
Merchants of Vulnerabilities: How Bug Bounty Programs

Benefit Software Vendors

Esther Gal-Or,1 Muhammad Zia Hydari,2 Rahul Telang3
1Katz Graduate School of Business, University of Pittsburgh, esther@katz.pitt.edu
2Katz Graduate School of Business, University of Pittsburgh, hydari@alum.mit.edu

3Heinz College, Carnegie Mellon University, rtelang@andrew.cmu.edu

April 26, 2024

Keywords: bug bounty, software release, game-theoretic model, cybersecurity

Abstract: Software vulnerabilities enable exploitation by malicious
hackers, compromising systems and data security. This paper examines
bug bounty programs (BBPs) that incentivize ethical hackers to discover
and responsibly disclose vulnerabilities to software vendors. Using
game-theoretic models, we capture the strategic interactions between
software vendors, ethical hackers, and malicious hackers. First, our
analysis shows that software vendors can increase expected profits by
participating in BBPs, explaining their growing adoption and the success
of BBP platforms. Second, we find that vendors with BBPs will release
software earlier, albeit with more potential vulnerabilities, as BBPs
enable coordinated vulnerability disclosure and mitigation. Third, the
optimal number of ethical hackers to invite to a BBP depends solely on
the expected number of malicious hackers seeking exploitation. This
optimal number of ethical hackers is lower than but increases with the
expected malicious hacker count. Finally, higher bounties incentivize
ethical hackers to exert more effort, thereby increasing the probability
that they will discover severe vulnerabilities first while reducing the
success probability of malicious hackers. These findings highlight BBPs'
potential benefits for vendors beyond profitability. Earlier software
releases are enabled by managing risks through coordinated disclosure.
As cybersecurity threats evolve, BBP adoption will likely gain momentum,
providing vendors with a valuable tool for enhancing security posture
and stakeholder trust. Moreover, BBPs envelop vulnerability
identification and disclosure into newmarket relationships and
transactions, impacting software vendors' incentives regarding product
security choices like release timing.

Correspondence concerning this article should be addressed to Muhammad Zia
Hydari, Katz Graduate School of Business, University of Pittsburgh. Email:
hydari@alum.mit.edu.

1 Introduction

Marc Andreessen famously stated in 2011 that 'software is eating the world,'

transforming not only industries traditionally associated with technology but also

those primarily existing in the physical realm (Andreessen 2011). However, this

pervasive software influence has a downside: vulnerabilities. The National Institute

of Standards and Technologies (NIST) describes software vulnerability as a “security

flaw, glitch, or weakness found in software code that could be exploited by an

attacker (threat source)” (NIST CSRC 2020). Unlike physical products, software

vulnerabilities can be exploited remotely, posing a unique challenge. For instance,

Sam Curry and other ethical hackers discovered that by exploiting a vulnerability in

Sirius XM, a satellite radio service widely used in vehicles, they could gain remote

access to the vehicle by using the unique vehicle identification number (VIN). The

VIN is often publicly available (e.g., on websites of car dealers) or can be read on the

windshield of some vehicles. Due to the software vulnerability, hackers could

remotely start, unlock, locate, flash the lights, and honk the horn on the car (Ropek

2022). Sirius XM eventually fixed the vulnerability based on the report submitted

by these ethical hackers. However, while this vulnerability existed on the vehicles, a

malicious car-hacking-as-a-service platform could have teamed up with thieves to

allow them to steal valuables by remotely unlocking cars!

2

The scourge of software vulnerabilities (SVs), or bugs, 1 has long plagued software

products. Yet a consensus on how to disclose these SVs effectively and responsibly

remains elusive. The problem stems from the negative externality imposed by SV

disclosure: in addition to legitimate recipients, malicious hackers also learn about

the SV from the disclosure and can begin exploiting it. Thus, on average, product

vendors prefer the non-disclosure of specific SVs to avoid this negative externality

and reduce the cost of quickly developing and distributing a fix for the SV through

patching. The vendor can control the patching process completely if only the vendor

is aware of the SV. However, when a third party, such as a product user, discovers and

reports an SV, the third-party expects the vendor to fix the SV through a patch

immediately and inform all users. On both these counts, the vendors' incentives are

misaligned— they prefer to delay patches to reduce costs and control disclosure to

avoid the externality. Thus, vendors may obfuscate or ignore third-party SV reports,

delay patches by not allocating resources on a priority basis, or fix the vulnerability

in the new version without releasing a timely patch. These vendor behaviors are

sub-optimal for users and have led many users to disclose SVs publicly to force

vendors to fix the SVs on a priority basis. However, such uncoordinated public

disclosures have generated acrimony, and vendors have demanded that any user

who discovers an SV should practice “responsible disclosure.” That is, the

discovering user should first make a private disclosure to the software vendor and

provide a reasonable time for the vendor to fix the SV before the user does a public

disclosure.

1 Although bugs and software vulnerabilities are slightly different, we use the terms interchangeably.
3

One approach for dealing with SVs that has become increasingly popular is the use

of bug bounty programs (BBP) that not only help vendors discover the SVs but also

have better control over the SV disclosures. The BBPs allow vendors to

crowd-source SV discovery by systematically engaging external security experts (or

ethical hackers) to discover and report bugs in the software in exchange for

monetary rewards. Besides receiving monetary rewards, these security experts also

enhance their professional reputation when they successfully participate in a BBP.

The aforementioned Sirius XM bug discovery is an example of a bug being

discovered and reported by an external security expert, although not as a part of a

BBP. BBPs make this bug discovery process more systematic by setting rules of

engagement, providing immunity from prosecution for activities conducted within

the established rules,2 and incentivizing security experts to proactively engage with

the software to discover and report bugs to the vendor. There are several

advantages of BBPs for the vendors but two worth noting here—BBPs allow vendors

to discover SVs that may have escaped notice of their development and testing teams

and exercise greater control over SV disclosures. In some cases, the vendor’s BBP

may have an explicit rule that prohibits disclosure as a condition for participation by

the security expert, thus allowing the vendor to achieve its ideal of non-disclosure in

these cases. Although bug bounty programs have existed since at least 1995, when

the pioneering browser vendor Netscape established a bug bounty program to

control uncoordinated disclosure of bugs, the widespread establishment of bug

bounty programs by many US and global software vendors is a more recent

2 Outside of bug bounty programs, even good Samaritans may face legal threats or prosecution for
identifying and disclosing software vulnerabilities (Treisman 2021).

4

phenomenon. The BBPs are “one prominent instance of coordinated [software]

vulnerability disclosure—a set of approaches that have the potential to routinize the

reporting and disclosure of flaws, improve security, and buffer the risks of legal

reprisal” (Ryan Ellis and Yuan Stevens 2022) and are now an important part of the

cybersecurity strategy of many software vendors.

Another important aspect of BBPs is their impact on fostering the ethical hacking

community. For many ethical hackers, bug bounty programs offer new incentives,

career prospects, and a legitimate avenue to leverage their skills. Rather than facing

potential legal repercussions for disclosing flaws, these programs enable ethical

hackers to gain recognition and monetary rewards when they responsibly report

vulnerabilities to vendors. However, BBPs represent more than just a mechanism for

matching hackers with companies seeking to identify bugs. Through structured

programs with defined rules of engagement and incentives, BBPs have introduced a

market-based approach to vulnerability management. This shift extends beyond

simply paying bounties – it has enveloped the entire identification and disclosure

cycle within a framework of market relationships and transactions between vendors

and the ethical hacker community (Ryan Ellis and Yuan Stevens 2022).

Despite their popularity, it is not clear whether BBPs improve software quality. Do

they encourage vendors to invest more resources in improving quality? How do

vendors decide howmuch bounty they should set to encourage ethical hackers to

report the bugs? Finally, do BBPs impact vendors’ decision on when to release the

product? Specifically, do BBPs enable vendors to release the product early to capture

5

market share? In this study, we introduce a game-theoretic framework to analyze

the strategic interactions between software vendors, ethical hackers, and malicious

hackers. We explore how BBPs influence the incentives for ethical and malicious

hackers to discover vulnerabilities and the potential externalities arising from their

actions. Additionally, we investigate the effects of BBPs on software vendors'

security incentives, with a focus on how these programs impact the timing of

software releases.

The first key finding from our analysis is that under plausible assumptions, a

software vendor will increase its expected profit by participating in a BBP. This

finding explains BBP's growing popularity among software vendors and the success

of bug bounty program platforms such as HackerOne. The second key finding is

that software vendors with BBP will release their software earlier than those

without BBP. As testing for vulnerabilities and fixing them takes time, an earlier

release implies that software vendors with BBP will release software with

comparatively more bugs. While this may increase the risk for software users, the

vendor can mitigate the risk of releasing buggier software, as ethical hackers in the

BBP would find some of these vulnerabilities and would be contractually obligated

to coordinate disclosure with the software vendor. The third key finding is that if the

vendor can choose the number of ethical hackers it wants to invite into its BBP, the

optimal number of ethical hackers only depends on the expected number of

malicious hackers likely to look for vulnerabilities for exploitation. In particular, the

number of optimal ethical hackers is less than the expected number of malicious

hackers and increases as the expected number of malicious hackers increases.

6

Finally, higher bounties incentivize ethical hackers to exert more effort, thereby

increasing the probability that they will discover severe vulnerabilities first while

reducing the success probability of malicious hackers.

2 Background and Current Literature

Software vendors resort to a variety of approaches to mitigate the risk of releasing

software with major vulnerabilities. Most well-managed software vendors perform

rigorous pre-release software testing, including manual and automated testing

methods, along with code reviews that scrutinize source code for potential

vulnerabilities. However, the maxim by Turing award-winning computer scientist

Edsger Dijkstra, “program testing can be used to show the presence of bugs, but

never to show their absence!” (Dijkstra 2022), also applies to security

vulnerabilities. Thus, it is impossible to prove that a commercial software product

has no vulnerabilities (Thompson 1984), although on average, vulnerabilities can be

reduced with testing.

Software code reviews and testing are costly for the vendors as they require

resource allocation, such as investing in testing and review tools and hiring and

retaining code reviewers and testers. Code reviews and testing also delay the

release of the product that incorporates the software, with implications such as lost

revenue and lost market share. Furthermore, any amount of in-house testing, no

matter how well-planned and well-executed, will rarely subject software to all the

real-world use cases from legitimate users or abuse cases frommalicious

adversaries. While testing techniques that mimic methods of malicious adversaries,

7

such as fuzzing, “a process of repeatedly running a program with generated inputs

that may be syntactically or semantically malformed” (Manès et al. 2019), have been

adopted by software vendors, no manual or automated process can anticipate and

test all possibilities.

Hence, software vendors are faced with the decision before every software launch:

should they release the software at a particular time point with a higher risk of a

severe vulnerability being discovered after software release, or should they delay

the software release and test more to lessen the risk of post-release discovery of a

vulnerability. Early release can result in higher revenue and market share for the

vendor but increases the risk of a post-release discovery of a vulnerability. On the

one hand, more testing can reduce the risk of releasing software with a vulnerability

but on the other hand, it may lead to a loss of revenue and market share. At the time

of release, vendors know that software may still carry a non-zero likelihood of

containing severe bugs. However, they decide to ship the product only when the risk

posed by these software vulnerabilities has been mitigated to a tolerable level.

Vendors rely on post-release strategies such as incident response plans,

cybersecurity insurance, patch management, and bug bounty programs to manage

residual vulnerabilities. Incident response plans and cybersecurity insurance

primarily attempt to contain vendors’ losses after a bug has been exploited. In

contrast, bug bounty programs and patch management primarily aim to identify and

fix bugs before exploitation. A patch is a piece of code that can be applied to already

released software to correct, improve, or update it. The process of applying a patch

is known as patching, whereas the overall management, including assessment,

8

testing, and deployment of patches, is called patch management. While patches may

be used to add new functionality, they primarily enable companies to fix bugs after a

product has been shipped, a practice that, surprisingly, may be socially optimal

despite allowing the release of buggier products (Arora, Caulkins, and Telang 2006).

As such, bugs are often discovered throughout a product’s lifetime, prompting

vendors to issue patches in response. The speed at which these patches are released

varies among software vendors, with faster patch times notably associated with

greater market competition, the public disclosure of vulnerabilities, and the larger

scale of the vendor (Arora, Forman, et al. 2010; Arora, Krishnan, et al. 2010).

2.1 Bug Bounty Programs

Patching, a process that can only commence once a bug has been identified,

addresses known bugs. Bug discoveries in the post-release period can occur through

various channels: vendors' internal testing, user-reported bugs, vulnerability

disclosures by entities like the Computer Emergency Readiness Team Coordination

Center (CERT/CC), and bug bounty programs. Bug bounty programs (BBPs)

represent a distinct post-release strategy for identifying vulnerabilities.3 These

programs provide an additional testing layer by incentivizing highly skilled security

experts, not employed by the vendor, to find residual and often elusive software

vulnerabilities. These programs allow companies to crowdsource bug findings by

rewarding white hat hackers (WHH), also known as ethical hackers or independent

security researchers (hitherto WHH) who report valid bugs. These WHHs may have

3 Although BBP may be used for pre-beta and beta testing, these are generally specialized and
restricted programs (Malladi and Subramanian 2020).

9

specialized skills that may be too costly for a single vendor to find and hire but can

be brought to bear periodically across multiple vendors through such BBPs. The

“bounty” for discovering bugs incentivizes the WHH to spend their efforts finding

and reporting residual vulnerabilities to the product vendor. The software vendors

benefit from the BBP by leveraging the diverse talents, skills, and capabilities of

WHHs, which are often unavailable within vendors’ internal security teams.4

Moreover, bug bounty is only paid if a WHH reports an actionable bug and is paid

only once to the first WHH who reports the bug to the product vendor. Thus, BBPs

expend vendors’ funds only if there is an actionable bug report5 whereas the

vendors must invest in tools and in-house testing teams whether they find the bugs.

BBPs started with software vendors allowing ethical hackers to discover and

disclose security vulnerabilities to software vendors in exchange for “bounties” or

financial rewards. Large, well-known software vendors such as Google establish a

“direct bug bounty” and are able to attract WHH to discover and report bugs

(Ahmed, Deokar, and Lee 2021). However, smaller, lesser-known vendors may not

attract WHH even if they establish BBP, as search costs would be too high for WHH.

To facilitate search and matching, multi-sided platforms such as HackerOne,

Bugcrowd, SynAck, Open Bug Bounty, etc., have entered the market to match

software vendors with ethical hackers who hunt for bug bounties under program

rules that are set by the vendor and affirmed by these bug bounty hunters. These

BBP platforms not only facilitate search and matching but also provide other

5 Vendors have to spend resources to screen bug reports for validity. Hence, they do spend some
resources in processing and rejecting invalid reports.

4 Chris Nims, Oath Chief Information Security Officer
(https://www.youtube.com/watch?v=bsggw67EMcY)

10

functions to both vendors and WHHs (e.g., independent evaluation of a bug report

by a WHH). These platform-mediated BBPs have significantly enabled small and

medium-sized vendors, who may not have otherwise successfully created a viable

BBP independently.

As the adoption of BBPs has increased, researchers in computer science, economics,

information systems, and other related fields have started to build a body of

literature on BBPs. One strand of literature considers the costs and the

implementation choices of BBPs.

Walshe and Simpson performed a descriptive empirical study of bug bounty

programs and found them to be a “valuable complementary technique” for bug

discovery (Walshe and Simpson 2020). Based on a simple back-of-the-envelope

analysis, they assert that establishing a bug bounty program for a year costs less

than hiring two additional software engineers. Feng et al. studied optimal timing for

launching bug bounty programs relative to software release, comparing perpetual vs

subscription licensing models. For perpetual licenses, simultaneous launch is best if

failure cost or trust benefit is high, otherwise no bug bounty. For subscriptions,

delayed bug bounty launch after software can be optimal when the failure cost is

moderate and the trust benefit is significant (Feng et al. 2024). Zhou et al. analyze

BBPs in the context of digital platforms (e.g., Google Play Store) and the third-party

software sold through these platforms (T. Zhou, Ma, and Feng 2023). In their setup,

platforms decide to launch BBPs and third-party software vendors decide to

participate in BBPs. These decisions depend on the expected loss due to security

11

breach and the vendor’s reliability investment efficiency, which indicates how

efficiently the vendor can enhance the reliability of their software through

investments in bug-fixing, testing, and other reliability-enhancing measures. Social

welfare, calculated as the sum of software end users' surplus, the third-party

vendor's payoff, and the platform's payoff, is not always enhanced through BBPs and

depends on several factors including the vendor’s reliability investment efficiency.

Another theme is the impact of bug bounty programs on software vendors, their

motivations, and the vulnerability disclosure process. Ahmed et al. synthesized the

literature on vulnerability disclosure mechanisms, including non-market and market

mechanisms. They suggested that market mechanisms such as BBPs give vendors

more control over the vulnerability disclosure process (Ahmed, Deokar, and Lee

2021). Zhou & Hui found that BBPs are not universally beneficial for all firms. They

are advantageous for firms with low in-house efficiency in identifying vulnerabilities

or those facing a high proportion of cooperative hackers who can be incentivized at a

reasonable cost to report bugs to the firm rather than maliciously exploit the bug (J.

Zhou and Hui 2020). Relatedly, Zhou and Hui found that implementation of the

Internet Bug Bounty program disincentivized in-house contributors to work on bug

reporting and other tasks, leading to a decline in their contributions, possibly due to

increased competition from crowd contributors and decreased opportunities for

inter-task learning (J. Zhou and Hui 2022).

The literature also explores the effects of external factors like the COVID-19

pandemic on BBPs. Zrahia et al. studied the impact of the COVID-19 shock on the

12

supply and demand dynamics of the bug bounty platform Bugcrowd. They found

that while the supply of ethical hackers increased considerably during the pandemic,

the demand for their services did not rise proportionately. These changes led to an

increase in duplicate valid submissions and a decrease in the expected reward for

valid submissions (Zrahia et al. 2022).

While the popularity of BBPs continues to rise and the literature has studied several

aspects of BBPs as summarized earlier, their impact on software security warrants

further scrutiny. A critical question, unaddressed in the extant literature, is how

BBPs influence vendors' motivations regarding secure software releases, i.e.,

whether vendors with a BBP will release software earlier than they would have

without a BBP. Relatedly, by identifying and mitigating vulnerabilities post-release,

BBPs may inadvertently incentivize vendors to launch buggier products earlier,

assuming that residual bugs can be addressed later. This potential moral hazard,

where BBPs enable vendors to rush releases under the assumption that ethical

hackers affiliated with BBPs will later identify vulnerabilities, could paradoxically

erode producer surplus. The downstream costs of mitigating bugs discovered

post-release – including those exploited by malicious hackers – may outweigh any

temporary revenue gains from premature product launches. In this paper, we

analyze the impact of BBPs on software release timing and producer surplus. In

addition, we also consider the impact of bounty amounts on hackers' incentives.

Finally, taking the number of malicious hackers as given, we characterize the optimal

number of ethical hackers that should be in a BBP for a particular software.

13

14

Table 1: Abbreviations, Subscripts, and Variables
Abbreviations

WHH, eWHH, neWHH White hat hackers, expert WHH, non-expert WHH respectively
BHH Black hat hackers
BBP Bug bounty program
SV Software vulnerability
General Variables

𝑛 Number of eWHH

𝑚 Number of BHH

𝑙 Number of neWHH

𝑡 Release time chosen by software vendor

Effort Variables

α
𝑖𝑠

, α
𝑖𝑛𝑠

Effort of ith eWHH to find severe or non-severe bugs respectively

α
𝑠
, α

𝑛𝑠
Effort of remaining eWHH to find severe or non-severe bugs(𝑛 − 1)
respectively

β
𝑖𝑛𝑠

Effort of ith neWHH to find non-severe bug

β
𝑛𝑠

Effort of the remaining neWHH to find non-severe bugs(𝑛 − 1)

µ
𝑖𝑠

Effort of ith BHH to find non-severe bug

µ
𝑠

Effort of the remaining BHH to find severe bugs(𝑛 − 1)

Probability or Likelihood Variables

𝐾
𝑠
(𝑡), 𝐾

𝑛𝑠
(𝑡) Likelihood of the presence of a residual severe or non-severe bug at release

time 𝑡

ℙ
𝑖𝑒
𝑠 Probability that an eWHH finds a severe bug first

ℙ
𝑖𝑛𝑒
𝑛𝑠 Probability that an neWHH finds a non-severe bug first

ℙ
𝑖𝑏
𝑠 Probability that a BHH finds a severe bug first

Revenue, Costs, Profit, and Payoff Variables

𝑐
𝑤

, 𝑐
𝑏

Severity adjusted effort cost multiplier for eWHH and BHH respectively

𝑝
𝑠

, 𝑝
𝑛𝑠

Monetary reward offer from software vendor to WHH for finding severe or
non-severe bug respectively

𝑟
𝑠

Reputational gain from finding a severe bug, leading to career advancement

𝑊 Illicit gain for a BHH when finding a severe bug first

𝑅
𝑖𝑒

, 𝑅
𝑖𝑛𝑒

, 𝑅
𝑖𝑏

Expected payoff functions for eWHH, neWHH, and BHH

𝑇𝐶
𝑠

, 𝑇𝐶
𝑛𝑠

Cost to a software vendor is BHH is first to find a severe or non-severe bug
respectively.

𝑅(𝑡) Revenue of the software vendor if it releases software at time t

Π, Π
𝑏

, Π
𝑛𝑏

Expected profit of a software vendor (general, with BBP, without BBP)

15

3 Model Development

To motivate our model of the strategic interaction between the software vendor and

the hackers, we first describe the players, their strategic variables, and the game's

overall structure. We have three types of players: software vendors, white hat

hackers (WHHs), and black hat hackers (BHHs). Software vendors aim to release

their software as early as possible while mitigating the risks of software

vulnerabilities (SVs). BBPs are a vital part of risk mitigation as they allow software

vendors to attract WHHs to find bugs in the vendor’s post-release software and

coordinate disclosure of discovered bugs. The primary risk to the software vendor

arises from BHHs, malicious actors exploiting software vulnerabilities for criminal

gains. Software vendors choose the optimal release time and the optimal monetary

reward they are willing to offer to WHH for finding SVs. The hackers, WHHs and

BHHs, choose the optimal effort they will invest in finding the SVs.6

Wemodel the strategic interaction between the players as a two-stage game. In the

first stage, the software vendor chooses the release time and the bounty amounts. In

the second stage, WHHs and BHHs simultaneously choose howmuch effort they

should exert to find SVs after observing the actions selected by the software vendor

in the first stage. To obtain subgame perfect equilibrium, we solve the game by

backward induction, first finding the equilibrium behavior of hackers in the second

stage. The software vendor acts as a Stackelberg player by incorporating the

6 The total effort invested for WHHs is finding and reporting the SVs, whereas for BHHs it is finding
and exploiting the SVs.

16

anticipated behavior of the hackers in making his choice in the first stage of the

game.

3.1 Severity of Software Vulnerability

An essential consideration for SVs is their severity. Severity has been defined as “the

highest failure impact that the defect could (or did) cause, as determined by (from

the perspective of) the organization responsible for software engineering” (IEEE

Computer Society 2010). Thus, severity plays a significant role in the management of

discovered vulnerabilities. Munaiah and Meneely state that vulnerability severity

metrics serve three key purposes: (a) inform users about the potential impact of a

vulnerability, (b) help vendors in triaging the resolution of a vulnerability, (c)

facilitate analysts in their analyses of vulnerabilities (Munaiah and Meneely 2016).

Although many software vulnerability metrics exist, one of the most widely used

metrics is the Common Vulnerability Scoring System (CVSS), developed and

maintained by FIRST (Forum of Incident Response and Security Teams). CVSS

provides numerical scores (0.0—10.0), which can be mapped to qualitative ratings

of increasing severity as none, low, medium, high, and critical (FIRST 2023). The

final two categories, high and especially critical, naturally garner heightened

attention from all stakeholders, including users, vendors, cybersecurity entities,

ethical hackers, malicious hackers, and others. For our analysis, we classify software

vulnerabilities as “severe” (mapping to high and critical in the CVSS qualitative

ratings) and “non-severe.”

17

As discussed earlier, WHHs find and disclose SVs, which leads to vendors fixing the

vulnerability through a patch. While talent plays a role in becoming an effective

WHH, the skills and capabilities developed through study and experience are often

equally, if not more, important. We distinguish the expertise of WHHs by classifying

them into two types: expert white hat hackers (eWHH) and non-expert white hat

hackers (neWHH). Black hat hackers (BHH) or malicious hackers work outside legal

and ethical bounds to find and exploit software vulnerabilities for illicit gains. For

example, a BHHs may exploit a vulnerability to illegally access and encrypt a

vendor’s data and demand a ransom to make the data accessible again. While BHHs

may also exist at various skill levels, we are primarily concerned with technically

sophisticated BHHs, who have the talent, skills, and capabilities to cause damage

without getting caught by law enforcement agencies. In summary, we classify

hackers into one of three types, eWHH, neWHH, and BHH. Further, we assume that 𝑛

eWHH, neWHH, and BHHs are simultaneously trying to find SVs (Table 1𝑙 𝑚

summarizes the abbreviations and variables we use in our discussion).

3.2 Strategic Interaction Between BHHs andWHHs

We first analyze the strategic interaction between BHHs and WHHs, which

constitutes the second stage of our 2-stage game structure.

As mentioned earlier, hackers’ strategic choice is their level of effort to find SVs.

Hackers incur a cost for the efforts. We consider the cost function of an individual

hacker, to be a quadratic function of effort level. Let , ,𝑖 α
𝑖𝑠

∈ (0, 1) β
𝑖𝑠

∈ (0, 1)

18

be the effort of the -th eWHH, neWHH, and BHH, respectively, to findµ
𝑖𝑠

∈ (0, 1) 𝑖

severe SVs (and , , for non-severe SVs). Since eWHHs spend effort on bothα
𝑖𝑛𝑠

β
𝑖𝑛𝑠

µ
𝑖𝑛𝑠

severe and non severe EVs, their cost is the sum of the costs for the effort spent on

both severe and non-severe SVs:

where𝐹
𝑒

=
𝑐

𝑤
α

𝑖𝑠
2

2 +
α

𝑖𝑛𝑠
2

2 + α
𝑖𝑠

α
𝑖𝑛𝑠

𝑐
𝑤

> 1

The severity-adjusted effort cost multiplier for eWHH, denoted as ” amplifies the"𝑐
𝑤

effort cost for detecting severe software vulnerabilities, reflecting the heightened

complexity and resource investment required in these cases. The interaction term,

, reflects the additional cost of working concurrently on both severe andα
𝑖𝑠

 × α
𝑖𝑛𝑠

non-severe SVs. If an eWHH invests more effort in severe SVs, investing time in

non-severe SVs becomes more expensive, and vice versa.

For simplicity, we assume that due to the lack of expertise of the neWHH, the cost

incurred to allocate effort to severe bugs is infinitely expensive for them. Hence,

neWHHs do not allocate any effort to severe bugs, i.e., . The cost for theβ
𝑖𝑠

= 0

neWHHs is:

.𝐹
𝑛𝑒

=
β

𝑖𝑛𝑠
2

2

Finally, BHHs do not allocate any effort to find non-severe SVs, i.e., becauseµ
𝑖𝑛𝑠

= 0

of very small or no illicit gains from non-severe SVs. The costs for BHHs is thus:

19

.𝐹
𝑏

=
𝑐

𝑏
µ

𝑖𝑠
2

2

The severity-adjusted effort cost multiplier for BHH, , amplifies the effort cost 𝑐
𝑏

> 1

for detecting severe software vulnerabilities.

WHHs’ payoffs have two primary components: First, they may receive a monetary

reward (bounty) for reporting a previously unknown SV. Second, they may accrue

gains in reputation that may lead to career advancement for reporting a previously

unknown SV. For eWHHs’ payoffs, we assume that reporting severe SVs leads to

both monetary and reputational gains, but reporting non-severe SVs leads only to

monetary gains without any reputational gains.7 Furthermore, the monetary gains

for non-severe SVs are smaller than those for severe SVs. Thus, if an eWHH is the

first to report a severe SV, the eWHH receives a payoff , where is the𝑟
𝑠

+ 𝑝
𝑠

𝑟
𝑠

reputational gain that leads to career advancement, and is the bounty paid by the𝑝
𝑠

BBP. On the other hand, if an eWHH is the first to report a non-severe SV, he

receives a payoff but does not accrue any gains in reputation. For neWHHs, as𝑝
𝑛𝑠

the effort to find severe bugs, , their payoff accrues only from rewards forβ
𝑖𝑠

= 0

non-severe bugs. Thus, when a neWHH reports a previously unknown non-severe

SV, he receives the payoff .𝑝
𝑛𝑠

7 Our reputation measure focuses on the technical prowess of the hackers, which is associated with
their ability to discover complex and impactful bugs. BPPs may have a more nuanced definition of
reputation. For instance, a prominent BPP platform, HackerOne, describes reputation as “your
reputation measures how likely your finding is to be immediately relevant and actionable. Reputation
is points gained or lost based on report validity. It's weighted based on the size of the bounty and the
criticality of the reported vulnerability. Reputation is based exclusively on your track record as a
hacker” (HackerOne 2023). Despite the emphasis on report validity in HackerOne’s reputation
definition, both definitions are broadly similar.

20

BHHs’ payoffs accrue from exploiting an SV for illicit gains such as ransom from

affected parties in a ransomware attack. These illicit gains are only likely to accrue

from severe bugs. Thus, we assume BHHs do not allocate any effort to find

non-severe SVs and further assume that their payoff “ ” accrues from exploiting𝑊

severe SVs. For example, BHHs may gain by selling sensitive data such as credit𝑊

card numbers to criminals or charging ransom from a victim to regain access to their

data.

3.2.1 Success Probabilities under Type-Symmetric Equilibrium

Although we focused on the cost and payoff functions of an individual hacker of each

type (eWHH, neWHH, BHH) in the previous subsection, software products are

simultaneously evaluated by multiple hackers of each type to discover SVs. As

assumed earlier, there are eWHHs and neWHHs in the BBP trying to find SVs.𝑛 𝑙

Concomitantly, there are BHHs trying to find SVs.𝑚

For a hacker of any type, we define “success” as being the first to discover the SV.

From the point of view of individual WHH, it only matters if an individual WHH is

the first to discover the SV, as the “bounty” is only paid to the first reporter of the SV.

For simplicity, we also assume that BHHs benefit if they are the first to discover the

SV. Although it is plausible that multiple BHHs can accrue illicit gains from the same

SV, the alternative is arguably more plausible. For instance, after one BHH exploits

an SV for gains, the software vendor may learn about and fix the SV so it cannot be

exploited again.

21

To make the subsequent analysis tractable, we focus on the derivation of a

type-symmetric equilibrium in which hackers of the same type (eWHH, neWHH,

BHH) use the same strategy, i.e., hackers of the same type choose the same level of

effort for SVs. Under this assumption, the success probability changes based on the

effort levels of hackers. Consider a focal eWHH “ ” who invests effort in finding𝑖 α
𝑖𝑠

severe SVs. The average effort of the other eWHHs and BHHs who devote(𝑛 − 1) 𝑚

effort to finding severe SVs is then given by , where are the
𝑛−1()α

𝑠
+𝑚µ

𝑠

𝑛+𝑚−1 α
𝑠
 𝑎𝑛𝑑 µ

𝑠

effort levels selected by the two types at the type-symmetric equilibrium. If all 𝑛

eWHHs and BHHs use the same level of effort for severe SVs, the base probability𝑚

of a given hacker to discover a bug first is inversely related to the number of hackers,

searching for bugs. To keep the subsequent analysis tractable, we assume(𝑛 + 𝑚)

that this base probability is .8 However, a focal hacker can increase the odds of1
𝑛+𝑚

being the �irst to �ind a severe bug, above this base probability, by allocating more

effort than others for the same type of bug. If the focal eWHH , increases the effort𝑖

then the increased probability of finding the bug is the difference between the effort,

, allocated by focal eWHH , and the average effort allocated by all other hackersα
𝑖𝑠

𝑖

searching for severe bugs, . Thus, the probability for eWHH to find a
𝑛−1()α

𝑠
+𝑚µ

𝑠

𝑛+𝑚−1 𝑖

severe bug first is:

ℙ
𝑖𝑒
𝑠 = 1

𝑛+𝑚 + 1
𝑛+𝑚 α

𝑖𝑠
−

𝑛−1()α
𝑠
+𝑚µ

𝑠

𝑛+𝑚−1() (1)

8 This probability is analogous to the probability that a bidder will win a second price auction (1/N)
when all “N” bidders have uniformly and identically distributed valuations.

22

Similarly, the success probabilities for eWHH finding non-severe SV , neWHH𝑖 (ℙ
𝑖𝑒
𝑛𝑠)

finding non-severe SV , and BHH finding a severe SV are given by:(ℙ
𝑖𝑛𝑒
𝑛𝑠) (ℙ

𝑖𝑏
𝑠)

ℙ
𝑖𝑒
𝑛𝑠 = 1

𝑛+𝑙 + 1
𝑛+𝑙 α

𝑖𝑛𝑠
−

𝑛−1()α
𝑛𝑠

+𝑙β
𝑛𝑠

𝑛+𝑙−1() (2)

ℙ
𝑖𝑛𝑒
𝑛𝑠 = 1

𝑛+𝑙 + 1
𝑛+𝑙 β

𝑖𝑛𝑠
−

𝑛α
𝑛𝑠

+ 𝑙−1()β
𝑛𝑠

𝑛+𝑙−1() (3)

ℙ
𝑖𝑏
𝑠 = 1

𝑛+𝑚 + 1
𝑛+𝑚 µ

𝑖𝑠
−

𝑛α
𝑠
+(𝑚−1)µ

𝑠

𝑛+𝑚−1() (4)

In our primary analyses, we use this additive formulation for success probabilities.

We also explored a multiplicative formulation in which the base probability is scaled

up or down by the ratio of the effort between the focal hacker and the average effort

of the rest of the hackers. These analyses are included in Appendix A and strengthen

the results we report in this paper.

3.2.2 Optimal Effort of the Hackers

Hackers’ expected payoff depends on their success probabilities, their payoffs upon

success,9 the cost of their efforts, and the likelihood of residual severe and

non-severe SVs existing at the time of software release. The vendor makes efforts to

release products with fewer vulnerabilities. However, it is well-established that

9 Bounties in the case of WHH and illicit gains in the case of BHH.
23

reducing the number of bugs takes time (Arora, Caulkins, and Telang 2006). The

longer a vendor takes to release a product because of additional testing, the fewer

vulnerabilities it is likely to have. We designate by and the likelihood of𝐾
𝑠
(𝑡) 𝐾

𝑛𝑠
(𝑡)

residual severe and non-severe SVs existing at release (i.e., SVs that have not been

detected and fixed in pre-release software testing.) If software release is delayed to a

later time, a longer testing period reduces residual SVs. Hence,

.10 We assume that the rate of decrease slows down with𝐾
𝑠
' 𝑡() < 0 𝑎𝑛𝑑 𝐾

𝑛𝑠
' 𝑡() < 0

time, i.e., . In the second stage of the game, the hackers take the software𝐾
𝑠
'' 𝑡() > 0

vendor’s choice of the bounty rewards (and) and the release time, which𝑝
𝑠

𝑝
𝑛𝑠

affects and , as given, and choose the optimal effort in response.𝐾
𝑠
(𝑡) 𝐾

𝑛𝑠
(𝑡)

We can formulate the total expected payoff of the focal eWHH , as:𝑖 𝑅
𝑖𝑒

𝑅
𝑖𝑒

= 𝐾
𝑠

𝑡()ℙ
𝑖𝑒
𝑠 𝑟

𝑠
+ 𝑝

𝑠() + 𝐾
𝑛𝑠

𝑡()ℙ
𝑖𝑒
𝑛𝑠(𝑝

𝑛𝑠
) − 𝐹

𝑖𝑒

The �irst and second terms on the RHS are the expected payoffs from �inding severe

and non-severe SVs respectively. The last term is the effort cost of �inding the SVs.

Substituting the expressions for success probabilities and the effort costs, we obtain:

𝑅
𝑖𝑒

= 𝐾
𝑠

𝑡() 1
𝑛+𝑚 1 + α

𝑖𝑠
−

𝑛−1()α
𝑠
+𝑚µ

𝑠

𝑛+𝑚−1()⎡⎢⎣
⎤⎥⎦

𝑟
𝑠

+ 𝑝
𝑠() +

(5)

10 We claim that strict inequality is a realistic assumption as even with large investments in software
testing and a prolonged testing period, the vendor cannot guarantee that no SV remains that could
potentially be discovered with more testing.

24

 𝐾
𝑛𝑠

𝑡() 1
𝑛+𝑙 1 + α

𝑖𝑛𝑠
−

𝑛−1()α
𝑛𝑠

+𝑙β
𝑛𝑠

𝑛+𝑙−1()⎡⎢⎣
⎤⎥⎦
(𝑝

𝑛𝑠
) −

𝑐

𝑤
α

𝑖𝑠
2

2 +
α

𝑖𝑛𝑠
2

2 + α
𝑖𝑠

α
𝑖𝑛𝑠

⎡
⎢
⎣

⎤
⎥
⎦

Similarly, the objective functions for neWHH and BHH are given by:

𝑅
𝑖𝑛𝑒

 = 𝐾
𝑛𝑠

𝑡() 1
𝑛+𝑙 1 + β

𝑖𝑛𝑠
−

𝑛α
𝑛𝑠

+ 𝑙−1()β
𝑛𝑠

𝑛+𝑙−1()⎡⎢⎣
⎤⎥⎦
(𝑝

𝑛𝑠
) −

β
𝑖𝑛𝑠

2

2 (6)

𝑅
𝑖𝑏

 =
𝐾

𝑠
𝑡()𝑊

𝑛+𝑚 1 + µ
𝑖𝑠

−
𝑛α

𝑠
+ 𝑚−1()µ

𝑠

𝑛+𝑚−1()⎡⎢⎣
⎤⎥⎦

−
𝑐

𝑏
µ

𝑖𝑠
2

2 (7)

Note that the hackers' objective function is a concave function of their decision rules

(, so first-order conditions are sufficient for their maximizations. In aα
𝑖𝑠

, α
𝑖𝑛𝑠,

β
𝑖𝑛𝑠

, µ
𝑖𝑠

)

type-symmetric equilibrium, the eWHH may allocate effort to reporting severe and

non-severe SVs (i.e.,) or to reporting only severe bugs (i.e.,α
𝑖𝑠

> 0 𝑎𝑛𝑑 α
𝑖𝑛𝑠

> 0

). While eWHHs who work on both severe and non-severeα
𝑖𝑠

> 0 𝑎𝑛𝑑 α
𝑖𝑛𝑠

= 0

vulnerabilities exist, anecdotally, the second case seems more prevalent among

expert bounty hunters, circa 2023. Expert bounty hunters are not only attracted by

the higher rewards for severe SVs but also by the challenge of finding technically

complex hacking attacks that unearth severe bugs. Additionally, severe SVs are more

likely to get adjudicated swiftly by BBP for bounty rewards. Thus, we will relegate

the analysis of the first case (i.e.,) to Appendix B and focus ourα
𝑖𝑠

> 0 𝑎𝑛𝑑 α
𝑖𝑛𝑠

> 0

discussion in the paper on the more important, second case (i.e.,

25

). This case arises in the equilibrium if ,α
𝑖𝑠

> 0 𝑎𝑛𝑑 α
𝑖𝑛𝑠

= 0
𝐾

𝑠
𝑡() 𝑟

𝑠
+𝑝

𝑠()
(𝑛+𝑚)𝑐

𝑤
>

𝐾
𝑛𝑠

𝑡()𝑝
𝑛𝑠

𝑛+𝑙

namely if the expected payoff of eWHH from severe bugs (normalized by the effort

cost multiplier) is greater than the expected payoff from non-severe bugs.

Optimizing the hackers' objectives yields the following effort levels chosen at the

symmetric equilibrium.

,α
𝑖𝑠

= α
𝑠

= 1
𝑛+𝑚()𝑐

𝑤
𝐾

𝑠
𝑡() 𝑟

𝑠
+ 𝑝

𝑠() α
𝑖𝑛𝑠

= 0 (8)

β
𝑖𝑛𝑠

= β
𝑛𝑠

= 1
𝑙 𝐾

𝑛𝑠
𝑡()(𝑝

𝑛𝑠
) (9)

µ
𝑖𝑠

= µ
𝑠

= 1
𝑐

𝑏
𝑛+𝑚() 𝐾

𝑠
𝑡()(𝑊) (10)

Hence, a given hacker exerts more effort if the likelihood of residual SVs in the

software on which she is working is higher, the reward she expects is higher, the

number of competing hackers is smaller, and the cost of effort is lower (the

severity-adjusted effort cost multipliers, , are smaller for eWHH and BHH,𝑐
𝑤

 𝑎𝑛𝑑 𝑐
𝑏

respectively).

Substituting the symmetric effort level chosen by each type (, , and) into theα
𝑠

β
𝑛𝑠

µ
𝑠

expressions of the probabilities of success derived earlier, we obtain the following

probabilities of success by an individual hacker at the symmetric equilibrium:

ℙ
𝑖𝑒
𝑠 = 𝑚𝑎𝑥(0, 1

𝑛+𝑚 1 +
𝑚𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()

𝑟
𝑠
+𝑝

𝑠()
𝑐

𝑤
− 𝑊

𝑐
𝑏

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦
) (11)

ℙ
𝑖𝑛𝑒
𝑛𝑠 =

𝐾
𝑛𝑠

𝑡()𝑝
𝑛𝑠

𝑙
(12)

26

ℙ
𝑖𝑏
𝑠 = 𝑚𝑎𝑥(0, 1

𝑛+𝑚 1 +
𝑛𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()
𝑊
𝑐

𝑏
−

𝑟
𝑠
+𝑝

𝑠()
𝑐

𝑤

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦
) (13)

Hence, a WHH (BHH) is more (less) likely to succeed if the reward the WHH expects

discounted by his cost of effort is higher and if the gain derived by a BHH
𝑟

𝑠
+𝑝

𝑠()
𝑐

𝑤

from exploiting vulnerabilities discounted by his cost is smaller, respectively.𝑊
𝑐

𝑏

Success is also more likely if the likelihood of residual vulnerabilities is higher, as

re�lected by bigger values of and . As the number of competing hackers𝐾
𝑠

𝑡() 𝐾
𝑛𝑠

𝑡()

searching for a given type of bug increases, the success probability of one given

hacker decreases.

Figure 1 illustrates that the success probability for a WHH increases and that of a

BHH decreases when the bounty offered to WHH is bigger.

Figure 1: Success Probability for WHH & BHH vs. Bounty for SV Offered to WHH

27

A more generous bug bounty incentivizes WHHs to exert more effort, thus raising

the WHHs’ success probability and reducing BHHs’ success probability.11 We state

this observation in the following proposition:

Proposition 1: In the context of a bug bounty program (BBP), as the monetary reward

(bounty) offered to white-hat hackers (WHH) for discovering severe bugs increases, (a)

the effort invested by WHH in searching for bugs increases, and (b) the probability that

a WHH will find a severe bug first increases, while the probability that a black-hat

hacker (BHH) will find a severe bug first decreases..

3.3 Strategic Behavior of the Software Vendor

We now consider the strategic behavior of the software vendor in the first stage of

our 2-stage game. The software vendor chooses the release time and the bounty

award to optimize his payoff, considering the likely response of the hackers in the

second stage of the game.

When choosing the time of software release, vendors consider the tradeoff between

releasing software early to gain revenue and delaying the release to allow for𝑅(𝑡)

more testing to reduce the risk of post-release discovery of vulnerabilities. The

likelihood of residual vulnerabilities depends on the amount of testing conducted

before release. More testing leads to higher quality software with fewer latent bugs

but delays time-to-market. Thus, release time is an important strategic variable for𝑡

11 In Appendix A, we reformulated the success probability as discussed earlier. In this new
formulation, increases in bounty introduces a dual effect of concurrently incentivizing the WHHs to
increase efforts and the BHHs to reduce efforts. This dual effect on effort is stronger than the single
effect we obtain here.

28

any software vendor. Delaying the software's release reduces its revenues but also

reduces the number of severe and nonsevere bugs, and , that can be𝐾
𝑠
(𝑡) 𝐾

𝑛𝑠
(𝑡)

discovered and potentially exploited. We designate by the vendor’s cost if a𝑇𝐶
𝑠

severe SV occurs and a BHH succeeds in finding it first. We further designate by

the vendor’s cost if a non-severe SV occurs and no WHH finds it, but rather a𝑇𝐶
𝑛𝑠

user finds it, where .𝑇𝐶
𝑠

≫ 𝑇𝐶
𝑛𝑠

When a software vendor participates in a BBP, it chooses the bounty amounts and𝑝
𝑠

, and the time of release t, to maximize its pro�it:𝑝
𝑛𝑠

Π = 𝑅 𝑡() − 𝐾
𝑠

𝑡() 𝑚ℙ
𝑏
𝑠() 𝑇𝐶

𝑠() − 𝐾
𝑠

𝑡()(𝑛ℙ
𝑒
𝑠) 𝑝

𝑠() −

𝐾
𝑛𝑠

𝑡()(𝑙ℙ
𝑛𝑒
𝑛𝑠) 𝑝

𝑛𝑠() − 𝐾
𝑛𝑠

(𝑡) 𝑇𝐶
𝑛𝑠() 1 − 𝑙ℙ

𝑛𝑒
𝑛𝑠⎡⎢⎣

⎤⎥⎦

(14)

Note that in the cost terms (the 2nd, 3rd, 4th, and 5th RHS terms), we scale the

individual success probabilities of hackers of a particular type by the number of

hackers of the corresponding type, as the vendor will incur a cost if any one of these

hackers finds the SVs. Term 2 is the cost incurred by the vendor when one of the

BHHs finds the vulnerability first, and term 3 is the cost incurred in paying bounties

for severe bugs. Cost term 4 is the cost incurred for paying bounties for non-severe

bugs, and cost term 5 relates to non-severe SVs discovered by software users,

requiring the vendor to fix the SVs. Plugging in the expressions for success

probabilities into the vendor's objective function, we obtain:

29

Π = 𝑅 𝑡() − 𝐾
𝑠

𝑡() 𝑚
𝑛+𝑚 1 +

𝑛𝐾
𝑠

𝑡()

𝑛+𝑚−1() 𝑛+𝑚()
𝑊
𝑐

𝑏
−

𝑟
𝑠
+𝑝

𝑠()
𝑐

𝑤

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦
 (𝑇𝐶

𝑠
) −

𝐾
𝑠

𝑡() 𝑛
𝑛+𝑚 1 +

𝑚𝐾
𝑠

𝑡()

𝑛+𝑚−1() 𝑛+𝑚()

𝑟
𝑠
+𝑝

𝑠()
𝑐

𝑤
− 𝑊

𝑐
𝑏

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦
(𝑝

𝑠
) −

(𝐾
𝑛𝑠

(𝑡)𝑝
𝑛𝑠

)2 − 𝐾
𝑛𝑠

𝑡()𝑇𝐶
𝑛𝑠

1 − 𝐾
𝑛𝑠

𝑡()𝑝
𝑛𝑠[]

(15)

The total realized revenue from the software declines as the release is delayed, i.e.,

. Moreover, we assume that the revenue fall is sharper when products are𝑅’(𝑡) < 0

delayed further, namely .𝑅’'(𝑡) < 0

3.3.1 Optimal Bounty Set by the Software Vendor

We start by optimizing the vendor's objective with respect to the monetary amounts

awarded to white hats. It is easy to show that the objective is a concave function of

and , implying that �irst-order conditions are also suf�icient. Optimizing with𝑝
𝑠
 𝑝

𝑛𝑠

respect to and , we obtain:𝑝
𝑠

𝑝
𝑛𝑠

𝑝
𝑠

= 1
2 𝑇𝐶

𝑠
+

𝑐
𝑤

𝑐
𝑏

𝑊 − 𝑟
𝑠

⎡⎢⎣
⎤⎥⎦

− 1
2

𝑚+𝑛() 𝑛+𝑚−1()
𝑚

1
𝐾

𝑠
𝑡() 𝑐

𝑤
(16)

𝑝
𝑛𝑠

=
𝑇𝐶

𝑛𝑠

2
(17)

The software vendor sets a larger monetary reward () for severe SVs if (i) the𝑝
𝑠

vendor’s costs () are high when a BHH succeeds in discovering severe SV, (ii) the𝑇𝐶
𝑠

BHH’s illicit gains are high when the BHH succeeds in discovering severe SV, or𝑊

when the cost of effort incurred by the BHH to find severe bugs is low, (iii) the𝑐
𝑏

likelihood that a severe SV exists at release time is high. On the other hand, the𝐾
𝑠
(𝑡)

30

software vendor sets a smaller monetary reward if the reputational gains of WHH, 𝑟
𝑠

are high.

When facing high costs from BHH exploitation or a high likelihood of SV presence at

release, the vendor offers higher monetary rewards to entice top eWHHs to identify

SVs in their software before BHHs can. Similarly, if the illicit gains to the BHH are

high or when their cost of effort is low, they are highly motivated in their attack, so

the vendor has to counter by raising the monetary reward to attract eWHHs. In

contrast, if the reputational gains for eWHHs are high when discovering severe bugs,

the vendor does not have to set large monetary rewards to attract eWHHs. The cost

of effort of eWHHs has an ambiguous effect on the bug bounty. On one hand, high

effort cost implies that the bounty should be higher to allow eWHHs to cover their

higher cost. On the other hand, high effort cost implies that eWHHs are less likely to

find severe SVs, and therefore, there is less reason to attract them to participate in

the BBP.

For a bounty program to exist it should be that the vendor is willing to pay positive

bounties to WHHs. In addition, it should also be that WHHs and BHHs have positive

probabilities of finding SVs first. Using the expressions we derive for the optimal

bounties in (16) and (17) and the probabilities in (11)-(13), we can obtain

conditions that the parameters of the model satisfy to support the existence of a

bounty program. Condition 1 reports the requirements that the parameters should

satisfy.

31

Condition 1: , where𝐿𝐵 < 𝑊
𝑐

𝑏
−

𝑟
𝑠

𝑐
𝑤

⎡⎢⎣
⎤⎥⎦

< 𝑈𝐵

and𝐿𝐵≡𝑚𝑎𝑥 𝑚+𝑛() 𝑛+𝑚−1()
𝑚𝐾

𝑠
𝑡() −

𝑇𝐶
𝑠

𝑐
𝑤

 ,
𝑇𝐶

𝑠

𝑐
𝑤

− 2𝑚+𝑛() 𝑚+𝑛() 𝑛+𝑚−1()
𝑚𝑛𝐾

𝑠
𝑡()

⎰
⎱

⎱
⎰

.𝑈𝐵 ≡ 𝑚+𝑛() 𝑛+𝑚−1()
𝑚𝐾

𝑠
𝑡() +

𝑇𝐶
𝑠

𝑐
𝑤

The upper bound is always bigger than the lower bound implying that there is a

nonempty region for the parameters (i.e., the difference) that supports𝑊
𝑐

𝑏
−

𝑟
𝑠

𝑐
𝑤

⎡⎢⎣
⎤⎥⎦

the existence of the bounty program () and positive success probabilities for𝑝
𝑠

> 0

hackers.

3.3.2 Optimal Release Time without BBP

To determine the effect of establishing a bounty program on the release time of the

software, we start by considering the optimal release time of the software for a

vendor that does not establish such a program. First, note that in the absence of a

bounty program, , and the success probabilities of eWHH and BHH change𝑝
𝑠

= 0

accordingly:

)ℙ
𝑖𝑒
𝑠 = 𝑚𝑎𝑥(0, 1

𝑛+𝑚 1 +
𝑚𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()

𝑟
𝑠

𝑐
𝑤

− 𝑊
𝑐

𝑏

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦

(18)

)ℙ
𝑖𝑏
𝑠 = 𝑚𝑎𝑥(0, 1

𝑛+𝑚 1 +
𝑛𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()
𝑊
𝑐

𝑏
−

𝑟
𝑠

𝑐
𝑤

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦

(19)

There are potentially three types of costs when SVs are discovered. The vendor

incurs the cost if a severe SV is discovered and exploited by a BHH. It may incur𝑇𝐶
𝑠

32

the cost when an eWHH discovers a severe SV and potentially𝑥𝑇𝐶
𝑠
 𝑤𝑖𝑡ℎ 𝑥 ∈ (0, 1)

discloses it publicly without coordination with the vendor. This uncoordinated

disclosure imposes an externality on the software vendor and potentially on the

users of its software. We assume that this cost, , is not as high as the damage𝑥𝑇𝐶
𝑠

in�licted by a BHH who �inds the severe SV �irst (i.e.,). Finally, the vendor𝑥 ∈ (0, 1)

may also incur the cost if a nonsevere SV is discovered by users,12 which may𝑇𝐶
𝑛𝑠

hurt the vendor's reputation.

The objective function of the vendor without a bounty program becomes:

Π
𝑛𝑏

= 𝑅 𝑡() − 𝐾
𝑠

𝑡()𝑚ℙ
𝑖𝑏
𝑠 𝑇𝐶

𝑠
 − 𝐾

𝑠
𝑡()𝑛ℙ

𝑖𝑒
𝑠 (𝑥𝑇𝐶

𝑠
) − 𝐾

𝑛𝑠
𝑡()𝑇𝐶

𝑛𝑠
(20)

Since both and are strictly positive, the �irst-order condition to determine theℙ
𝑖𝑏
𝑠 ℙ

𝑖𝑒
𝑠

optimal release time is:

∂Π
𝑛𝑏

∂𝑡 = 𝑅' 𝑡() − 𝐾
𝑠
' 𝑡() 𝑚

𝑛+𝑚 1 +
2𝑛𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()
𝑊
𝑐

𝑏
−

𝑟
𝑠

𝑐
𝑤

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦
𝑇𝐶

𝑠
−

𝐾
𝑠
' 𝑡() 𝑛

𝑛+𝑚 1 +
2𝑚𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()

𝑟
𝑠

𝑐
𝑤

− 𝑊
𝑐

𝑏

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦
(𝑥𝑇𝐶

𝑠
) −

𝐾
𝑛𝑠

' 𝑡()𝑇𝐶
𝑛𝑠

= 0

(21)

The assumptions that ensure that this �irst-order𝑅'' (𝑡) < 0 𝑎𝑛𝑑 𝐾'' (𝑡) > 0

condition is also suf�icient, given that the objective is a concave function of in this𝑡

12 We assume that novice users do not have the expertise and incentive to exert the effort necessary
to find severe bugs. Nonsevere bugs are much easier to find, even by novice users.

33

case.13 From the first order condition, the optimal release time increases as𝑡

increase. The vendor will delay release if the cost of SV𝑇𝐶
𝑠
, 𝑇𝐶

𝑛𝑠
, 𝑥, 𝑎𝑛𝑑 𝐾

𝑠
(𝑡)

exploitation by BHH is high, if the probability of BHH exploitation due to

uncoordinated disclosure by WHH is high, or if the likelihood of residual SV at

release time is high. In these situations, the software vendor will delay the release to

test the software longer.

3.3.3 BBPs Guarantee Higher Profits for Software Vendors

For a bug bounty program to exist, it must be that the monetary rewards to the

white hats are positive (i.e., and). Assuming that Condition 1 is𝑝
𝑠

> 0 𝑝
𝑛𝑠

> 0

satisfied, we can substitute the expressions obtained for the optimal monetary

awards in the objective function of the vendor with BBP. This objective can then be

expressed in terms of the objective of the vendor without BBP, as follows:

Π
𝑏

= Π
𝑛𝑏

+
𝑚𝑛 𝐾

𝑠
𝑡()()2𝑝

𝑠
2

𝑛+𝑚−1() 𝑛+𝑚()2𝑐
𝑤

+ 𝐾
𝑠

𝑡()()2𝑝
𝑛𝑠
2 +

𝑛𝐾
𝑠

𝑡()𝑥𝑇𝐶
𝑠
𝑚𝑎𝑥(0, 1

𝑛+𝑚 1 +
𝑚𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()

𝑟
𝑠

𝑐
𝑤

− 𝑊
𝑐

𝑏

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦
)

(22)

Proposition 2 follows directly from the above expression.

Proposition 2: Let denote the expected profit function of a software vendorΠ
𝑏
, Π

𝑛𝑏

with and without a bug bounty program, respectively. If the vendor finds it optimal to
award positive monetary awards to white hat hackers, then .Π

𝑏
> Π

𝑛𝑏

13 These conditions are stronger than necessary. In our analysis, we will assume that concavity holds,
so that first order conditions are sufficient.

34

The Proposition's �inding explains the large and growing number of bug bounty

programs. The overall cost of bugs �irst found by BHH () is extremely high. This𝑇𝐶
𝑠

cost includes not only the monetary damage in�licted by hackers but also the

regulatory and reputational harm incurred by the vendor. Software vendors would

thus opt into BBPs to reduce such costs.

3.3.4 Release Time with BBP

To obtain the optimal release time for a vendor with BBP, we maximize the objective

function of the vendor with a bounty program (Equation 22) with respect to the

release time, :𝑡

∂π
𝑏

∂𝑡 =
∂π

𝑛𝑏

∂𝑡 +

∂
∂𝑡

𝑚𝑛 𝐾
𝑠

𝑡()()2𝑃
𝑠
2

𝑛+𝑚−1() 𝑛+𝑚()2𝑐
𝑤

+ 𝐾
𝑠

𝑡()()2𝑃
𝑛𝑠
2 +

𝑛𝐾
𝑠

𝑡()𝑥𝑇𝐶
𝑠

𝑛+𝑚 1 +
𝑚𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()

𝑅
𝑠

𝑐
𝑤

− 𝑊
𝑐

𝑏

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦

⎡⎢⎢⎣

⎤⎥⎥⎦

(23)

Denote 𝐷
(𝑡,Π)

=
∂Π

𝑏

∂𝑡 −
∂Π

𝑛𝑏

∂𝑡

⇒ 𝐷
(𝑡,Π)

= ∂
∂𝑡

𝑚𝑛 𝐾
𝑠

𝑡()()2𝑃
𝑠
2

𝑛+𝑚−1() 𝑛+𝑚()2𝑐
𝑤

+ 𝐾
𝑠

𝑡()()2𝑃
𝑛𝑠
2 +

𝑛𝐾
𝑠

𝑡()𝑥𝑇𝐶
𝑠

𝑛+𝑚 1 +
𝑚𝐾

𝑠
𝑡()

𝑛+𝑚−1() 𝑛+𝑚()

𝑅
𝑠

𝑐
𝑤

− 𝑊
𝑐

𝑏

⎰
⎱

⎱
⎰

⎡⎢⎣
⎤⎥⎦

⎡⎢⎢⎣

⎤⎥⎥⎦

(24)

Evaluating at the optimal time chosen by a software vendor without BBP, ,
∂π

𝑏

∂𝑡 𝑡
𝑛𝑏
*

yields that the first term and the sign of determines whether the
∂π

𝑛𝑏

∂𝑡 = 0 𝐷
(𝑡,Π)

35

release time of the vendor with BBP is earlier or later than that of the vendor

without BBP. That is, given the concavity of the objective function , if isπ
𝑏

𝐷
(𝑡,Π)

negative, a software vendor with BBP releases its software earlier than a vendor

without BBP. Given the expressions derived for, and , it is easy to show that𝑃
𝑠

 𝑃
𝑛𝑠

this derivative is indeed negative because .14
∂𝑃

𝑠

∂𝑡 < 0, 𝐾
𝑠
' 𝑡() < 0, 𝑎𝑛𝑑 𝐾

𝑛𝑠
' 𝑡() < 0

Hence, the software vendor with BBP will definitely release the software earlier. We

state this result in Proposition 3.

Proposition 3: The release time of software of a vendor with a bug bounty program is

earlier than that of a vendor without such a program.

3.3.5 Optimal Number of WHH in BPP

We now consider “ ,” the number of eWHHs in a program, to be a vendor’s choice𝑛

variable and characterize the optimal number of eWHHs that should participate in a

BBP. Such a choice applies primarily to private BBPs. A private BBP allows a

vendor to choose the eWHHs that the vendor will allow to participate in its BPP.

Thus private BPPs not only allow the vendor to choose the quality of eWHH

participants but also the number of such participants. Under the assumption that

the objective function is concave in “ ,” the solution to the first order condition will𝑛

yield the optimal value for “ .” Differentiating the objective function by “ ” yields𝑛 𝑛

the expression15:

15 Note that the second derivative of the objective with respect to n is negative, guaranteeing that
assumed concavity of the objective with respect to n. Hence, the first order condition is also sufficient.

14 The inequality indicating that the optimal bounty offered for SV declines as software is released
later follows from the derivative of the optimal bounty expression.

36

∂π
𝑏

∂𝑛 =
𝑚𝐾

𝑠
2 𝑡() 𝐶

𝑠
−𝑝

𝑠()2

𝑐
𝑤

𝑛+𝑚()2 − 2𝑛2 − 𝑛 𝑚 − 1() + 𝑚 𝑚 + 1()[] (25)

Solving the first order condition, , for “ ” yields the following solution:
∂π

𝑏

∂𝑛 = 0 𝑛

𝑛 = 9𝑚2−10𝑚+1
4 − 𝑚−1()

4
(26)

The solution has three implications: (i) the optimal choice of “ ” depends only on𝑛

the number of BHHs that are likely to attack the software, (ii) the optimal number of

eWHHs, “ ,” is smaller than the number of “ ,” (ii) , i.e., the optimal number𝑛 𝑚 ∂𝑛
∂𝑚 > 0

of eWHHs that the vendor allows into the private program increases as the expected

number of “ ” increases. Thus, a software vendor that releases very prominent𝑚

software (e.g., widely used web browser) that will likely attract a large number of

BHHs should optimally have a larger number of eWHHs in its private BPP than a

vendor with less prominent software.

4 Conclusion

Our paper highlights three key findings that shed light on the growing adoption of

bug bounty programs (BBPs) by software vendors. First and foremost, our results

demonstrate that under reasonable assumptions, a software vendor can increase its

expected profit by participating in a BBP. This profitability advantage explains the

rising popularity of BBPs among software vendors and the success of BBP platforms

like HackerOne.

37

Second, our model suggests that software vendors with BBPs will likely release their

products earlier than vendors without such programs. As testing for vulnerabilities

and fixing them is a time-consuming process, an earlier release implies that vendors

with BBPs may release software with a relatively higher number of bugs. While this

could potentially increase the risk for software users, the vendor can mitigate this

risk by leveraging the BBP, where ethical hackers are contractually obligated to

coordinate the disclosure of vulnerabilities they find, allowing the vendor to address

them promptly if it chooses. The software vendor certainly mitigates the risks to its

market reputation by controlling the disclosure of vulnerabilities through BBPs.

Third, if a vendor has the ability to choose the number of ethical hackers to invite

into its BBP, the optimal number depends solely on the expected number of

malicious hackers likely to seek vulnerabilities for exploitation. Notably, the optimal

number of ethical hackers is lower than the expected number of malicious hackers

but increases as the expected number of malicious hackers increases.

Finally, higher bounties incentivize ethical hackers to exert more effort, thereby

increasing the probability that they will discover severe vulnerabilities first while

reducing the success probability of malicious hackers.

While our analysis clearly shows the profitability benefit of BBPs to software

vendors, the overall social welfare impacts of BBPs require further analysis.

Qualitatively, consumers gain earlier access to new software features through

accelerated release cycles enabled by BBPs. However, this comes at the potential

cost of receiving buggier, less secure software in the short term before

38

vulnerabilities identified through bounties can be patched. Lack of transparency, as

vendors control vulnerability disclosures, creates information asymmetries and

further obfuscates security risks to consumers. Conversely, BBPs foster positive

externalities by incentivizing ethical WHHs to contribute to improving software

security, and mitigating cybercrime's societal burden over time while providing legal

income opportunities in this field. BBPs also improve economic efficiency as skilled

WHHs are not bound to work exclusively for a single software vendor but can freely

use their skills across various software vendors. Nevertheless, unpatched

vulnerabilities could briefly enable malicious hacking, generating negative

externalities.

Overall, our findings collectively underscore the potential benefits of bug bounty

programs for software vendors, not only in terms of improved profitability but also

in enabling earlier product releases while managing the associated risks to their

reputation through coordinated vulnerability disclosure. As the threat landscape

evolves, the adoption of BBPs is likely to continue gaining momentum, providing

software vendors with a valuable tool to enhance their security posture and

stakeholder trust.

5 References

Ahmed, Ali, Amit Deokar, and Ho Cheung Brian Lee. 2021. “Vulnerability Disclosure
Mechanisms: A Synthesis and Framework for Market-Based and
Non-Market-Based Disclosures.” Decision Support Systems 148: 113586.

Andreessen, Marc. 2011. “Marc Andreessen on Why Software Is Eating the World.”
Wall Street Journal, August 19, 2011, sec. Life and Style.
http://online.wsj.com/article/SB100014240531119034809045765122509

39

15629460.html.
Arora, Ashish, Jonathan P. Caulkins, and Rahul Telang. 2006. “Research Note—Sell

First, Fix Later: Impact of Patching on Software Quality.”Management Science
52 (3): 465–71.

Arora, Ashish, Chris Forman, Anand Nandkumar, and Rahul Telang. 2010.
“Competition and Patching of Security Vulnerabilities: An Empirical Analysis.”
Information Economics and Policy 22 (2): 164–77.

Arora, Ashish, Ramayya Krishnan, Rahul Telang, and Yubao Yang. 2010. “An
Empirical Analysis of Software Vendors’ Patch Release Behavior: Impact of
Vulnerability Disclosure.” Information Systems Research 21 (1): 115–32.
https://doi.org/10.1287/isre.1080.0226.

Dijkstra, E. W. 2022. “On the Reliability of Programs (Originally EWD303, 1970).” In
Edsger Wybe Dijkstra: His Life,Work, and Legacy, 1st ed., 45:359–70. New
York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/3544585.3544608.

Feng, Nan, Tianlu Zhou, Haiyang Feng, and Minqiang Li. 2024. “Optimal Launch
Timing of Bug Bounty Programs for Software Products under Different
Licensing Models.” Journal of the Association for Information Systems 25 (2):
239–66.

FIRST. 2023. “CVSS v4.0 Specification Document.” FIRST— Forum of Incident
Response and Security Teams. 2023.
https://www.first.org/cvss/v4.0/specification-document.

HackerOne. 2023. “Reputation | HackerOne Help Center.” 2023.
https://docs.hackerone.com/en/articles/8369865-reputation.

IEEE Computer Society. 2010. “IEEE Standard Classification for Software Anomalies.”
IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993), January, 1–23.
https://doi.org/10.1109/IEEESTD.2010.5399061.

Malladi, Suresh S., and Hemang C. Subramanian. 2020. “Bug Bounty Programs for
Cybersecurity: Practices, Issues, and Recommendations.” IEEE Software 37
(1): 31–39. https://doi.org/10.1109/MS.2018.2880508.

Manès, Valentin JM, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,
Edward J. Schwartz, and Maverick Woo. 2019. “The Art, Science, and
Engineering of Fuzzing: A Survey.” IEEE Transactions on Software Engineering
47 (11): 2312–31.

Munaiah, Nuthan, and Andrew Meneely. 2016. “Vulnerability Severity Scoring and
Bounties: Why the Disconnect?” In Proceedings of the 2nd International
Workshop on Software Analytics, 8–14. Seattle WA USA: ACM.
https://doi.org/10.1145/2989238.2989239.

NIST CSRC. 2020. “Software Vulnerability - Glossary | CSRC.” 2020.
https://csrc.nist.gov/glossary/term/software_vulnerability.

Ropek, Lucas. 2022. “Researchers Used a Sirius XM Bug to Hijack a Bunch of Cars.”
Gizmodo, November 30, 2022.
https://gizmodo.com/sirius-xm-bug-honda-nissan-acura-hack-1849836987.

Ryan Ellis and Yuan Stevens. 2022. “Bounty Everything: Hackers and the Making of
the Global Bug Marketplace.”

40

https://datasociety.net/library/bounty-everything-hackers-and-the-making-
of-the-global-bug-marketplace/.

Thompson, Ken. 1984. “Reflections on Trusting Trust.” Communications of the ACM
27 (8): 761–63. https://doi.org/10.1145/358198.358210.

Treisman, Rachel. 2021. “A Missouri Newspaper Told the State about a Security Risk.
Now It Faces Prosecution.” NPR, October 14, 2021, sec. National.
https://www.npr.org/2021/10/14/1046124278/missouri-newspaper-secur
ity-flaws-hacking-investigation-gov-mike-parson.

Walshe, Thomas, and Andrew Simpson. 2020. “An Empirical Study of Bug Bounty
Programs.” 2020 IEEE 2nd International Workshop on Intelligent Bug Fixing
(IBF), February, 35–44. https://doi.org/10.1109/IBF50092.2020.9034828.

Zhou, Jiali, and Kai-Lung Hui. 2020. “Sleeping with the Enemy: An Economic and
Security Analysis of Bug Bounty Programs.” SSRN Scholarly Paper. Rochester,
NY. https://doi.org/10.2139/ssrn.3940307.

———. 2022. “Strategic Interaction Between Crowd and In-House Contributions:
Evidence from the Internet Bug Bounty Program.” SSRN Scholarly Paper.
Rochester, NY. https://doi.org/10.2139/ssrn.4074182.

Zhou, Tianlu, Dan Ma, and Nan Feng. 2023. “An Economic Analysis of Third-Party
Software Reliability Improvement Using the Bug Bounty Program.”
https://aisel.aisnet.org/icis2023/cyber_security/cyber_security/8/.

Zrahia, Aviram, Neil Gandal, Sarit Markovich, and Michael H. Riordan. 2022. “The
Simple Economics of an External Shock on a Crowdsourced ‘Bug Bounty
Platform.’” SSRN Scholarly Paper. Rochester, NY.
https://doi.org/10.2139/ssrn.4154516.

41

Appendix A: Modified specification of probabilities of finding bug first

In this section, we modify the probability of an individual hacker to find a bug first,

focusing on the case that expert white hats allocate effort only to finding severe bugs.

We assume that the added probability of being first above the basic probability (
1

𝑚+𝑛

for severe, and for non-severe) is formulated as a ratio of the individual hacker’s
1
𝑙

effort and the average effort exerted by other hackers who allocate efforts to find the

same type of bugs. This is in contrast to the assumption in the main text, where this

added probability was formulated as a difference between the two. Whereas in the main

text the optimal effort level selected by an individual hacker was independent of the

choice of other hackers, in the new formulation this choice does depend on how much

effort is exerted by others. We demonstrate, however, that our main results do not

change significantly. Establishing a bounty program leads to reduced probability of black

hats finding severe bugs first. Moreover, the program leads to lower efforts allocated by

black hats to finding severe bugs.

The following are the payoff functions of the hackers with the new formulation.

Payoff of expert white hat:

.𝑅
𝑤𝑒

=
𝐾

𝑠
𝑡() 𝑟

𝑠
+𝑝

𝑠()
𝑛+𝑚

α
𝑖𝑠

𝑛−1()α
𝑠
+𝑚µ

𝑠[]/ 𝑛+𝑚−1()
⎡⎢⎣

⎤⎥⎦
−

𝑐
𝑤

α
𝑖𝑠

2

2 , 𝑤ℎ𝑒𝑟𝑒 𝑐
𝑤

> 1

Payoff black hat:

.𝑅
𝑏
 =

𝐾
𝑠

𝑡()𝑊

𝑛+𝑚

µ
𝑖𝑠

𝑛α
𝑠
+ 𝑚−1()µ

𝑠()
𝑛+𝑚−1()

⎡⎢⎢⎣

⎤⎥⎥⎦
−

𝑐
𝑏
µ

𝑖𝑠
2

2 , 𝑤ℎ𝑒𝑟𝑒 𝑐
𝑏

> 1

Payoff of non-expert white hat:

.𝑅
𝑤𝑛𝑒

 =
𝐾

𝑛𝑠
𝑡()𝑝

𝑛𝑠

𝑙 β
𝑖𝑛𝑠

/β
𝑛𝑠()[] −

β
𝑖𝑛𝑠

2

2

To illustrate, when the effort of an individual expert white hat is bigger than theα
𝑖𝑠

average effort of other hackers working on finding severe bugs, his basic
𝑛−1()α

𝑠
+𝑚µ

𝑠

𝑛+𝑚−1()

probability is bigger than because the ratio is bigger than 1. If
1

𝑚+𝑛

α
𝑖𝑠

𝑛−1()α
𝑠
+𝑚µ

𝑠[]/ 𝑛+𝑚−1()

his effort is smaller than the average effort exerted by others, his probability is smaller

than . The effort level of the non-expert white hat is still independent of the effort
1

𝑚+𝑛

levels selected by other types of hackers (expert white hats and black hats), given that

the other types do not allocate any effort to finding non-severe bugs. We focus,

42

therefore, only on the derivation of the effort levels of expert white hats and black hats

selected at the equilibrium. Optimizing their objective functions, we obtain:

.
∂𝑅

𝑤𝑒

∂α
𝑖𝑠

=
𝐾

𝑠
𝑡() 𝑟

𝑠
+𝑝

𝑠()
𝑛+𝑚

1
𝑛−1()α

𝑠
+𝑚µ

𝑠[]/ 𝑛+𝑚−1()
⎡⎢⎣

⎤⎥⎦
− 𝑐

𝑤
α

𝑖𝑠
= 0

.
∂𝑅

𝑏

∂µ
𝑖𝑠

=
𝐾

𝑠
𝑡()𝑊

𝑛+𝑚
1

𝑛α
𝑠
+ 𝑚−1()µ

𝑠[]/ 𝑛+𝑚−1()
⎡⎢⎣

⎤⎥⎦
− 𝑐

𝑏
µ

𝑖𝑠
= 0

From the above conditions, it follows that . Hence, each expert
∂α

𝑖𝑠

∂µ
𝑠

< 0 𝑎𝑛𝑑
∂µ

𝑖𝑠

∂α
𝑠

 < 0

white hat exerts less effort if the effort level of each black hat is higher at the

equilibrium. And similarly, each black hat exerts less effort if the effort level of each

expert white hat is higher at the equilibrium.

To characterize the symmetric equilibrium, we can evaluate the first order conditions at

the symmetric equilibrium, where and , to obtain the following systemα
𝑖𝑠

= α
𝑠

µ
𝑖𝑠

= µ
𝑠

of two equations in as unknowns.α
𝑠
 𝑎𝑛𝑑 µ

𝑠

.
𝐾

𝑠
𝑡() 𝑟

𝑠
+𝑝

𝑠()
𝑛+𝑚

1
𝑛−1()α

𝑠
+𝑚µ

𝑠[]/ 𝑛+𝑚−1()
⎡⎢⎣

⎤⎥⎦
− 𝑐

𝑤
α

𝑠
= 0

.
𝐾

𝑠
𝑡()𝑊

𝑛+𝑚
1

𝑛α
𝑠
+ 𝑚−1()µ

𝑠[]/ 𝑛+𝑚−1()
⎡⎢⎣

⎤⎥⎦
− 𝑐

𝑏
µ

𝑠
= 0

We can use the implicit function theorem to investigate the effect of a higher bounty

amount on the effort levels selected by each expert white hat and each black hat at the

equilibrium. Total differentiation of the above system allows us to obtain the derivatives

and as follows:
∂α

𝑠

∂𝑝
𝑠

∂µ
𝑠

∂𝑝
𝑠

.
𝑑α

𝑠

𝑑𝑝
𝑠

= 𝐾 𝑡()𝑊 𝑚−1()

𝑛+𝑚() 𝑛α
𝑠
+ 𝑚−1()µ

𝑠[]2 𝑛+𝑚−1()
+ 𝑐

𝑏
⎡⎢⎢⎣

⎤⎥⎥⎦

𝑐
𝑤

α
𝑠

𝑅+𝑃
𝑠()𝐷 > 0

, where
𝑑µ

𝑠

𝑑𝑝
𝑠

=− 𝐾 𝑡()𝑚

𝑛+𝑚() 𝑛−1()α
𝑠
+𝑚µ

𝑠[]2 𝑛+𝑚−1()

⎡⎢⎢⎣

⎤⎥⎥⎦

𝑐
𝑤

α
𝑠

𝐷 < 0

𝐷 ≡ 1
𝑛+𝑚−1()

𝐾 𝑠()[]2 𝑟
𝑠
+𝑝

𝑠()𝑊

𝑛+𝑚()2 𝑛α
𝑠
+ 𝑚−1()µ

𝑠[]2 𝑛−1()α
𝑠
+𝑚µ

𝑠[]2 +
𝑐

𝑤
𝐾 𝑡()𝑊 𝑚−1()

𝑛+𝑚() 𝑛α
𝑠
+ 𝑚−1()µ

𝑠[]2 +
𝑐

𝑏
𝐾 𝑡() 𝑟

𝑠
+𝑝

𝑠() 𝑛−1()

𝑛+𝑚() 𝑛−1()α
𝑠
+𝑚µ

𝑠[]2

⎡⎢⎢⎣

⎤⎥⎥⎦
+ 𝑐

𝑤
𝑐

𝑏

.

Given the signs of the above derivatives, the results we obtain in the main text are

strengthened. Specifically, in the main text we show that the bounty program reduces

the probability that black hats are first to find severe bugs because the bounty

incentivizes the white hats to allocate more effort to finding the bugs. With the new

43

formulation, the bounty introduces a dual effect of concurrently incentivizing the white

hats to increase efforts and the black hats to reduce efforts. This dual effect on effort is

stronger than the single effect we obtain in the main text.

44

Appendix B: CaseWhen eWHH Allocates Effort to Both Severe and
Non-Severe Vulnerabilities

.α
𝑖𝑠

> 0 𝑎𝑛𝑑 α
𝑖𝑛𝑠

> 0 𝑤ℎ𝑒𝑛
𝑐

𝑤
𝐾

𝑛𝑠
𝑡()𝑃

𝑛𝑠

𝑛+𝑙 −
𝐾

𝑠
𝑡() 𝑅

𝑠
+𝑃

𝑠()
𝑛+𝑚

⎡⎢⎣
⎤⎥⎦

> 0

.α
𝑖𝑠

= α
𝑠

=
𝐾

𝑠
𝑡() 𝑅

𝑠
+𝑃

𝑠()
𝑛+𝑚 −

𝐾
𝑛𝑠

𝑡()𝑃
𝑛𝑠

𝑛+𝑙
⎡⎢⎣

⎤⎥⎦
𝑐

𝑤
−1() , α

𝑖𝑛𝑠
= α

𝑛𝑠
=

𝑐
𝑤

𝐾
𝑛𝑠

𝑡()𝑃
𝑛𝑠

𝑛+𝑙 −
𝐾

𝑠
𝑡() 𝑅

𝑠
+𝑃

𝑠()
𝑛+𝑚

⎡⎢⎣
⎤⎥⎦

𝑐
𝑤

−1()

.β
𝑖𝑛𝑠

= β
𝑛𝑠

=
𝐾

𝑛𝑠
𝑡()𝑃

𝑛𝑠

𝑛+𝑙

.µ
𝑖𝑠

= µ
𝑠

=
𝐾

𝑠
𝑡()𝑊

𝑐
𝑏

𝑛+𝑚()

Probability that expert white hat finds severe bug first:
1

𝑛+𝑚 1 + α
𝑖𝑠

−
𝑛−1()α

𝑠
+𝑚µ

𝑠

𝑛+𝑚−1()⎡⎢⎣
⎤⎥⎦

=

.
1

𝑛+𝑚 1 + 𝑚
𝑛+𝑚−1 α

𝑠
− µ

𝑠()⎡⎢⎣
⎤⎥⎦ = 1

𝑛+𝑚 1 + 𝑚
𝑛+𝑚−1

𝐾
𝑠

𝑡() 𝑅
𝑠
+𝑃

𝑠()
𝑛+𝑚 −

𝐾
𝑛𝑠

𝑡()𝑃
𝑛𝑠

𝑛+𝑙
⎡⎢⎣

⎤⎥⎦
𝑐

𝑤
−1() −

𝐾
𝑠

𝑡()𝑊

𝑐
𝑏

𝑛+𝑚()
⎰
⎱

⎱
⎰

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

Probability that expert white hat finds non-severe bug first: =
1

𝑛+𝑙 1 + α
𝑖𝑛𝑠

−
𝑛−1()α

𝑛𝑠
+𝑙β

𝑛𝑠

𝑛+𝑙−1()⎡⎢⎣
⎤⎥⎦

.
1

𝑛+𝑙 1 + 𝑙
𝑛+𝑙−1 α

𝑛𝑠
− β

𝑛𝑠()⎡⎢⎣
⎤⎥⎦ = 1

𝑛+𝑙 1 + 𝑙
𝑛+𝑙−1

𝑐
𝑤

𝐾
𝑛𝑠

𝑡()𝑃
𝑛𝑠

𝑛+𝑙 −
𝐾

𝑠
𝑡() 𝑅

𝑠
+𝑃

𝑠()
𝑛+𝑚

⎡⎢⎣
⎤⎥⎦

𝑐
𝑤

−1() −
𝐾

𝑛𝑠
𝑡()𝑃

𝑛𝑠

𝑛+𝑙
⎰
⎱

⎱
⎰

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

Probability that non-expert white hat finds non-severe bug first:

1
𝑛+𝑙 1 + β

𝑖𝑛𝑠
−

𝑛α
𝑛𝑠

+ 𝑙−1()β
𝑛𝑠

𝑛+𝑙−1()⎡⎢⎣
⎤⎥⎦

.
1

𝑛+𝑙 1 + 𝑛
𝑛+𝑙−1 β

𝑛𝑠
− α

𝑛𝑠()⎡⎢⎣
⎤⎥⎦ = 1

𝑛+𝑙 1 + 𝑛
𝑛+𝑙−1

𝐾
𝑛𝑠

𝑡()𝑃
𝑛𝑠

𝑛+𝑙 −
𝑐

𝑤
𝐾

𝑛𝑠
𝑡()𝑃

𝑛𝑠

𝑛+𝑙 −
𝐾

𝑠
𝑡() 𝑅

𝑠
+𝑃

𝑠()
𝑛+𝑚

⎡⎢⎣
⎤⎥⎦

𝑐
𝑤

−1()
⎰
⎱

⎱
⎰

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

Probability that black hat finds severe bug first :
1

𝑛+𝑚 1 + µ
𝑖𝑠

−
𝑛α

𝑠
+ 𝑚−1()µ

𝑠

𝑛+𝑚−1()⎡⎢⎣
⎤⎥⎦

(10)

.
1

𝑛+𝑚 1 + 𝑛
𝑛+𝑚−1 µ

𝑠
− α

𝑠()⎡⎢⎣
⎤⎥⎦ = 1

𝑛+𝑚 1 + 𝑛
𝑛+𝑚−1

𝐾
𝑠

𝑡()𝑊

𝑐
𝑏

𝑛+𝑚() −
𝐾

𝑠
𝑡() 𝑅

𝑠
+𝑃

𝑠()
𝑛+𝑚 −

𝐾
𝑛𝑠

𝑡()𝑃
𝑛𝑠

𝑛+𝑙
⎡⎢⎣

⎤⎥⎦
𝑐

𝑤
−1()

⎰
⎱

⎱
⎰

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

45

