 2A0ℑ(g) eB

 .
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Evidently, detM0 ≡ 0, hence we may factor the characteristic polynomial

(4.6) p(λ; σ̌) := det(λ−M0(σ̌))

as p(λ; σ̌) = λq(λ; σ̌), where q is quadratic, namely

(4.7) q(λ; σ̌) = λ2 + βλ+ γ,

where

(4.8) β = −(2A2
0ℜ(c) + fiσ̌), γ = 2A2

0if σ̌
(
ℜ(c)− hℜ(d)

f

)
= 2A2

0if σ̌ℜ(ĉ),

where, following (1.19), ĉ := c− dh
f is the updated value of c in the Darcy reduction.

Remark 4.1. The factorization (4.7) can also be seen by direct expansion of the determinant along
the central column of M0(σ̌).

Let us investigate the appearance of a pure imaginary root λ = iτ . This gives from

0 = q(iτ ; σ̌) = −τ2 + βiτ + γ

the pair of equations

(4.9)
0 = ℜq(iτ ; σ̌) = −τ2 − τℑ(β) + ℜ(γ) = τ2 − τfσ̌,

0 = ℑq(iτ ; σ̌) = τℜ(β) + ℑ(γ) = 2A2
0

(
−ℜ(c)τ + σ̌fℜ(ĉ)

)
.

Solving, we obtain for τ = 0 the trivial solution τ = 0, σ̌ = 0, which we have specifically excluded
by taking σ̌ ̸= 0, or else τ = 0, ĉ = 0, which we exclude by the genericity assumption

(4.10) ĉ ̸= 0,

and, otherwise, the linear system

(4.11) τ = fσ̌, τ = σ̌f
ℜ(ĉ)
ℜ(c)

,

which is consistent for σ̌ ̸= 0 if and only if

ℜ(c) = ℜ(ĉ) ⇐⇒ 0 = hℜ(d).

We exclude the latter case by the genericity assumption

(4.12) hℜ(d) ̸= 0.

Recall that first-order coupling coefficients are d and h, with the hyperbolic model decoupling if
either of these vanish. Thus, failure of (4.12) is related to a degenerate (at least partial) decoupling
of the system.

Assuming (4.12), we find that there are no imaginary eigenvalues of q on 1/C ≤ |σ̌| ≤ C. Thus,
by continuity/compactness, there is a uniform spectral gap between λ = 0 and the remaining
two eigenvalues of p(·; σ̌). By standard matrix perturbation theory, this yields an analytic branch
λ0(ρ; σ̌) with λ0(0;σ) = 0, convergent for |ρ| = ε|σ̌| sufficiently small. By standard matrix pertur-
bation theory, we obtain also continuous expansions in ρ of the remaining two nonzero eigenvalues
of M0.

Stability of large (nonzero real part) eigenvalues is straightforward, at least for |σ̌| bounded, since
continuity of spectrum is then enough to conclude stability or instability on the whole domain.
Thus, the problem reduces to checking stability at the left endpoint |σ̌| = 1/C, already determined
by Taylor series analysis. Stability of the perturbed zero mode requires more care, as, being neutral
to lowest order, it will be determined by the second-order term in the Taylor expansion.
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4.2.1. Matched expansion of the zero mode. As often the case with matrix perturbation theory, the
abstract theory (as above) is useful for establishing analyticity, but it is easier to compute coefficients
by positing an analytic expansion and finding coefficients by matching terms at successive orders.
Namely, defining λ0(ρ) = λ1ρ + λ2ρ

2 + H.O.T., we may expand the characteristic polynomial
equation 0 = det(M(ρ; σ̌)− λ0), after factoring out a common factor ρ from the second column, as
(4.13)

0 = det

2A2
0ℜ(c) + ρ(−2iκℑ(a)− λ1) ρℑ(a)− 2iκℜ(a) A0ℜ(d)
2A2

0ℑ(c) + 2iκℜ(a)ρ −2iκℑ(a)− λ1 + ρ(ℜ(a)− λ2) A0ℑ(d)
2A0iκℑ(g)ρ+ 2A0hiσ̌ ρ2A0ℑ(g) −ρλ1 + fiσ̌

+O(ρ2)

= det

2A2
0ℜ(c) −2iκℜ(a) A0ℜ(d)

2A2
0ℑ(c) −2iκℑ(a)− λ1 A0ℑ(d)

2A0hiσ̌ 0 fiσ̌

+O(ρ)

= iσ̌ det

2A2
0ℜ(c) −2iκℜ(a) A0ℜ(d)

2A2
0ℑ(c) −2iκℑ(a) A0ℑ(d)

2A0h 0 f

− iσ̌λ1 det

2A2
0ℜ(c) 0 A0ℜ(d)

2A2
0ℑ(c) 1 A0ℑ(d)

2A0h 0 f

+O(ρ),

where in the third inequality we have factored out iσ̌ from the third row. Thus,

(4.14)

λ1 = i det

2A2
0ℜ(c) −2κℜ(a) A0ℜ(d)

2A2
0ℑ(c) −2κℑ(a) A0ℑ(d)

2A0h 0 f

 /det

2A2
0ℜ(c) 0 A0ℜ(d)

2A2
0ℑ(c) 1 A0ℑ(d)

2A0h 0 f


= i
(
− 2κℑ(a) + 2κℜ(a)ℑ(c̃)

ℜ(c̃)

)
.

We note that λ1 is pure imaginary (as noted earlier by symmetry), and independent of σ̌.

To determine the second-order coefficient λ2, we now expand to the next order in (4.13) and
match first-order coefficients in ρ. Expanding the first line of (4.13) and collecting first-order
terms, we have the term

−iσ̌λ2ρdet

2A2
0ℜ(c) 0 A0ℜ(d)

2A2
0ℑ(c) 1 A0ℑ(d)

2A0h 0 f

 = −iσ̌λ2ρ2A
2
0

(
ℜ(c)f − hℜ(d)

)
,

as the only term involving λ2, similarly as in the previous calculation. The remaining terms can
be calculated from the O(ρ) coefficient in (4.13) after using multilinearity to remove the λ2 in the
central column. In particular, denoting the remaining terms as ρΣ, where
(4.15)

Σ :=
∂

∂ρ
det

2A2
0ℜ(c) + ρ(−2iκℑ(a)− λ1) −2iκℜ(a) + ρℑ(a) A0ℜ(d)
2A2

0ℑ(c) + 2iκℜ(a)ρ (−2iκℑ(a)− λ1) + ρℜ(a) A0ℑ(d)
2A0hiσ̌ + 2A0iκℑ(g)ρ 2A0ℑ(g)ρ fiσ̌ − ρλ1

∣∣∣∣∣
ρ=0

we see that we have

(4.16) λ2 =
iΣ

σ̌2A2
0

(
ℜ(c)f − hℜ(d)

) .
While the actual expression for Σ in (4.15) is quite complicated, it is important to note that it is
affine in σ̌ as can readily be seen by performing cofactor expansion along the third column. Hence,
to determine stability by sgnλ2, we need only compute the sign of ℑ(Σ).

The expression for ℑ(Σ) is also rather complicated, but the important point is that it too is
affine in σ̌, hence, by (4.16), ℜ(λ2) is affine in (1/σ̌).
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Thus, to check stability, it is sufficient to check only at the endpoints, |σ̌| = 1/C- where it is
already known from the Taylor expansion- and |σ̌| = C, C > 0 arbitrarily large. At the latter
boundary, |σ̌| large, we may either check by throwing out O(1/σ̌) terms in the just-completed
computation, or else by comparing to a separate computation for |σ̌| ≥ C, C > 0 sufficiently large,
to be done in the next steps. As the first possibility is rather complicated, we will follow that latter
approach and defer this to the following sections.

Remark 4.2. In the vectorial case m = 1, the computations in (4.15)-(4.16) become significantly
more complicated, another point in which the scalar and vectorial cases significantly differ. However,
the end result is the same, giving a quantity affine in 1/σ̌. Likewise, the computations (4.9)-(4.11),
though a bit more complicated, extend to give the same result for m > 1. We carry out these
computations in detail in Section 5.

4.3. Case (iii) C ≤ |σ̌| ≤ 1/Cε (Cε ≤ |σ̂| ≤ 1/C). Here, |σ̌| ≫ 1 but |ρ| ≪ 1. On this region,
reviewing M0 in (4.5), we see that, assuming as usual invertibility of f , there is now a dominant
large eigenvalue iσ̌f , with associated left and right eigenvectors

(4.17) l =
(
2f−1A0h 0 1

)
, r =

(
0 0 1

)T
.

Motivated by this observation, we make the global change of coordinates M̃(σ) := T−1M(σ)T ,
where

(4.18) T =

 1 0 0
0 1 0

−2f−1A0h 0 1

 ,

yielding

(4.19) M̃(σ̌) =

(
M̌ θ1
θ2 if σ̌ + 2f−1A2

0hℜ(d)− eBρ
2

)
,

with |θj |, |ρ| = O(1) and
(4.20)

M̌(σ̌) =

(
2A2

0(ℜ(c)−ℜ(d)f−1h) 0
2A2

0(ℑ(c)−ℑ(d)f−1h) 0

)
+ ρi

(
−2κℑ(a) −2κℜ(a)
2κℜ(a) −2κℑ(a)

)
− ρ2

(
ℜ(a) ℑ(a)
−ℑ(a) ℜ(a)

)
.

Here, the lower righthand entry is dominated by the σ̌ order term if σ̌ ≫ 1, whereas remaining
terms are O(1); in particular, there is separation of order |σ̌| between this entry and the spectra
of the upper lefthand block, and off-diagonal blocks of order one. Thus, there exists an exact
diagonalizing transformation of form S = Id + O(1/|σ̌|) showing that the real part of the largest
eigenvalue is 2f−1A0ℜ(d) + o(1), which has sign to first order independent of σ̌. We have from
the analysis of case (ii) that this largest eigenvalue must have negative real part at the innermost
endpoint |σ̌| = C, hence

2f−1A2
0hℜ(d) < 0 and therefore also 2f−1A2

0hℜ(d)− eBρ
2 < 0,

yielding by exact diagonalization that this eigenvalue is stable on the entire |σ̌|-interval.
On the complementary- i.e., upper left- exactly diagonal block, we obtain, similarly an O(1/|σ̌)

perturbation of (4.20). But, (4.20) may be recognized as the linearized Darcy system, with σ̂ = εσ̌
replaced by ρ, on the interval Cε ≤ |ρ| ≤ C. By standard analysis of the Darcy system, the
associated eigenvalues are to leading order 2A2

0ℜ(ĉ) and µ0
tρ

2. By comparison at the boundary
|σ̌| = C, the former must have negative real part, as one of the m+1 stable order-one eigenvalues.
We note that we have just verified indirectly the fact shown by direct computation for the scalar
case m = 1 in Section 3 that the stability conditions imply ℜ(ĉ) < 0. Our abstract argument here
has the advantage that it generalizes to the vector case m > 1.

30



As the latter has ℜµt < 0 by assumption/agreement of translational expansions for Darcy and
full model, we may conclude that the reduced Darcy system is stable for all ρ ∈ R, by standard
stability theory for complex Ginzburg-Landau as may be obtained readily by the quadratic formula:
in particular, on the |ρ| ≪ 1 region under consideration, where it may be obtained by inspection
of the second-order Taylor series.

However, the order |ρ|2 perturbation could change sign under o(1) perturbation, hence must
be treated differently. Fortunately, having already determined that the two other eigenvalues are
order 1 and |σ̂| ≫ 1, we have a spectral separation of order one between those and the order |ρ|2
eigenvalue, hence can repeat the argument of case (ii) to conclude that the analytic expansion in ρ
deduced there remains valid up to |ρ| ≪ 1, and so the coefficient of ρ2 in that expansion is affine in
σ̌ as already determined, with domain of validity ε/C ≤ |σ̌| ≤ 1/Cε including both those of cases
(ii) and (iii), hence this eigenvalue is stable iff and only if it is stable at the endpoints |σ̌| = ε/C and
|σ̌| = 1/Cε. As observed in the treatment of case (ii), it is stable at the inner endpoint |σ̌| = ε/C as
the outer endpoint of region (i) already determined. At the outer endpoint |σ̌| = 1/Cε, on the other
hand, the associated Darcy eigenvalue has strictly negative value bounded away from zero, which
property persists under o(1) perturbation to give stability of the exactly diagonalized eigenvalue.
Thus, we may conclude stability also of this smallest, order |ρ|2 eigenvalue.

Note that this in passing gives stability on the regime of case (ii), completing the analysis there.

4.4. Case (iv) 1/Cε ≤ |σ̌| ≤ 1/Cε2 (1/C ≤ |σ̂| ≤ 1/Cε). On this region, |ρ| ≥ 1/C and 1 + ρ2 ≪
|σ̌|, hence the lower righthand entry

if σ̌ + 2f−1A2
0hℜ(d)− eBρ

2

of M̃(σ̌) in (4.19) still dominates all other terms, giving a spectral separation of order |σ̌| between
this and the upper lefthand diagonal block, with off-diagonal terms θj now of order 1 + |ρ|2. It
follows that there is an analytic exact block diagonalization of form

Id +O((1 + |ρ|2)/|σ̌| = Id + o(1)

yielding in the lower righthand entry a real part 2f−1A2
0hℜ(d) + o(1) already verified as stable,

and in the 2× 2 upper lefhand block o(1) perturbations of the eigenvalues of the associated Darcy
system. As the later have real parts bounded above by a constant times −(1 + |ρ|2), hence by a
strictly negative constant, this property persists under o(1) perturbation, giving stability of the
corresponding exactly diagonalized eigenvalues.

4.5. Case (v) 1/Cε2 ≤ |σ̌| ≤ C/ε2 (1/Cε ≤ |σ̂| ≤ C/ε). Defining σ := ε2σ̌, and factoring out
1/ε2, we have the matrix perturbation problem ε−2(M0 +O(ε)), where

(4.21) M0 =

 −σ2ℜ(a) −σ2ℑ(a) 0
σ2ℑ(a) σ2ℜ(a) 0

2A0hiσ − σ22A0ℜ(g) −σ22A0ℑ(g) fiσ − σ2eB

 ,

where 1/C ≤ |σ| ≤ C, i.e., σ varies on a compact range. Evidently, M0 is lower block-diagonal,
with upper lefthand 2× 2 block of symmetric part negative definite with spectral gap ℜ(a)σ2, and
lower lefthand block having negative real part of spectral gap eBσ

2. Thus, the spectra of M0 have
real part uniformly negative over the range under consideration, and we obtain negativity of the
perturbed spectra by continuity of spectra under perturbation. Combining with previous cases,
this verifies stability up to |σ̌| ≤ C/ε2 provided asymptotic diffusive stability (2.62) holds.

Remark 4.3. In the vectorial case m > 1, the real part of the spectrum of the lower righthand
block (fiσ − σ2eB) is not determined simply by the real part of the spectrum of eB. However,
ℜ spec(fiσ − σ2eB) < 0 by Assumption (1.9), hence by continuity/compactness we still obtain a
uniform spectral gap.
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4.6. Case (vi) |σ̌| ≥ C/ε2 (|σ̂| ≥ C/ε). In this case, the order ρ2 = σ̌2ε2 terms dominate order σ̌
and other terms, and stability follows in straightforward fashion from parabolicity of the truncated
system. We omit the details of this standard argument; see, e.g., [MZ].

4.7. Final result. Combining the results of Sections 4.1-4.2, we have the following simple condition
for stability, analogous to those for the standard (nonsingular) complex Ginzburg-Landau system.

Proposition 4.4. Assuming the generic conditions of supercriticality (1.7), noncharacteristicity
of effective flux (2.40), nontrivial Jordan structure (2.28), and nonvanishing of ℜµ0

t ,ℜµ0
c in (2.44),

asymptotic diffusive stability (2.62), or ℜµ0
t ,ℜµ0

c > 0 with µ0
j as in (2.44), is necessary and sufficient

for diffusive stability (2.5) in the sense of Schneider of periodic (exponential) solutions (1.1) of
(mcGL) with m = 1, for 0 < ε ≤ ε0 sufficiently small, where ε0 is uniform on compact parameter
sets satisfying the above assumptions.

Proof. For fixed model parameters, the result follows for ε > 0 sufficiently small, by the arguments
of cases (i)-(vi) above, where the upper bound ε0 needed for ε depends only on lower bounds for the
various quantities assumed to be nonvanishing. As these quantities are continuous, their minima
are uniformly bounded from below on compact parameter sets where they do not vanish, and so
ε0 > 0 may be chosen uniformly for compact parameter sets on which our hypotheses hold. □

Coefficients µt and µt are explicitly computable, giving simple necessary and sufficient conditions
for stability on a par with those for the classical (nonsingular) complex Ginzburg-Landau equation.

Remark 4.5. The above argument is reminiscent of multi-parameter spectral perturbation com-
putations carried out in [JNRZ2, §4] and [BJNRZ, §2], in which, similarly, stability in successive
regions is related back ultimately to stability of a Taylor expansion about the origin. In all three
of these cases, there is an interesting analogy to relaxation systems and the studies of Kawashima,
Shizuta, Zeng, and others [ShK, Ze]. For other examples of multi-parameter expansion as related
to spectral stability, see, e.g., [PZ, BHZ, FS1, FS2].

5. Extension to m conservation laws

As noted earlier, the arguments in Section 2 for the scalar case m = 1 extend for the most part
word for word to the vector case m > 1, with the various symbols now representing vectors and
matrices rather than scalars, modulo the details indicated in Remarks 4.3, 2.7, and 4.2. We shall
therefore not repeat the full argument here, but only supply the specific computations in cases (i)
and (ii) that are needed to treat the aspects in which the system case requires further analysis
beyond what was given for the scalar case.

5.1. Region (i): Taylor expansion for vectorial case. There are two main steps in adapting
our proof of sufficiency in case (i). The first is to carry out the Kato-style expansions for µc,i from
them large eigenvalues and then to use matched asymptotics to obtain µt from the small eigenvalue.

We start as before with the preliminary diagonalization. First, we define a vectorized p, thought
of as a row vector, by

p := − ℜ(d)
2A0ℜ(c)

,

while keeping the same value of q as the in the scalar case. We further denote by ei the standard
basis, regarded as column vectors, of Rm. We will let 0 denote an appropriately sized array whose
entries are all 0. Then our left and right (generalized) eigenvectors become

(5.1) Ls =
(
1 0 −p

)
, Lt =

(
q 1 −qp

)
, Lc,i =

(
0 0 eTi

)
,
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and

(5.2) Rs =

 1
−q
0

 , Rt =

0
1
0

 , Rc,i =

pi
0
ei

 ,

where pi denotes the i-th entry of p. From here, a similar computation to the m = 1 case shows
that this basis block diagonalizes M0, with M̂0 a matrix of the form

(5.3) M̂0 =

(
0 A0(ℑ(d) + qℜ(d))
0 0

)
.

In the vector case, the matrix M1 is given by

M1 = i

 −2κℑ(a) −2κℜ(a) 0
2κℜ(a) −2κℑ(a) 0

2A0hε
−1 + 2A0κℑ(g) 0 ε−1f

 .

Computing the action of M1 on the left eigenvectors yields

LsM1 = i
(
−2κℑ(a)− 2A0p

(
ε−1h+ κℑ(g)

)
−2κℜ(a) −ε−1pf

)
,

LtM1 = i
(
−2κℑ(a)q + 2κℜ(a)− 2A0qp

(
ε−1h+ κℑ(g)

)
−2κℜ(a)q − 2κℑ(a) −ε−1qpf

)
,

Lc,iM1 = i
(
2A0hiε

−1 + 2κA0ℑ(gi) 0 eTi f
)
.

We can then readily obtain the expression for M1 in the eigenbasis as

M1 =

(
m1 s1
s2 M̂1

)
,

with m1 scalar, s1 an m + 1-row vector, s2 an m + 1-column vector, and M̂1 an m + 1 × m + 1
matrix. More specifically,

(5.4)

m1 = LsM1Rs = −ε−12A0p⃗h⃗i+O(1),

s1 = LsM1

(
Rt Rc,i

)
= i
(
−2κℜ(a) −ε−1p(f + 2A0hp)

)
+ i
(
0 O(1)

)
,

s2 =

(
Lt

Lc,i

)
M1Rs = i

(
−2ε−1A0qph+O(1)

2A0hε
−1

)
,

M̂1 =

(
Lt

Lc,i

)
M1

(
Rt Rc,i

)
= i

(
−2κℜ(a)q − 2κℑ(a) −ε−1qp(f + 2A0hp) +O(1)

0 ε−1(f + 2A0hp) +O(1)

)
.

We can perform a similar first order diagonalization, by choosing

T (σ̂, ε) =

(
1 0
σ̂t2 Idm+1

)(
1 σ̂t1
0 Idm+1

)
,

with corresponding inverse

T (σ̂, ε)−1 =

(
1 −σ̂t1
0 Idm+1

)(
1 0

−σ̂t2 Idm+1

)
.

Setting N(ε, σ̂) = T M(ε, σ̂)T −1 as before, we obtain

N(ε, σ̂) = N0 + σ̂N1(ε) + σ̂2N2(ε) + σ̂3N3(ε) +O(σ̂4),

with N0 = M0, and N1 given in block form

N1 =

(
m1 s1 + t1(M̂0 −m0)

s2 − (M̂0 −m0)t2 M̂1

)
,

from which we discover that choosing

(5.5) t1 = −s1(M̂0 −m0)
−1, t2 = (M̂0 −m0)

−1s2,
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makes N1 block diagonal. Under this choice, we find that the coefficient of σ̂2, N2, is of the form

(5.6)

N2 = −M2 +

(
0 t1
t2 0

)
M1 +M1

(
0 −t1

−t2 0

)
+

(
0 t1
t2 0

)
M0

(
0 −t1

−t2 0

)
+M0

(
t1t2 0
0 0

)
+

(
0 0
0 t2t1

)
M0.

As M2 and the left/right eigenvectors are all O(1), we see that to leading order, N2 is given by

N2 =

(
0 t1
t2 0

)
M1+M1

(
0 −t1

−t2 0

)
+

(
0 t1
t2 0

)
M0

(
0 −t1

−t2 0

)
+M0

(
t1t2 0
0 0

)
+

(
0 0
0 t2t1

)
M0+O(1).

Computing the requisite matrix products and zooming in on the bottom m+ 1×m+ 1 block, we
find

N̂2 = t2s1 − s2t1 + t2t1(M̂0 −m0) +O(1).

Plugging in (5.5), we then find that

(5.7) N̂2 = −s2t1 +O(1).

We observe that, as before, M̂2
0 = 0, and so (M̂0 −m0)

−1 is given by

(5.8) (M̂0 −m0)
−1 = − 1

m0

(
Id+

1

m0
M̂0

)
.

In particular, we discover that

(5.9) t1 = −s1(M̂0 −m0)
−1 =

1

m0
s1 +

4A0iκℜ(a)
m2

0

(
0 ℑ(d) + qℜ(d)

)
.

So to leading order, N̂2 is −m−1
0 s2s1. Expanding (5.7) out, we get

(5.10) N̂2 =
1

m0

(
4κℜ(a)A0qphε

−1 2A0qphp
(
f + 2A0hp

)
ε−2

−4κℜ(a)A0hε
−1 −2A0hp(f + 2A0hp)ε

−2

)
+H.O.T.

The final piece of information we need before we “balance” the Jordan block away is N̂3, the bottom
m+ 1×m+ 1 block of N3. We begin by collecting cubic terms in our expansion to get

N3 = M1

(
t1t2 0
0 0

)
+

(
0 0
0 t2t1

)
M1 +

(
0 t1
t2 0

)
M1

(
0 −t1

−t2 0

)
+H.O.T.

From this, we can extract the bottom right block as

(5.11) N̂3 = t2t1M̂1 −m1t2t1 +H.O.T. = t2t1(M̂1 −m1) +H.O.T.

We observe from (5.3) and (5.4) that the reduced spectral problem

N̂(σ̂, ε) = M̂0 + σM̂1 + σ̂2N̂2 + σ̂3N̂3 +O(σ̂4),

is, to first order in σ̂, upper block triangular. We then observe that we only need the bottom left
block of N̂3 for our balancing transformation. We observe that the first column of t2t1 is O(ε−1),

as the first entry of t1 is O(1) and t2 = O(ε−1). In particular, since M̂1 is also upper block trian-

gular, we find that the bottom left block of N̂3 is O(ε−2), compared to the expected order of O(ε−3).

In order to find the bottom left block of N̂3, we begin by observing that

t2 = − i

m0

(
O(ε−1)

2A0hε
−1 +O(1)

)
.

Hence, we find that

N̂3 = − i

m2
0

(
O(ε−1)
2A0hε

−1

)(
2κℜ(a) O(ε−1)

)(2A0phε
−1 −ε−1qpf

0 ε−1(f + 2A0hp) + ε−12A0phIdm

)
+H.O.T.
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Computing the above products, we find

(5.12) N̂3 = − i

m2
0

(
O(ε−2) O(ε−3)

8ε−2κℜ(a)A2
0hph+O(ε−1) O(ε−3)

)
.

We now “balance” N̂(ε, σ̂) by sending N̂(ε, σ̂) → O(ε, σ̂) := S(σ̂)N̂(ε, σ)S(σ)−1 with S(σ̂) given
by

S(σ̂) :=
(
iσ̂ 0
0 Idm

)
.

Expanding O in powers of σ̂ as O(ε, σ̂) = σ̂O1 + σ̂2O2 +O(σ̂3), we obtain

(5.13)

O(ε, σ̂) = iσ̂

(
−2κ

(
ℑ(a) + qℜ(a)

)
A0

(
ℑ(d) + qℜ(d)

)
4κA0ℜ(a)

m0
hε−1 +O(1) ε−1(f + 2A0hp) +O(1)

)

+ σ̂2

(
4κℜ(a)A0qph

m0
ε−1 +O(1) ε−1qp(f + 2A0hp) +O(1)

−8κℜ(a)A2
0hph

m2
0

ε−2 +O(ε−1) −2A0
m0

hp(f + 2A0hp)ε
−2 +O(ε−1)

)
+O(σ̂3).

For the purposes of analyticity of the dispersion relations, we require the reduced convection
matrix f + 2A0hp to be invertible, with simple eigenvalues. Let us recall that the definition of p
implies that the reduced convection matrix is independent of κ as p = −ℜ(d)/(2A0ℜ(c)). Under
this assumption we obtain m + 1 analytic in σ̂ dispersion relations which we denote λt and λc,i,
i = 1, ...m, admitting the expansions

(5.14)
λt(ε, σ̂) = iαtσ̂ + µtσ̂

2 +O(σ̂3),

λc,i(ε, σ̂) = iαc,iσ̂ + µc,iσ̂
2 + (σ̂3),

with αc,i admitting the expansion

(5.15) αc,i = ε−1α0
c,i +O(1),

where α0
c,i ∈ spec(f + 2A0hp).

We note that αt is real-valued by standard matrix perturbation arguments (as in the scalar
case). However, in the vector case, the αc,i are not necessarily real-valued, hence we require the
additional, first-order stability condition (1.23) that iαc,i are pure imaginary. If there are αc,i with
with nonzero real part, corresponding to a conjugate pair of eigenvalues of the effective flux matrix
(f+2A0hp), then stability fails in the first-order term of the spectral expansion, for σ̂ of appropriate
sign. If on the other hand all αc,i are real and distinct, then we may conclude by symmetry that
not only the leading order contribution, but the entire first-order terms of these eigenvalues are
pure imaginary, and thus stability holds (neutrally!) at first order (see Remark 2.13). Thus, we
require that the reduced convection matrix f+2A0hp be strictly hyperbolic, and noncharacteristic.
Again, this makes very much sense from the point of view of hyperbolic relaxation on systems,
as the effective flux is none other than the convection matrix for the associated Chapman-Enskog
equilibrium system, in which ε−1 term is required to be in equilibrium, or vanishing to lowest order
(see Remark 2.16).

To evaluate the µc,i, we let ri and ℓi be the right and left eigenvectors of f +2A0hp respectively,
and set

(5.16) rc,i =

(
0
ri

)
+O(ε), ℓc,i =

(
ci ℓi

)
+O(ε),

where ci is a constant whose value is chosen so that ℓc,i is a left eigenvector of O1. We remark that
we will not need the precise value of ci in order to determine µc,i to leading order. To find µc,i to
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leading order, we compute ℓc,iO2rc,i, where we find

(5.17) µc,i = ε−2
(
−

2A0α
0
c,iℓihpri

m0

)
+O(ε−1),

or after plugging in the definition of p and m0,

(5.18)

µc,i = ε−2ℓi
hℜ(d)

2A2
0ℜ(c)

(
f − h

ℜ(d)
ℜ(c)

)
ri +O(ε−1)

= ε−2
α0
c,iℓihℜ(d)ri
2A2

0ℜ(c)2
+O(ε−1).

The other step in adapting Case (i) is to perform the matched asymptotics to find the coefficients
αt and µt. As before, Kato-style expansions are much more complicated than matched asymptotics
due to αt and µt being lower order than αc,i and µc,i. In a similar fashion to the m = 1 case, we
can factor out an iσ̂ from the last m rows of M(ε, σ̂) and a copy of iσ̂ from the second column,
leading to an expansion of the form

det(M(ε, σ̂)− λtIdm+2) = (iσ̂)m+1
(
P0 + iσ̂P1 +H.O.T.

)
,

with P0 given by

(5.19) P0 := det

 2A2
0ℜ(c) −2κℜ(a) A0ℜ(d)

2A2
0ℑ(c) −2κℑ(a)− αt A0ℑ(d)

2A0hε
−1 + 2A0κℑ(g) 2A0ℑ(g) ε−1f − αtIdm

 .

Let f1, ..., fm denote the eigenvalues of f . By our Kato expansion, we know that we can take
αt = O(1), and so the bottom right m × m block is invertible. Hence, by standard identities for
block matrices

P0 =
( m∏

i=1

(
ε−1fi − αt

))
det

((
2A2

0ℜ(c) −2κℜ(a)
2A2

0ℑ(c) −2κℑ(a)− αt

)

−
(
A0ℜ(d)
A0ℑ(d)

)
(ε−1f − αtIdm)−1

(
2A0hε

−1 + 2A0κℑ(g) 2A0ℑ(g)
))

.

We note that (
ε−1f − αtIdm

)−1
= εf−1 +O(ε2),

and so P0 = 0 can be approximated by

P0 = det

((
2A2

0ℜ(c) −2κℜ(a)
2A2

0ℑ(c) −2κℑ(a)− αt

)
−
(
A0ℜ(d)
A0ℑ(d)

)
f−1

(
2A0h 0

)
+H.O.T.

)
= 0.

We then conclude that

(5.20) αt = −2κℑ(a) + 2κℜ(a)ℜ(c)−ℜ(d)f−1h

ℑ(c)−ℑ(d)f−1h
+O(ε),

which matches the scalar case as ĉ = c− df−1h in the systems case.
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Turning to µt, we find that P1 is given by

(5.21)

P1 := det

−2κℑ(a)− αt −2κℜ(a) A0ℜ(d)
2κℜ(a) −2κℑ(a)− αt A0ℑ(d)
2A0ℜ(g) 2A0ℑ(g) ε−1f − αtIdm


+ det

 2A2
0ℜ(c) −ℑ(a) A0ℜ(d)

2A2
0ℑ(c) ℜ(a) + µt A0ℑ(d)

2A0hε
−1 + 2A0κℑ(g) 0 ε−1f − αtIdm


+

m∑
j=1

det

 2A2
0ℜ(c) −2κℜ(a) Â0ℜ(d)j

2A2
0ℑ(c) −2κℑ(a)− αt Â0ℑ(d)j

2A0hε
−1 + 2A0κℑ(g) 2A0ℑ(g) Pj

 ,

where for a vector v, v̂j denotes the vector v with the j-th entry set to zero, and Pj denotes the
m×m matrix

Pj :=



ε−1f11 − αt ε−1f12 ... ε−1f1j−1 [eB]1j ε−1
1j+1 ...ε−1f1m

ε−1f21 ε−1f22 − αt ... ε−1f2j−1 [eB]2j ε−1
2j+1 ...ε−1f2m

...
ε−1fj1 ε−1fj2 ... ε−1fjj−1 [eB]jj + µt ε−1fjj+1 ... ε−1fjm

...
ε−1fm1 ε−1fm2 ... ε−1fmj−1 [eB]mj ε−1fmj+1 ... ε−1fmm − αt


.

In (5.21), we note that the dominant term is given by

det

−2κℑ(a)− αt −2κℜ(a) A0ℜ(d)
2κℜ(a) −2κℑ(a)− αt A0ℑ(d)
2A0ℜ(g) 2A0ℑ(g) ε−1f − αtIdm


+ det

 2A2
0ℜ(c) −ℑ(a) A0ℜ(d)

2A2
0ℑ(c) ℜ(a) + µt A0ℑ(d)

2A0hε
−1 + 2A0κℑ(g) 0 ε−1f − αtIdm

 ,

as each entry in the sum over j in (5.21) has one less power of ε, most readily seen by taking the
j-th entry and performing cofactor expansion along the j-th column. Indeed, we notice that as the
first two entries in that column are zero, there are in each cofactor m− 1 rows of size ε−1 where as
the first two matrices have m rows of size ε−1. Taking advantage of the same trick as we did for
P0, we observe that

P1 =
( m∏

i=1

(
ε−1fi − αt

))
det

((
−2κℑ(a)− αt −2κℜ(a)

2κℜ(a) −2κℑ(a)− αt

)
+O(ε)

)

+
( m∏

i=1

(
ε−1fi − αt

))
det

((
2A2

0ℜ(c) −ℑ(a)
2A2

0ℑ(c) ℜ(a) + µt

)
−
(
A0ℜ(d)
A0ℑ(d)

)
f−1

(
2A0h 0

)
+O(ε)

)
+O(εm−1).

Setting P1 = 0, and computing the leading 2× 2 determinants and solving for µt, we obtain

(5.22) µt = −
(
2κℑ(a) + αt

)2
+ 4ℜ(a)2κ2 + 2A2

0

(
ℜ(a)ℜ(ĉ) + ℑ(a)ℑ(ĉ)

)
2A2

0ℜ(ĉ)
+O(ε),

which we remark matches the scalar case.
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Remark 5.1. Much like the scalar case, the αc,i and µc,i can also be obtained in this manner.
However, unlike the scalar case, the procedure is not as simple. Indeed, our trick here was to invert
the bottom right block of (5.19), however, if αc,i ∼ ε−1, then there is no guarantee of that holding.
Instead, we use the invertibility of the top left corner to instead obtain

P0 = 2A2
0ℜ(c) det

((
−2κℑ(a) A0ℑ(d)
2A0ℑ(g) ε−1f

)
− 1

2A2
0ℜ(c)

(
2A2

0ℑ(c)
2A0hε

−1 + 2A0κℑ(g)

)(
−2κℜ(a) A0ℜ(d)

)
− αc,iIdm+1

)
.

Collecting the leading order terms, we discover

P0 = 2A2
0ℜ(c) det

((
O(1) O(1)

O(ε−1) ε−1
(
f − hℜ(d)

ℜ(c)

)
+O(1)

)
− αc,iIdm+1

)
.

As P0 is approximately the determinant of a lower block triangular matrix, we conclude that αc,i

is an eigenvalue of f − hℜ(d)/ℜ(c) to leading order, matching our earlier conclusion.

Turning to µc,i, the determinant independent of µc,i in (5.21) is to leading order given by

c4 := det

−2κℑ(a)− αc,i −2κℜ(a) A0ℜ(d)
2κℜ(a) −2κℑ(a)− αc,i A0ℑ(d)
2A0ℜ(g) 2A0ℑ(g) ε−1f − αc,iIdm


= α2

c,i det
(
ε−1f − αc,iIdm

)
+O(ε−(m+1)).

The first matrix outside of the sum yields a coefficient of µc,i of the form

det

(
2A2

0ℜ(c) A0ℜ(d)
2A0hε

−1 + 2A0κℑ(g) ε−1f − αc,iIdm

)
.

The same block determinant trick that gave us αc,i shows that this determinant is O(ε−(m−1)),
which is an acceptable error term for our purposes.

The remaining sum can be seen to give a coefficient of µc,i of the form

c3 := −2A2
0ℜ(c)αc,iTr

(
cof(ε−1f − αc,iIdm − ε−1hℜ(d)

ℜ(c)
) +H.O.T.

)
,

where cof(A) denotes the cofactor matrix of A. We recall from [DPTZ] that the adjugate matrix,
adj(A) = cof(A)T , has the same left/right eigenvectors as A, with the eigenvectors (ℓi, ri) having
eigenvalue

∏
j ̸=i λj , where λi denotes the eigenvalues of A. In particular, the cofactor matrix has

eigenvalues
∏

j ̸=i λj , where i = 1, ...,m, and so by assuming A has a single eigenvalue λi = 0 we
have that

Tr
(
cof(ε−1f − αc,iIdm − ε−1hℜ(d)

ℜ(c)
) +H.O.T.

)
=
∏
j ̸=i

αc,j +H.O.T. ∼ ε−(m−1).

Hence, c3 ∼ ε−m is the dominant coefficient of µc,i in P1 = 0. To make c4 more closely resemble
c3, we notice that ε

−1f −αc,iIdm is a rank-one update of ε−1f −αc,iIdm−hℜ(d)/ℜ(c), and so one
can use the corresponding update formula for the determinants to get

det(ε−1f − αc,iIdm) = det
(
ε−1f − hℜ(d)

ℜ(c)
− αc,iIdm

)
+

1

ℜ(c)
ℜ(d) adj

(
ε−1f − hℜ(d)

ℜ(c)
− αc,iIdm

)
h.
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In particular, the leading order component of det(ε−1f − αc,iIdm) is then, after diagonalizing
adj(f − hℜ(d)/ℜ(c)), given by

det(ε−1f − αc,iIdm) =
1

ℜ(c)
ℜ(d)riℓih

∏
j ̸=i

αc,j +H.O.T.

from which we recover the Kato-style formula from µc,i = −c4/c3.

5.2. Region (ii): nonexistence of imaginary eigenvalues. The first is to show that M0 in
case (ii) has no pure imaginary eigenvalues other than the simple zero eigenvalue in its kernel.
To this end, we note that the zero e-vectors for M0 are ℓ = (α, 1, β), r = (0, 1, 0)T , which gives
complementary projections

L =

(
1 0 0
0 0 1

)
and R =

 1 0
−α −β
0 1

.

This gives the reduced matrix

(5.23) M̂0 := LM0R =

(
2A2

0ℜ(c) A0ℜ(d)
2A0hî̂σ f î̂σ

)
complementary to the kernel of M0.

What we need to show is that M̂0 has no imaginary eigenvalues iτ for σ̂ ̸= 0, or, equivalently,

(5.24) ∆(τ, σ̌) := det

(
2A2

0ℜ(c)− iτ A0ℜ(d)
2A0hσ̌ fσ̌ − τ

)
has no real roots (τ, σ̌) for σ̌ ̸= 0.

Lemma 5.2. Under nondegeneracy conditions (5.27) and (5.28) below, along with ℜĉ ̸= 0, condi-
tion (5.24) holds for all choices of model parameters.

Proof. Expanding ∆ = 0, and setting real and imaginary parts separately to zero, we obtain for
the imaginary part

(5.25) 0 = det

(
−τ A0ℜ(d)
0σ̌ f σ̌ − τ

)
= τ det(fσ̌ − τ).

and (factoring out 2A0 from the first column and A0 from the first row)

(5.26) 0 = det

(
2A2

0ℜ(c) A0ℜ(d)
0σ̌ f σ̌ − τ

)
= det

(
ℜ(c) ℜ(d)
hσ̌ fσ̌ − τ

)
for the real part.

From (5.25), either τ = 0, or else det(fσ̌ − τ) = 0. In the first case, (5.26) simplifies to

0 = σ̌ det

(
ℜ(c) ℜ(d)
h f

)
= det(f)ℜ(ĉ),

which is excluded by our nondegeneracy condition ĉ ̸= 0, det f ̸= 0, and by the assumption σ̌ ̸= 0.
Thus, we need only examine the case det(fσ̌ − τ) = 0, or (using τ, σ̌ ̸= 0)

τ/σ̌ ∈ σ(f).

Taking without loss of generality coordinates such that f is diagonal,

f = diag{f1, . . . , fm},

impose the additional nondegeneracy conditions of “individual coupling”:

(5.27) hjℜ(dj) ̸= 0 for each j = 1, . . . ,m
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and strict hyperbolicity

(5.28) spec(f) simple.

Then, taking τ/σ̌ = fj , without loss of generality j = 1, and substituting in (5.26), we obtain,
factoring out σ̌ ̸= 0 from the final row,

0 = σ̌ det


ℜ(c) ℜ(d1) ℜ(d2) . . . ℜ(dm)
h1 0 0 . . . 0
h2 0 f2 − f1 . . . 0
...

...
... . . .

...
hm 0 . . . 0 fm − f1

 = σ̌h1ℜ(d1) det

f2 − f1 . . . 0
... . . .

...
0 . . . fm − f1

 ,

giving 0 = σ̌h1ℜ(d1)Πj ̸=1(fj − f1), which, by σ̌ ̸= 0, (5.27), and (5.28), is a contradiction. □

5.3. Region (ii): affine dependence on 1/σ̌. The second is to show that the observation for
m = 1 that (4.16) is affine in σ̌−1 remains true in the vector case m > 1. The same argument
as in 4.2 showing the denominator was proportional to σ̌ is easily adapted to the vectorial case to
show that the corresponding denominator is proportional to σ̌m and is thus omitted. Focusing on
the numerator and recalling (4.13), we see that the matrix M̃(ρ; σ̌) whose determinant is in the
numerator takes the block form

(5.29) M̃(ρ; σ̌) =

(
M̃11(ρ) M̃12

M̃21(ρ; σ̌) M̃22(ρ; σ̌)

)
,

where M̃12 is a 2×m constant matrix, M̃21 is a m× 2 matrix taking the form

(5.30) M̃21(ρ; σ̌) =
(
2A0iσ̌h 0m×1

)
+O(ρ)m×2,

and M̃22 is an m×m matrix taking the form

(5.31) M̃22(ρ; σ̌) = iσ̌f +O(ρ)m×m.

In (5.30) and (5.31), the subscripts denote the shape of the error terms. Of particular interest is the

order ρ term in the determinant of M̃(ρ; σ̌). Let us illustrate the computation in the m = 2 case,

the argument extends naturally to the higher m-case. Each column of M̃(ρ; σ̌) may be written as

(5.32) M̃i(ρ; σ̌) = M̃0
i (σ̌) + ρM̃1

i (σ̌).

Hence by multilinearity of det, we may compute the coefficient ρ in det(M̃(ρ; σ̌)) as

(5.33)

∂

∂ρ
det M̃(ρ; σ̌)|ρ=0 = det

( [
M̃1

1 (σ̌) M̃0
2 (σ̌) M̃0

3 (σ̌) M̃0
4 (σ̌)

] )
+ ...

+ det
( [

M̃0
1 (σ̌) M̃0

2 (σ̌) M̃0
3 (σ̌) M̃1

4 (σ̌)
] )

,

where the M̃ j
i are as in (5.32). There are three types of terms in the sum in (5.33), the first column

having upper index one, the second column having upper index one, and the final m columns having
upper index one. For each summand in (5.33), we use cofactor expansion along the column whose
upper index is one, which we now illustrate for the first three columns when m = 2. Starting with
the first summand, we find

(5.34)

det
( [

M̃1
1 (σ̌) M̃0

2 (σ̌) M̃0
3 (σ̌) M̃0

4 (σ̌)
] )

= c11 det

∗ ∗ ∗
0 iσ̌f11 iσ̌f12
0 iσ̌f21 iσ̌f22


− c21

∗ ∗ ∗
0 iσ̌f11 iσ̌f12
0 iσ̌f21 iσ̌f22

+ c31 det

∗ ∗ ∗
∗ ∗ ∗
0 iσ̌f21 iσ̌f22

− c41 det

∗ ∗ ∗
∗ ∗ ∗
0 iσ̌f11 iσ̌f12

 ,
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where the ∗’s denote suitable entries of M̃11 and M̃12, whose precise values do not matter save that
they are independent of σ̌, and the fij denote the entries of the matrix f . Finally, we have denoted

the entries of the vector M̃1
1 by cj1, for j = 1, 2, 3, 4. Observe that we can always factor out exactly

one or two powers of σ̌ in (5.34). For the second summand, we find

(5.35)

det
( [

M̃0
1 (σ̌) M̃1

2 (σ̌) M̃0
3 (σ̌) M̃0

4 (σ̌)
] )

= c12 det

 ∗ ∗ ∗
2A0h1iσ̌ iσ̌f11 iσ̌f12
2A0h2iσ̌ iσ̌f21 iσ̌f22


− c22

 ∗ ∗ ∗
2A0h1iσ̌ iσ̌f11 iσ̌f12
2A0h2iσ̌ iσ̌f21 iσ̌f22

+ c32 det

 ∗ ∗ ∗
∗ ∗ ∗

2A0h2iσ̌ iσ̌f21 iσ̌f22


− c42 det

 ∗ ∗ ∗
∗ ∗ ∗

2A0h1iσ̌ iσ̌f11 iσ̌f12

 .

As with, (5.34), we find that (5.35) is of the form σ̌(aσ̌+ b) for known complex coefficients a, b. For
our final example column, we find
(5.36)

det
( [

M̃0
1 (σ̌) M̃0

2 (σ̌) M̃1
3 (σ̌) M̃0

4 (σ̌)
] )

= c13 det

 ∗ ∗ ∗
2A0h1iσ̌ 0 iσ̌f12
2A0h2iσ̌ 0 iσ̌f22


− c23

 ∗ ∗ ∗
2A0h1iσ̌ 0 iσ̌f12
2A0h2iσ̌ 0 iσ̌f22

+ c33 det

 ∗ ∗ ∗
∗ ∗ ∗

2A0h2iσ̌ 0 iσ̌f22

− c43 det

 ∗ ∗ ∗
∗ ∗ ∗

2A0h1iσ̌ 0 iσ̌f12

 .

There is an additional simplification of (5.36) coming from the observation that M̃12 is independent
of ρ and so c13 and c23 vanish, leading us to conclude (5.36) is proportional to σ̌. Similar consid-
erations apply to the final term, where the fourth column has upper index one. Hence combining
(5.34), (5.35), and (5.36), we find that (5.33) is of the form

(5.37)
∂

∂ρ
det M̃(ρ; σ̌)|ρ=0 = σ̌(Aσ̌ +B),

for known complex constants A and B. To extend to the general case, we observe that the analogs of
(5.34), (5.35), and (5.36) always have either m-rows proportional to σ̌ or (m−1)-rows proportional
to σ̌, leading to the overall conclusion that the numerator is of the form σ̌m−1(Aσ̌+B), which upon
division by σ̌m, gives us the desired conclusion that λ2 is affine in σ̌−1.

This completes the proof of the second and final postponed computation from Remark 4.2,
thereby completing the proof of sufficiency in the vector case m > 1.

5.4. Final result. With these modifications, we obtain the following vector version of Proposition
4.4.

Definition 5.3. We define asymptotic diffusive stability in the vector case as satisfaction of con-
ditions 1.20, 1.25, and (1.23). We define asymptotic instability by failure of asymptotic neutral
stability defined by satisfaction of (1.23) and

(5.38) ℜµ0
t ≥ 0, ℜµ0

c,j ≥ 0.

Proposition 5.4. Assuming the generic conditions of supercriticality (1.7), hyperbolicity and non-
characteristicity of effective flux (1.24) and (2.40), nontrivial Jordan structure (2.28), and non-
vanishing of ℜµ0

t ,ℜµ0
c in (2.44), asymptotic diffusive stability (5.3), is necessary and sufficient

for diffusive stability (2.5) in the sense of Schneider of periodic (exponential) solutions (1.1) of
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(mcGL) for m > 1, for 0 < ε ≤ ε0 sufficiently small, where ε0 is uniform on compact parameter
sets satisfying the above assumptions.

6. Rigorous validation

Finally, we discuss the relation between solutions of (mcGL) and their behavior with convective

Turing bifurcation in (1.2), as described in [WZ3]. Denote by u =

(
u1
u2

)
, f =

(
f1
f2

)
, B =

(
B1

B2

)
the decompositions in nonconservative (i.e., the first n − m) and conservative (i.e., the last m)
coordinates in (1.2), with f , B, R sufficiently smooth, and B strictly parabolic, and let u(x, t) ≡ u∗

be a constant, equilibrium solution of (1.2) satisfying the Turing assumptions [WZ3, Hypothesis
1]. Note that parabolicity of B implies parabolicity of eB and ℜ(a) > 0 in (mcGL), by the recipe
given in [WZ3], verifying our assumptions on (mcGL).

Under [WZ3, Hypothesis 1(2)], we have R1 full rank with respect to u1, hence, local to u∗, there
is a function u1 = ϕ∗(u2) for which R1(ϕ

∗(u2), u2) ≡ 0, uniquely determining u∗1 as a function of
u∗2. Hence, by a coordinate shift u1 → u1 − ϕ∗(u2), u2 → u2 − u02, where u02 is some base point
under consideration, we may assume without loss of generality u∗1 = 0 for any such equilibrium
state, while u∗2 varies freely within an open set of u02. Linearizing (1.2) about the constant solution
u∗, we assume that the dispersion relation of the associated constant-coefficient symbol has strictly
negative spectrum for Fourier frequencies k ̸= 0 for negative values of the bifurcation parameter ν,
and at the bifurcaton point ν = 0 there exists simple eigenvalues λ = ±iτ at k = ±k∗ ̸= 0 and an
m-fold semisimple eiganvalue λ = 0 at k = 0, with all other spectra strictly negative; moreover, we
assume that the real part of the spectrum has second-order contact in k with the imaginary axis
at k = 0,±k∗, departing to second order as k is varied from 0 or ±k∗, and first-order contact at
k = ±k∗, growing linearly in ν as ν increases through the bifurcation value ν = 0. For the structure
assumed in (1.2), these conditions are equivalent to the Turing assumptions of [WZ3].

Then, by the results of [WZ3], there exists a self-consistent and well-posed multi-scale expansion
of form (mcGL), (1.3) formally governing small-amplitude solutions for ν > 0 sufficiently small.
Moreover, this expansion may be continued to all orders. The coefficients may be determined as
described in [WZ3, §3], with linear terms coming from the eigenstructure of the linear dispersion
relation considered as a function of k, ν, and B0; however, the details of this recipe will not
concern us here, other than the fact that generic coefficients of (mcGL) induce generic coefficients
of (mcGL), so that generic assumptions on (1.2) may be made via assumptions on (mcGL).

6.1. Existence. We begin by recalling (a slightly refined version of) the rigorous validation result
established previously in [WZ3] in the context of existence of periodic traveling waves. Refining a
bit the description of [WZ3, Thm. 6.5], we have the following result asserting existence of exact
solutions nearby the asymptotic solutions predicted by (mcGL), (1.1).

Theorem 6.1 (Existence of exact solutions). Under the above-described Turing Hypotheses (en-
compassing those of [WZ3]), with ν = ε2, for κ, B0 lying in any compact subset of domain (1.8),
for 0 < ε ≤ ε0 sufficiently small there exists a smooth family of traveling-wave solution

(6.1) u(x, t) = ūε,κ,B0(kx+ Ω̄t), k = k∗ + εκ

of amplitude |u| ∼ ε of (1.2), lying within O(ε2) of approximate solution (1.3), (1.1) with ω in
(1.1) replaced by ω̃ = ω + O(ε3) (thus determining Ω̄ up to O(ε3). Moreover, up to translation,
these are the unique nontrivial small-amplitude periodic traveling waves of (1.2).

Proof. The version of this theorem stated in [WZ3] is for (κ,B0) sufficiently small. Since choice of
the center B∗ is arbitrary, that there is no loss of generality in fixing B0 ≡ 0, so long as all estimates
are uniform, so that small B0 is no real restriction. Validation on the full existence domain (1.8),
along with the additional detail given here on the speed of the wave, then follows as in [WZ1, Thm.
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1.2] for the case without conservation laws. We omit the further details of this involved but by now
standard (in particular, nonsingular) argument. See also the comments of [WZ1, §1.5] on nonlocal
reduction of the conservation law case to the standard one, which gives another route to this result
via [WZ1, Thm. 1.2], which as noted in [WZ1] applies also to nonlocal equations. □

6.2. Stability. We next turn to the question of stability of exact periodic solutions of (1.2), and
its relation with stability of periodic solutions (1.1) of (mcGL). Following [JNRZ], let Lε,κ,B0

denote the linearized operator about an exact periodic traveling-wave solution ūε,κ,B0 considered
in a comoving frame for which it becomes stationary. The L2(R) spectrum of Lε,κ,B0 consists of λ
such that there exists a solution v(x) on a single period of

(6.2) Lε,κ,B0v = λv, x ∈ [0, X] = [0, 1/κ],

satisfying for some Bloch-Floquet number σ ∈ [−π/X, π/X) the boundary conditions

(6.3) v(X)eiσX = v(0).

Diffusive spectral stability in the sense of Schneider is defined in this context as

(6.4) ℜλ ≤ c(ε)|σ|2/(1 + |σ|2) for λ ∈ spec(Lε,κ,B0),

where ν = ε2. In the absence of neutral spectra other than the m+ 1 translational/conservational
modes at (σ, λ) = (0, 0), (6.4) is necessary and sufficient for linearized and nonlinear stability
[JNRZ]. By continuity of spectra for parabolic operators, diffusive spectral stability holds auto-
matically for 0 < ε ≤ ε0 sufficiently small, except possibly for

(6.5) |λ|, |σ| ≤ 1/C,

where C > 0 is arbitrary.
Expanding Lε,κ,B0 = L0,0,B0 + O(ε), one may then perform as in [WZ3] a Lyapunov-Schmidt

reduction, following the approach laid out in [M1, M2, M3, S1, S2], to obtain a reduced problem
consisting in the rescaled λ̌, σ̌ variables of an (m+ 2)× (m+ 2) linear system of equations

(6.6)
[
− λ̌+ M̌(ε, σ̌, κ,B0) + Ě(ε, σ̌, κ,B0, λ̌)

]a1
a2
b⃗

 = 0,

with aj ∈ R, b⃗ ∈ Rm, corresponding to the m+ 2 dimensional kernel of L0,0,B0 at σ = 0, where M̌
is as in Section 4.

That is, first, the question of diffusive stability is reduced to determining diffusive spectral
stability of the m+ 2 neutral eigenvalues branching as ε increases from zero from the kernel of the
linearized operator about the constant state (0, B0) at bifurcation point ε = 0. And, second, these
neutral eigenvalues may be identified as solutions of the reduced problem problem (6.6), a nonlinear
eigenvalue problem that is a perturbation by E of the matrix perturbation problem corresponding
to stability of traveling waves of (mcGL).

We collect here a streamlined version of the results established in [WZ3, Thm. 7.11 and Thm
8.7] and in the course of their proofs (in the case of Thm. 8.7, see the discussion just below).3

Proposition 6.2 (Truncation error bound [WZ3]). For 0 < ε ≤ ε0 sufficiently small, diffusive
stability of periodic solutions of ūε,κ,B0(kx+Ω̄t) is equivalent to diffusive stability for σ, λ arbitrarily
small of m+ 2 “neutral” modes Λ̌j satisfying the reduced eigenvalue problem (6.6), where M̌ as in
Section 4 is the eigenvalue problem associated with (mcGL), and

(6.7) |Ě | = O(ε, ε2σ̌, ε3σ̌2, ε4σ̌3, (ε4 + ε6σ̌2)λ̌2).

3See also the explicit computations of [Wh, Appendix A.1] for an example model with m = 1.
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Proof. In [WZ3], there is demonstrated the stronger truncation error bound

|Ě | = O(ε2, ε2σ̌, ε3σ̌2, ε4σ̌3, (ε4 + ε6σ̌2)λ̌2)

for the “tilde model”, a related, higher-order expansion of (mcGL) (denoted the “truncated model”
in [WZ2]). Accounting for the difference in truncated vs. tilde models gives an additional O(ε)
error contribution, resulting in (6.7). See [Wh, Appendix A.1], for a detailed computation of errors
for the truncated model in an example case with m = 1. □

Remark 6.3. Expressing (6.6) in the “original” coordinates (λ̌, σ̌) = ε−2(λ, σ) natural to PDE (1.2),
as the system for (mcGL) perturbed by error E(ε, σ, κ,B0, λ), (6.7) translates to

(6.8) |E| = O(ε3, ε2σ, εσ2, σ3, (ε2 + σ2)λ2).

The corresponding estimate for the tilde model becomes |E| = O(ε4, ε2σ, εσ2, σ3, (ε2 + σ2)λ2), and
the difference between truncated and tilde models O(ε3).

The estimate (6.7) is effectively a “truncation error” or residual bound. What is needed to
determine stability for (1.2) is to convert this truncation error to “convergence error,” or difference
between Λj and the solutions λj of the unperturbed system corresponding to stability for (mcGL),

an issue requiring a detailed analysis of the eigenstructure of M̌ . In this regard, it is worth
mentioning that, while the estimates (6.7) come via (6.8) through Taylor expansion valid on the
entire regime λ, σ small, the solutions λ̌j have Taylor expansions valid only only on the much

smaller regime λ̌ = σ/ε2, σ̌ = σ/ε2 sufficiently small [WZ3, Thm. 5.9 and discussion in proof].
Such an analysis was carried out in [WZ3] on the region of analyticity |σ̌| ≤ 1/C of Case (i),

by essentially the same argument followed in Section 2. However, the corresponding treatment of
remaining regions was left as an important and apparently difficult open problem. Indeed, the
possibility of completing such an analysis was conjectured in [WZ3], somewhat optimistically, on
the basis of numerical evidence, with a positive outcome far from clear, either for closeness of Λj

and λj , or for determination of practical stability criteria for the λj .
The latter problem we have resolved in Section 4, showing that the stability requirements already

determined in [WZ3] on the analyticity region |σ̌| ≤ 1/C are in fact sufficient for stability on all
regions. But, the Ě = 0 case studied there was already a matrix perturbation problem, hence in
the course of this analysis we have had to analyze the eigenstructure of the principal parts of M̌
in various regimes in order to absorb higher-order truncation errors arising from various spectral
expansions. Hence, the analysis already completed for the second problem is also sufficient to
resolve the first problem, provided only that we show that errors (6.7) are also absorbably small.

By this approach, we obtain as a corollary our second, and final, main theorem resolving stability.

Theorem 6.4 (Stability of exact solutions). Under the Turing hypotheses described above, with ν =
ε2 and κ, B0 satisfying (1.8), let ūε,κ,B0(kx+Ω̄t) be the exact periodic solutions (6.1) of PDE (1.2)

guaranteed by Theorem 6.1, and (Ā, B̄)κ,ω = (A0e
i(κx−ωt), B0) the corresponding periodic solutions

(1.1) of the associated amplitude equations (mcGL). Then, under the nondegeneracy conditions
of Proposition 4.4, diffusive stability of ūε,κ,B0 is equivalent to diffusive stability of (Ā, B̄)κ,B0 =

(A0e
i(κx−ωt), B0) for 0 < ε ≤ ε0 sufficiently small, which in turn is equivalent to the linear algebraic

conditions (1.20) and (1.23)-(1.25). Here, as elsewhere, ε0 may be chosen uniformly for compact
parameter sets on which the Turing and nondegeneracy assumptions are satisfied.

Proof. Evidently, it suffices to establish necessity and sufficienty of conditions (1.20) and (1.23)-
(1.25) for stability of ūε,κ,B0 , as we have shown already for stability of (Ā, B̄)κ,B0 . We study
separately the regions described in cases (i)–(vi) of Section 4. To prove necessity of conditions
(1.20) and (1.23)-(1.25), it is sufficient to show on just one of these regions, that eigenvalues Λj

and λj are sufficiently close that their real parts have the same sign. To prove sufficiency, we must
show this on each of the regions of cases (i)-(vi).
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Case (i), (|σ| ≤ ε2/C): In [WZ3, Thm. 8.7], it is shown for the tilde model that |Λj − λj | =
O(ε4, εσ, εσ2, σ3) for all j; moreover [WZ3, Thm. 8.7, final line], for λt and λc, for which both
λj(ε, 0) = 0 and Λj(ε, 0) = 0, |Λj − λj | = O(εσ, εσ2, σ3). For, both λj and Λj are analytic on this
regime, hence there can be no error term of order ε4, nonvanishing at σ = 0. The same argument
applies for the truncated model (mcGL) studied here, but with ε4 order errors replaced by ε3. Since
both λj and Λj have first-order Taylor coefficient pure imaginary (also shown in [WZ3]), we have
by similar reasoning that

(6.9) |ℜΛj −ℜλj | = O(εσ2, σ3) = o(min{ε2, |σ|2}),

as there can be no error term in real parts of order εσ nonvanishing to order σ.
On the other hand, the analysis of Section 4, case (i) gives under our nondegeneracy assumptions

that the stable eigenvalue λs has real part negative of order −ε2, the translational eigenvalue λt

has real part of size ε−2σ2, and the conservational eigenvalues λc have real part of size ε−4σ2 in
the (original, pde) coordinates (λ, σ) = ε2(λ̌, σ̌); see (4.2)-(4.4). (Note, as |σ| ≪ ε2 on this region,
that all |λj | ≪ 1, despite large coefficients.) Comparing with (6.9), we thus see that the real parts
of λj and Λj have common sign in each case.

The analysis of case (i), carried out previously in [WZ3], both establishes necessity of conditions
(1.20) and (1.23)-(1.25), and reduces the study of sufficiency to the examination of cases (ii)-(vi).
In the rest of the proof, we carry out this remaining part, showing sufficiency in each of the cases
(ii)-(vi).

Case (ii). (1/C ≤ |σ̌| ≤ C): This case for (mcGL) is about continuity of spectra of M0 with
respect to “errors” ρM1 and ρ2M2 that are merely o(1). So, to accomodate also the additional
error Ě , we have only to show that (6.7) is small on this regime, and absorbably in the errors
induced by M1 and M2. We first observe, by λ̌V = o(|λ̌|)V + (M0 + o(1))V for V ̸= 0 that
(1 + o(1))|λ̌| ≤ |M0 + o(1)| ≲ C, hence λ̌ = O(1), and thus by (6.7)

(6.10) |Ě | = O(ε, ε2σ̌, ε3σ̌2, ε4σ̌3, (ε4 + ε6σ̌2)λ̌2) = O(ε2, ε2σ̌, ε3σ̌2, ε4σ̌3, o(λ̌)) = o(1).

Thus, the induced errors are indeed small, preserving the order one separation between the kernel
of M0 and remaining eigenvalues featuring a spectral gap. It follows that the “small” eigenvalue
bifurcating from the kernel remains analytic in ρ, uniformly in σ̌, and the remaining “order one”
eigenvalues possess a spectral gap, having real parts negative and uniformly bounded from zero.

By the o(1) error estimate (6.10), the order one eigenvalues with spectral gap retain this spectral
gap under perturbation, by simple continuity of spectra, and so ℜΛj and ℜλj have the same signs
for these modes, carrying the same stability information.

For the remaining “small” eigenvalue λt, we have ℜλt ∼ ρ2 = ε2σ̌2, we must look more carefully,
as potential errors of order ε2 or ε2σ̌ are much greater than ℜλt near the lower boundary |σ̌| = 1/C
where |σ̌| ≪ 1. However, the same reasoning shows that such error terms therefore cannot occur,
by matching at the boundary with region (i). For, as we have demonstrated analyticity of the
projector onto the small eigenmode, and as the initial error Ě is analytic on all |σ| ≪ 1, we have
that the projected error Ět in the reduced problem for Λt is analytic as well, as a function of σ̌, ε, ρ,
for σ in region (ii), and indeed for complexified σ̌, ε, for 1/C ≤ |σ| ≤ C and |ε| ≪ 1. But, by the
balancing transformation argument in region (i), we have already shown that the projector onto the
small, λt mode is analytic in (complexified) σ, ε for for |σ| ≤ 1/C and |ε| ≪ 1, hence the projector,
and projected error are analytic for |σ| ≤ C and |ε| ≪ 1, so that λt and Λt are analytic as well,
with convergent power series representations about (σ, ε) = (0, 0). We may thus obtain the desired
sharpened estimates from the power series analysis of region (i), which shows that “harmful” order
ε4 or ε2σ terms do not occur.
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Note, in showing analyticity of the complexified λt projector on region (ii), we require that M̂0

in (4.5) have a kernel of dimension one, i.e., that the complementary matrix

M̂0 := LM0R =

(
2A2

0ℜ(c) A0ℜ(d)
2A0hî̂σ f î̂σ

)
derived in (5.23) be invertible for σ ̸= 0. But, direct computation gives

det M̂0 = 2A2
0iσℜ(c) det

(
f − hℜ(d)ℜ(c)

)
̸= 0

for σ ̸= 0, since ℜ(c) = 0 and det(f − hℜ(d)ℜ(c)) = 0 are excluded by our previous nondegeneracy
assumptions.

Case (iii). (C ≤ |σ̌| ≤ 1/Cε): Similarly as in Case (ii), the treatment of Case (iii) in Section 4
requires only that errors be o(1), much smaller than spectral separation between small eigenvalue
λt and remaining eigenvalues. Starting with λ̌V = o(|λ̌|)V + (M0 + o(1))V for V ̸= 0, giving
(1 + o(1))|λ̌| ≤ |M0 + o(1)| ≲ σ̌, hence λ̌ = O(σ̌), we find that

ε4|λ̌|2 = O(ε4σ̌2) = O(1/C) = o(1).

Likewise,

O(ε, ε2σ̌, ε3σ̌2, ε4σ̌3, ε4σ̌2)) = O(ε, ε/C, ε/C2, ε/C3, ε2/C2) = o(1),

confirming smallness of remaining error terms. Finally, we note that the “small” λt mode has real
part ∼ ρ2 = ε2|σ̌|2 ≫ ε2|σ̌| on this region, hence can absorb all error terms other than constant,
O(ε) ones. Observing that analyticity of λt and Λt holds up to |ρ| ≪ 1, by the same argument as
in region (ii), we find again that such an error term cannot exist.

Case (iv). (1/Cε ≤ |σ̌| ≤ 1/Cε2): This case is straightforward. For, both symbol and real parts
of eigenvalues are of the same order (1 + |ρ|2), hence we need only show that truncation errors are
order o(1 + |ρ|2) in order to see by simple continuity of eigenvalues under perturbation that ℜΛj

and ℜλj have the same signs.

Here, |ρ| = ε|σ̌| ≥ 1/C, while |σ̌| ≫ 1 and ε|ρ| = ε2σ̌| ≪ 1. Thus, λ-errors in Ě are bounded by
ε4|λ̌|2 = |λ|2 = o(1) and ε6|σ̌|2|λ̌|2 = |ρ|2ε4|λ̌|2 = o(ρ2), both o(1 + |ρ|2). Likewise, the remaining
errors in Ě are bounded by

O(ε, ε2σ̌, ε3σ̌2, ε4σ̌3, ε4σ̌2)) = o(1, 1, |ρ|2, |ρ|2, |ρ|2) = o(1 + |ρ|2),

so again are absorbable.

Case (v). 1/Cε2 ≤ |σ̌| ≤ C/ε2: This case was carried out for (mcGL) in the “original PDE
coordinates” λ, σ coordinates with 1/C ≤ |σ| ≤ C, featuring a spectral gap of order σ2 ≥ 1/C2 for
eigenvalues λj . The error (6.8) of O(ε3, ε2σ, εσ2, σ3, λ2) need thus be only o(σ2), or, sufficiently,
o(1). Recalling that |λ| = o(1), we see that this is evidently so.

Case (vi). C/ε2 ≤ |σ̌|: In this case, working with the original PDE coordinates (σ, λ) = ε2(σ̌, λ̌),
we have |σ| ≥ C. Recall that this case is always stable for (mcGL). Likwise, as noted in (6.5), the
spectra for the exact PDE problem is also automatically stable in this regime. Thus, stability of
λj and Λj are (trivially) equivalent. □

Remark 6.5. An examination of the analyticity argument for the projector onto the λt mode in
region (ii) shows that the argument can in fact be extended also to all of region (iii). This shows
that λt and Λt have convergent analytic expansions in σ̂, ε for |σ̂| ≤ 1/C and ε ≪ 1, similarly as
in the nonconservative case. In particular, it gives an additional verification that the second order
coefficient µ0

t derived on region (i) is valid also on region (iii), for which the Dary approximation is
valid. This gives an additional proof that the descriptions of λt behavior for Eckhaus and Darcy
approximations agree.
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Appendix A. Turing bifurcation for example model

For the model problem (1.4). homogeneous equilibrium states take the form (ρ0, u0, c0), with

(A.1) u0 = 0, c0 = ατρ0,

without loss of generality (rescaling parameters if necessary) ρ0 = 1. For simplicity in writing, let
us fix µ = ν = 0; as we note at the end, this does not affect the end result.

Linearized about such a state, (1.4) then becomes

(A.2)

ρ
u
c


t

=

0 0 0
0 −γ 0
α 0 −1/τ

ρ
u
c

+

 0 −1 0
−2A 0 β
0 0 0

ρ
u
c


x

+

0 0 0
0 0 0
0 0 D

ρ
u
c


xx

.

The associated dispersion relation λ = λ(k) is thus given by

(A.3) 0 = det

 −λ −ik 0
−2Aik −γ − λ βik

α 0 −k2D − 1/τ − λ

 .

Examining (A.3) at k = 0, we see that the eigenvalues are 0,−γ,−1/τ , so that there is a single
“critical” analytic branch λ∗(k) with λ∗(0) = 0. Moreover, it is readily seen by matching common
orders of k that λ∗ vanishes to first order as well. Substituting

λ∗(k) = θk2 +O(k3)

into (A.3) and collecting terms of order k2, we find that (−1/τ)(θk2γ +Ak2) + βαk2 = 0, or

(A.4) θ = αβτ −A.

Thus, diffusive stability of the dispersion relation near k = 0 is equivalent to

(A.5) A > αβτ.

On the other hand, for αβ = 0, the linearized matrix becomes block triangular, and we can solve
the dispersion relation explicitly as

(A.6) λ = −1/τ −Dk2,
−γ ±

√
γ2 − 8Ak2

2
,

yielding strict diffusive stability by inspection. Thus, strict diffusive stability holds for αβ suffi-
ciently small, while, by (A.5), fails for αβ sufficiently large.

We may conclude therefore that a Turing bifurcation occurs for some value (αβ)∗ > 0. Essentially
the same argument yields the result for arbitrary µ, ν > 0 as well. It would be very interesting to
determine the nature and properties of this bifurcation, in the spirit of the current analysis.

Appendix B. Numerical illustration, case m = 1

In the below figures, we display the results of a numerical comparison of the spectra of the lin-
earized equations for (mcGL) and the results predicted by Taylor expansion, for a generic example
system with m = 1. The parameters chosen are a = 1 + i, b = 1, c = −3 + 2i, d = −1 + 2i,
eB = 1, f = 1, g = 2 + 2i, h = 2, ε = 10−2. In the illustrations, blue dots denote the real parts of
(numerically approximated) true eigenvalues, green, predictions from µt, and red, predictions from
µc, with lefthand panel displaying results for small σ and righthand large σ, and each pair of panels
associated with a different wave-number κ.

In the left column, we’ve plotted the curves on |σ̂| ≤ 10ε and in the right column, we have
the curves on |σ̂| ≤ 1. We note the strong agreement between µcσ̂

2 and ℜλc(σ̂) on σ̂ = o(ε)
and good agreement between µtσ̂

2 and ℜλt(σ̂) on the region where σ̂ = o(1), as is expected by
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Remark 6.5. We emphasize that the singularity in the dispersion relations are quite prominent, as
ℜλc(σ̂) reaches O(1) when σ̂ ∼ ε, in contrast to the classical Ginzburg-Landau or Matthews-Cox
cases where ℜλc(σ̂) ∼ ε2 when σ̂ ∼ ε. Note also that the effects of singularity are visible in the
right-hand column of figures through the “spikes” near σ̂ = 0. The final point to which we wish
to draw emphasis is that it is λc and λs that intersect and lose analyticity within an O(ε) domain,
while λt remains analytic on a domain of o(1). We recall that this played a key role in the analysis
of Cases (ii)-(iv). One final remark is that, for fixed ε, the agreement between µtσ̂

2 and λt(σ̂) gets
worse as |κ| increases. This is to be expected, as the formula for µt in (2.52) goes to ∞ as |κ|2 → κ2E .

In the figures below, we have chosen the frequencies κ = 0, κ = κE/4(= 0.25) and κ = κE/2 =
(0.5) as the numerically observed stability boundary occurs at around κ ≈ ±0.3.4

Figure 1. Wavenumber κ = 0.

Figure 2. Wavenumber κ = κE/4.

4Close to the real Ginzburg-Landau boundary of 1/3.
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Figure 3. Wave number κ = κE/2.

Appendix C. Matched asymptotics for complex Ginzburg-Landau

Here, we compute the expansion for the neutral translational mode for complex Ginzburg-Landau
using matched asymptotics. To do so, we let a, b, c be known complex numbers with ℜ(a),ℜ(b) > 0
and ℜ(c) < 0 and consider a generic Ginzburg-Landau equation of the form

AT = aAXX + bA+ c|A|2A.

As before, we have a one-parameter family of periodic traveling waves parameterized by κ of the
form A(X,T ) = A0e

i(κX−ωT ) with A0 > 0. The same linearization procedure as in [WZ2] leads us
to the spectral problem

λ

(
u
v

)
= −σ2

(
ℜ(a) −ℑ(a)
ℑ(a) ℜ(a)

)
+ 2iκσ

(
−ℑ(a) −ℜ(a)
ℜ(a) −ℑ(a)

)
+

(
2A2

0ℜ(c) 0
2A2

0ℑ(c) 0

)
=: m(σ)

(
u
v

)
.

We then seek an eigenvalue λt of the form λt(σ) = iαtσ+µtσ
2+O(σ3). We notice that the second

column of m(σ)− λt(σ)Id is proportional to iσ, and so our expansion of the determinant is of the
form

det(m(σ)− λt(σ)Id2) = iσ
(
detP0 + iσ detP1 +H.O.T.

)
,

with

P0 =

(
2A2

0ℜ(c) −2κℜ(a)
2A2

0ℑ(c) −2κℑ(a)− αt

)
,

and

P1 =

(
−2κℑ(a)− αt −2κℜ(a)

2κℜ(a) −2κℑ(a)− αt

)
+

(
2A2

0ℜ(c) −ℑ(a)
2A2

0ℑ(c) ℜ(a) + µt

)
.

Setting detP0 = detP1 = 0 and solving the corresponding equations gives

αt = −2κℑ(a) + 2κℜ(a)ℑ(c)
ℜ(c)

,

and

µt = −
(
− 2κℑ(a)− αt

)2
+ 4κ2ℜ(a)2 + 2A2

0

(
ℜ(a)ℜ(c) + ℑ(a)ℑ(c)

)
2A2

0ℜ(c)
.
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