
Preprint Submitted to Computer & Security                                                                                                                                April 12, 2024 

Black-box Adversarial Transferability: An Empirical Study in 

Cybersecurity Perspective 

Khushnaseeb Roshana*,a, Aasim Zafara,b 

aDepartment of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India 

*Email:kroshan@myamu.ac.in 
bEmail:azafar.cs@amu.ac.in 

Abstract 

The rapid advancement of artificial intelligence within the realm of cybersecurity raises significant security concerns. The 

vulnerability of deep learning models in adversarial attacks is one of the major issues. In adversarial machine learning, 

malicious users try to fool the deep learning model by inserting adversarial perturbation inputs into the model during its 

training or testing phase. Subsequently, it reduces the model confidence score and results in incorrect classifications. The 

novel key contribution of the research is to empirically test the black-box adversarial transferability phenomena in cyber 

attack detection systems. It indicates that the adversarial perturbation input generated through the surrogate model has a 

similar impact on the target model in producing the incorrect classification. To empirically validate this phenomenon, 

surrogate and target models are used. The adversarial perturbation inputs are generated based on the surrogate-model for 

which the hacker has complete information. Based on these adversarial perturbation inputs, both surrogate and target models 

are evaluated during the inference phase. We have done extensive experimentation over the CICDDoS-2019 dataset, and 

the results are classified in terms of various performance metrics like accuracy, precision, recall and f1-score. The findings 

indicate that any deep learning model is highly susceptible to adversarial attacks, even if the attacker does not have access 

to the internal details of the target model. The results also indicate that white-box adversarial attacks have a severe impact 

compared to black-box adversarial attacks. There is a need to investigate and explore adversarial defence techniques to 

increase the robustness of the deep learning models against adversarial attacks.   
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1. Introduction 

The rapid developments in the field of Artificial Intelligence (AI) with such widespread application across 

multiple domains like cyber security [1][2][3], image classification [4][5][6], healthcare [7][8][9], and much 

more, giving rise to security concerns and robustness of machine learning (ML) and deep learning (DL) based 

applications. Recently, it has been observed that ML and DL models are susceptible to adversarial attacks in 

which hackers try to deceive the ML/DL model by inserting fabricated adversarial perturbation inputs either in 

the training or testing phase. For example, in cyber security, adversarial attacks aim to exploit vulnerabilities in 

DL-based Network Intrusion Detection Systems (NIDS). These attacks involve manipulating input traffic data 

by adding tiny adversarial noise and evading intrusion detection during the inference phase of NIDS.  Similarly, 

in image classification, the adversary aims to mislead the model by classifying an image into the wrong category 

with high confidence. This is a serious security threat to the reliability of DL-based image classification models, 

as adversaries can manipulate input images to produce incorrect classifications. In healthcare systems, for 

example, during the COVID-19 pandemic, adversarial attacks could have significant consequences. For 

instance, a person not wearing a mask might be classified as wearing one, or vice versa, due to adversarial 

manipulations. Such misclassifications can have severe implications for public health and safety. 

These examples underscore the critical need for research and development in adversarial machine learning 

to enhance the robustness and security of AI applications across diverse domains. As AI continues to play a 

pivotal role in shaping various aspects of our lives, addressing these security concerns becomes imperative to 

ensure the reliability and trustworthiness of AI-based systems. It is critical to ensure the safety of ML and DL 
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systems in the real physical world. Furthermore, much research has been done to improve the performance of 

ML and DL systems and optimize their performance metrics [10] [11]. However, the generalization and 

robustness capability can not be ignored in today's era as unknown cyber security threats emerge daily [12].  

Adversarial machine learning combines the fields of security and ML [13]. From a cybersecurity perspective, 

the robustness and security of the cyber attack detection system should not be compromised. Cyber attack 

detection systems (e.g., intrusion detection systems, intrusion prevention systems)  are vulnerable to adversarial 

attacks. Hackers can easily fool any ML and DL cyber attack detection system by adding a tiny perceptible 

perturbation, which can lead to a malfunctioning model with incorrect classification results. There are two broad 

categories of adversarial machine learning, namely, white-box and black-box. In white-box adversarial attacks, 

the malicious users have complete access to the hyper-parameters of the target system, such as its gradients and 

model architecture. However, in the black-box adversarial attack, the malicious users have no or little 

information about the target system. The other categories are targeted and untargeted adversarial attacks. The 

malfunction model can produce the incorrect specific target label in the targeted attack. For example, the cyber 

attack detection system classifies the benign network traffic into any specific attack class and vice-versa. 

However, in untargeted attacks, the malicious user reduces only the confidence score (e.g., accuracy, f1-score, 

etc.) of the target system.   

Szegedy et al. [14] highlighted the cross-data transferability property of the ML and DL models. It says 

adversarial perturbation input generated to fool one model can also trick another model trained on another or a 

different subset of the same dataset into producing incorrect output. In real-world situations, the malicious user 

does not have any information (e.g. hyperparameters, gradients, model architecture) of the target system but 

may have access to the training data. Hence, the hacker can use this phenomenon to produce a black-box attack 

in any ML and DL model. In this research work,  we experimentally implemented the black-box transferability 

property in a cyber attack detection system. We have built two models. The first is the surrogate model which 

is used to create the adversarial perturbation examples. The second one is the target system that the hacker 

wants to exploit. Both models have different hyperparameters and internal architecture but are trained on the 

same dataset. Fast Gradient Sign Method (FGSM) [15], a famous technique, is used to generate adversarial 

perturbation.  

Furthermore, the motivation and the need for the study lie in the exploration of the intriguing phenomena of 

DL models within cybersecurity [14], [15]. There is an absence of research work which explores this 

phenomenon specifically within the application of network security. Our investigation represents real-world 

and practical scenarios in which the adversaries have limited and no access to the target system. Through our 

study, we discovered that adversaries can successfully implement adversarial attacks even without access to the 

target system information, such as gradients and hyperparameters. In addition, this study is not only significant 

for network security but also holds implications for other domains. Our research contributes to the 

vulnerabilities of DL models against adversarial transferability black-box attack.  

To the best of our knowledge, this research study is a novel contribution that practically implements the 

black-box adversarial transferability property from a cybersecurity perspective. A lot of research is available 

on adversarial attack and defence methods in multiple research areas, including cybersecurity [16] [17] [18] 

[19] [20] [21]. However, the major research gap is that none of the authors has empirically examined black-box 

adversarial attack transferability phenomena in cyber security. Hence, this research work would be a novel 

contribution to the network security domain and can guide network administrators to safeguard cyber attack 

detection systems against adversarial attacks.  

 

 The significant contributions of the research study are as follows: 
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• Implementation of the black-box untargeted adversarial transferability phenomena by using the concept 
of surrogate and target model in cyber attack detection system based on DL. The latest CICDDoS-2019 
dataset is used for the experimentation. 

• The adversarial perturbation examples are generated using the FGSM [15] and surrogate model with 
multiple epsilon values over the testing dataset. 

• Both the target and surrogate model are evaluated with various performance metrics like accuracy, 
precision, recall and f1-score.   

• Finally, the future scope is discussed, which will guide new researchers in finding a suitable direction in 
adversarial machine learning.  

• We have used the simplistic approach and tried to explain every technical aspect of the proposed research 
work so that the new researcher can easily replicate this study for further enhancement.  

The overall organization of the research study is as follows: the taxonomy of adversarial machine learning 

are discussed in Section 2. It includes a brief historical background followed by a broad categorization of 

adversarial attacks. Section 3 describes the related work. It highlights the most recent study, which combines 

the domain of cyber security and adversarial machine learning. Section 4 represents the description of the latest 

CICDDoS-2019 dataset used for the experimentation. Section 5 is the methodology that describes the complete 

overview and conceptual architecture of the proposed research work. It explains every technical aspect of the 

research work. Section 6 is the experimental and supportive library section. It also describes the testbed setting 

used for the implementation of the proposed research work. Section 7 is the results and discussion section in 

which both the models are evaluated before and after the adversarial attack. Section 8 is the future scope, 

followed by a conclusion in Section 9.  

2.  Adversarial Attack Taxonomy 

In this section, we discussed the historical background, followed by the systematic categorization and 

terminology related to adversarial machine learning. We followed the simplistic approach for the reader's 

understanding; however, for more detail, the researcher can refer to the research articles [16] [17] [22]. Some 

survey and review research papers also provide a detailed background of adversarial machine learning and their 

key research areas [23] [24] [25].  

The concept of adversarial machine learning appeared in the 2000s. However, in the last two decades, it has 

gained prominence due to growing interest in the security and robustness of ML and DL models. In 2004, Dalvi 

et al. [26] explored vulnerabilities in machine learning. The authors purposefully modified the email body to 

deceive the spam classifier. Later, in 2006, the author heightened the broad question, “Can machine learning be 

secure?” In 2010 [27], they studied the security of machine learning algorithms and suggested its defence 

strategies. A famous study [14] on the cifar-10 image dataset revealed the vulnerability of the image DL 

classification model. The author discovered susceptibility, indicating that adding a tiny amount of noise in the 

image can deceive the DL model to produce the wrong result with high confidence.  

The four broad categorizations of adversarial machine learning are: 1) based on attack type, 2) based on 

timing, 3) based on model information, and 4) based on the purpose. The first category is further divided into 

four classes, namely, evasion, extraction, poisoning and inference. In an evasion adversarial attack, the 

malicious actor attempts to deceive the model by adding carefully crafted adversarial perturbation into the input 

data. For example, the cyber attack detection model classifies the benign instance into the attack class or the 
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attack class into the benign data sample. In the extraction adversarial attack, the malicious actor attempts to 

steal the sensitive information of the target system, like its internal structure, hyperparameters, and training 

data, to make a substitute model that can mimic the behaviour of the target system. Later, this substitute model 

can be used to exploit the vulnerability of the target system.  The third category is the poisoning attack, in which 

the corrupted input is inserted into the target model during its training phase. Poisoning attacks are more 

dangerous and have long-lasting effects because the model is trained on the corrupted data, which would 

produce incorrect classification. The fourth category is the inference attack. Unlike a poisoning attack, an 

inference attack attempts to fool the model during its decision-making or testing phase by inserting adversarial 

perturbation input and causing the model to produce an incorrect prediction.   

 

Figure 1 Adversarial Attack Taxonomy 

Based on the timing, the adversarial attack can be encountered in the training phase or in the inference phase. 

Examples of this phenomenon are data poisoning attacks that try to deceive the model during the training phase. 

On the contrary, the evasion adversarial attacks aim to fool the model during testing. The third group is based 

on the model information that categorises black-box and white-box attacks. In a black-box attack, the attacker 

has no knowledge of the target model (like gradients, weights and internal parameters). The black-box attack 

represents more realistic scenarios because, in the real physical world, attackers possess very little knowledge 
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of the target system they are trying to compromise. The last classification is based on the purpose of the attacker, 

which leads to the categorization between targeted and untargeted adversarial attacks. In the targeted attack, the 

main goal of the hacker is to craft the adversarial perturbation input in such a way that the model not only makes 

the wrong prediction but classifies it into the specific targeted label chosen by the hacker. On the contrary, in 

the untargeted attack, the goal is to disrupt the model decision-making process and reduce its confidence score 

in terms of classification metrics like accuracy and precision by increasing the prediction error.  

All the dimensions of adversarial machine learning we discussed above are demographically presented in 

Figure 1 with a brief description. In the proposed research work, we have used the untargeted attack, using the 

white-box FGSM method during the inference or testing phase of the NIDS model. It is a type of evasion attack 

strategy where the NIDS model evades intrusion detection.  

3. Related Work 

In the last two decades, adversarial machine learning has become very popular. Many research article has 

been published in computer vision [28] [17] [29], but less is explored from the computer network security point 

of view [30] [31]. In this research work, we have mainly focused on adversarial machine learning from a 

computer network security perspective. Moreover, the generation of adversarial perturbation in constrained or 

structured domains (e.g. network traffic logs) is different compared to the image domain. In the image domain, 

the feature space is the pixel value. It is easy for the adversary to exploit each feature or pixel value of the 

image. On the contrary, in network traffic data logs, the feature value can be continuous, binary or categorical. 

The features may be correlated or may have fixed values that can not be modified by the adversary. The most 

related research work in network anomaly and intrusion detection is given in the following.  

 

Clements et al. [32] conducted a research study into the robustness of the deep learning-based Network 

Intrusion Detection System (NIDS). The author used Kitsune [33], a lightweight ensemble model based on 

autoencoders designed for online network anomaly detection. It comprises components including packet 

capture, feature extraction, feature mapping, and anomaly detection. The main goal is to investigate the system 

against adversarial attacks. To assess its effectiveness, four different adversarial algorithms—namely, Fast 

Gradient Sign Method (FGSM), Jacobian-based Saliency Map Attack (JSMA), Carlini and Wagner (C&W), 

and Expectation over Normalized Mean (ENM)—were employed. Notably, the attacker had the knowledge of 

the target model and was able to directly generate adversarial perturbed inputs.  

 

Usama et al. [34] used Generative Adversarial Networks (GANs) to create adversarial examples to evade 

NIDS. This research demonstrated that GANs could effectively counter adversarial perturbations, thus 

enhancing the model's resilience against adversarial attacks. The author employed a unique method to alter only 

non-functional features of the network traffic data during both the attack and defence phases. This strategy 

aimed to ensure that the adversarial manipulations did not significantly impact the network's genuine operations.  

The proposed work is evaluated using the KDDCUP-99 benchmark dataset with multiple ML algorithms, 

including Deep Neural Networks (DNN), Support Vector Machines (SVM), Decision Trees (DT), Random 

Forest (RF), and others. The results are evaluated with key metrics like accuracy, precision, recall, and f1-score 

under four scenarios: before the attack, after the attack, after the adversarial defence, and after the GAN-based 

adversarial defence.  
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Pawlicki et al. [35] have done an in-depth exploration and analysis of the impact of adversarial attacks, 

specifically FGSM, Carlini and Wagner (C&W), Projected Gradient Descent (PGD), and Basic Iterative 

Method (BIM), across various ML classifiers. These classifiers include Artificial Neural Networks (ANN), 

RandomForest (RF), AdaBoost, and Support Vector Machine (SVM)., all within the domain of network 

security.  The study aimed to mitigate the vulnerabilities exposed by adversarial perturbations and was 

conducted over the CICIDS-2017 dataset.  

 

A similar study has been conducted by Guo et al. [36] conducted a comprehensive analysis of the impact of 

the Basic Iterative Method (BIM), a type of black-box adversarial attack, across five different Machine Learning 

classifiers. The study encompassed Convolutional Neural Networks (CNN), Support Vector Machine (SVM), 

k-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), and Residual Network (Resnet). The two benchmark 

intrusion detection datasets, KDDCUP-99 and CICIDS-2017, are used to experiment and validate the results. 

The evaluation aimed to assess the susceptibility of these classifiers to adversarial manipulations. However, the 

author suggested two future studies; the first is applying it to real network traffic datasets. And second is to 

explore another complex adversarial attack.  

 

    Alhajjar et al.  [37] also explored the same area but with an evolutionary approach. The authors employed 

advanced techniques to generate adversarial examples. These include the purpose of deceiving Machine 

Learning (ML) and Deep Learning (DL) models. Their research integrated three distinct methods: Particle 

Swarm Optimization (PSO), Genetic Algorithm (an evolutionary computation technique), and Generative 

Adversarial Network (GAN). These techniques were harnessed to create adversarial examples with the intention 

of misleading both ML and DL models. The experimentation is carried out over two datasets, namely, UNSW-

NB15 and NSL-KDD. 

 

Sethi et al. [38], the authors proposed a context-adaptive intrusion detection system (IDS). It leveraged 

distributed deep reinforcement learning agents across the network. Through extensive experimentation on NSL-

KDD, UNSW-NB15, and AWID datasets, the proposed model outperforms existing systems in terms of 

accuracy and false positive rates. The IDS demonstrates resilience against adversarial attacks and enhances its 

robustness to mitigate its effects. The proposed method used denoising autoencoder into the system.  

 

Zhang et al. [39],  the authors proposed three DNN architectural CNN, and LSTM for NIDS models.  The 

results obtained on the CSE-CIC-IDS2018 dataset yield models with a good 98.7% detection accuracy. To 

demonstrate evasion of adversarial attack, the authors employ five advanced attack strategies—NES, 

BOUNDARY, HOPSKIPJUMPATTACK, POINTWISE, and OPT-ATTACK. Adversarial samples manipulate 

traffic features within realistic domain constraints for model evaluation purposes. The proposed study is novel 

in terms of adversarial attacks, as most of the researchers studied only FGSM, PGD, and JSMA gradient-based 

attacks. 

 

Han et al. [40], the research introduced an exploration of grey/black-box adversarial attacks on ML-based 

NIDS. The proposed automatic attack achieves >97% evasion rate in half the cases for Kitsune, a state-of-the-

art NIDS. The study also proposed a defence method that reduced evasion rates by >50% in most cases. These 

findings provide critical insights into addressing adversarial challenges in ML-based NIDSs. 
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Maarouf et al. [41], explored the resilience of ML and DL methods in classifying encrypted internet traffic 

under adversarial attacks. The proposed research used C4.5 Decision Tree, K-Nearest Neighbor (KNN), 

Artificial Neural Network (ANN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks 

(RNN), DL based models. The study evaluates the performance on two benchmark datasets, ISCX VPN-

NonVPN and NIMS, using Mutual Information for feature selection Notably, deep learning exhibits better 

resilience against adversarial samples compared to machine learning in most experimental results. The author 

also assessed the effectiveness of three adversarial attacks – Zeroth Order Optimization (ZOO), Projected 

Gradient Descent (PGD), and DeepFool. The comparative analysis of DL and ML in both adversarial-free and 

adversarial attack environments provides valuable insights into the classification of encrypted traffic in terms 

of classification reports.  

 

Sarıkaya et al. [42], introduced a novel approach to combat adversarial attacks on machine learning-based 

intrusion detection systems (IDS). The method incorporated generative adversarial networks (GANs) for the 

generation of adversarial attack data, demonstrating the effectiveness of GAN-based attacks on ML-based 

IDS/IPS systems. Key contributions involved utilizing the reconstruction error values from autoencoders as 

inputs for detecting adversarial examples. Additionally, a LightGBM classifier was trained based on the 

predictions generated by these autoencoders. The study aimed to develop a generalized robust IDS model 

effective against various common adversarial attack types, resulting in increased adversarial detection 

capabilities while maintaining overall accuracy during real network attacks in conventional and software-

defined networks. 

 

Debicha et al. [43], addressed the vulnerability of machine learning-based NIDS to adversarial attacks, 

specifically evasion attacks. The research investigates the feasibility of executing such attacks under realistic 

constraints. The contributions of the study include a detailed analysis of the constraints necessary for generating 

valid adversarial perturbations while preserving the logic of network attacks. The author introduced a black-

box adversarial algorithm capable of developing botnet traffic.  The generated adversarial examples can easily 

evade NIDS without specific knowledge of the target system. The author comprehensively evaluated the results 

in terms of classification report and detection rate. 

 

 

Debicha et al. [44], in this study, the authors address the vulnerability of state-of-the-art intrusion detection 

systems (IDS) based on deep learning to adversarial attacks. They propose a novel approach using transfer 

learning-based adversarial detectors. The experiments involve implementing existing state-of-the-art IDS 

models and subjecting them to evasion attacks. The author designed transfer learning-based adversarial 

detectors, each receiving a subset of information passed through the IDS. Collectively, they demonstrate 

improved detectability of adversarial traffic in a parallel IDS design. The paper emphasizes the need for 

sophisticated defence mechanisms, highlighting the shift from simple network protections to advanced IDS 

systems in the evolving cybersecurity landscape.  

 

Table 1, summarises the state-of-the-art research we have explored in adversarial machine learning and NIDS 

domain.    
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Table 1 State-of-the-art Related Research in NIDS and Adversarial Machine Learning 

Study ML and DL 

Algorithms 

Adversarial 

Attack 

Technique 

Adversarial 

Defence 

Technique 

Dataset Metrics Key Highlights 

Clements 

et al. [32] 

(2021)  

DL based 

NIDS, AE, 

Kitsune 

FGSM, JSMA, 

C&W, ENM 

NA Kitnet 

Dataset 

FPR, FNR, 

Success 

Rate,  

Accuracy 

• Investigating system 

resilience against 

adversarial attacks.  

• Attacker had 

knowledge of the 

target model for direct 

adversarial input 

generation. 

Usama et 

al. [34] 

(2019) 

GAN, DNN, 

SVM, RF, LR, 

KNN, DT, GB  

GAN- based 

Adversarial Attack 

GAN- based 

Adversarial 

Defence 

KDDCUP-

99 

Accuracy,  

Precision, 

Recall, F1-

Score 

• Demonstrated GAN 

effectiveness in 

countering adversarial 

perturbations to 

enhance NIDS 

resilience. 

• Unique method, 

altered only non-

functional features 

during attack and 

defence. 

• Minimizes impact on 

genuine network 

operations. 

Pawlicki 

et al. [35]  

(2020) 

ANN, RF, 

SVM, 

AdaBoost 

FGSM, PGD, 

BIM, C&W 

ML based 

Adversarial 

Attack 

Detector 

CICIDS-

2017 

Accuracy, 

Precision, 

Recall, F1-

Score 

• In-depth exploration 

and analysis of the 

impact of adversarial 

attacks across various 

ML classifiers in the 

domain of network 

security. 

 

Guo et al. 

[36] 

(2021) 

MLP, CNN, 

SVM, ResNET 

BIM NA KDDCUP-

99,CSE-

CIC-

IDS2018 

Recall, 

Confusion 

Matrix 

• ML vulnerabilities to 

adversarial examples 

• Proposal of a black-

box attack against 

anomaly network flow 

detection algorithms 

• Substitution of a model 

to create adversarial 

examples 
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• High probability of 

bypassing target model 

detection 

Alhajjar 

et al.  

[37] 

SVM, 

DT,NB,KNN, 

RF, GB, LR, 

MLP, LDA, 

QDA, BG 

PSO, GA, GAN NA NSL-KDD, 

UNSW-

NB15 

Evasion 

Rate 

• Use of evolutionary 

computation and deep 

learning for adversarial 

example generation. 

• Evaluation of NSL-

KDD and UNSW-

NB15 datasets. 

• Comparison with 

Monte Carlo 

simulation. 

• High misclassification 

rates in eleven models, 

show NIDS 

vulnerability. 

Sethi et 

al.  

[38] 

RF,  AdaBoost, 

QDA, GNB, 

KNN 

JSMA Denoising 

Autoencoder 

NSL-KDD, 

UNSW-

NB15, 

AWID 

Accuracy, 

False 

Positive 

Rate, AUC 

• Proposed an IDS 

design with DRL 

agents for adaptable 

attack response. 

• Integrated ensemble 

technique with DQN, 

achieving accuracy-

FPR balance. 

• Implemented fine-

grained attack 

classification post-

detection, ensuring 

high accuracy. 

• Enhanced robustness 

against adversarial 

attacks by proposing 

DAE integration with 

reinforcement learning. 

Zhang et 

al. [39] 

MLP, CNN, C-

LSTM, 

Ensemble 

Black-Box Attack 

Method, 

PointWise, Opt-

Attack, NES, 

Boundary Attack, 

HopSkipJump 

Attack 

Ensembling 

Method, 

Adversarial, 

Training, 

Query 

Detection. 

CICIDS-

2017 

Accuracy, 

Precision, 

Recall, F1-

Score, ASR, 

MAPE 

• Developed TIKI-

TAKA framework to 

assess NN-based NIDS 

robustness. 

• Identified 

vulnerabilities in NIDS 

against five adversarial 

attack types. 

• Proposed defence 

mechanisms, including 

model voting and 

adversarial training. 
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• Achieved near 100% 

intrusion detection 

rates against most 

malicious traffic. 

Han et al. 

[40] 

KitNET, LR, 

DT, SVM, 

MLP, IF 

Traffic Mutation Adversarial 

Feature 

Reduction 

Kitsune 

Dataset, 

CICIDS-

2017 

Precision, 

Recall, F1-

Score, 

MER, PDR, 

DER, MMR 

• Studied gray/black-box 

traffic-space 

adversarial attacks in 

ML-based NIDSs. 

• Proposed an attack 

mutating traffic with 

limited knowledge, 

preserving 

functionality. 

• Demonstrated 

effectiveness against 

diverse NIDSs and 

ML/DL models. 

• Introduced a defense 

scheme, reducing 

evasion rate by >50% 

in most cases. 

Maarouf 

et al. [41] 

CNN, DNN, 

KNN, RNN, 

C4.5 

DeepFool, PGD, 

Zoo 

NA SCX-VPN-

NON-VPN, 

NIMS 

Accuracy, 

Precision, 

Recall, F1-

Score 

• Studied ML/DL 

resilience in encrypted 

traffic classification. 

• Tests C4.5, KNN, 

ANN, CNN, RNN 

against evasion 

attacks. 

• Addressed challenges 

in growing encrypted 

traffic using AI. 

• Deep learning vs. 

machine learning 

comparison in 

adversarial settings. 

Sarıkaya 

et al. [42] 

RAIDS, 

LightGBM, k-

NN, NN,  

WGAN, 

CTGAN 

Adversrial 

Training 

CICIDS 

2017, 

InSDN 

Accuracy, 

Precision, 

Recall, F1-

Score 

• Demonstrated GAN-

based attacks on ML-

based IDS/IPS 

systems. 

• Trained ML classifier 

based on autoencoder 

predictions. 

• Introduced RAIDS, a 

resilient IDS model 

using autoencoder 

errors and multiple 

feature sets. 
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• Shows RAIDS boosts 

accuracy by 13.2% and 

F1-score by 110% 

against adversarial 

attacks. 

Debicha 

et al. [43] 

MLP, RF, KNN Sign Method Adversarial 

Detector 

CSE-CIC-

IDS2018, 

CTU-13 

Accuracy, 

Precision, 

Recall, F1-

Score 

• Explored evasion 

attacks on ML-based 

NIDS 

• Addressed ML NIDS 

vulnerability  

• Introduced a defence 

mechanism to 

safeguard NIDS. 

• Assessed the proposed 

algorithm using 

realistic botnet traffic 

for undetected 

malicious activity. 

Debicha 

et al. [44] 

DNN FGSM, JSMA, 

PGD, DeepFool 

Transefer 

Learning based 

Adversarial 

Detector 

NSL-KDD, 

CICIDS 

2017, 

Accuracy, 

Precision, 

Recall, F1-

Score 

Detection 

Rate 

• Addressed the 

vulnerability to 

adversarial attacks in 

NIDS. 

• Introduced transfer 

learning for robust 

adversarial detection. 

• Evaluates parallel IDS 

design with 

strategically placed 

detectors, showing 

enhanced detectability. 

 

4. Dataset Description 

The CICIDDoS (Canadian Institute for Cybersecurity Distributed Denial-of-Service) dataset is used for 

experimentation [45]. This dataset is more realistic and represents real physical world attacks compared to older 

versions of network traffic datasets like KDDCUP-99, NSLKDD and CICIDS-2017 [46]. It includes both 

benign network traffic and the most recent DDoS attacks. The complete dataset is captured within two days. 

The first day contains seven attack classes, including PortMap, NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, 

and SYN. The day two contains twelve classes, namely, SNMP, SSDP, UDP, UDP-Lag, etc. This dataset is 

publicly available in both pcaps and CSV formats for ML and DL applications. It contains more than 80 features, 

namely, Flow-ID, Source-IP,  Source Port, Destination-IP,  Fwd Packet Length Max, Fwd Packet Length Min, 

etc. These features represent the statistical measurements of network traffic flow logs.  However, we have used 

the random subset of the CICDDoS dataset containing more than 0.25 million samples, 107764 benign samples 

and 119384 DDoS attack samples for model evaluation purposes.  

The dataset has been pre-processed for model training and testing as described in Figure 2 . It has been 

checked for any null and infinity values and replaced with mean values. The scikit-learn standard scalar function 



  

 

Preprint Submitted to Computer & Security                                                                                                                                April 12, 2024 

 

is used to normalize the dataset, as shown in Equation (1).  Here, 𝑥 is the original input data point, 𝜇 represents 

the mean value, and 𝜎 represents the standard deviation of the data. For training and testing reasons, the entire 

dataset has been divided in  the ratio of  60:40, with a random state parameter set to 42.  Table 2 shows a detailed 

description of the dataset and its sample counts. 

 

𝒙 =
𝒙 − 𝝁

𝝈
 

 (1) 

 

Figure 2 Dataset Pre-processing Steps 

Table 2 Dataset Description 

Details Counts 

Total dataset samples  227148 

Training samples 136288 

Testing samples 90860 

Training - Testing Split 40% 

Random state  42 

Total benign and attack samples ('BENIGN', 'DDoS') – (107764, 119384) 

Training benign and attack samples  ('BENIGN', 'DDoS') – (64571, 71717) 

Testing benign and attack samples ('BENIGN', 'DDoS') – (43193, 47667) 

5. Methodology 

This section describes the complete methodology for implementing a black-box adversarial transferability 

attack on the DL network attack detection model. Our main aim is to explain each detail, starting from model 

building to attack execution and its evaluation, in simplistic language. So that new researchers can easily 
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understand the technical implementation of the proposed work for future enhancement. The data analyzed, and 

code generated during the study will be available upon reasonable request. The technical architecture of DL 

models,  FGSM adversarial attack technique, algorithms are as follows.  

5.1. Deep Neural Network 

 A deep neural network (DNN) is a type of artificial neural network consisting of one input-layer and one or 

more hidden layers, followed by the output-layer. All layers consist of multiple neurons, and each layer is 

interconnected with feed-forward connections, as shown in Figure 3. The activation function between the hidden 

layers allows DNN to learn complex patterns and hidden representations of the input data. The widely known 

activation functions are sigmoid, softmax, tanh and relu. The formulation of each activation function is shown 

in Equation (2) to Equation (4) In our experimentation, we have used the relu activation function between the 

hidden layers, sigmoid and softmax for the output-layer. The supervised DNN algorithm is used for the -

experimentation. Table 3 describes the technical details of hyperparameters of the DL model.  

 

 

Figure 3 Deep neural network 

Table 3 Technical description of the hyperparameter of the deep learning model 

Hyperparameter Details 

Learning_rate It is the step-size, used to update the model's parameters during the training process. Choosing an 

appropriate learning rate is crucial because it affects how quickly the model converges and whether it 

converges to an optimal solution. 

Batch_size It represents the number of training instances (count) in each iteration of the optimization algorithm 

(such as stochastic gradient descent) before updating the model's parameters. Larger batch sizes can 

lead to faster training since more examples are processed before each update. However, smaller batch 

sizes can lead to faster iterations through the dataset, potentially leading to faster convergence. 

Number of epochs It represents the number of times the DL algorithm goes through the entire training dataset. In each 

epoch, the algorithm processes all the training examples once, updating the model's parameters based 

on the calculated gradients. 
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It's common practice to monitor the model's performance on a validation set during training. If the 

validation performance starts to degrade after a certain number of epochs, you can stop training early 

to prevent overfitting. 

Activation function  It introduces non-linearity to the algorithm, allowing it to learn complex relationships and predict 

accurately. The choice of activation function depends on factors such as the network architecture, 

problem type, and empirical performance on validation data 

Optimizer An optimizer is a critical component in training deep learning models. It is an algorithm that adjusts 

the parameters of the model during the training process to minimize the error (loss). It measures the 

difference between the prediction and the actual target values. The primary goal of an optimizer is to 

guide the model towards finding the optimal set of parameters that results in the best performance on 

the given task. 

 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓(𝑥) =
1

1 + ⅇ−𝑥
 

(2) 

 

𝑅ⅇ𝐿𝑈 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

(3) 

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑓(𝑥) =
ⅇ𝑥𝑖

∑ ⅇ𝑥𝑗𝑛
𝑗=1

 

(4) 

5.1.1. Target Model: 

The target system is the DL model, a network attack detection system. The malicious user wants to exploit 

this system through an adversarial attack. However, the hacker does not have information of the target model 

and its parameters but has access to the training data. The target system is just like a black-box to the hacker. 

In real-world situations, the hacker can communicate with the target system only through API to get insights 

and knowledge about it. The technical architecture of the target used for the experimentation is illustrated in 

Table 4.  

The input shape represents the feature counts in the input training data. The shape of the output layer is set 

to two for binary classification (benign or attack). The target model architecture comprises two hidden layers, 

with 50 and 25 neurons in each layer, respectively. The activation functions used are the ReLU between the 

hidden layers and softmax in the output layer. Adam is used as an optimizer, and the learning rate is set to 1e-

3. The loss function is the binary cross entropy for final classification. The validation split parameter is set to 

0.2 during the training procedure with a batch size of 4048.  

5.2. Surrogate Model:  

In a real-world situation, the hacker might not have any information about the target system. Creating 

adversarial examples can be computationally expensive and time-consuming, especially if the hacker does not 
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have direct access to the target model's architecture and parameters. To execute the transferability attack, the 

attacker must have to create a surrogate model that mimics the behaviour of the target system. Hence, we have 

created the surrogate DL model with different hyperparameter sets but the same training dataset to approximate 

or gain insights into the behaviour of the target model.   

Three hidden layers are used, with 60, 50, and 30 neurons in each. ReLU activation function is used between 

the hidden layers and sigmoid in the output layer. Adam is used as the optimizer, and the learning rate is set to 

1e-4. The loss function is the binary crossentropy  for final classification. The validation split is set to 0.3 during 

the training procedure with a batch size of 1024, as shown in Table 4. 

We have used the less complex architecture for both models because our goal is not to get the optimal results 

but to explain the working of black-box transferability phenomena in adversarial machine learning. The next 

step is to generate the adversarial perturbation input with FGSM. The next subsection describes the FGSM 

technique in detail.   

Table 4 Models architecture descriptions 

Hyper-parameter Surrogate Model Target Model  

Input shape train_data.shape train_data.shape 

Output shape 2 2 

Hidden layers 3  2 

Neurons 60,50,30,2 50,25,2 

Activation function – hidden layer ReLU ReLU 

Activation function – output layer sigmoid softmax 

Optimizer Adam Adam 

Learting rate  0.0001 (1e-4) 0.001 (1e-3) 

Loss binary_crossentropy binary_crossentropy 

Validation split 0.3 0.2 

Batch size 1024 4048 

Trainable params # 3322 1,982 

5.3. Fast Gradient Sign Method (FGSM) 

FGSM attack is an untargeted evasion adversarial attack that takes place during the inference or testing time. 

The main goal of FGSM is to create adversarial perturbation examples by adding tiny noise into the model 

input. These adversarial examples are crafted very carefully and can easily deceive the model with a high-

confidence score.  FGSM is a gradient-based approach that optimizes the LP norm by taking one step in the 

opposite direction of the gradient to each element of input vector x. The optimal max-norm constrained 

perturbation is formulated as in Equation  (5) – (7). The detailed step-by-step technical description of adversarial 

perturbation input generation is given as follows:  

 

Gradient input: In order to generate an adversarial perturbation, the gradient of the loss function must be 

determined with respect to the input x. 
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𝑔𝑟𝑎𝑑𝑖ⅇ𝑛𝑡 =  𝛻𝑥𝐽(𝛩, 𝑥, 𝑦) 

 

(5) 

Gradient sign: then gradient sign is calculated for each feature in the input sample x to know in which 

direction the loss function would increase if the perturbation is added to the feature.  

𝑔𝑟𝑎𝑑𝑖ⅇ𝑛𝑡_𝑠𝑖𝑔𝑛 =  𝑠𝑖𝑔𝑛(𝛻𝑥𝐽(𝛩, 𝑥, 𝑦)) 

(6) 

Add perturbation: add the perturbation value ϵ (small noise) into the model input to generate the adversarial 

perturbation example. 

𝑥𝑎𝑑𝑣  =  𝑥 +  𝑔𝑟𝑎𝑑𝑖ⅇ𝑛𝑡_𝑠𝑖𝑔𝑛 

(7) 

Output: the resulting output 𝑥𝑎𝑑𝑣 is the adversarial perturbation input that fools the model into producing 

the incorrect result.  

 

Figure 4, demographically presents the adversarial perturbation examples generated using the surrogate 

model and testing dataset. Since FGSM is a white-box method, it requires a classifier to generate adversarial 

perturbation examples. The surrogate model uses a classifier that mimics the target classifier that needs to be 

compromised through adversarial attack. The method generates a list of adversarial perturbations for different 

epsilon values ranging from 0.0001 to 0.0009.  we did this to comprehensively evaluate the NIDS model for 

both white-box and black-box transferability attacks.  

 

 

Figure 4 Generation of Adversarial Perturbation Examples using FGSM 

5.4. Conceptual architecture and algorithms  

The conceptual description of the proposed algorithm is illustrated in Figure 5. As shown, both the admin 

and hacker can access to the entire training data. The goal is to deceive the target model to which the hacker 

can communicate only through API. We have tested the proposed algorithm in two ways: the first one is a white 
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box adversarial attack, and the second is a black box adversarial transferability attack. The white-box adversarial 

attack required full access to the model. In our case, the adversarial perturbation is generated based on the 

surrogate model.  Hence, deceiving the surrogate model with the adversarial perturbation inputs is the white-

box adversarial attack.  

On the other hand, in the black-box adversarial transferability attack, the same adversarial perturbation input 

is used to execute a transferability adversarial attack on the targeted system. The evaluation of both models is 

done before and after the attack implementation. It is concluded the white-box attack has a severe effect 

compared to the black-box transferability attack in terms of reducing the confidence score of the models.   

 

 

Figure 5 Conceptual diagram of the proposed research study 

Algorithm 1 and Algorithm 2 describe the detailed step-by-step procedure of technical implementation of 

the adversarial perturbation inputs generation and attack execution. In Algorithm 1, we have explained how 

the adversarial perturbation examples are generated using the FGSM [47]. The KerasClassifier method is used 

in which the surrogate model is passed as a parameter. The next parameter we address is the min and max values 

within the training dataset. These values serve as reference points to ensure that the generated perturbations 

remain within a predefined range. This "clipping" process prevents the perturbations from venturing beyond 

acceptable bounds. Then, we define the "fgsm_attack" function, which accepts two parameters: the classifier 

(the model under consideration) and the epsilon value. This function is designed to generate and provide the 

adversarial perturbation input for a specific epsilon value. The outcome of this function is a perturbed input that 

is carefully crafted to deceive the model.  We applied the "fgsm_attack" function across various epsilon values, 

which span the range from 0.0001 to 0.0009. By executing the function for each epsilon value, we collect a 

series of adversarial perturbation inputs. 

 



  

 

Preprint Submitted to Computer & Security                                                                                                                                April 12, 2024 

 

Algorithm 2 encompasses two sections; the first section is the implementation of a white-box adversarial 

attack, while the second focuses on executing a black-box attack based on the list of previously generated 

adversarial perturbations obtained from Algorithm 1. 

 

The "model_prediction" function is defined to provide a classification report for the input data. The next step 

evaluates both the surrogate model and the target model using clean test data. This initial evaluation is conducted 

in the absence of any adversarial attack, allowing us to establish a baseline understanding of their performance. 

The third step encompasses the implementation of the white-box attack. The adversarial perturbations are 

utilized to evaluate the surrogate model over the different epsilon values. In the fourth step, the black-box 

adversarial transferability attack is implemented. During this phase, the previously generated adversarial 

perturbation examples are deployed in the context of the target system during inference. This enables us to 

explore the transferability of these perturbations from the surrogate model to the target model, gauging the 

extent to which adversarial attacks can cross over between different models. 

 

Algorithm 1 : Adversarial perturbation generation with FGSM and surrogate model 

Input: surrogate_model, test_data, list_of_epsilon 

 

Output: list of adversarial perturbation input  

 

Steps:  

 

Step 1: Build keras classifier with the surrogate model and clip the values between max and min of 

test data. 

classifier = KerasClassifier(model=surrogate_model, clip_values = (np.min(test_data), 

np.max(test_data)), use_logits = False) 

Step 2: Define a function to generate adversarial perturbation with epsilon value. 

define fgsm_attack(classifier, test_data, epsilon): 

        fgsm = FastGradientMethod(classifier, eps= epsilon) 

        adversarial_input = fgsm.generate(test_data) 

        return adversarial_input 

Step 3: Call the function in a loop to generate adversarial input for multiple values of epsilon 

  adversarial_input_list =  [] 

  for epsilon in list_of_epsilon: 

             adversarial_input = fgsm_attack (classifier, test_data, epsilon) 

                  adv_list.append(adversarial_input) 

            end for 

 

Algorithm 2  – White-box and Black-box transferability adversarial attack implementation with FGSM  

Input: surrogate_model, target_model, test_data, adversarial_input_list 

 

Output: classification_report 
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Steps:  

 

Step 1: Define the prediction function for model evaluation 

   define model_prediction(model, input_data):  

       prediction = model.predict(input_data) 

       classification_report = (actual_input, prediction) 

        return classification_report 

 

Step 2: Evaluation of both model before adversarial attack  

   Classification_report_surrogate = model_prediction(surrogate_model, test_data) 

   Classification_report_target = model.predict(target_model, test_data) 

Step 3: Evaluate the white-box attack on the surrogate model by passing an adversarial input data 

list for different epsilon.  

classification_report_surrogate=[] 

for adversarial_input in adversarial_input_list: 

   classification_report = model_prediction(surrogate_model, adversarial_input) 

    classification_report_surrogate.appen(classification_report) 

         print(classification_report) 

      end for 

Step 4: Evaluate the black-box attack transferability attack on the model by passing an adversarial 

input data list for different epsilon.  

classification_report_target=[] 

for adversarial_input in adversarial_input_list: 

   classification_report = model_prediction(target_model, adversarial_input) 

    classification_report_target.append(classification_report) 

         print(classification_report) 

    end for 

6. Experimental Setup and Supportive Libraries 

This section describes all supportive libraries used for proposed research work, followed by system 

configuration. It also describes the testbed environment used for the experiments followed by the model 

evalution metrics such accuracy, precision, recall.  

6.1. Setup and Supportive Libraries 

The experiment is conducted on Google Colab, a cloud-based platform with free GPU and TPU support for 

ML and DL applications. It is integrated with Google Drive, hence further simplifying the procedure of saving, 

loading and downloading the data files. It supports a wide range of popular libraries such as keras for DL model 

building, pandas for dataset manipulation and analysis, scikit-learn for dataset preprocessing and normalization, 
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matplotlib for plotting the graph and data visualization and much more as shown in Table 5. This eliminates 

any hardware and software installation in the local machine and compatibility issues. It is a time and cost-saving 

platform for ML and DL.  The ACER laptop equipped with Window-11 Operating System, Core i7 processor, 

500 SSD, and 16 GB DR4L RAM is used for the experimentation,  as described in Table 6.  

Table 5 Supportive Libraries for Experimentation 

Experimentation 

Platform Description 

Google Colab                                     Free cloud platform for deep learning experiments. Comes with 

GPUs and TPUs. Works well with Google Drive and Jupyter 

Notebook. Easily run Python code interactively. 

Required Installation for Adversarial Machine Learning  

Adversarial 

Robustness 

Toolbox (ART)             

Toolkit designed for evaluating and enhancing the robustness of 

deep learning models against adversarial attacks.  

Pre Installed Libraries in Google Colab Platform 

Keras  

 

Library for a high-level neural network API, Used to create DL 

model in the proposed research work.   

Pandas  Dataset analysis library utilized for loading and analyzing the 

dataset in the development of NIDS. 

NumPy  The library supports large multi-dimensional arrays and 

mathematical functions. It is used for converting data into NumPy 

arrays during NIDS model training and testing. 

Matplotlib Matplotlib Library, used  for visual representation. Instrumental in 

visually presenting NIDS model training plots, enhancing the 

interpretability of experimental outcomes. 

Scikit-Learn                                     Machine Learning library offers various evaluation metrics 

(accuracy, precision, recall, f1-score, AUC-ROC) for NIDS model 

evaluation.         

Table 6 Experimentation environment 

Name Details 

Operating System Window-11 

Processor (CPU) Core(TM) i7-10870H  (2020) 

Base Clock Performance 2.20 GHz 

Turbo Clock Performance 5.00 GHz 

SSD 500  

RAM 16 GB-DDR4L 

GPU Support NVIDIA-GEFORCE GTX 
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6.2. Google Colab Testbed Environment for Experimentation 

Figure 6, illustrates the procedural flow diagram of our Google Colab testbed environment utilized for 

experiments. The initial step involves the creation of a directory folder, which is structured to isolate files for 

results, saved models, logs, etc. Subsequently, Google Drive is connected to the Colab platform for 

experimentation. It is a crucial step to import and export of files between Google Drive and Colab. The Colab 

platform comes equipped with pre-installed libraries such as pandas, keras, numpy, etc., which are essential for 

ML and DL research. The installation of the ART library is required for implementing adversarial attacks 

method. Following this setup, we generate a Jupyter file for our Python code. The effectiveness of this 

configuration becomes clear as it allows for the seamless saving of experiment results directly to Google Drive 

for future reference, as shown in Figure 6.  

In conclusion, Google Colab is an excellent platform for research in ML and DL. It offers support for GPU 

and TPU, which helps train DL models quickly. Colab also comes with pre-installed libraries needed for 

experiments, making code running environment easier. It is user-friendly, especially for setting up the 

environment. We recommend new researchers to use Google Colab for their ML and DL research studies. 

 

 

Figure 6 Testbed Architecture for Experimentation using Google Colab 

6.3. Performance Metrics:  

The performance of both the models is evaluated based on accuracy, precision, recall, f1-score and ROC 

AUC curve. The brief description of each is as follows:  
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Accuracy: It represents the correct classification of the samples by the model out of all the available samples. 

It gives the overall assessment of the model.  

Precision: It is the proportion of the actual true positives predicted by the model out of all positive predicted 

samples. High precision indicates low false positives predicted by the model.  

Recall: It measures the proportion of true positive predictions among all actual positive samples. It is 

important when the focus is to reduce false negatives.  

F1-score: It is a harmonic mean of precision and recall. It is a good measure when the dataset is imbalanced.  

Area Under the ROC Curve (AUC-ROC): This represents the area under the Receiver Operating 

Characteristic curve, which plots the true positive rate against the false positive rate. It measures the model's 

ability to discriminate between classes. 

 

Equations (8) - (11) show the formulation of performance metrics in terms of true positive (TP), false positive 

(FP), true negative (TN) and false negatives (FN).  

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(8) 

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(9) 

𝑅ⅇ𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(10) 

𝐹 − 𝑆𝑐𝑜𝑟ⅇ =  
2 × 𝑅 × 𝑃

𝑅 + 𝑃
 (11) 

7. Results and Discussion  

In this section, we discussed the obtained results from the surrogate and target model in terms of 

classification report and confusion matrix. We have done a comprehensive analysis and discussion on the 

results, starting from the model's training process to when subjected to white-box and black-box transferability 

attacks.  

7.1. Surrogate and Target Model Performance 

We kept the simple architecture of both the surrogate and the target DL model. It is because our objective is 

not to focus on optimizing the outcomes but rather to conduct empirical testing of the black-box transferability 

phenomenon. 

The surrogate and target models are trained on the same dataset but with different hyperparameter sets, as 

previously discussed. We have used ModelCheckpoint, a powerful tool to save the best model automatically 
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during the training and validation procedure. It avoids overfitting and ensures that the most optimal weights are 

stored to get the best model. Both models are trained for binary classification of benign and attack classes on 

the CICDDoS-2019 dataset.   Table 7 demonstrates the training and validation results of the surrogate model at 

regular intervals of the epochs.  The training accuracy is slightly aligned with the validation accuracy, indicating 

that the model does not overfit the training data and can generalize well on the unseen dataset.  The surrogate 

model is trained for 50 epochs and yielding a remarkable accuracy of 98.97% on the training data and 98.98% 

on the validation data. These findings validate the results of the surrogate model. Furthermore, the loss of the 

model has also been notably reduced for both the training and validation stages, 0.0330 and 0.0323, respectively.   

The identical training approach is employed to train the target system; however, the target model underwent 60 

epochs. The obtained peak training and validation accuracy are 97.49% and 97.54%, respectively. Notably, the 

model's performance did not demonstrate overfitting tendencies and achieved satisfactory results, as shown in 

Table 8.   

 

Table 7 Surrogate model training and validation results 

 No. of Epochs Values 

Epoch-1/50 loss:- 0.6467 - accuracy: 0.6781 – val-loss: 0.5624 - val-accuracy: 0.7603 

Epoch-5/50 loss:- 0.2469 - accuracy: 0.9218 – val-loss: 0.2160 – val-accuracy: 0.9354 

Epoch-10/50 loss:- 0.1012 - accuracy: 0.9721 – val-loss: 0.0988 – val-accuracy: 0.9727 

Epoch-15/50 loss:- 0.0761 - accuracy: 0.9762 – val-loss: 0.0806 – val-accuracy: 0.9750 

Epoch-20/50 loss:- 0.0663 - accuracy: 0.9776 – val-loss: 0.0683 – val-accuracy: 0.9780 

Epoch-25/50 loss:- 0.0589 - accuracy: 0.9796 – val-loss: 0.0626 – val-accuracy: 0.9778 

Epoch-30/50 loss:- 0.0520 - accuracy: 0.9813 – val-loss: 0.0556 – val-accuracy: 0.9834 

Epoch-35/50 loss: -0.0463 - accuracy: 0.9837 – val-loss: 0.0471 – val-accuracy: 0.9849 

Epoch-40/50 loss: -0.0396 - accuracy: 0.9862 – val-loss: 0.0410 – val-accuracy: 0.9870 

Epoch-45/50 loss:- 0.0361 - accuracy: 0.9880 – val-loss: 0.0396 – val-accuracy: 0.9904 

Epoch-50/50 loss: -0.0330 - accuracy: 0.9897 – val-loss: 0.0323 – val-accuracy: 0.9898 

Table 8 Target model training and validation results 

No. of Epochs Values 

Epoch 1/60 loss:- 0.6849 - accuracy: 0.5622 - val_loss: 0.6710 – val-accuracy: 0.6072 

Epoch 5/60 loss:- 0.5681 - accuracy: 0.7220 - val_loss: 0.5485 – val-accuracy: 0.7474 

Epoch 10/60 loss:- 0.4363 - accuracy: 0.8201 - val_loss: 0.4287 – val-accuracy: 0.8257 

Epoch 15/60 loss:- 0.3423 - accuracy: 0.8554 - val_loss: 0.3345 – val-accuracy: 0.8623 

Epoch 20/60 loss:- 0.2490 - accuracy: 0.9359 - val_loss: 0.2439 – val-accuracy: 0.9389 

Epoch 25/60 loss:- 0.1864 - accuracy: 0.9592 - val_loss: 0.1847 – val-accuracy: 0.9582 

Epoch 30/60 loss:- 0.1493 - accuracy: 0.9657 - val_loss: 0.1500 – val-accuracy: 0.9650 

Epoch 35/60 loss:- 0.1276 - accuracy: 0.9681 - val_loss: 0.1298 – val-accuracy: 0.9684 

Epoch 40/60 loss:- 0.1140 - accuracy: 0.9698 - val_loss: 0.1166 – val-accuracy: 0.9702 
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Epoch 45/60 loss:- 0.1045 - accuracy: 0.9710 - val_loss: 0.1076 – val-accuracy: 0.9707 

Epoch 50/60 loss:- 0.0977 - accuracy: 0.9723 - val_loss: 0.1014 – val-accuracy: 0.9714 

Epoch 55/60 loss:- 0.0934 - accuracy: 0.9735 - val_loss: 0.0969 – val-accuracy: 0.9749 

Epoch 60/60 loss: -0.0890 - accuracy: 0.9749 - val_loss: 0.0920 – val-accuracy: 0.9754 

 

Figure 7 depicts a visualization of the loss and accuracy plots of surrogate and target models. It indicates 

how the model loss reduces and accuracy increases as the number of epochs rises for both the surrogate and 

target models.  A smooth curve implies that the model's performance is evolving in a relatively steady manner 

without abrupt fluctuations or instability. This can suggest that the model is learning effectively and converging 

towards an optimal solution. We evaluated the models under three situations. The first is before the adversarial 

attack. It describes the initial state of the model where no intentional modifications, perturbations, or attacks 

have been applied. The model is evaluated on the clean test dataset. The second is the under-white box 

adversarial attack. In this case, the adversarial perturbation inputs are applied to the surrogate model to deceive 

it. The third scenario involves a black box attack conducted on the target model using adversarial perturbation 

examples generated using the surrogate model. 

 

  
(a) (b) 

  
 

(c) (d) 
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Figure 7 (a) Surrogate Model Loss (b) Surrogate Model Accuracy (c) Target Model Loss (d) Target Model Accuracy 

Table 9, Figure 8, shows the first scenario in which the results are classified in the classification report.  The 

models are evaluated on the clean testing dataset (without adversarial perturbation). Both models achieved 

excellent results in terms of accuracy, precision, recall and f1-score. The obtained accuracy and f1-score of the 

surrogate model are 99.05%, and 99.01%, respectively.  

 

Table 10, Table 11, Figure 9 and Figure 10 are showing the confusiom matrix of both models. Table 10, 

highlights the confusion matrix with a false positive and false negative scenario of 745 and 155, respectively. 

In the case of the target model, accuracy and f1-score are 97.57% and 97.57%, with false positive and false 

negative scenarios of 1723 and 482, as shown in Table 10, and Table 11. The surrogate model has a relatively 

low number of false positives and false negatives. Keep in mind that a high number of false positives indicates 

that the model is incorrectly classifying instances as positive when they should be negative, and a high number 

of false negatives indicates that the model is incorrectly classifying instances as negative when they should be 

positive. The goal is to strike a balance between these two types of errors while maximizing accuracy, precision, 

recall, and F1-score. 

Table 9  Classification report before the attack 

Model Accuracy  % Precision % Recall  % F1-Score  % 

Surrogate Model 99.05 98.98     99.01     99.01 

Target Model 97.57 97.61         97.57 97.57 

 

 

Figure 8 Classification Report of Surrogate and Target Model Before Attack 

Table 10  Confusion matrics before attack surrogate model 

 
 LB Predicted 
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Benign Attack 

Actual 
Benign 42448    745 

Attack 155 47512 

 

 

Figure 9 Confusion Matrix Before Attack Surrogate Model 

Table 11 Confusion matrics before attack Target Model 

LB 
Predicted 

Benign Attack 

Actual 
Benign   41470 1723 

Attack 482 47185 

 

 

Figure 10 Confusion Matrix Before Attack Target Model 
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7.2. White-box Attack on the Surrogate Model with FGSM 

As already discussed, a white-box adversarial attack occurs when the attacker has access to the internal 

details of the model that they intend to compromise. And based on these details the perturbation examples are 

generated to deceive the same model (surrogate model). Table 12 demonstrates the classification result under 

the adversarial attack condition for various epsilon values ranging from 0.0001 to 0.0009. Epsilon is a parameter 

that determines the magnitude of the perturbations added to the input data. It controls how much the input data 

is modified while still being perceivable as the original data.The results indicate that as the epsilon value 

increases (i.e., larger perturbations are applied), the overall classification performance decreases. In other 

words, the model becomes more susceptible to misclassification as the perturbations become stronger. This 

observation aligns with the general behaviour of adversarial attacks, where larger perturbations are more likely 

to cause misclassifications because they push the model further away from its decision boundaries. The accuracy 

reduced from 99.05% to 23.85%. And the f1-score reduced from 99.01% to 23.00%.  

Table 12 Classification report after the white-box attack 

Epsilon value Accuracy % Precision  % Recall % F1-score % 

0.0001 86.14      88.88     86.14     86.00 

0.0002 67.21      70.49     67.21     66.37 

0.0003 56.65      58.36     56.65     55.68 

0.0004 43.54      43.64     43.54     41.86 

0.0005 35.95      35.45        35.95 34.75 

0.0006 31.03 30.35 31.03 30.03 

0.0007 28.02 27.18 28.02 27.04 

0.0008 25.79 24.91 25.79 24.87 

0.0009 23.85 22.96 23.85 23.00 

 

7.3. Black-box attack on the surrogate model with FGSM 

The third case is the implementation of the white box adversarial attack on the target model. The adversarial 

perturbation generated through the surrogate model is applied to the target model in the inference phase. As 

depicted in the Table 13, the results are classified for different epsilon values. The outcomes exhibit a similar 

impact as observed in the white-box attack but with a relatively reduced rate. Based on the results, it can be 

concluded that white-box attacks tend to have a greater magnitude or strength compared to black-box attacks. 

This suggests that the attacker's knowledge of the internal model details in a white-box attack enables them to 

craft more effective perturbations, leading to more substantial changes in the model's outputs. The accuracy 

reduced from 97.02% to 61.15%. And the f1-score reduced from 97.01 % to 59.94%. The classification results 

of both adversarial attacks are visually represented using different epsilon values. The plot for the white-box 

attack appears smoother when compared to the plot for the black-box attack across various epsilon values in 

Figure 11.  

Table 13  Classification report  after the black-box attack 
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Epsilon value Accuracy % Precision % Recall % F1-score % 

0.0001 97.02 97.12 96.94     97.01  

0.0002 96.28 96.34 96.21 96.26 

0.0003 95.27 95.28 95.24 95.25 

0.0004 93.62 93.66 93.64 93.65 

0.0005 91.47 91.45 91.55 91.47 

0.0006 79.96 81.66 80.52 79.85 

0.0007 76.78 7870     77.39   76.61 

0.0008 71.42 73.84 72.14 71.06 

0.0009 61.15 64.39 62.15 59.94 

 

 

  
(a) (b) 

Figure 11.   (a) Surrogate model accuracy and f1-score (b) Target model accuracy and f1-score 

7.4. Discussion  

The evaluation of model performance unfolds in three distinct phases. These phases include the initial state 

without any adversarial attack, a white-box attack on the surrogate model, and a black-box transferability attack 

on the target model.  

No Adversarial Attack: In the absence of any adversarial perturbations, both the surrogate and target models 

exhibited optimal performance during the initial phase. The classification report and confusion matrices 

revealed high accuracy, precision, recall, and F1 scores (~99 %). These results indicate that both models are 

robust when evaluated with clean test data.  

White-Box Attack on Surrogate Model: The second phase introduced a white-box adversarial attack on the 

surrogate model using the FGSM. This scenario represents an adversary who has full knowledge of the surrogate 

model, such as its DL architecture, gradients, loss function, etc. These details are used by the adversary to 
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generate adversarial perturbation to attack or deceive the surrogate model. As the epsilon value increased from 

0.0001 to 0.0009 in a white-box adversarial attack, the surrogate model experienced a substantial decline in 

accuracy, dropping from 86.14% to 23.85%. The corresponding reductions in precision, recall and f1-score are 

88.88% to 22.96%, 86.14% to 23.85%, and 86.00% to 23.00%, respectively. It shows the model's vulnerability 

to stronger adversarial perturbations. 

Black-Box Transferability Attack on Target Model: The third phase involved a black-box transferability 

attack on the target model. Here, adversarial perturbations generated using the surrogate model are applied to 

the target model. The impact of the transferability attack was less severe compared to the white-box scenario. 

The results revealed a reduction in the classification report of the target model. As the epsilon value increased 

from 0.0001 to 0.0009 in a black-box transferability attack, the target model witnessed a notable decline in 

performance. The accuracy dropped from 97.02% to 61.15%, with reductions in precision (97.12% to 64.39%), 

recall (96.94% to 62.15%), and F1-score (97.01% to 59.94%).  

In summary, a white-box adversarial attack has a severe attack magnitude compared to a black-box 

adversarial attack. However, the black box scenario represents more realistic adversarial attacks. As in the real 

physical world, the adversary has no knowledge of the targeted system that is to be attacked or compromised.   

In our previous research [12], we have shown the real-world implementation of white-box adversarial attacks 

within network packet scenarios. This work illustrates how adversaries can extract and manipulate packet-level 

information within a Wide Area Network (WAN). We recommend this research work for newcomers who seek 

a deeper understanding of adversarial attacks in real-world scenarios. It would also provide the practical 

applicability of the proposed research work.  As discussed, this study [12] is for white-box adversarial attack, 

but the concept is also applicable to black-box and adversarial transferability attacks. We have shown only 

conceptual idea for black-box adversarial transferability in [12], but this proposed research is an empirical 

enhancement of black-box adversarial transferability attack.  

In addition, further research could explore robust model architectures, training techniques, and defence 

mechanisms to mitigate the impact of both white-box and black-box adversarial attacks. Additionally, 

evaluating model performance under various attack scenarios helps understand and address vulnerabilities and 

resilient deep-learning models in real-world applications.  

8. Limitations and future directions 

This section highlights some limitations of the research work and the future scope for the new researcher in 

the area of adversarial machine learning. Following are the details pointing out limitations and future scope. 

 

• In this study, our emphasis has been on detecting adversarial attacks from the network security 
perspective. However, it is important to note that other domains, including Computer Vision, Natural 
Language Processing, Medical Imaging, and Finance, offer promising opportunities for further 
exploration in adversarial attack detection. 

• This research is constrained by its exclusive focus on using an FGSM attack strategy. Nonetheless, there 
exist other adversarial attacks like JSMA [48], PGD [49], and C&W [50] to form adversarial perturbation 
inputs to deceive the model. The future scope of this work may include attacks, such as poisoning attacks, 
model extraction, and inference attacks, which could serve as promising directions for future extensions. 

• The proposed research did not explore the defence method against the adversarial tactics. Hence, future 
direction is the exploration of different defence strategies, such as adversarial training and filtering 
methods, to increase the resilience of the DL model. Additionally, ensemble methods can improve the 
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robustness of the DL model. The significant benefits of ensemble machine learning involve improved 
accuracy, reduced overfitting, robustness, generalization, capacity, etc.  

• In most of the defence methods, the robustness of the model increases during the training phase. But the 
same can also be applied during the testing or the inference phase. The strategies to remove the noise or 
filtering methods can be used for the adversarially generated perturbation inputs.  

• The other potential future directions involve exploring the transferability concept into adversarial defence 
strategies across different models. For example, if one adversarial defence is applicable to one model, will 
it be equally beneficial for another model?  

• The proposed research work is implemented in the testbed development settings. However, the real-time 
development and deployment of the proposed concept may introduce new challenges to explore.  

• The study can also be extended with different intrusion detection datasets and DL architectures to explore 
the phenomena.  

9. Conclusion 

In conclusion, this research assesses the vulnerability of deep learning models against adversarial attacks in 

the context of a cyber attack detection system. Our research introduces a novel aspect by implementing black-

box adversarial transferability phenomena through surrogate and target models [51]. It says that adversarial 

perturbation examples generated by one DL model could have a similar impact on the other model even with 

the different architecture and parameter settings.  We have used the FGSM to create adversarial perturbation 

examples using the latest CICDDoS-2019 dataset. The comprehensive evaluation is done under the three cases, 

namely, without attack, after the white-box attack on the surrogate model and the black-box transferability 

attack on the target model. The results obtained in terms of the classification report and confusion matrix offer 

valuable insights. Notably, we observed that white-box attacks tend to have more severe effects when compared 

to the black-box counterparts across varying epsilon values (0.0001 to 0.0009). However, the black-box 

transferability attacks mirror real-world conditions more closely. As external attackers (adversaries) often 

operate without access to detailed targeted system architecture.  

In Addition, we have also added detailed taxonomical information on adversarial attacks with multiple 

dimensions. This information will help new researchers to explore different domains of research in adversarial 

machine learning. This insight is crucial for the development of robust defences that can effectively mitigate 

the impact of adversarial attacks in the real-world adversarial cyber threat landscape. 
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