
Enc2DB: A Hybrid and Adaptive Encrypted
Query Processing Framework

Hui Li1,2(�), Jingwen Shi1, Qi Tian1, Zheng Li1, Yan Fu1, Bingqing Shen3, and
Yaofeng Tu4

1 Xidian University, Xi’an,China
hli@xidian.edu.cn, {jingwen.shi,tianqi,lizhen,yanfu}@stu.xidian.edu.cn

2 Shanghai Yunxi Technology Co., Ltd., Shanghai, China
lihui22@inspur.com

3 Shanghai International Studies University, Shanghai, China
bqshen@shisu.edu.cn

4 ZTE Corporation, Nanjing, China
tu.yaofeng@zte.com.cn

Abstract. As cloud computing gains traction, data owners are out-
sourcing their data to cloud service providers (CSPs) for Database Ser-
vice (DBaaS), bringing in a deviation of data ownership and usage, and
intensifying privacy concerns, especially with potential breaches by hack-
ers or CSP insiders. To address that, encrypted database services propose
encrypting every tuple and query statement before submitting to the
CSP, ensuring data confidentiality when the CSP is honest-but-curious,
or even compromised. Existing solutions either employ property preserv-
ing cryptography schemes, which can perform certain operations over
ciphertext without decrypting the data over the CSP, or utilize trusted
execution environment (TEE) to safeguard data and computations from
the CSP. Based on these efforts, we introduce Enc2DB, a novel secure
database system, following a hybrid strategy on PostgreSQL and open-
Gauss. We present a micro-benchmarking test and self-adaptive mode
switch strategy that can dynamically choose the best execution path
(cryptography or TEE) to answer a given query. Besides, we also design
and implement a ciphertext index compatible with native cost model
and query optimizers to accelerate query processing. Empirical study
over TPC-C test justifies that Enc2DB outperforms pure TEE and cryp-
tography solutions, and our ciphertext index implementation also out-
performs the state-of-the-art cryptographic-based system.

Keywords: privacy · trusted execution environment · query processing.

1 Introduction

Cloud computing has become an essential infrastructure for efficient data man-
agement systems. Migrating workloads to the cloud brings many advantages,
such as lower cost, higher flexibility, greater scalability, higher reliability and so

ar
X

iv
:2

40
4.

06
81

9v
1

 [
cs

.C
R

]
 1

0
A

pr
 2

02
4

2 H.Li et al.

on. More and more enterprises and institutions are tending to rely on third-party
database service providers for storing and managing their data services.

However, while storage and computing in the cloud bring great convenience,
the deviation of data ownership and usage also brings privacy risks that can not
be ignored. When users outsource data to cloud service providers (CSP), they
lose physical control over data. The security and privacy of data depend on the
security policy provided by the CSP. If the security policies are breached by
external hackers or even rogue employees from the CSP itself, users’ sensitive
data can be leaked, seriously compromising data security and privacy.

To ensure confidentiality, data can be kept encrypted over the CSP. Tra-
ditional data encryption [6,40] preserves confidentiality of data at rest. Secur-
ing data at rest allows users to utilize cloud storage without exposing sensitive
information, but it prevents users from performing SQL queries effectively or
efficiently.

A possible solution to this problem is homomorphic encryption, which can
provide data operability while preserving data confidentiality. The fully homo-
morphic encryption (FHE) [18] scheme allows algebraic computations over en-
crypted data, but it suffers from high overhead for complex analytical queries.
Partially homomorphic encryption (PHE) [35] allows computations over en-
crypted data with respect to some specific operations and have practical perfor-
mance. Property-Preserving Encryption (PPE) [30] can preserve some attributes
of plaintext data, such as comparisons.

Another alternative is to utilize trusted execution environment to ensure
the confidentiality of data. The trusted execution environment (TEE) [37] con-
structs a secure area in the CPU (called an enclave) through software and hard-
ware methods, ensuring that the programs and data loaded inside are protected
in terms of confidentiality and integrity. Therefore, the encrypted data can be
decrypted and calculated in TEE, such that the OS knows nothing about the
content inside. Due to recent advancements in TEE, many enclave-based en-
crypted databases and storage systems have emerged [5,8,16,21,24,34,42,45,39].
For example, EnclaveDB [34] protects the confidentiality and integrity of data
and queries by placing sensitive data (tables, indexes and other metadata) in
enclaves protected by trusted hardware (such as SGX).

In this paper, we propose a hybrid and adaptive encryption query process-
ing solution, namely Enc2DB, implemented in our openGauss, an open-source
database proposed by Huawei, as well as in PostgreSQL. Based on the cryptog-
raphy technologies such as symmetric PHE, order preserving encryption (OPE),
and AES we establish the ciphertext storage model of relational database and the
corresponding query processing framework. Enc2DB proposes a hybrid solution
make use of both software (cryptography) and hardware (TEE) to improve the
efficiency of ciphertext data query, and realizes the fully encrypted storage and
execution of query workload, as well as the transparent processing of user-side
query requests. Our main contributions are as follows:

– We use full ciphertext-based storage, support user defined column-level choice
of plaintext or ciphertext state.

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 3

– We propose a ciphertext-aware indexing mechanism over ORE, to further
improve query efficiency.

– We combine SGX with software-only solutions and propose a hybrid self-
adaptive strategy towards range queries.

In the rest of the paper, we first present background information and related
work in section 2 and then explores system architecture in section 3, as well as
the implementation details of software and TEE-enabled modes. In section 4,
we introduce a series of optimizations. Empirical study is provided in section 5,
and we conclude in section 6.

2 BACKGROUND AND RELATED WORK

2.1 Encryption Algorithm

Homomorphic Encryption Homomorphic encryption is proposed for math-
ematical calculation of ciphertext without obtaining the key. According to the
types of ciphertext calculation, it can be divided into FHE and PHE. FHE al-
lows any algebraic operation on encrypted data, and the result obtained after
decryption preserves the calculation result.

In 2009, Gentry [18] implemented the first fully homologous encryption scheme.
Although over the years, the algorithm of FHE has experienced significant im-
provement in the aspect of efficiency, it is impractical for real-world usage. In
comparison, PHE only supports limited types of ciphertext calculation, but pro-
vide practical efficiency. PHE is mainly divided into additive homomorphic en-
cryption (AHE) and multiplicative homomorphic encryption (MHE). Examples
of AHE include Paillier [29], benaloh [17], Okamoto–Uchiyama [27], Naccache
stern [25], Damg̊ard-Jurik[14],etc. Examples of MHE include ElGamal [15] and
RSA [36]. At present, we adopt the state-of-the-art symmetric AHE and MHE
solution, namely SAHE and SMHE proposed in Symmetria [38]. They retain the
full range of homomorphic operations that asymmetric schemes support while
offering the same level of security (semantic security, (IND-CPA)).

Property Preserving Encryption For operations such as range queries in-
volving comparisons that HE cannot support, we turn to the Property Preserv-
ing Encryption (PPE), which has been used in systems such as CryptDB [33],
Monomi [40] and Seabed [31].

The ciphertext of the PPE scheme retains some attributes of the plaintext.
For the same plaintext data, the ciphertext encrypted by deterministic encryp-
tion (DET) is also the same. There are other schemes that can preserve the
order relationship of the underlying plaintext values, which is called Order Pre-
serving Encryption (OPE) [4]. The relative order of the plaintext values can
be directly obtained by comparing the encrypted values. Boldyreava [9] pro-
poses an attribute-preserving encryption scheme, but it’s a deterministic scheme

4 H.Li et al.

that preserves frequency information of plaintext data. At present, the Order-
Revealing Encryption scheme (ORE) [10,11,12] and its branch scheme are non-
deterministic solutions, which can reveal less information under the premise
of guaranteeing higher operation efficiency, thus providing better security than
OPE.

2.2 Trusted Execution Environment

Trusted Execution Environment(TEE) [37,44] builds a secure area in the cen-
tral processing unit through software and hardware methods to ensure that the
programs and data loaded in it are protected in terms of confidentiality and in-
tegrity. The principle of TEE is to divide the hardware and software resources of
the system into two execution environments-trusted execution environment and
common execution environment. The two environments are securely isolated,
with independent internal data paths and storage space required for computing.
Applications in a common execution environment cannot access the TEE. Even
within the TEE, multiple applications run independently and cannot access each
other without authorization. All major CPU vendors have rolled out their TEE
(e.g., ARM TrustZone, Intel SGX, and AMD SEV) to provide a secure execution
environment, commonly referred to as an enclave [3,1,20].

Encrypted database systems can employ TEE to preserve the confidentiality
in query processing, by decrypting the ciphertext and performing complex cal-
culations over plaintext within TEE. SGX is a representative TEE framework
proposed by Intel, which encapsulates the security operations of legitimate soft-
ware in an enclave to protect it from malware attacks. That is, even the OS
or the VMM (Hypervisor) cannot access or affect the code and data inside the
enclave.

EnclaveDB [34] relies on SGX and processes encrypted queries in an en-
clave, which allows only pre-compiled queries and assumes that all data can fit
in the memory. Always encrypted Azure database [5] uses a few enclave-based
defined function for computation over ciphertext. However, such non-intrusive
design leads to possible information leakage and performance degradation. FE-
in-GaussDB [46] combines encryption algorithms with TEE to securely perform
various operations on ciphertext data, including matching, comparison and etc.

3 system architecture

In this section, we introduce the basic structure of Enc2DB (Encrypted Database
with Enclave), which provides two deployment modes, i.e., software-only and
TEE-enabled. To start with, we first propose the software-only mode, namely
EncDB (Encrypted Database). After that, we discuss how TEE can co-operate
with EncDB by enabling complex tasks to run inside the Enclave, which leads
to the second mode, Enc2DB (detailed in subsection 3.2).

The complete system is divided into two parts: the application server (trusted
client) and the untrusted server. Its architecture is shown in Fig. 1, which in-
cludes the following components deployed over both the client and the cloud.

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 5

Fig. 1. System Architecture with components differentiated by mode: TEE-enabled
(black and red) and Software-based (green).

Encryption and Decryption Engine: holds the encryption key, encrypts
plaintext data, and decrypts the result received from the cloud. The encryption
module also generates and stores meta-encryption data, i.e., the mapping of
plaintext operators to the relevant ciphertext ones, the supported encryption
schemes towards different data types in the database.
Query rewriter: convert plaintext queries into the ones in ciphertext, which
are sent through the network to the server.
Database Driver: PostgreSQL supports multiple database application pro-
gramming interfaces (such as libpq, JDBC, ODBC, etc.) to submit query re-
quests. The application driver helps the client to send the rewritten encrypted
SQL to the server and receive the encrypted result from the cloud.
Server-side Computing Services: Leverage a set of user-defined functions
(UDFs) to perform operations on encrypted data.

The pipeline for answering a SQL query under the architecture is as follows:
The data provider uploads plaintext data, and the client encrypts each column
under one or more encryption schemes according to the expected operations,
replacing the original column name with a random string for anonymization.
The user enters a plaintext query, which is rewritten and sent to the server in the
form of a ciphertext counterpart. The server implements the relevant operation
logic for ciphertext calculation in advance, performs query and operation on the
encrypted SQL, and returns the obtained encrypted result to the client. The
client decrypts the received ciphertext to obtain the plaintext query result. The
whole process is completely transparent to the user, and the server is unaware
about the content of either the query or the result.

3.1 Software-based mode, EncDB

In our software-only implementation mode, a column in a table is to be stored
in ciphertext form under one (or more) of AHE, MHE, ORE, and AES. Given a
SQL statement, the column names and operands are respectively replaced using
desensitized names and ciphertext under a predefined encryption logic. This

6 H.Li et al.

process takes place at the user’s local trusted end and is deployed by a small
connection pool, which has many advantages such as transparency to the upper
layers, no client awareness, and easy migration. After receiving the encrypted
query statements, the server will perform the relevant ciphertext calculation
according to the pre-configured user-defined functions, and finally returns the
encrypted query results to the user, and the local trusted end will decrypt and
obtain the plaintext results, which is completely transparent to the application.
Advantages. A major benefit of the software-only implementation mode is that
it exert no hardware requirement, and it also has less deployment costs.
Disadvantages. The obvious disadvantage of the software-only mode is the
large redundancy of data, as a data column is copied and encrypted into many
ciphertext columns under different encryption schemes, resulting in a huge space
and time overhead. In addition, the query work is done using UDFs with a huge
computational overhead. Besides, some complex expressions are hard to compute
under this mode. For example, none of current encryption schemes can support
both addition/multiplication homomorphic and comparison in ciphertext space.
For queries containing both operations over the same operands, another round
of interaction between the client and server is extraly required. This solution
introduces network communication latency, which is unacceptable for a real-time
online transaction processing system.

The software-only mode is a major research direction in cryptographic database
systems [19,32,33,40,43]. The EncDB in our system is an advanced solution in
this trend that absorbs many of the advantages of the previous works, especially
those symmetric encryption schemes. Based on this implementation, we further
introduce TEE and propose a hybrid solution that benefit from both software
and hardware security support. Besides, we also present a self-adaptive strategy
to enable both techs cooperate at runtime, which results in a large improvement
in the overall performance of the system.

3.2 TEE-enabled mode, Enc2DB

The TEE-enabled mode aims to improve the efficiency and address the unsup-
ported operations under software-only mode. In the TEE-enabled mode imple-
mentation, UDFs are packaged as independent trusted bridging functions, which
are used to enter secure memory, e.g., Enclave, decrypt encrypted data, and en-
crypt the results according to the required encryption mode after completing
the corresponding computation task. Finally, the computed results are returned
to the database system, which also maintains the high security of the data to
the host. Since the computation is done in the secure area, we never need to
worry about homomorphic or property preserving functionality in the encryp-
tion scheme. Instead, any symmetric encryption can be considered, as long as it
is enough efficient and secure. In addition, comparing to the presence of various
encrypted copies (each corresponds to a specific encryption scheme) in software-
only mode, only one encrypted copy is stored at the server side. Suppose Intel
SGX is used in Fig. 1, trusted bridging functions are declared in SGX via the En-
clave Definition Language (EDL), and the trusted settlement interface for some

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 7

UDFs is shown in Fig. 2. The first parameter is the encryption mode of the
result to be calculated. The next two parameters are the left and right operands
computed for this ciphertext, since SGX can directly access the address space of
the host process, there is no need for a memory copy. The fourth parameter is
the ciphertext calculation result. Since the result is generated in secure memory,
a memory copy will occur here, aiming to move data from secure area to the
unsecure memory space.

public void ecall_sahe_add(cipher_t* expected,
[user_check] void* opl, [user_check] void* opr,
[user_check] void* ret, size_t outlen);

public void ecall_smhe_mul(cipher_t* expected,
[user_check] void* opl, [user_check] void* opr,
[user_check] void* ret, size_t outlen);

public void ecall_ore_compare([user_check] void* opl, [user_check] void* opr,
[user_check] int* ret);

Fig. 2. EDL Definition of UDFs

The database-level UDF definition is shown in Fig. 3. The first two param-
eters it accepts are operand in AES ciphertext and the last two are ciphertext
under homomorphic encryption (e.g., AHE, MHE), which is employed to support
self-adpative hybrid query processing in subsection 3.3. In addition, as crypto-
graphic UDF calculations are more expensive than plaintext ones, a nifty query
plan should perform these ciphertext UDF calculations as late as possible. In
light of that, we inject and assign in the cost model these UDFs a high enough
cost.

Key Transfer Protocol and Management Since all secure calculations in
Enclave are conducted on plaintext data, keys that exist on the local trusted side
must be securely transferred to the Enclave instances running in the cloud over
untrusted channels. The solution adopted here is achieved by using SGX remote
authentication technology. During the deployment phase of a secret database, the
remote and local trusted ends establish a secure communication channel through
remote authentication. Afterwards, the master key is transferred to Enclave,
where the encryption keys are derived for each encrypted column internally
through the key export algorithm HKDF [23], and save them to the file device
of the host machine through SGX sealing technology for later use when the
restart is applied. The overall flow of key transfer is shown in Fig. 4.

At the beginning of the key transfer protocol, the client starts the remote au-
thentication process by sending an initial message (i.e., init) to the server. After
receiving the init message, the server will generate msg0, including EPID of the
server. When the client receives msg0, epid will be registered locally, indicating

8 H.Li et al.

CREATE OR REPLACE FUNCTION sahe_add(cipher_t, cipher_t, cipher_t, cipher_t, int)
RETURNS cipher_t

AS '$libdir/libudf', 'sahe_add'
COST 5000
PARALLEL SAFE
LANGUAGE C ;

CREATE OR REPLACE FUNCTION udf_ore_gt(cipher_t, cipher_t, cipher_t, cipher_t)
RETURNS BOOLEAN

AS '$libdir/libudf', 'udf_ore_gt'
COST 5000
PARALLEL SAFE
LANGUAGE C ;

CREATE OR REPLACE FUNCTION sum_sahe_sfunc(cipher_t, cipher_t, cipher_t) RETURNS
cipher_t
AS '$libdir/libudf', 'sum_sahe_sfunc'
COST 5000
LANGUAGE C IMMUTABLE STRICT;

Fig. 3. Database System Partial UDF Definitions

Client Server

Client File System

Read key file

Client Enclave

Server File System

Server Enclave

SGX Attestation

ECCDH

Key Sealing Key Unsealing

App

Intel IAS
Verify server enclave status

Validation results
Master key transfer

Fig. 4. Key Transfer Based on Remote Attestation

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 9

that a link is being established with this server, and returning the message of
successful registration, or failing and terminating the following process if it has
already registered before. When the server receives a message confirming the
success of msg0, it generates msg1 in the Enclave security zone, the primary
data field is the public key portion of the Elliptic Curve Key Exchange Algo-
rithm (ECCDH), and sends msg1 to the client. The client receives msg1, first
gets the signature revocation list through Intel IAS, then generates the ECCDH
public key Gb locally, and calculates the shared key DH KEY based on the
derivation of the ECCDH public key Ga on the server, and then derives MK,
SK and V K from DH KEY in turn to meet future communication needs. Af-
terwards, client public key Gb, CMAC authentication code cmac are generated
with MK. Use predefined server-side public key signatures of Ga and Gb are
employed to prevent man-in-the-middle attacks. Client assembles all the above
information into msg2 and sends it to the server. When the server receives msg2,
it checks each data in the security area and generates Enclave’s quote to be sent
to the client in msg3. quote is the key proof of Enclave’s validity. When a client
receives msg3, Ga in msg3 is first validated against the client’s own copy, then
MK is used to verify that cmac is correct or not, and then quote is formatted
for Ga + Gb + V K. Upon successful verification, quote is sent to Intel IAS for
authentication to confirm that the other party (at server side) is an application
running in a real SGX environment. The verification results are assembled to
generate attestation messages that are sent to the server to notify it about the
validation and establish a secure communication channel. Attestation messages
can carry custom information, encrypted with SK and stored in the payload
field, encrypted with AES-GCM, and checkcodes stored in the payload tag field.
At this point, the key transfer protocol is complete and subsequent communica-
tions can be made through the shared key of SK via secret messages.

3.3 Self-adaptive switch between TEE-enabled and software modes

Using trusted bridging functions to wrap UDFs can support arbitrary type of
query over ciphertexts, but trusted hardware also suffers from a series of limi-
tations, i.e., insufficient safe memory space for SGX [8] [7] [28], which can lead
to severe page replacement in concurrent transaction processing scenarios, even
worse than that of software-only implementations. Therefore, outsourcing all
queries to trusted hardware cannot fit for all practical scenarios. Driven by that,
we select to mitigate the problem by processing the encrypted query using both
software and TEE-enabled modes together. Depending on whether the process-
ing is dynamically switched between both modes at runtime or not, we propose
two strategies, namely static switch and self-adaptive switch.

Static mode switch Specifically, in static switch strategy, for those operations
efficiently addressed by software mode, we select not to rely on TEE. To this end,
we conduct both theoretical and empirical study over the encryption schemes
to tell which can be efficiently addressed in software-only mode. Fig. 10 is a
comparison of the time consumed for both AHE and ORE between both modes

10 H.Li et al.

over TPC-C workload. Obviously, ORE has the largest proportion, which is
consistent with the fact that ORE has greater space and time complexity than
other encryption schemes. Intuitively, ORE-related operations is the first target
we must kill (i.e., transfer the task to TEE) in software-only mode.

All operations involving OREs can be replaced with AES with the help of
TEE to save time and space. Assuming that ORE operations are statically re-
placed using AES and supported in TEE, a SQL query shall replace the corre-
sponding columns involved in all comparison predicates using AES columns, in-
stead of ORE ones. On the server side, UDFs involving comparison over columns,
are all moved to Enclave, which shall decrypt the incoming AES ciphertext,
perform comparison over plaintext, and return the corresponding comparison
results. This static configuration for performing a fixed type of predicates on ci-
phertext operands, i.e., comparison, over TEE is referred to as a static switching
mechanism.

If all predicates of ciphertext operands are moved and fully relied on TEE,
static switch becomes the TEE-enabled mode shown in subsection 3.2. This
simple replacement of an encrypted column to reduce space-time overhead does
improve the overall performance of an encrypted database system. If all types
of predicates over ciphertext operands are handed over to SGX, it works well
in small-scale or low-concurrency scenarios. However, in high concurrency sce-
narios, SGX’s secure memory space will soon be full, resulting in severe paging.
According to the previous analysis, if page fault occurs, all operations will take
almost twice time as long as those without page fault.

As we mentioned above, when SGX’s secure memory is full, new memory
allocation leads to page fault, which significantly brings down efficiency [7] [13].
Fig. 5 shows the time cost with respect to the increase in data size with or
without Enclave. In both figures, red curve refers to the setting that the task is
performed in SGX, where the vertical line refers to the standard size of Enclave
under SGX, i.e., 128mb. No matter whether it’s a binary search or a quick sort,
when the amount of data exceeds 128MB, or even less than 128MB, the cost
of SGX increases significantly, while the execution outside Enclave (i.e., blue
curve) is unaffected.

Therefore, combined with theoretical study and experimental results, it is
more efficient to rely on TEE mode when no paging occurs, but when the secure
memory is full and paging occurs, the efficiency can be reduced by 2-4 times.
This makes it more expensive to continue with TEE-enabled mode.

Self-adaptive mode switch As analyzed above, limited space of Enclave will
inevitably introduce too much paging task in high concurrency transactional
scenarios. An ideal solution towards this problem is to obtain the state of the
current SGX in real time and dynamically determine whether the current ci-
phertext predicates shall be performed in software mode or TEE-enabled one.
That is, the system has to obtain the remaining capacity of the Enclave memory
in real time to support the operation of the decision-making mechanism. Unfor-

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 11

50 75 100 125 150 175 200 225
Data Size(MB)

20

40

60

80

100

120

140

R
un

ni
ng

 T
im

e(
m

s)

SGX
Normal

(a) Binary Search in SGX

50 75 100 125 150 175 200 225
Data Size(MB)

600

700

800

900

1000

R
un

ni
ng

 T
im

e(
m

s)

SGX
Normal

(b) Quick Sort in SGX

Fig. 5. Execution efficiency of classical algorithms in SGX

tunately, the official SDK of SGX does not provide such an interface to return
the remaining capacity of enclave page caches(EPC) in real time.

To address that, we present a micro-benchmark to estimate the residual ca-
pacity of EPC in real time. Intuitively, inspired by our study in Fig. 5, if the
remaining capacity of Enclave memory is insufficient, page replacement will oc-
cur, which will affect the execution efficiency significantly, then the running time
of a UDF calculation task executed in SGX can indirectly reflect the status of
the current EPC remaining capacity, that is, if the execution time of a predefined
task in SGX is significantly higher than its expectation, then page replacement
occurs during execution. In this way, the current remaining capacity of EPC can
be dynamically inferred based on historical data. In the sequel, we refer to this
strategy as Enclave microbenchmark. Specifically, in a new thread, a timer is
started with the system startup, and a task is triggered at a certain time in-
terval. This task is executed in Enclave, and the execution time of this task is
recorded. Because it is a fixed task, the running time is also relatively fixed.

For the specific type of benchmark test, users can fill in different tasks ac-
cording to the performance of SGX platform, so as to obtain better estimation
performance. One of the main demands of the benchmark task is that the access
of the task test itself to the data should be random enough to resist against
the caching effect of the page replacement algorithm, so that the task can cause
enough page missing exceptions. In that way, differentiation in the running time
can be easily observed. Generally, if the data access of the task is not random
enough, there will be less page loss interruption, so it can not accurately reflect
whether page replacement is happening at present. After exhaustive empirical
study, which shall be shown in subsection 5.2, in Enc2DB we adopt the binary
search after quick sorting in Enclave memory as the benchmark task.

cost estimation model The main task of the design of self-adaptive switch
strategy is to dynamically provide the most appropriate calculation path for
each UDF calculation according to the current system state. The execution mode

12 H.Li et al.

for each particular predicate over ciphertext can be viewed as different physical
operators (i.e., software mode or TEE-enable mode, each corresponds to a UDF)
in the query execution plan (QEP). We shall further deploy a cost model to
enable the dynamic switch between physical operators, i.e., UDFs. For ease of
discussion, we refer to software and TEE-enabled mode UDF cost as Csoft and
CTEE , respectively.

Csoft = Ccalc + Cdecide (1)

Csoft is shown in equation 1, where CCalc is the calculation cost in UDF exe-
cution, Cdecision is the cost of the decision itself. Because the subsequent cal-
culation involves the collection of the calculation time and the feedback to the
decision-making, and the software and hardware belong to two different concur-
rent conflict domains, so Cdecide mainly depends on the number of UDFs of the
same kind calculated on the same path at the current time. For different UDFs,
CCalc is different. For instance, in the symmetric cryptographic homomorphic
algorithm, the efficiency of AHE is always higher than that of MHE. An esti-
mate of Ccalc can be given based on the computational flow of different UDFs
and their complexity. In addition, compiled assembly instructions or runtime
CPU clock cycles based on UDF code, can be used as a reference to assist in
estimating Ccalc.

And for CTEE , the total cost can be found in equation 2.

CTEE = Cfixed + Ccalc + Cruntime + Cdecide (2)

Cfixed is the startup cost of the trusted execution environment. For instance,
in SGX, it is mainly reflected as the ECALL/OCALL invocation overhead. Ccalc

is the computational cost in the UDF execution. Since the main logic of the ex-
ecution in trusted hardware is to decrypt the AES, perform the computation on
the plaintext, and then encrypt the result according to the encryption format re-
quired by the UDF, the dynamic part of the computational cost here depends on
the parameters of the UDF, i.e., the specified encryption scheme requirements.
In decision making, it is necessary to estimate this part of the computational cost
dynamically for different parameters. Cruntime is the additional load overhead
of the trusted hardware at runtime, e.g., in SGX it is mainly expressed as the
additional computational cost during page replacement. Its value varies contin-
uously with the severity of page replacement. The main measurement method
is to dynamically estimate Cruntime from the microbenchmark test introduced
above.

4 FURTHER OPTIMIZATION

4.1 cipher index

B(+)-tree index is a fundamental tool to accelerate queries with either range
or equivalent predicates. In encrypted database, the client encrypts the numeric
data and transmits the ciphertext as a string, which is typically stored in the

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 13

“text” or “blob” type on the server side. Due to the different representation forms
of plaintext and ciphertext, the classical comparison logic of plaintext database is
no longer applicable over ciphertext. Correspondingly, B(+)-tree cannot directly
support the query over ciphertext, i.e., ORE in our software-only mode.

In this part, we present an index scheme supporting equivalent query, range
query and related aggregate functions over ORE ciphertext that is compatible
with both PostgreSQL and openGauss. Meanwhile, we ensure the transparency
of user, who only need to enter

CREATE INDEX idx name ON tb name (col name) ;

to create server-side ciphertext indexes in the same way with plaintext databases.

Intuitively, one possible solution to this index is to replace the comparison
operator within B(+)-tree using ORE-based UDF that can return comparison
results over ORE ciphertext. However, cost model and query optimizer is un-
aware of the cost of this modified B(+)-tree, resulting in the fact that the query
plan may not correctly employ this index, i.e., wrongly use Seq SCAN instead of
Index SCAN. To address that, our model relies on UDT (user-defined type) and
UDO (user-defined operation) instead of purely UDF over ORE ciphertext.

user-defined data type Firstly, we define “ore en” type as a variable-length
data type “varlena” provided by PostgreSQL (resp., openGauss). In addition,
since the length of the ore ciphertext is several times or even dozens of times the
length of the plaintext, it is necessary to mark the type as TOAST, so that the
ciphertext can be compressed and stored off the line.

user-defined operators Range query consists of the following operators, “>
,≥,=, <,≤”, each of which is a binary operation a pair of ORE ciphertext (e.g.,
A,B) defined as type “ore en”, returning either 1 or -1 as follows:

1. ore en abs lt(A, B): returns 1 if Dec(A) < Dec(B).

2. ore en abs le(A, B): returns 1 if Dec(A) ≤ Dec(B).

3. ore en abs gt(A, B): returns 1 if Dec(A) > Dec(B).

4. ore en abs ge(A, B): returns 1 if Dec(A) ≥ Dec(B).

5. ore en abs eq(A, B): returns 1 if Dec(A) = Dec(B)..

As an alternative solution, the equivalent predicate can be also performed through
the DET ciphertext column, i.e., without our cipher index.

According to the comparison functions constructed above, five different oper-
ators can be created correspondingly. In both PGSQL and openGauss, it can be
done via “CREATE OPERATOR” statement over the new UDT, namely “ore en”.

Essentially, given that the “ore en” data type is associated with a series
of comparison operators, i.e., “>,<,≤,≥,=”, a B(+)-tree index can be easily
defined accordingly.

14 H.Li et al.

new operator class The operator class can inform the B-tree index of which
data type to operate on, providing a set of operations supported by a certain data
type and implementing B-tree access for new types. In PGSQL and openGauss,
different operator classes and index methods can be built for different types.
Every index defines its own support function for comparison or operation logic.

For UDT “ore en”, we define a B-tree operator class named “ore en abs ops”.
In the B-tree index, the five comparison operations are referred to using IDs as
“1, . . . , 5”, respectively. In the operator class of “ore en”, by specifying the UDO
as the ciphertext comparison operator above, an ciphertext B-tree can be built
upon the UDT “ore en” and the associated UDO class, which consists of the
UDOs defined above.

In addition, the above ciphertext index has also brings in a new advantage
to our software-only mode implementation. Before introducing the index, per-
forming sorting over ORE columns may inevitably result in wrong output, as
the SORT operator has to rely on the default ASCII code of the ciphertext, i.e.,
“order by” statement in SQL fails to work. By implementing the cipher index,
SORT operator over the UDT “ore en” is now conducted based on the UDO, “≤
over ore en”, i.e., ore en abs le(A, B).

Ciphertext range query By introducing the UDT, UDOs above, a range
query over ORE columns will not rely on the UDFs introduced in Figure 3 ever,
e.g., “...WHERE udf ore gt(...);”. Instead, the range predicate turn into the form
of “<,≤, >,≥,=”, which is inline with plaintext SQL. The advantage of this is
two-folds, firstly, it ensures the range query to employ the cipher index to take
effect (the default solution shown in Fig. 3 can not correctly use Index SCAN);
secondly, the appearance and usage of the range predicates are consistent with
the plaintext ones, ensuring the transparency over users.

Besides, as the maximum/minimum aggregation depend on comparison and
sorting over the ORE column, which are now stored using UDT “ore en”, the
aggregate function on “ore en” data type are also introduced and defined as
“ore max(col ore)/ore min(col ore)”.

4.2 within-SGX caching

In the design of cryptographic database system, cipher calculation is costly, so
it is a waste of resource especially when repeated query (resp., sub-query) hap-
pens. If we can reduce the duplicate cipher calculation, it will not only improve
the efficiency, but also save much secure memory space. As AES ciphertext are
repeatedly decrypted to perform predicate computation within SGX, it is possi-
ble to cache the cipher-to-plain text mapping of AES within SGX, such that the
follow-up decryption task towards the same AES ciphertext can be accelerated
significantly. Fig. 6 shows the pseudocode how we implement ciphert-to-plain
caching in SGX. LRU or LFU can be potential choice for implementing the cache
algorithm. As cached data exists in limited secure memory, the cache algorithm
also needs to save memory as much as possible, so LRU is a more appropriate

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 15

Fig. 6. Pseudocode for within-SGX cache

choice. Experiments show that ciphertext caching has a 15%-20% improvement
over TPC-C benchmark. For the aspect of cache capacity, in Enc2DB we set it
configurable, such that it can be adjusted according to different usage scenarios
and properties of different SGX platforms.

4.3 SGX task pool for batched ecall

In an Enclave program, access to the enclave program from the untrusted side
is done through a predefined bridge function called ECALL. The verification of
ECALL is also an computationally expensive process, so if one ECALL call enters
the Enclave, whose computation task is too simple, the verification of ECALL
accounts for most of cost, especially in face of a large number of concurrent
short tasks. Hence, it is important to reduce the number of ECALL with respect
to petty tasks. Notably, SGX has proposed Switchless Call [2] technique to
reduce this type of overhead by deploying worker threads inside the Enclave
to asynchronously acquire tasks for execution. However, according to Switchless
Call, work threads can only be specified statically and the size of the task pool is
fixed, which makes it impossible for cryptographic database systems to achieve
more fine-grained adjustment and optimization according to the characteristics
of ciphertext (UDF) computation tasks.

To address that, we deploy a ECALL task pool at the untrusted end. When-
ever a thread calls ECALL, a task object, containing its ID and parameters,
is generated and stored in the task pool. The work thread at the trusted end
takes the ECALL task from the task pool and executes it. After a certain num-
ber of tasks in the pool or a certain time window, all tasks are transferred to
the processing pool, at which time the work thread in the safe zone will iter-
ate through the tasks from the processing pool and execute them accordingly.
After all tasks in the processing pool have been executed, new tasks from the
pool can be accepted. The reason for dividing the pool into two sub ones is that
threads in the safe zone cannot share the same lock mechanism with threads in
the non-safe zone, because the lock object for non-safe threads is provided by the
standard library, while the lock object for safe zone threads is provided by the
SGX development library. This pattern effectively prevents the EENTER/EEXIT
instructions from being called, thus reducing additional overhead. Notably, when

16 H.Li et al.

Table 1. Experimental configuration list

Item configuration

CPU Intel(R) Xeon(R) E-2288G CPU @ 3.70GHz
Memory 64GB
Storage Samsung SSD 840 Pro @ 512GB
OS Ubuntu 18.04 LTS
PostgreSQL 14.1
Intel SGX SDK 2.15.101
Intel SGX Driver 1.41

the task pool is full or all work threads are busy, the ECALL call degenerates to
a normal form of call.

In addition, a more important point is that because Switchless Call is a
multi-threaded model, and a multi-process model database system like Post-
greSQL cannot effectively use Switchless Call technology and must implement
a inter-process concurrency control instead, this is why the proposed task pool
is essential.

5 Evaluation

We verify the performance of our system in both software-only mode and TEE-
enabled mode on TPC-C benchmark implemented using sysbench[22] with test
script Sysbench-TPCC[41]. The study is conducted on an Intel SGX-enabled ma-
chine with an EPC size of 128MB, equipped with an 8-core, 16-thread Intel Xeon
E-2288G CPU with 512KB, 2MB and 16MB of L1,L2,L3 cache, respectively. We
compare with a pair of baselines, including the original (plaintext) implementa-
tion of the same database, i.e., PostgreSQL/openGauss5, and the state-of-the-art
software-based encrypted database, namely Symmetrial [38]. Since the TPC-C
test cannot manually control the read/write ratio, we also perform experiments
over synthetic dataset (1 million records) by allowing configurable read/write
ratio. The specific list of hardware/software experimental information is shown
in Table 1.

5.1 Overall throughput

The overall performance in the aspects of both latency and TPS (#Transactions
per second) by varying the scale of concurrency is shown in Fig. 7, covering na-
tive (plaintext) system, software-only mode, static (mode switch) TEE-enabled
mode w/wo task pool, and dynamic (mode switch) TEE-enabled mode. Since

5 We implement Enc2DB on both PostgreSQL and openGauss, as the results on both
system are consistent we select to showcase only that of PostgreSQL due to space
limit and popularity among the audience.

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 17

the system CPU contains 16 cores, all solutions show a decrease in QPS when the
concurrency number exceeds that of CPU cores. The software-only mode con-
stantly exhibits < 10× performance loss compared to the plaintext database. In
the static TEE-enabled mode, since they only do a simple replacement, a more
severe page replacement occurs in the scenario with higher concurrency, and
their performance is not even as good as the software-only mode at high concur-
rency. In the scenario with low concurrent requests, the performance is better,
and the loss is < 5× compared to the plaintext database. In low concurrency
scenarios, task pooling performs the best among all solutions due to the elimi-
nation of the computational overhead caused by ECALLs. The task pool mode
are more advance for multi-threading, but performs not so good in multi-process
tests. However, since PostgreSQL’s concurrent implementation is multi-process
mode, it does not perform as well in high concurrency scenarios as the static
TEE-enabled mode without pool. The dynamic TEE-enabled mode does not
perform as well as the other two, i.e., static TEE-enabled mode w/wo task pool,
in the lower concurrency scenarios, because the low incidence of page replace-
ment. Instead, it performs best in the high concurrency scenarios where page
replacement frequently happens.

1 2 4 8 16 32 64
Query Concurrency

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

ln
(Q

PS
)

PostgreSQL
Pure Software
Static Collaboration
Ecall Batch
Dynamic Collaboration
(Ecall Batch)

(a) QPS

1 2 4 8 16 32 64
Query Concurrency

0

50

100

150

200

250

TP
S

PostgreSQL
Pure Software
Static Collaboration
Ecall Batch
Dynamic Collaboration
(Ecall Batch)

(b) TPS

Fig. 7. Overall results on TPC-C

The TPC-C test provides feedback on the latency of query execution for
each statement, and the results are shown in Fig. 8. As SGX task pool shows
advance performance in all TEE-enabled mode, in the rest experiments it is
by default turned on in TEE-enabled mode solutions. Fig. 8 collects the average
query latency every 10 seconds and present the data collected under four different
concurrency settings. The upper and lower edges of the box in the figure indicate
the upper and lower quartiles in a batch of data respectively, and the upper and
lower boundary are the observed extreme values respectively. The red line refers
to the median, the triangle is the mean.

The mean and median of the static TEE-enabled mode are the lowest when
concurrency is between 1 and 4, while the dynamic TEE-enabled mode is better

18 H.Li et al.

in the high concurrency scenarios (32 to 64). Although dynamic TEE-enabled
mode does not perform as well as the static one at low concurrency, the query
latency is lower than both software-only mode and static TEE-enabled mode at
high concurrency, indicating that dynamic scheduling execution of TEE plays a
more important role. Numerically, as the number of concurrency increases, all so-
lutions show a trend of increase with concurrency, and this phenomenon is more
significant in TEE-enabled mode. It is possibly caused by the fact that a more se-
vere page substitution occurred in the experiments, which led to a sharp increase
in query latency. In addition, the average in the experiments is generally higher
than the median, and this phenomenon is especially obvious in the dynamic TEE-
enabled mode, indicating that some queries are more time-consuming, mainly
because the TEE-enabled mode solutions need to do additional inter-process
synchronization work during initialization, and the computational overhead of
initialization affects the latency of the corresponding queries.

Fig. 8. TPC-C Query Latency Variation

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 19

5.2 Self-adaptive mode switch test

Table 2. Impact of probing task type and data size on QPS

Data Size

Task Type
Binary Search Quick Sort Mixed Task

1024 1564.41 1690.49 1666.71

8192 1753.92 1694.29 1830.58*1830.58*1830.58*

12288 1666.71 1660.97 1736.01

16384 1661.77 1688.45 1680.66

In dynamic mode switch scheme of TEE-enabled mode show in section 3.3,
we present a micro-benchmarking to estimate the state of the current EPC op-
eration, so that to switch between ciphertext predicate solution self-adaptively.
Fig. 9 shows the time cost for micro-benchmark task during the TPC-C test,
where the scatter refers to the time of each micro-benchmark task execution,
and the dash indicates the average running time of the current mode with (re-
placement state) or without page replacement (normal state), respectively. Ob-
viously, the execution time of the micro-benchmark task in the replacement state
is in general twice as long as that in the normal state. Fig. 9(a) and Fig. 9(b)
are the results under different concurrency settings, respectively. By comparing
between both figures, it can be seen that in the high concurrency scenario, the
probing tasks take more time in the replacement state than in the low concur-
rency scenario. The estimation results are in line with the ground-truth state
inside the Enclave, hence it can inform us the real-time state of secure memory
for self-adaptive mode switch.

In addition, we also conduct experiments to explore the performance by vary-
ing the types of micro-benchmark probing and task workload volumes. As shown
in Table 2, three different task types are considered, namely, binary search, quick
sort and mixed tasks (containing both), over four task workload volumes. The
results show that for the current test, all task types show the best performance
with 8192 data size, and mixed tasks perform best among all types.

Fig. 10 shows the number of times the homomorphic addition and ORE are
executed under different concurrency settings. Obviously, with the increase of
concurrency, the SGX memory space is gradually occupied, at this time, un-
der the regulation of the self-adaptive mode switch, the UDF calculation us-
ing Enclave becomes less, and more UDFs are calculated outside Enclave, via
software-only mode. The main reason is that in high concurrency scenario, too
many UDFs enter the feasible hardware at the same moment, resulting in more
data to be processed simultaneously within it, which exceeds the threshold of

20 H.Li et al.

0 50 100 150 200 250 300 350

50

100

150

200

250

R
un

ni
ng

 T
im

e(
us

)

Single Probe
Normal
Paging

(a) thread=4

0 50 100 150 200 250 300 350

50

100

150

200

250

300

R
un

ni
ng

 T
im

e(
us

)

Single Probe
Normal
Paging

(b) thread=64

Fig. 9. Running Time of Probing Task during TPC-C

page replacement, and the micro-benchmark probing task execution time will
increase. With the help of the micro-benchmark, Enc2DB dynamically schedule
the execution mode of UDFs, so as to control the use of EPC space to reduce
the extra overhead of page replacement.

The percentage of time consumed by different phases within Enc2DB under
TPC-C test is shown in Fig. 11. In software-only mode, the most time-consuming
module is SQL Encryption, which is all cryptographic operations. Encryption
generally occurs on the client side and triggers whenever a query is stated, espe-
cially for insert statement, which requires encryption over a set of entries. Due
to the high proportion of insert operations in TPC-C tests, Encryption domi-
nates in the pie chart. If there are more pure read request, its proportion will be
reduced. The second most time-consuming part is the UDF predicate execution,
which reflects the proportion of ciphertext calculations involved in the query. It
is worth noting that in the implementation of static mode switch, when the con-
currency number is 1, UDF evaluation takes more time than Encryption. The
reason is that after replacing ORE with AES (under TEE-enabled mode), all
plaintext columns now correlate to exactly one (AES) column (instead of 4 i.e.,
AHE, MHE, ORE and AES), so the required encryption operation time will be
reduced significantly. This is also one of the important reasons why the efficiency
of TEE-enabled mode with static mode switch strategy is higher than that of
software-only mode.

In addition, we further tested UDF execution times for different ciphertext
computation, including AHE for additive predicate, MHE for multiplication
predicate and ORE for comparison predicate over two extreme scenarios, i.e.,
single thread and 64 threads, as shown in Fig. 12.

In the case of a single thread, i.e., left of Fig. 12, no paging in SGX is
triggered, static mode switch with task pool performs the best, mainly because
the extra overhead of ECALL is eliminated in this mode. In comparison, the self-
adaptive mode switch with task pool performs worse than the static one. This
means that the execution path will dynamically select the TEE to realize at this
time, but the micro-benchmark probing itself will incur time overhead.

In the case of high concurrency setting, where the client initiates 64 connec-
tion requests at the same time, the situation is reversed because page substitu-
tion occurs for static mode switch strategy, resulting in a significant discount

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 21

28.18%

71.82%

AHE Thread=16

31.58%

68.42%

AHE Thread=32

90.29%
9.71%

AHE Thread=64

43.97%

56.03%

ORE Thread=16

57.98%

42.02%

ORE Thread=32

94.89%
5.11%

ORE Thread=64

Software Running Times Hardware Running Times

Fig. 10. Proportion of time-consumption for different phases under TEE-enabled mode
with self-adaptive switch strategy

22 H.Li et al.

1.31%

65.46%

1.87% 31.36%

Software Thread=1

2.56%

67.76%

2.59%
27.09%

Software Thread=64

1.48%

26.19%
2.09%

70.24%

SGX Thread=1

3.00%

50.03%

3.84%

43.13%

SGX Thread=64

1.45%

53.48%

1.38%

43.69%

Co-Desgin Thread=1

3.81%

55.77%

3.49%
36.92%

Co-Desgin Thread=64

SQL Decryption SQL Encryption AST To String UDF Exec

Fig. 11. Time-consumption between components in Enc2DB

SAHE SMHE ORE
0

10

20

30

40

50

60

70

80

Av
er

ag
e

U
D

F
Ex

ec
ut

io
n

Ti
m

e(
us

)

Thread=1

SAHE SMHE ORE
0

200

400

600

800

Thread=64

Software

Static Collaboration

Static Collaboration
(Ecall Collaboration)

Dynamic Collaboration

Fig. 12. Time consumption for different predicates under different modes

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 23

SAHE SMHE ORE
0

5

10

15

20

25
Av

era
ge

Ru
nni

ng
Tim

e(u
s)

No Cache
LRU Cache

(a) cache module choice

1 2 4 8 16 32 64
Query Concurrency

54

55

56

57

58

Ca
che

 Hi
t(%

)

Pure Software
Ecall Batch

(b) cache hit

1 2 4 8 16 32 64
Query Concurrency

40

50

60

70

80

Ca
che

 Hi
t(%

)

Pure Software
Ecall Batch

(c) Cache replacement

PostgreSQL Hardware Software
0

500

1000

1500

2000

2500

3000

3500

4000

Sto
rag

e U
sed

(MB
)

6.96X

32.33X

(d) Storage space

Fig. 13. (a) With-in SGX cache choice; (b-c) client-side cache effect; (d) storage ex-
pansion

in efficiency. At this time, regardless of whether the task pool mode is turned
on or not, the computational overhead is about four times that of software-only
mode. In this group of experiments, self-adaptive mode switch is the most ef-
ficient solution because TEE can be dispatched dynamically, which minimizes
the cost of page substitution while making full use of the advantages of software
computing.

5.3 Effect of within-SGX cache

We have also conducted experiments to test the overall system performance im-
provement of the within-SGX cache module, which is deployed in secure memory
to cache AES decrypted data. The experimental results are shown in Fig. 13(a).
From the experiment results, the cache module can provide 10%-40% efficiency
improvement.

Besides the cache module deployed in the trusted hardware of the server,
which eventually improves the efficiency significantly as shown in Fig. 13(a).
Inspired by that, we also try to deploy a cache module in the client’s AES de-
cryption component and explore its performance, details are shown in Fig. 13(b)
and Fig. 13(c). Fig. 13(b) shows the hit rate of the cache, i.e., the probability of
hitting the cache each time cache data is requested. Its performance is around
50%, and the improvement is not obvious enough. Fig. 13(c) shows the replace-
ment rate of the cache, that is, the probability that the cache is full and the old
data needs to be replaced each time the cache is missed. The higher the rate,

24 H.Li et al.

1 2 3 4 5 6
scale

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

tp
s

Symmetria
EncDB+IDX
PostgreSQL+IDX

(a) TPS in read/write balanced case

1 2 3 4 5 6

scale

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tp
s

Symmetria
EncDB+IDX
PostgreSQL+IDX

(b) TPS in read-only case

1 2 3 4 5 6 7 8 9 10 11 12

num of threads

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

tp
s

Symmetria
EncDB+IDX
PostgreSQL+IDX

(c) TPS in multithreading read/write bal-
anced case

1 2 3 4 5 6 7 8 9 10 11 12
num of threads

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

tp
s

Symmetria
EncDB+IDX
PostgreSQL+IDX

(d) TPS in multithreading read-only case

Fig. 14. TPS in different scenarios

the worse the cache effect. The replacement rate on the client side is also too
high and the effect is not ideal. The main reason is that most of the decrypted
data are expression results, the randomness of which is too large. Therefore, we
select not to implement the AES decryption cache on the client side in Enc2DB.

5.4 Storage expansion

Beside, we also compare the storage space expansion of our solutions. The exper-
iment is set to the TPC-C test script with parameters table = 1 and scale = 1.
The specific experimental data are shown in Fig. 13(d).

In software-only mode, the expansion of storage space is at least 30 times
larger than that of the original database, while in the TEE-enabled mode, the
expansion of storage space is about 7 times. The main reason is that in the
TEE-enabled mode, the ORE encryption columns, whose ciphertext takes up
too many bytes, are eliminated.

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 25

SELECT d_next_o_id FROM district%d WHERE d_id = %d AND d_w_id = %d;

SELECT count(distinct(s_i_id)) FROM order_line%d, stock%d

WHERE ol_w_id = %d AND ol_d_id = %d

AND ol_o_id < %d AND ol_o_id >= %d

AND s_w_id = %d AND s_i_id = ol_i_id

AND s_quantity < %d;

CREATE INDEX INDEX1 ON district%d (d_id_det text, d_w_id_det text);

CREATE INDEX INDEX2 ON order_line%d (ol_w_id_det text, ol_d_id _det text, ol_o_id_ore ore_en);

CREATE INDEX INDEX3 ON stock%d (s_w_id _det text, s_i_id _det text);

Fig. 15. Read-only query statement

Table 3. Experimental Data

scale 1 2 3 4 5 6

capacity (GB) 5 10 15 20 25 30

#tuples in “order line” (×104) 30 60 90 120 150 180

5.5 Effects of cipher index in software-only mode

For ease of discussion, we name software-only mode as EncDB and the mode
with cipher index introduced in subsection 4.1 as EncDB+IDX. We test the
performance of EncDB+IDX, Symmetria and PostgreSQL under different table
capacities and thread numbers in read-only and read/write workloads. In ad-
dition, we also record the QPS corresponding to the independent execution of
different types of SQL statements (read/write), so as to evaluate the performance
of different solution in the specific SQL execution.

The read-only test is carried out with respect to the “stock level” transaction,
and the proportion of equivalent query and range query (an example can be seen
in Fig. 15) execution is 1:1. In the read/write balancing scenario, all transactions
supported by TPC-C are executed, including read/write statements.

A joint index for the equal predicate columns corresponding to “d id” and
“d w id” is established on the “district” table. The “order line” table constructs
a joint index for “the DET column of ol w id, the DET column of ol d id, and
the ORE column of ol o id”. The “stock” table builds a joint index for “DET
column of s w id, DET column of s i id”. Here %d is a randomly generated value.

TPC-C supports users to customize tables of different sizes and we perform
this group of experiments over six tables with different capacities. The ORE
ciphertext column that builds the index belongs to the “order line” table. Table 3
lists the different sizes of tables involved in the experiment and the number of
tuples corresponding to the “order line” table.

In the scenario of read/write balanced, EncDB+IDX performs significantly
better than Symmetria. Although write operation involves the time-consuming
task for creating and updating indexes, experiments show that write operation
for large tables does not change the performance advantage of EncDB+IDX.
As shown in Fig. 14(a) and Fig. 16(a), TPS and QPS of EncDB+IDX are 2.2

26 H.Li et al.

1 2 3 4 5 6
scale

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

qp
s

Symmetria
EncDB+IDX
PostgreSQL+IDX

(a) QPS in read/write balanced case

1 2 3 4 5 6

scale

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

qp
s

Symmetria
EncDB+IDX
PostgreSQL+IDX

(b) QPS in read-only case

1 2 3 4 5 6 7 8 9 10 11 12

num of threads
1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

qp
s

Symmetria
EncDB+IDX
PostgreSQL+IDX

(c) QPS in multithreading read/write
balanced case

1 2 3 4 5 6 7 8 9 10 11 12
num of threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

qp
s

Symmetria
EncDB+IDX
PostgreSQL+IDX

(d) QPS in multithreading read-only case

Fig. 16. QPS in different scenarios

times that of Symmetria. Fig. 5.5 shows the latency in the read/write balanced
scenario. The average latency of EncDB+IDX is only 20% - 60% of that of
Symmetria. The throughput advantages of EncDB+IDX and postgresql+IDX,
which maintain the index structure, do not diminish with the increase of table
capacity, showing the excellent performance of reading and writing on large
tables.

In the read-only scenario, as shown in Fig. 5.3 and Fig. 16(b), the TPS and
QPS of EncDB+IDX are about 45-160 times (1-2 orders of magnitude) that
of Symmetria. The advantage of EncDB+IDX in read-only scenarios does not
decrease with the increase of table volume. Fig. 5.5 shows that the latency of
EncDB+IDX is the minimal and more stable than that of Symmetria, which
reflects the important role of ciphertext index in query optimization. This ad-
vantage is constant as the number of rows in the table increases dramatically.

In addition, we also test the performance under high concurrency scenarios.
We fix the volume of the table as scale=6 (according to Fig. 3), and vary the
number of concurrent threads from 1 to 12. As shown in Fig. 14(c), Fig. 5.5
and Fig. 5.5, in the scenario of read-write balance, the latency of the three
solutions increase with the number of concurrent threads. When the number of

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 27

1 2 3 4 5 6

scale
1.0

1.5

2.0

2.5

3.0

3.5

la
te

nc
y

Symmetria
EncDB+IDX
PostgreSQL+IDX

(a) latency in read/write balanced case

1 2 3 4 5 6

scale

0.0

0.5

1.0

1.5

2.0

2.5

3.0

la
te

nc
y

Symmetria
EncDB+IDX
PostgreSQL+IDX

(b) latency in read-only case

1 2 3 4 5 6 7 8 9 10 11 12

num of threads
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

la
te

nc
y

Symmetria
EncDB+IDX
PostgreSQL+IDX

(c) latency in multithreading read/write
balanced case

1 2 3 4 5 6 7 8 9 10 11 12

num of threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

la
te

nc
y

Symmetria
EncDB+IDX
PostgreSQL+IDX

(d) latency in multithreading read-only
case

Fig. 17. latency in different scenarios

threads is greater than 7, the TPS and QPS of EncDB+IDX and Symmetria both
exhibit a fluctuating but downward trend. As the number of threads increases,
PostgreSQL+IDX also suffers from performance degradation. When the number
of thread is 12, the QPS of PostgreSQL+IDX decreases by 53% compared with
single thread scenario. The results implies us that the concurrency support of
all solutions is limited.

Fig. 18 shows the QPS that different types of SQL statements are executed
separately in EncDB+IDX and Symmetria. “INSERT” and “UPDATE” indicate
that the non-indexed columns are inserted and updated, and “INSERT (IDX)”
and “UPDATE (IDX)” refers to the scheme that the indexed columns are inserted
and updated. It can be seen that the two solutions have similar performance
in write operation of the non-indexed ORE column. EncDB+IDX reduces the
efficiency of “INSERT” and “UPDATE” operations on indexed columns, and is
over two orders of magnitude better than Symmetrial in range queries.

28 H.Li et al.

eq
ua

lity

ran
ge

 qu
ery

ins
ert

ins
ert

(id
x)

up
da

te

up
da

te(
idx

)

different types of SQL queries

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

qp
s

Symmetria
EncDB+IDX

Fig. 18. Execution of different types of SQL statements

Table 4. Encryption schemes used by EncDB, example SQL operations they allow over
encrypted data on the server, and information revealed by each scheme’s ciphertexts
in the absence of any queries.

Encryption scheme SQL operations Leakage

Deterministic AES a = const,GROUP BY Duplicates
SAHE ADD,ADP,SUB Number of rows used to gen-

erate the result
SMHE MUL,MLP,DIV Number of rows used to gen-

erate the result
ORE a > const,MAX Order

5.6 Security study

Our software-only mode (with cipher index) guarantees IND-OCPA, and the
other modes are at least as secure as the software-only mode. To understand the
level of security that EncDB provides, it is important to consider the encryption
schemes chosen by EncDB, since they leak different amounts of informations, as
shown in Table 4. The worest is ORE, which reveals order, followed by DET. Ta-
ble 5 shows the encryption schemes that EncDB chooses for the Sysbench-TPCC
workload. EncDB never reveals plaintext to the server. The weakest encryption
scheme used, ORE, is always used.

The study by Naveed et al. [26]demonstrates that databases encrypted with
Order Preserving Encryption (OPE) are highly susceptible to ”inference at-
tacks”. Inference attacks aim to recover information about the data or queries
by combining leaked information with publicly available data, such as census
data or linguistic statistics. The most notable example of an inference attack is
frequency analysis, used to crack classical ciphers. Muhammad et al. [26] con-
ducted inference attacks on databases deploying attribute-preserving encryption

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 29

Table 5. Number of distinct columns in the Sysbench-TPCC tables encrypted by
EncDB under each of the encryption schemes shown. For each column, we consider
only the weakest encryption scheme used.

Table Total columns ORE HE DET

warehouse 9 9 0 0
district 11 11 0 0
customer 21 21 0 0
history 8 8 0 0
orders 9 9 0 0
new orders 3 3 0 0
order line 10 10 0 0
stock 17 17 0 0
item 5 5 0 0

schemes. Experiments showed that plaintext can be recovered from DET and
OPE encrypted database columns using only the encrypted columns and pub-
licly available auxiliary information.

EncDB utilizes the design scheme proposed by Kevin et al. [10], which revisits
the primitives related to Order-Revealing Encryption (ORE) schemes, redesign-
ing them entirely based on symmetric encryption, hereinafter referred to as Ex-
tendORE. It has been proven that the range query protocol constructed accord-
ing to ExtendORE is robust against inference attacks proposed by Muhammad et
al., and is more secure than all existing practical (stateless and non-interactive)
OPE and ORE schemes, as well as being faster: encrypting a 32-bit integer re-
quires only 55 microseconds, which is more than 65 times faster than the existing
OPE schemes.

The security guarantees of an ORE-based encryption scheme assume that
ORE encryption is computationally indistinguishable from random values with
the same order pattern. After augmenting EncDB with an indexing mechanism, if
two sequences exhibit the same order relation, an adversary cannot differentiate
between the encryptions of the two value sequences.

Consider any adversary Adv and any value sequences they request in the
security game: v = (v1, . . . , vn) and w = (w1, . . . , wn). The two plaintext se-
quences have the same order relation. After the client-side encryption of v,w,
the adversary can observe the information received by the server in the range
query protocol.

Next, we prove that the information learned by the adversary from EncDB
and EncDB+IDX is theoretically the same.

Let us examine the information learned by the adversary from EncDB and
EncDB+IDX when encrypting v,w on the client side.

Since ORE encryption is nondeterministic, the ciphertexts for the same plain-
texts are also different. For EncDB, the adversary’s retrieval operation is a full
table scan, obtaining the search results through item-by-item comparison (using
the CMP function). For two ciphertext sequences, the adversary can only know

30 H.Li et al.

the order relation of each ciphertext sequence but cannot determine which ci-
phertexts belong to v orw. For EncDB+IDX, since v andw have the same order
relation, the update (or lookup) path along the tree split (insertion or probing)
must be the same, and for the plaintexts in the plaintext sequences, the ad-
versary cannot distinguish whether their plaintexts are in v or w. Essentially,
EncDB+IDX is equivalent to maintaining the entire EncDB table in B-tree in
advance. It relies on operators based on the ORE EN type for comparison, and
the operation logic of the operator is CMP.

Therefore, it can be affirmed that the adversary facing EncDB and EncDB+IDX
obtains information that is entirely consistent (only able to detect the order re-
lation of plaintext). The ”ideal” security of EncDB+IDX is IND-OCPA.

6 Conclusion

In this work, we present and implement Enc2DB, which is a encrypted database
that is compatible with PostgreSQL and openGauss. On one hand, Enc2DB im-
plements a ciphertext index via UDT and UDO that is easily configured and na-
tively supported by the query optimizer of both PostgreSQL and openGauss. On
the other hand, Enc2DB can be deployed in either software-only mode or TEE-
enabled mode, each corresponds to different practical scenarios. In addition, in
TEE-enabled mode we, for the first time, present a self-adaptive mode switch
strategy that dynamically choose the suitable mode to execute a given query.
The switch strategy fully utilizes the benefit of both cryptographic schemes and
TEE at runtime.

Acknowledgment

This work is partially supported by National Natural Science Foundation of
China (No.61972309, 62272369), ZTE Industry-University-Institute Cooperation
Funds (No. IA20230625001), and China 111 project.

References

1. Arm trustzone (2009), infocenter.arm.com/help/topic/com.arm.doc.
prd29-genc-009492c/PRD29-GENC-009492C trustzone security whitepaper.pdf

2. Intel(r) software guard extensions sdk for linux* os. (2018), https://download.
01.org/intel-sgx/linux-2.2/docs/Intel SGX Developer Reference Linux 2.
2 Open Source.pdf

3. Intel (2023), https://www.intel.com/content/www/us/en/
architecture-and-technology/software-guard-extensions.html

4. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data. pp. 563–574 (2004)

5. Antonopoulos, P., Arasu, A., Singh, K.D., Eguro, K., Gupta, N., Jain, R., Kaushik,
R., Kodavalla, H., Kossmann, D., Ogg, N., et al.: Azure sql database always en-
crypted. In: Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. pp. 1511–1525 (2020)

infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_ whitepaper.pdf
infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_ whitepaper.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.2/docs/Intel_SGX_Developer_Reference_Linux_2.2_Open_Source.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 31

6. Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R.,
Venkatesan, R.: Orthogonal security with cipherbase. conference on innovative data
systems research (2013)

7. Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind,
J., Muthukumaran, D., O’keeffe, D., Stillwell, M.L., et al.: Scone: Secure linux
containers with intel sgx. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). pp. 689–703 (2016)

8. Bailleu, M., Thalheim, J., Bhatotia, P., Fetzer, C., Honda, M., Vaswani, K.:
Speicher: Securing lsm-based key-value stores using shielded execution. In: 17th
USENIX Conference on File and Storage Technologies (FAST 19). pp. 173–190
(2019)

9. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited:
Improved security analysis and alternative solutions. In: Annual Cryptology Con-
ference. pp. 578–595. Springer (2011)

10. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Se-
mantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In: Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. pp. 563–594. Springer (2015)

11. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: International conference on fast software encryption. pp.
474–493. Springer (2016)

12. Conti, M., Di Pietro, R., Mancini, L.V., Mei, A.: (old) distributed data source
verification in wireless sensor networks. Inf. Fusion 10(4), 342–353 (2009).
https://doi.org/http://dx.doi.org/10.1016/j.inffus.2009.01.002

13. Costan, V., Devadas, S.: Intel sgx explained. Cryptology ePrint Archive (2016)
14. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of

paillier’s probabilistic public-key system. In: International workshop on public key
cryptography. pp. 119–136. Springer (2001)

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

16. Eskandarian, S., Zaharia, M.: Oblidb: Oblivious query processing for secure
databases. arXiv preprint arXiv:1710.00458 (2017)

17. Fousse, L., Lafourcade, P., Alnuaimi, M.: Benaloh’s dense probabilistic encryp-
tion revisited. In: International Conference on Cryptology in Africa. pp. 348–362.
Springer (2011)

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

19. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing sql over encrypted data in
the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data. pp. 216–227 (2002)

20. Kaplan, D., Powell, J., Woller, T.: Amd sev, http://amd-dev.wpengine.netdna-cdn.
com/wordpress/media/2013/12/AMD Memory Encryption Whitepaper
v7-Public.pdf

21. Kim, T., Park, J., Woo, J., Jeon, S., Huh, J.: Shieldstore: Shielded in-memory
key-value storage with sgx. In: Proceedings of the Fourteenth EuroSys Conference
2019. pp. 1–15 (2019)

22. Kopytov, A.: Sysbench. https://github.com/akopytov/sysbench (2017)
23. Krawczyk, H.: Cryptographic extraction and key derivation: The hkdf scheme.

Cryptology ePrint Archive, Report 2010/264 (2010)

https://doi.org/http://dx.doi.org/10.1016/j.inffus.2009.01.002
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://github.com/akopytov/sysbench

32 H.Li et al.

24. Mishra, P., Poddar, R., Chen, J., Chiesa, A., Popa, R.A.: Oblix: An efficient obliv-
ious search index. In: 2018 IEEE Symposium on Security and Privacy (SP). pp.
279–296. IEEE (2018)

25. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: Proceedings of the 5th ACM Conference on Computer and Communications
Security. pp. 59–66 (1998)

26. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (2015)

27. Okamoto, T., Uchiyama, S., Fujisaki, E.: Epoc: Efficient probabilistic public-key
encryption (submission to p1363a). IEEE P1363a p. 18 (1998)

28. Orenbach, M., Lifshits, P., Minkin, M., Silberstein, M.: Eleos: Exitless os services
for sgx enclaves. In: Proceedings of the Twelfth European Conference on Computer
Systems. pp. 238–253 (2017)

29. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International conference on the theory and applications of cryptographic
techniques. pp. 223–238. Springer (1999)

30. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In: An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 375–391. Springer (2012)

31. Papadimitriou, A., Bhagwan, R., Chandran, N., Ramjee, R., Haeberlen, A., Singh,
H., Modi, A., Badrinarayanan, S.: Big data analytics over encrypted datasets with
seabed. In: 12th USENIX symposium on operating systems design and implemen-
tation (OSDI 16). pp. 587–602 (2016)

32. Poddar, R., Boelter, T., Popa, R.A.: Arx: A strongly encrypted database system.
IACR Cryptol. ePrint Arch. 2016, 591 (2016)

33. Popa, R.A., Redfield, C.M., Zeldovich, N., Balakrishnan, H.: Cryptdb: processing
queries on an encrypted database. Communications of the ACM 55(9), 103–111
(2012)

34. Priebe, C., Vaswani, K., Costa, M.: Enclavedb: A secure database using sgx. In:
2018 IEEE Symposium on Security and Privacy (SP). pp. 264–278. IEEE (2018)

35. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Foundations of secure computation 4(11), 169–180 (1978)

36. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

37. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what
it is, and what it is not. In: 2015 IEEE Trustcom/BigDataSE/ISPA. vol. 1, pp.
57–64. IEEE (2015)

38. Savvides, S., Khandelwal, D., Eugster, P.: Efficient confidentiality-preserving data
analytics over symmetrically encrypted datasets. Proceedings of the VLDB En-
dowment 13(8), 1290–1303 (2020)

39. Sun, Y., Wang, S., Li, H., Li, F.: Building enclave-native storage engines for practi-
cal encrypted databases. Proceedings of the VLDB Endowment 14(6), 1019–1032
(2021)

40. Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing analytical queries
over encrypted data. very large data bases (2013)

41. Vadim, T., Alexey, S., Alexey, K., Sebastian, D.: sysbench-tpcc. https://github.
com/Percona-Lab/sysbench-tpcc/ (2018)

42. Vinayagamurthy, D., Gribov, A., Gorbunov, S.: Stealthdb: a scalable encrypted
database with full sql query support. Proc. Priv. Enhancing Technol. 2019(3),
370–388 (2019)

https://github.com/Percona-Lab/sysbench-tpcc/
https://github.com/Percona-Lab/sysbench-tpcc/

Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework 33

43. Wong, W.K., Kao, B., Cheung, D.W.L., Li, R., Yiu, S.M.: Secure query processing
with data interoperability in a cloud database environment. In: Proceedings of
the 2014 ACM SIGMOD international conference on Management of data. pp.
1395–1406 (2014)

44. Xia, S., Zhu, Z., Zhu, C., Zhao, J., Chard, K., Elmore, A.J., Foster, I.T., Franklin,
M.J., Krishnan, S., Fernandez, R.C.: Data station: Delegated, trustworthy, and
auditable computation to enable data-sharing consortia with a data escrow. Pro-
ceedings of the VLDB Endowment 15(11), 3172–3185 (2022)

45. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: An oblivious and encrypted distributed analytics platform. In: 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
17). pp. 283–298 (2017)

46. Zhu, J., Cheng, K., Liu, J., Guo, L.: Full encryption: An end to end encryption
mechanism in gaussdb. Proceedings of the VLDB Endowment 14(12), 2811–2814
(2021)

	Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework

