2403.19112v1 [cs.CR] 28 Mar 2024

arxXiv

Uncover the Premeditated Attacks: Detecting Exploitable
Reentrancy Vulnerabilities by Identifying Attacker Contracts

Shuo Yang
Sun Yat-sen University
Zhuhai, China
yangsh233@mail2.sysu.edu.cn

Zibin Zheng
Sun Yat-sen University
Zhuhai, China
zhzibin@mail.sysu.edu.cn

ABSTRACT

Reentrancy, a notorious vulnerability in smart contracts, has led to
millions of dollars in financial loss. However, current smart contract
vulnerability detection tools suffer from a high false positive rate
in identifying contracts with reentrancy vulnerabilities. Moreover,
only a small portion of the detected reentrant contracts can actually
be exploited by hackers, making these tools less effective in securing
the Ethereum ecosystem in practice.

In this paper, we propose BlockWatchdog, a tool that focuses
on detecting reentrancy vulnerabilities by identifying attacker con-
tracts. These attacker contracts are deployed by hackers to exploit
vulnerable contracts automatically. By focusing on attacker con-
tracts, BlockWatchdog effectively detects truly exploitable reen-
trancy vulnerabilities by identifying reentrant call flow. Addition-
ally, BlockWatchdog is capable of detecting new types of reentrancy
vulnerabilities caused by poor designs when using ERC tokens or
user-defined interfaces, which cannot be detected by current rule-
based tools. We implement BlockWatchdog using cross-contract
static dataflow techniques based on attack logic obtained from an
empirical study that analyzes attacker contracts from 281 attack
incidents. BlockWatchdog is evaluated on 421,889 Ethereum con-
tract bytecodes and identifies 113 attacker contracts that target 159
victim contracts, leading to the theft of Ether and tokens valued
at approximately 908.6 million USD. Notably, only 18 of the iden-
tified 159 victim contracts can be reported by current reentrancy
detection tools.

CCS CONCEPTS

« Software and its engineering — Software verification and
validation.

“corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE 2024, April 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04...$15.00
https://doi.org/10.1145/3597503.3639153

Jiachi Chen®
Sun Yat-sen University
Zhuhai, China
chenjch86@mail.sysu.edu.cn

Mingyuan Huang
Sun Yat-sen University
Zhuhai, China
huangmy83@mail2.sysu.edu.cn

Yuan Huang
Sun Yat-sen University
Zhuhai, China
huangyuan5@mail.sysu.edu.cn

KEYWORDS

Smart Contract; Dataflow Analysis; Reentrancy; Attacker Identifi-
cation; Ethereum

ACM Reference Format:

Shuo Yang, Jiachi Chen, Mingyuan Huang, Zibin Zheng, and Yuan Huang.
2024. Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy
Vulnerabilities by Identifying Attacker Contracts. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE "24), April 14-20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3597503.3639153

1 INTRODUCTION

In recent years, Ethereum has experienced significant growth in
popularity and market cap [15], primarily due to its ability to
support a wide range of decentralized applications (DApps) [55],
such as decentralized finance (DeFi) [53] and non-fungible tokens
(NFTs) [57]. This is made possible through the use of smart con-
tracts [59], which are Turing-complete programs that run on the
blockchain. However, as the value of Ethereum continues to rise,
attackers are increasingly targeting contracts with vulnerabilities
that can be exploited to make unfair profits. Reentrancy is one
of the infamous vulnerabilities, which has caused huge financial
losses [60] since the 150 million USD DAO attack in 2016 [25], and
new reentrancy attacks keep popping up in more and more complex
forms. For example, an attacker exploited a reentrancy vulnerability
to drain approximately 1,300 ETH (1.43 million USD) from the NFT
money market platform called Omni [1] by using the hook function
onERC721Received() declared in the ERC721 standard [18].
Numerous studies have focused on detecting vulnerabilities in
smart contracts [16, 23, 28], proposing various methods such as
static analysis and dynamic testing to identify potential issues. How-
ever, these works face two main limitations. First, there is a high
false-positive rate in detecting reentrancy vulnerabilities [60], as
they cannot correctly detect some protection patterns. Furthermore,
these methods mainly focus on reentrancy caused by call.value()
operations, which cannot cover more complex reentrancy vulner-
abilities (leading to false negatives) caused by poor designs when
using standard ERC tokens, e.g., ERC721, or user-defined interfaces
(see Section 2.2). Second, only 2.68% of contracts with reentrancy
vulnerabilities can truly be exploited by hackers, and only 0.4% of
the Ethers at stake could be exploited [35]. Real-world attackers

https://doi.org/10.1145/3597503.3639153
https://doi.org/10.1145/3597503.3639153
https://doi.org/10.1145/3597503.3639153

ICSE 2024, April 2024, Lisbon, Portugal

intend to evaluate the cost and benefit of an attack, but most con-
tracts do not have the balance that can be extracted. Specifically,
on Ethereum, only 3% of the contracts have a non-zero balance.
Thus, most of the vulnerable contracts labeled by the tools cannot
be exploited and are false alarms, which makes it less effective in
securing the Ethereum ecosystem in practice.

Exploiting reentrancy vulnerabilities requires deploying mali-
cious contracts that initiate callbacks to the victim contract. In this
paper, we shift our focus from vulnerability detection to analyzing
attacker contracts. To investigate how attackers implement callback
logic on victims, we conduct an empirical study by analyzing 281
attack incident reports from various platforms, e.g., Twitter [49],
Medium [2], and Peckshield [34], spanning from June 2016 to July
2022. These platforms provide comprehensive and timely descrip-
tions of attack incidents, which are also adopted by other works [57].
Consequently, we summarize three types of reentrancy attack types
based on the functions that attacker contracts used to make call-
backs (see Section 3). Furthermore, we propose BlockWatchdog, a
tool that utilizes cross-contract static dataflow techniques to iden-
tify reentrancy attacker contracts. First, BlockWatchdog decompiles
the contract’s bytecode to the intermediate representation (IR) and
extracts flow and external call information in the functions. Sec-
ond, BlockWatchdog identifies the contracts in the call chain and
constructs the cross-contract control flow graph (xCFG) and the
cross-contract call graph (xCG) of the contract based on dataflow
rules. Then, it traces all call chains to perform a taint analysis to
determine whether the attacker can manipulate the call chain, mak-
ing itself called again to implement reentrancy. Based on detection
patterns designed in collaboration with external call and dataflow
information, BlockWatchdog reports whether the contract is an
attacker contract or not and identifies vulnerable victim contracts.

In the experiment, we first evaluate BlockWatchdog on our col-
lected ground-truth dataset, which contains 18 reentrancy attacker
contracts. Then, we run BlockWatchdog on a real-world dataset con-
taining 421,889 contracts’ bytecodes obtained by replaying transac-
tions from block number 10 million to 15.5 million on the Ethereum
mainnet. The average detection time of it is 17.66 seconds. Further-
more, BlockWatchdog identifies 249 attacker smart contracts in this
dataset, and 113 of them are labeled as true positives. Among them,
40 are 0-day attacker contracts, which involve 159 victim contracts.
Ethers and tokens worth approximately 908.6 million USD in these
contracts have been stolen by attackers. Furthermore, we run seven
tools for reentrancy vulnerability detection on identified victim
contracts; only 18 (11.3%) of them can be correctly reported.

The main contributions of our work are as follows.

e We shift the detection focus from vulnerable contracts to
attacker contracts, which alleviates the high false positive
problem and limited capability of current tools in finding
reentrancy.

o We summarize three types of reentrancy attacks from an em-
pirical study and introduce BlockWatchdog, a cross-contract
static dataflow analysis tool to find attacker contracts and
vulnerable victim contracts they target. Additionally, Block-
Watchdog is extensible for users to program more rules to
cover new attack types.

Shuo Yang, Jiachi Chen, Mingyuan Huang, Zibin Zheng, and Yuan Huang

o We evaluate the performance of BlockWatchdog on a dataset
consisting of 421,889 contracts bytecode. Our experiments
show that BlockWatchdog identifies 113 attacker contracts
and 159 victim contracts, which hold Ethers and tokens
worth approximately 908.6 million USD. Only 18 of the 159
victims can be detected by the current tools. We publicize the
source code of BlockWatchdog and the experimental results
in our repository.

2 BACKGROUND AND MOTIVATION
2.1 Solidity Smart Contracts

A smart contract is a self-executing agreement that is enforced by
the rules encoded in its code [46]. Solidity is the most popular pro-
gramming language for smart contracts on Ethereum. The bytecode
and transactions of the deployed smart contracts are permanently
stored on the blockchain [59]. The immutability of smart contracts
ensures that their code and behavior cannot be modified once de-
ployed, and they execute automatically based on their predefined
logic. Ethereum Virtual Machine (EVM) is a stack-based virtual
machine that executes transactions by splitting the EVM bytecode
into operation codes (opcodes) and following their instructions.

2.2 Reentrancy

The reentrancy vulnerability has resulted in significant financial
losses over the past few years. There are many works that focus
on detecting reentrancies caused by call.value() pattern [60]. So-
lidity smart contracts have a unique mechanism that requires any
contract that receives Ethers to implement a fallback function. The
fallback function will be executed if the contract receives Ether
from other addresses. If the victim contract transfers Ethers to the
malicious attacker contract, the malicious one can take over the
control flow and repetitively call the victim in its fallback function.
Many attackers have exploited this fallback mechanism to drain
funds from victims. Not only those caused by call.value(), there
are some new reentrancy types. For example, Lenf.me [24] and
Omni [1] were attacked by the bad design of using ERC777 [14]
and ERC721 [18] tokens, respectively.

In addition, poor design when using user-defined interfaces can
also lead to reentrancy issues. Figure 1 shows the attacker contract
that hacked 8.2 million USD through a reentrancy attack on IVi-
sor [19], a liquidity management protocol of Uniswap V3 [51]. The
function delegatedTransferERC20() (L25) is defined by the develop-
ers, which is not declared in the ERC token standard. The attacker
contract injects external calls into the function delegatedTransfer-
ERC20() (L13-L17) invoked by the victim contract RewardHypervisor
(L20). In detail, the attacker contract invokes the function deposit()
(L8) of the contract RewardHypervisor. Then, RewardHypervisor
calls the delegatedTransferERC20() (L25) of contract from, which
is set by the attacker contract with address(this), i.e., the attacker
contract itself (L25). However, the attacker makes a callback to
RewardHypervisor again to deposit again on line 8, which makes
it suffer from a reentrancy vulnerability. The contract RewardsHy-
pervisor does not contain call.value() reentrancy vulnerability type,
which current detection tools focus on. Yet, it was still attacked by

!https://github.com/shuo-young/BlockWatchdog

https://github.com/shuo-young/BlockWatchdog

Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts

the malicious attacker contract to make unfair gains due to the bad
design when using user-defined interface delegatedTransferERC20().

1 // the decompiled IR of the attacker contract bytecode
» contract Attacker {

3 function 0x4a0b0c38() public payable {

4 0x28e();}

6 function 0x28e() private {

7 require (_pool.code.size);

8 vo, vl = _pool.deposit(@x52b7d2dcc80cd2e4000000 ,
address (this), _admin);

9 require (vo);

require (RETURNDATASIZE () >= 32);

11 return ;}

13 function delegatedTransferERC20 (address varg@, address

vargl, uint256 varg2) public payable {
require(msg.data.length - 4 >= 96);

15 _count += 1;

16 if (_count < 2) {

1 0x28e () ;)

18}

9 // the source code of the victim contract

20 contract RewardsHypervisor {

21 function deposit(uint256 visrDeposit, address payable
from, address to) external returns (uint256
shares) {

if(isContract(from)) {

24 require(IVisor (from).owner() == msg.sender);

25 IVisor(from).delegatedTransferERC20 (address(visr),
address (this), visrDeposit);}

26 else {

27 visr.safeTransferFrom(from, address(this),
visrDeposit);}

28 vvisr.mint(to, shares);}

Figure 1: Reentrancy attack toward Visor Finance.

2.3 Prior Research and Their Limitations

Unexploitable for the detected contracts. Previous research
has focused on detecting reentrancy vulnerabilities, but most of
the contracts detected are either toy contracts with no value or
cannot be exploited by attackers [35]. Specifically, only 1.98% of
the 23,327 reported vulnerable contracts from six academic projects
have been exploited since deployment, affecting only 0.27% of the
funds in the contracts [16, 21, 23, 28, 32, 48]. The reason is that
the majority of Ether or tokens are held by only a small number
of vulnerable contracts, which are lucrative for hackers, making
most of the detected contracts unexploitable. However, detecting
attacker contracts can help identify truly exploitable yet vulnerable
contracts.

Poor performance in detecting reentrancy. Existing reentrancy
detection tools have an extremely high false positive rate. More
than 99.8% of the reentrant contracts detected by the tools [7, 28,
29, 39, 48] are false positives [60], as these tools do not detect some
protection patterns, such as the reentrancy lock. To reduce false pos-
itives, detecting attacker contracts can help find those hackers who
aim at truly exploitable contracts without reentrancy protections.

ICSE 2024, April 2024, Lisbon, Portugal

Furthermore, existing tools cannot cover new types of reentrancies
caused by poor design when using ERC tokens, which can result
in false negatives. This is because rule-based tools have limited
scalability, as each rule can only check a specific reentrancy type
(e.g., reentrancy caused by call.value()) and cannot cover emerging
types, such as new ERC standards [33] (e.g., reentrancy caused by
ERC721 and ERC1155 [13]), or user-defined interfaces, e.g., dele-
gateTransferERC20() in Figure 1.

To address these limitations, a more general detection method
is needed to reduce both false positives and false negatives. Reen-
trancy vulnerabilities are mainly characterized by the mutual in-
vocation of the victim contract and the attacker contract with call-
back flow features, but victim contracts contain limited and non-
homogeneous information, making it challenging to summarize a
generic signature for rule-based tools. It motivates us to recover
reentrancy features from the attacker contracts perspective.

3 ATTACKER SMART CONTRACTS FOR
REENTRANCY

In this section, we present an empirical study aimed at identify-
ing the characteristics of attacker contracts involved in historical
reentrancy attacks. Our goal is to uncover reentrancy vulnerabili-
ties that existing tools have missed. We approach the analysis of
attacker contracts through a data collection process, followed by
a data analysis and feature identification process, as illustrated in
Figure 2 and described in subsequent subsections.

Find Attacker
Contracts

Reentrancy
Features

[aa) oo -
Attack Reports |:’> |::>
before Sep.2022 M " Decompile and Flow
lanually UnderStand Classification:)
Check Bytecode Information
Data Collection Data Analysis Attack Features

Figure 2: Workflow of finding new reentrancy types.

3.1 Data Collection

To gain a comprehensive understanding of attacks, it is necessary to
collect and analyze relevant data. We began by searching for attack
reports published by reputable blockchain security firms such as
PeckShield, as well as information from social media platforms
like Twitter and publishing platforms like Medium. In total, we
identified 281 incidents that occurred between June 2016 and July
2022. For each report, we recorded key information such as the
target project, the victim contract address, the attack time, and the
associated losses. All the data collected and their source links are
available for public access in our open repository.

3.2 Data Analysis

Attacker contract identification. As we do not know how hack-
ers perform the attack, we intend to find the attacker contracts to
analyze the attack logic from the collected data. Specifically, two
of our authors, both with more than two years of experience in
blockchain security, manually analyzed the 281 incidents collected
using the open card sorting approach [43]. During the manual

ICSE 2024, April 2024, Lisbon, Portugal

check, we identified two distinct types of attacks: those directly
attacked by externally owned accounts (EOAs) of hackers and those
attacked by attacker contracts that hackers deployed.

Table 1: Attack Types Obtained from Collected Data

DoS | BR | IO | RE | IA | CI | CAD | FL | Others
AC/EOA © ® O|@®@ OO ©) [J ©
CA ® ® | ®| 6|6 |06 ® ® ®

We then classify the attack types based on the necessity of an at-
tacker contract and the availability of the attacker contract’s source
code. Table 1 shows the eight types of attack that we identified
from our 281 collected incidents. We use the “Others” category to
cover attacks that target specific design flaws of victims, e.g., infi-
nite approval to vulnerable contracts [37]. The @ and O symbols in
the column “Attacker Contract” represent attack types that require
deploying the attacker contract (AC) or using EOA transactions,
respectively. The symbol © represents attack types that do not
require the deployment of an attacker contract in some cases. The
® symbol in the “Code Availability” (CA) column represents at-
tacker contracts whose source code is not available. Among the 281
samples, we found 31 attacker contracts from 28 reports, classified
as Denial of Service (DoS), Bad Randomness (BR), Reentrancy (RE),
Flashloan (FL), and Others. Attacks such as Integer Overflow (I0O),
Improper Authentication (IA), Call Injection (CI), and Call-after-
destruct (CAD), which do not involve attacker contracts, are out
of the scope of our analysis. As this paper focuses on new types
of reentrancy vulnerabilities missed by existing vulnerability de-
tection tools, we will illustrate reentrancy vulnerabilities from the
perspective of the 18 reentrancy attacker contracts collected.

Hacker Attacker Victim
Contract Contract(s)
deploy call = call chain =
B L :
attack A
call back

1. fallback()
2. hook functions when using ERC tokens
3. user-defined interfaces

3 Reentrancy Types

0

Reentrancy

Figure 3: An overview of reentrancy attacks.

Decompilation and understanding. To gain a deeper under-
standing of the attacker behaviors employed by reentrancy attacker
contracts, we collected the bytecode of attacker contracts for analy-
sis, as none of the identified attacker contracts released their source
code to the public. We decompiled the EVM bytecode to recover a
readable intermediate representation (IR) of the attacker contract.
We then followed the attack process and description according to
the report to understand how the attacker implements the attack
logic from its bytecode. Figure 3 provides an overview of how at-
tacker contracts exploit victim contracts. The hacker first programs
the attacker contract and deploys it on the blockchain. Subsequently,

Shuo Yang, Jiachi Chen, Mingyuan Huang, Zibin Zheng, and Yuan Huang

the attacker contract automatically executes and initiates external
calls to the victim contracts. Notably, in reentrancy attacks, the
attacker contract can pass parameters to victim contracts, which
makes them call back to the attacker contract again, and there can
be multiple victims in this call chain. As shown in Figure 3, we sum-
marize three types of reentrancy based on the functions utilized by
attacker contracts to perform reentrancy, i.e., (1) fallback(), poor
designs when using (2) ERC tokens, or (3) user-defined interfaces.
Specifically, the attacker contract can implement reentrancy logic
in the fallback() function when receiving Ethers. It can also inject
callbacks into hook functions when using ERC tokens, e.g., hook
function onERC721Received when using ERC721, or user-defined
interfaces, e.g., the case shown in Figure 1, to implement reentrancy.

3.3 Attacker Contract Features

Figure 4 shows an example that illustrates the high-level features
of the reentrancy attack focusing on the call flow. To perform the
reentrancy attack, the attacker contract (1) first calls the victim
contract (step i in Figure 4) to make the victim invoke a callback
(step ii) to the attacker’s hook function or transfer Ether to the
attacker contract (step iii), (2) then the attacker contract calls the
victim again in the hook function or the fallback function, and
reenters (step iv) to invoke functions that can generate unfair profits
(step v), (3) next, the profits can be transferred to the attacker
EOA (step vi) to complete the reentrancy attack. This call flow
information shows how the attacker contract interacts with the
victim contract. The summarized three types of reentrancy help us
identify the reentrancy from function-level call information. The
design of our method shown in the following section is based on
these features obtained from our empirical study.

@ Victim

m Contract

Hacker
EOA B |

1
1
1
1 ether/token
1
roa invoke 1
Kii)! hook/fallback !
Attacker

Contract

g

(v) drain ether/token

Figure 4: An example to illustrate reentrancy attack.

4 METHODOLOGY

In this section, we introduce the BlockWatchdog tool, which can
detect attacker contracts that perform reentrancy attacks. We first
give an overview of the approach and then provide the details from
the perspectives of flow information extraction, cross-contract static
analysis, and attacker contract detection.

4.1 Overview

BlockWatchdog consists of three main components: Decompiler,
Cross-Contract Dataflow Analyzer, and Attack Identifier. Figure 5

Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts

shows an overview of the BlockWatchdog approach. The tool can
accept a contract bytecode or a real address on Ethereum as input. If
a contract address is provided, the tool retrieves the bytecode from
the Web3 API [52]. BlockWatchdog decompiles the bytecode to the
IR and extracts critical flow information for dataflow analysis in
Decompiler. Next, the Cross-contract Dataflow Analyzer constructs
the xCFG and xCG of the contract according to the information
obtained from the decompilation. We use xCFG and xCG to bridge
the flow information of all contracts in the call chains for taint
analysis. Taints originating from the attacker contract are propa-
gated through the function call arguments and returns based on
designed transfer rules while tracing all possible call chains in the
xCG. Finally, the Attack Identifier identifies and reports the three
attack types based on our detection patterns based on the result of
the taint flow analysis.

To implement BlockWatchdog, we adopt a public node provided
by Alchemy [3] to request data from the blockchain. Specifically,
we use the Web3 API getCode to fetch the bytecode of a contract
and use getStorageAt to obtain the storage data in a specific slot
and offset from a contract account. For decompilation, we use the
EVM bytecode decompiler Elipmoc, which improves over all the
notable past decompilers [17, 22]. Elipmoc can disassemble the
EVM bytecode into EVM opcodes and construct the control flow
graph based on identifying flow-related opcodes like JUMP and
JUMPIL. The function borders and the IR are then recovered for
further analysis.

Inter-procedure h

"
Call
1, |Static Graph
1
Flow 1
" Analysis Callee
External Contracts !
| — o O

: xca Call Target : !
1| Dataflow { Functions } " [Outputter]
: Information :: Graph B_uilde'r aint Propogater] ::
E%{:;c,rm -lr :: — Cross-contract E' Attacker
1 o er:L Dataflow Analyzer 1 Identifier

Contract
Address

Figure 5: An overview of the approach of BlockWatchdog.

4.2 Flow Information Extraction

When analyzing an input contract, the first step in BlockWatchdog
is to decompile its EVM bytecode to the IR. In the Decompiler com-
ponent, we extract flow information from the IR to enable dataflow
analysis and attacker vector identification.

Constant contract address and function signature identifica-
tion. To conduct cross-contract static dataflow analysis, we need
to identify the target contracts and functions that the input contract
intends to call. Based on our analysis of previous attack incidents,
we observe that attacker contracts typically hard-code the con-
tract address with which they want to interact or store the target
contract’s address in storage. Therefore, we use the decompiler to
identify the constant value (conforming to EIP-55 [11]) of the callee
contract address. The slot number with specific offsets to locate
the storage address can be obtained through the Web3 API getStor-
ageAt. Additionally, we identify the function signatures through

ICSE 2024, April 2024, Lisbon, Portugal

decompilation, which specifies which functions can be invoked
in each external call. For each external call identified in the caller
contract, we obtain the callee contract and function signature to
locate the callee site of the contract being called, allowing us to con-
struct the entire xCFG and xCG for inter-procedure cross-contract
analysis.

Flow and external call information extraction. To extract the
flow information from a contract, we first obtain every entrance
and exit of the contract. For every public function identified by the
decompiler, we extract its function arguments and return parame-
ters, which denote the start and end points of the dataflow within
the function, respectively. Function arguments can also flow to the
parameters of external calls made within the function, while the
return values of external calls can flow back to the function’s return
parameters. Therefore, we design five dataflow rules in Table 2 for
each public function in the contract. We illustrate each rule based
on Figure 6. Taking the FuncArgToCallArg and FuncArgToCallee as
an example, in Figure 6, function argument v2 of the function bar()
(L2-L10) flows to the arguments of the external call target.foo() (L4)
by rule FuncArgToCallArg. In contract target, the function argument
v1 of foo() (L16-L22), which is set by the caller contract from (line
(i) in Figure 6), can flow to the callee variable v1 of the call oper-
ation v1.hook(v2) (L19) through rule FuncArgToCallee (line (ii) in
Figure 6). By combining these two rules, we can obtain the flow
information that address(this) (L4) set by contract from can flow
to the callee variable v1 (L19) in contract target. In this case, the
contract from can make the contract target call its implemented
function hook through the dataflow process. Then, the call flow
returns to the contract from, which makes it capable of calling back
to the target.foo() again (L12), and leads to the reentrancy.

Table 2: Dataflow Rules in Intra-Procedure Analysis

Flow Type Meaning
FuncArgToCallArg || flow from function arguments to call argu-
ments

FuncArgToFuncRet|| flow from function arguments to function

returns
FuncArgToCallee || flow from function arguments to callee vari-
ables
CallRetToCallArg || flow from call returns to call arguments
CallRetToFuncRet || flow from call returns to function returns

Additionally, we focus on whether the input contract imple-
ments an external call in the hook or fallback function, which
attackers can leverage to make other contracts call back and suc-
ceed in reentering the attacker contract. We summarize six hook
functions from five Ethereum Improvement Proposals (EIPs) [10]
that we find to be involved in our collected reentrancy attacker
contracts, as shown in Table 3. Noticeably, we list these hook func-
tions to illustrate the features of the attacker contracts; our Block-
Watchdog does not rely on these specific function signatures but
focuses on the call flow features. Furthermore, the fallback func-
tion called when receiving Ethers and user-defined interfaces, e.g.,
IVisor.delegatedTransferERC20(), can also be used to perform reen-
trancy. Therefore, based on the external call information found in

ICSE 2024, April 2024, Lisbon, Portugal

1 contract from {
2 function bar(vl, v2) external (@
3 // FuncArgToCallArg(v2)
ret = target.foo(address(this), v2); —
// CallRetToCallArg(ret)
addr.ret2Arg(ret);
add_vl = vl + 1;
8 // FuncArgToFuncRet (v1)
// CallRetToFuncRet(ret)
return add_v1, ret;}
i function_ hook(v2) external {

target
i &
() address(this)
can manipulated

target.foo(address(this), v2);} by attacker
y Reentrancy! contract
+ |(iii) to call victim
premeditatedly

5 lcontract target { —

s |function foo(vl, v2) external {|Z <
//_FuncArgTdCallee(v1) :_ﬂk_

(i FuncArgToCallArg(v2)

vl.hook(v2);

ret = v2 + 1;

// FuncArgToFuncRet (ret)

return ret;}

Figure 6: Toy contracts for flow information illustration.

these types of functions and flow information extracted during the
intra-procedure analysis, BlockWatchdog determines whether a
reentrancy attacker contract is present.

Table 3: Hook Functions Declared by EIP

Standard || Function Name Function Signature
EIP-20 transferFrom 0x01c6adc3
EIP-721 onERC721Received 0x150b7a02
EIP-1155 onERC1155Received 0xf23a6e61
EIP-777 tokensToSend 0x75ab9782
EIP-777 tokensReceived 0x0023de29
EIP-1820 canlmplementInterfaceForAddress | 0x249cb3fa

4.3 Cross-contract Static Analysis

In this subsection, we describe how we use decompiled intermediate
representation (IR) and intra-procedure information to construct
the xCFG and xCG of the attacker contract and its interacting con-
tracts. Algorithm 1 presents an overview of how to identify the
attacker contract. We first construct the call chain of every pub-
lic function that contains an external call E¢ using the extracted
flow information (L1). Then, we use the depth-first search (DFS)
algorithm for each public function f to find its external call target
contracts and functions to construct the xCFG and xCG (L2-L3).
We apply the tainted source identification rules to find the tainted
source s in the input contract’s function (L4). Then, we use sink
identification rules for each call chain in the constructed xCG to find
sensitive variables t that can cause the attack (L6), such as function
arguments flowing to callee variables. To determine whether con-
tract C can successfully make the other contract call back to itself,
we use the transfer rules from source to sink to obtain reachability
(L7) and find possible attack call chains.

4.3.1 xCFG Construction & Call Chain Gathering. To perform static
dataflow analysis, we first need to construct the xCG and xCFG

Shuo Yang, Jiachi Chen, Mingyuan Huang, Zibin Zheng, and Yuan Huang

Algorithm 1: Cross-contract Static Analysis for Identifying Attacks

input: C, the input contract bytecode
output: AC « [], the list of possible attack call chains
LEf findFunctionsWithExternalCall(C)
2: for each function f € E¢ do

3: P « searchCallPathsByDFS(f)

4: s « getSource(f)

5: for each path p € P. do

6: t « getPossibleSink(p)

7 if isReachable(s, t, rules)

8 AC « AC U p, break

9: return AC

of the input contract. We obtain the bytecode of the interacted
contracts based on the contract address identified during decompi-
lation. Then, for every external call of the input contract, we find
the call-target contract address and function signature. Based on
the tuple <callsite, caller_address, caller_funcSign, target_contract,
target_funcSign>, we find every call site that executes the CALL
opcode and its call target. We then use the DFS algorithm to con-
struct the xCFG and gather all possible call chains originating from
the public functions of the input contract to construct xCG for the
dataflow analysis.

4.3.2 Cross-contract Dataflow Analysis. We define the tainted source,
sink site, and transfer rules in our dataflow analysis for identifying
attacks in Table 4. For a contract C and its external call f with argu-
ments set A in the example, we define all external call arguments A
in contract C as tainted. Then, for every contract called, we mark
every callee variable that determines the call target address C; as
the sink site. We apply the rules shown in Table 2 to determine
whether the tainted source can flow to the sink site. If there is a
possible path for that dataflow path, it is possible that the input
contract can make the called contract call a specific address that the
attacker designed, which helps us find whether there is reentrancy.

Table 4: Dataflow Rules for Identifying Attacker Contracts

Example C.f(A), f is an external call to contract C; A is the
set of arguments

Source external call arguments set A of input contract

Rules 5 intra-procedure dataflow rules in Table 2

Sink callee C; of external calls in called contracts

4.4 Attacker Contract Detection

In this subsection, we present specific rules for detecting reentrancy
attacks in the attacker contract using flow information and cross-
contract dataflow analysis.

The reentrancy attack can be reflected in the call chain that we
recover by cross-contract static analysis. Specifically, we detect the
attacker contract that can perform a reentrancy attack in three
steps. Step 1: We first determine whether there is a call path that
causes tainted variables to flow to the sink site using the rules we
designed in the cross-contract analysis illustrated in Section 4.3.2.
For example, in Figure 6, the attacker can call function bar() (L2-L10)

Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts

to invoke external call target.foo() (L16-L22). The function argument
v1 (L16) can flow to the callee of the external call vi.hook(v2) (L19)
in contract target, which means contract from can manipulate the
call target of v1.hook(). We then find the target call function hook()
(L11-L12) of the reachable sink site v1.hook() (L19). Step 2: We
determine whether there is an implementation of the function
hook() (L11-L12) of the input contract, i.e., contract from. Step 3: If
Step 2 is true, we find the call target contract address and function
signature to determine whether they are visited in the call path,
and judge whether there is a reentrancy attack. In the example,
contract from calls back to the function foo() again in the function
hook() to perform reentrancy.

We use the following expression to define the conditions for a
reentrancy attack. We first find the reachability of the sink site in
contract tar, which calls the function f of contract to. The address
of contract to can be set by the attacker, which is the tainted source
denoted by A;. Furthermore, the function f should be implemented
in the attacker contract’s public function list Cr, and the external
calls fgc, including the call target address and function signature,
should be visited in the call path. If all conditions are met, we
consider it a reentrancy attack.

Reachable(tar, f,to), to € Ag
f €Cr, fgc € Visited

Reentrancy <

5 EVALUATION

In this section, we evaluate the effectiveness of BlockWatchdog
based on the ground truth dataset collected from attack reports
and a large-scale dataset obtained through blockchain transaction
replay.

5.1 Evaluation Setup

The experiment was conducted on a server running Ubuntu 20.04.1
LTS and equipped with 18 Intel(R) Core(TM) i9-10980XE CPUs
@3.00GHz and 250 GB memory.

Dataset. We use two datasets to evaluate BlockWatchdog. The
first one is the ground truth dataset, which comprises reentrancy
attacker contracts that we collect by analyzing the attack incidents
reports. This dataset contains 18 attacker contracts from 15 inci-
dents. The second large-scale consists of 421,889 real-world contract
bytecode (both creation and runtime). These contracts are obtained
via replaying transactions from block number 10 million to 15.5
million on the Ethereum mainnet.

Evaluation Metrics. We summarize the following research ques-
tions (RQs) to evaluate BlockWatchdog.

RQ1. How effectively is BlockWatchdog in detecting reentrancy
attacks in the ground-truth dataset?

RQ2. How is the performance of BlockWatchdog in finding attacker
contracts in the large-scale dataset?

RQ3. How much financial loss is caused by the identified attacks,
and are vulnerability detection tools able to find those vul-
nerable victims?

ICSE 2024, April 2024, Lisbon, Portugal

5.2 Answer to RQ1: Effectiveness on the Ground
Truth Dataset

To answer RQ1, we run BlockWatchdog on our ground truth dataset
with 18 attacker contracts from our collected reports. BlockWatch-
dog correctly reports 15 out of 18 reentrancy attacker contracts, as
shown in Table 5. The second and third columns show the name of
the DApp and the time it was attacked; the fourth and fifth columns
represent the loss of the attack and the platform the DApp was
deployed. Columns sixth to eighth show the address of the exploiter,
the attacker contract, and the victim contract in the attack, respec-
tively. The last column denotes whether BlockWatchdog can iden-
tify the attacker contract. It is noticeable that we find two exploiters
(0xce and 0x80) in the Cream Finance attack from our collected
incidents, and these two exploiters deployed 2 (0xbd and 0x38) and
1 (0x32) attacker contracts, respectively, to attack the same victim
contract (Oxce). Similarly, the exploiter (0x61) that attacked the Fei
protocol and Rari DApps deployed two attacker contracts (0xE3
and 0x32) to attack the victim contract (0xfb). We find that Block-
Watchdog fails to identify three reentrancy attacker contracts due
to two reasons. The first factor is the inability of BlockWatchdog to
recover the call chain when the call target addresses and functions
in the attacker contracts are obtained from memory. Given that
the memory value cannot be determined via static analysis, Block-
Watchdog relies on the constant value of callee addresses or call
target function signatures for complete call chain recovery. In the
cases of the Fei Protocol and Rari incident, BlockWatchdog cannot
identify them because the call target contract address is loaded
from the memory. However, the memory value can only be deter-
mined during runtime, making BlockWatchdog fail to deduce the
call target and recover the call chain. The second reason pertains
to the limitations in the function signature identification of Block-
Watchdog. Since BlockWatchdog is based on Elipmoc [17], which
may not be able to recover all function signatures, this limitation
may lead BlockWatchdog to fail to identify some external calls. For
example, BlockWatchdog cannot detect the reentrancy attack in the
Spankchain incident, as the call target function LCOpenTimeout()
is not identified in the victim contract. As the dataflow procedure
ends with an unknown target, BlockWatchdog fails to recover the
call chain and identify the reentrancy. Despite such cases, the recall
of BlockWatchdog reaches 83.3% in our experiments.

5.3 Answer to RQ2: Attacker Contracts
Detection in a Large-scale Dataset

To answer RQ2, we ran BlockWatchdog on 421,889 smart contracts
obtained from blockchain transaction replay. The experimental re-
sults show that BlockWatchdog reports 253 contracts as attacker
contracts. We next evaluate the performance of BlockWatchdog,
using a manual labeling process. Two authors manually inspect the
253 samples reported as attacker contracts, following a four-step
procedure. Firstly, the decompiled intermediate representation (IR)
of the attacker contract was thoroughly examined. Secondly, the
function that performs the attack reported by BlockWatchdog is
located. Thirdly, the call chains reported by BlockWatchdog are
checked. Finally, based on these examinations, it is determined

ICSE 2024, April 2024, Lisbon, Portugal

Shuo Yang, Jiachi Chen, Mingyuan Huang, Zibin Zheng, and Yuan Huang

Table 5: Attacker Contracts in the Dataset and Detection Results of BlockWatchdog (BW)

DApp Attack Time Loss($) Platform Exploiter Attacker Contract Victim Contract BW
1 Spankchain 2018/10/9 38K ETH 0xcf267eA3f1eb 0xc5918a927C4F 0xf91546835{75 X
2 Uniswap 2020/4/18 220K ETH 0x60f3FdB85B2F 0xBD2250D713bf 0x1f9840a85d5a v
3 Lendf.Me 2020/4/19 24.7M ETH 0xa9bf70a420d3 0x538359785a8D 0x0eEe3E3828A4 v
4 Akropolis 2020/11/12 2M ETH 0xe2307837524D 0x38c40427efbA 0x1cec0e358f88 v
5 DeFiPie 2021/7/12 350K BSC 0xf6f43f77ef%e 0x6d741523F1Fc 0x607C794cDa77 v
6 xSurge 2021/8/16 25M BSC 0x59¢c686272e6f 0x1514aaaddct5 0xE1E1Aa58983F v
0xbd51Cb8c06F7 v
7 Cream Finance 2021/8/31 5M ETH OxcelfAbAfIT22) sgca0427efbA Oxce1f4b4f1722 v
0x8036EbDOFc9C 0x32d77947aACa v
8 Grim Finance 2021/10/16 30M FTM 0xDefC385D7038 0xb08cCb39741d 0x279b2c897737 v
9 Visor Finance 2021/12/21 8.2M ETH 0x8efab89b497b 0x10C509AA9ab2 0xc9f27a50f825 v
10 Paraluni 2022/3/13 1.7M BSC 0xA386F30853A7 0x4770b5cb9d51 0x94bC1d555E63 v
11 Agave & Hundred 2022/3/15 5.5M ETH 0xcE1F4B4F1722 0x38c40427efbA 0xf8D1677c8a0c v
12 Revest 2022/3/27 120K ETH 0xef967ece5322 0xb480ac726528 0x2320a28f5233 v
. . 0xE39f3C40966D X
13 Fei Protocal & Rari 2022/4/30 80.3M ETH 0x6162759eDAd7 0x32075bAd9050 0xfbD8Aaf46 Ab3 9
14 Omni 2022/7/10 1.4M ETH 0x00000000c251 0x3c10e78343c4 0x3c10e78343c4 v
15 SushiBar 2022/10/25 15K ETH 0x8ca72f46056d 0x9C5A2A 643152 0x2321537fd8EF v

whether a contract is an attacker contract, and the associated finan-
cial loss is recorded. The labeled results show that 113 samples are
indeed attacker contracts that perform reentrancy attacks.

In the large-scale experiment, some metrics are collected to help
us evaluate BlockWatchdog more comprehensively. For the struc-
ture of the constructed xCFG and xCG, the average number of
visited contracts and the call depth of the recovered xCG are 0.95
and 0.21, respectively. The same indicators of true attacker contracts
are 7.66 and 2.55, respectively. This indicates that many attacker
contracts directly hardcode the victim contracts’ addresses for im-
plementing the attack. In addition, the average detection time for
BlockWatchdog to analyze an attacker contract is 17.66 seconds. An
attacker contract can interact with a maximum number of 105 con-
tracts in a single call chain, with the maximum call depth reaching
21. Such deep call chains involving multiple contracts and functions
expose the limitations of simple pattern-based rules in covering
complex reentrancy attacks.

Table 6: Top 5 Hook Functions and Call Target Functions in
Identified Attacker Contracts with Occurrence Times

Hook Function Times || Call Target | Times
uniswapV2Call 73 balanceOf 111
onFlashLoan 13 transfer 102
onERC721Received 9 approve 53
delegatedTransferERC20 withdraw 25
onERC1155Received 2 deposit 23

Table 6 shows the signatures of the call targets in the hook
function of the attacker contracts from our labeled dataset. The
uniswapV2Call() is a required hook function in Uniswap V2 [50],
while onFlashloan() is declared by ERC3156 [12]. We also have some
interesting findings related to the design of attacker contracts. For

example, 19 attacker contracts were designed with attack logic
to hack victim contracts, but these attempts failed, resulting in
reverted transactions. Most of these contracts only have two trans-
actions, i.e., the contract creation transaction and the failed attack
transaction. Moreover, some exploitation function names, such as
Attack, Rugpull, Exploit, and Trigger, are commonly used in attacker
contracts. This interesting discovery provides information for func-
tion signature or name identification to find potential attacker
contracts, and provides insights into the development preferences
of hackers.

False positives. We identify two types of false positives generated
by BlockWatchdog when detecting reentrancy attacker contracts.
The first type involves the use of getter functions to make external
calls in the reentrant hook function, without performing any other
profitable external call operations. The second type involves the
usage of a permission check mechanism, where some contracts
use msg.sender as the transfer target or to constrain the caller of
the hook function, with no intention of making external calls to
attack others. BlockWatchdog reports all cases based on the reen-
trancy path to minimize false negatives, which may generate false
positives.

5.4 Answer to RQ3: Financial Loss of Victims

During the labeling process, we found that the total financial loss
caused by the true positive attacks was 908.4 million USD. This loss
comprised approximately 840 Ethers (about 1.7 million USD) and to-
kens worth 906.9 million USD. Notably, the loss of tokens accounted
for 99.8% of the total financial loss, indicating that new types of
reentrancy attacks are primarily caused by poor designs when using
and transferring ERC tokens, rather than Ether transfers.

Table 7 shows the top 5 attacks identified by BlockWatchdog,
ranked by their financial loss. We find that vulnerable contracts may
be attacked multiple times if they have been exploited successfully

Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts

once. Specifically, BlockWatchdog identified 9, 4, and 3 attacker
contracts that were deployed to attack projects Cream Finance [9],
Omni [1], and Visor Finance [19], respectively, resulting in a total
financial loss of 906.7 million USD. Cream Finance was hacked by
the hook function tokensReceived() in the attacker contract. It imple-
ments multiple token-borrow logic to perform the flash loan attack
in a reentrancy call path, which demonstrates the complexity of the
new types of reentrancy attacks. Omni was attacked by attacker
contracts that implemented reentrancy logic in the hook function
onERC721Received() when transferring NFTs. Hackers repeatedly
minted, borrowed, and withdrew NFTs before changing the liq-
uidation state. Visor Finance was exploited by attacker contracts
that implemented delegatedTransferERC20(), which is a user-defined
hook function, as shown in Figure 1. In addition, BlockWatchdog
identified 40 zero-day attacker contracts and a total of 159 victim
contracts, which were targeted by the attacker contracts to perform
reentrancy attacks.

Table 7: Top 5 Attacks Ranked by Financial Loss

Attaker Contract || Hook Function Loss (USD)
0x10c509aa9ab2 delegatedTransferERC20 | 904 million
0xc51bdc9aebba tokensReceived 0.56 million
0x86f28¢7030bd onERC721Received 0.28 million
0xbc82ab5a8223 tokensReceived 0.28 million
0x3292818dB514 uniswapV2Call 0.28 million

6 DISCUSSION

In this section, we first give a case study to show how BlockWatch-
dog can enhance the security of Ethereum by identifying attacker
contracts. We then present the capability of BlockWatchdog to find
vulnerabilities and discuss the limitations of our work.

6.1 Case Study

Figure 7 shows a code snippet of the attacker contract that aimed
to attack Revest [40] identified by BlockWatchdog. This attacker
contract was first deployed at Mar-27-2022 01:10:05 AM +UTC, and
about half an hour later, the first attack was launched at Mar-27-
2022 01:41:46 AM +UTC. Specifically, the function with signature
0xdd869c35 was invoked by the exploiter to call victims. Then, the
call chain was turned back and controlled by the attacker con-
tract twice through function invocation by the hook functions, i.e.,
uniswapV2Call() (L1-L4) and onERC1155Received() (L6-L17). The
attacker contract queried for the next NFT id (function getNextId()
(L12)) and deposited another one via the function depositAddition-
alFNFT() (L13). Finally, another NFT was successfully minted to
the attacker without being paid in this reentrancy attack. It takes
BlockWatchdog 64 seconds to identify this attacker contract and its
victim contract. The time gap of half an hour between the deploy-
ment of the attacker contract and the actual attack far exceeds the
time costs of the detection process. This provides an opportunity
for whitehats to front-run the hackers and protect the vulnerable
deployed contracts. Specifically, whitehats can copy the bytecode of
the attacker contract to perform the imitation attack [38] before the
real attack is launched. Therefore, the intended profits of hackers

ICSE 2024, April 2024, Lisbon, Portuga

are extracted by whitehats, thus saving possible financial losses. In
addition, BlockWatchdog takes 25 seconds to detect this attacker
contract (shown in Figure 1) and the potentially exploitable victim
in Visor Finance [19]. Since the attack occurred about 6 minutes
after the deployment of the attacker contract, the protection can
be performed in this time gap.

i function uniswapV2Call(address vargd, uint256 vargl,
uint256 varg2, bytes varg3) public nonPayable {
v18, v19 = stor_18_0_19.call(@x2e236bc, address(this),
Up 000d8

. v39 = stor_18_0_19.withdrawFNFT(v36, 1 + v2[01);}

6 function onERC1155Received(address vargd, address vargl,
uint256 varg2, uint256 varg3, bytes varg4) public
nonPayable {

8 if (_onERC1155Received != @) {

9 if (_onERC1155Received == 1) {

10 VO = 0x2007 (_onERC1155Received);

11 _onERC1155Received = vO;

12 vl, v2 = stor_19_0_19.getNextId();

13 v3, v4 = stor_18_0_19.depositAdditionalToFNFT(v2 -
1, stor_4, 1);}

14 } else {

15 v5 = 0x2007 (_onERC1155Received);

16 _onERC1155Received = v5;}

1 return 0xf23a6e61;7}

Figure 7: The attacker contract that hacked the Revest.

The above case study shows the practicality of timely protection
by using our BlockWatchdog. In the blockchain system, attacks
are irreversible, making it critical to detect potentially threatening
contracts before the start of any transaction. BlockWatchdog can
quickly identify such vulnerable contracts, thereby improving the
security of the Ethereum ecosystem in two ways.

Firstly, our tool can be used for the real-time detection of at-
tacker contracts on Ethereum, allowing security firms to report
suspicious attacker contracts in minutes. Since we do not require
transaction information, it is possible to prevent attacks. White-
hats [54], Etherscan [15], and security analysis firms, such as Con-
sensys [8], can quickly identify potential attacker contracts and
victims with attack footprints reported by BlockWatchdog (17.66
seconds on average) before attack transactions are sent (as shown in
the above case). However, it is crucial to address the ethical implica-
tions of such preemptive actions in this paper. While our approach
facilitates early detection and provides an opportunity for rapid
response, we consciously do not perform on-chain frontrunning
that could be deemed as ethical issues or potential disruptiveness to
the blockchain’s integrity. Furthermore, we use transaction replay
only to retrieve the bytecode of the deployed smart contracts.

Secondly, our tool can find new types of reentrancy vulnera-
bilities that other tools may have missed. Security firms can use
BlockWatchdog to identify undiscovered attacker contracts and
reentrancy vulnerabilities in practice. Platforms like Etherscan la-
bel the attacker’s EOA as an attacker account, and warn about
newly deployed contracts and related transactions.

ICSE 2024, April 2024, Lisbon, Portugal

For contract developers, to prevent their contracts from being
attacked after the deployment, the external call target contract’s ad-
dress should be verified in “sensitive” functions, e.g., token transfer
or swap logic, thus blocking the premeditated attacks that malicious
attacker contracts could launch.

6.2 Capability of Finding Vulnerabilities

BlockWatchdog finds a significant number of exploitable victim
contracts with exploitable vulnerabilities, and most of them cannot
be detected by current tools. We choose seven reentrancy detec-
tion tools to detect victim contracts: Mythril [30], NFTGuard [57],
Oyente [28], Sailfish [39], Securify1 [48], Securify2 [42], and Smar-
tian 7], referring to the four select rules [57, 60], i.e., (1) availability
of the tool source code; (2) usability of the command-line interface
for large-scale experiment; (3) supporting Solidity source code; (4)
ability to report vulnerable code location for manual examination.
We run these seven tools on 159 victim contracts, and all outputs
are given in our open repository.

The results show that only Mythril and Sailfish report 1 and
17 victims, respectively, while the other five tools do not report
any reentrancy vulnerability. Therefore, only 18 out of 159 (11.3%)
victims can be detected by current tools. As BlockWatchdog ex-
tracts more features from attacker contracts, which may be missed
by other works, BlockWatchdog can more effectively identify ex-
ploitable contracts with reentrancy vulnerabilities in practice with
better performance and generalizability. There are three reasons
for the results. First, many identified attacker contracts extract to-
kens but not Ethers from victims. However, most existing tools
focus on call.value(), which only involves Ether transfer. Second,
rule-based methods struggle to cover issues caused by patterns
that have not been previously reported, and it is even harder to
identify reentrancies related to user-defined interfaces that cannot
be generalized into a detection pattern. Third, existing tools detect
reentrancy based on state modification inconsistency. However,
new reentrancy attacks, e.g., read-only reentrancy, can make use of
just view functions, e.g., balanceOf{) and getPrice() to implement
reentrancy. These view functions do not modify any state and are
usually not protected, making existing tools difficult to detect.

6.3 Limitations

Despite the strengths of BlockWatchdog, we identify three potential
limitations. First, BlockWatchdog reports whether an input contract
is an attacker contract or not based solely on static analysis without
transaction information. We can recover the possible call chains
of the input contract, including transaction data, which can help
enhance the precision of detection. As we aim to deploy Block-
Watchdog as a real-time detection platform for Ethereum in the
future, transactions are considered as additional information to
achieve a more precise detection result Second, we identify inter-
acted contracts from the constant address or storage, and by default,
we rely on the assumption that the attacker contract hardcodes the
victims’ addresses. Although we find that all the collected cases
belong to these two scenarios, it is possible that the attacker con-
tracts can set the target contract in the arguments of the function,
which we cannot obtain through static analysis, thus leading to
false negatives. In addition, our taint analysis does not account for

Shuo Yang, Jiachi Chen, Mingyuan Huang, Zibin Zheng, and Yuan Huang

conditional checks when tracing paths, which yields false positives.
Third, we summarize the attack types and design the detection rules
based on the reported attack incidents. Therefore, it is possible that
we may not cover new attack types that have not yet occurred or
been reported. Overall, despite the above limitations, we focus on
detecting new types of reentrancy vulnerabilities that other tools
cannot cover. Other types of attacks that involve attacker contracts
mentioned in Section 3 are not addressed in this paper, which we
will cover in future work.

6.4 Threats to Validity

Regarding our experiment, the manual labeling process may have
introduced errors in differentiating false positives and true positives.
However, we have used a double-check process to mitigate this
issue and updated the labeled dataset in a timely manner to ensure
accuracy. We validated whether there was an attack on Etherscan
using the call chains reported by BlockWatchdog, collaborated
with the transaction trace recorded on the online transaction trace
explorer Phalcon [36], and recorded financial loss according to the
transaction information obtained from Etherscan. Another threat
to validity is that we did not verify that vulnerable contracts can be
exploited due to ethical concerns about attacking them. We intend
to address this in our future work.

There are some other types of attacker contracts, e.g., Bad Ran-
domness and Flashloan, as we mention in 3.2, which are not covered
by this work. The design of our BlockWatchdog focuses on call flow
analysis, which makes it possible to be extended to detect Flashloan
attacker contracts that also contain some flow features. However,
more contract semantics and operational features should be ana-
lyzed to cover other attacker contract types like Bad Randomness,
which requires understanding specific contract behaviors.

Despite the limitations mentioned above, BlockWatchdog has
detected 40 zero-day attacker smart contracts that were previously
unreported, which had reentrancy features. Since BlockWatchdog
does not require transaction information and can provide detection
results within minutes, it can monitor newly deployed contracts and
detect attacker contracts before they can execute attacks, preventing
potential attacks and heavy financial losses.

7 RELATED WORK

Reentrancy detection tools for smart contracts. As reentrancy
is one of the notorious vulnerabilities in smart contracts [41], many
program analysis tools have been developed to detect such issues by
static analysis or dynamic testing [4-6]. The goal of these tools is to
prevent vulnerable contracts from being deployed on the blockchain.
For example, Oyente [28], Securify [48], Mythril [30], and Sail-
fish [39] use static analysis technologies to discover reentrancy
vulnerability. In addition, there are dynamic testing and analysis
tools such as ContractFuzzer [20], sFuzz [31], Smartian [7], RLF [44],
and ReGuard [27], and approaches based on machine learning like
ReVulDL [58]. As contract code and vulnerabilities become more
complex, there are works that focus on cross-contract analysis,
such as Clairvoyance [56] and SmartDagger [26]. However, many
of these tools suffer from high false positive rates and may not
identify real vulnerable contracts in practice [35].

Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts

To our knowledge, BlockWatchdog is the first detection tool to
identify attacker contracts and their call chains. This feature en-
ables the tool to detect real vulnerable victim contracts in practice.
Additionally, BlockWatchdog addresses the limitation of current
reentrancy detection capability [60], and can detect complex reen-
trancy attacks in the wild.

Security analysis on attack incidents on Ethereum. Prior re-
search on attack analysis on Ethereum has focused on understand-
ing attack incidents at the transaction level. For example, Torres et
al. [47] conducted an empirical study of front-running attacks on
Ethereum, while Zhou et al. [61] evaluated real-world attacks and
defenses in the Ethereum ecosystem. They analyzed how attackers
have destroyed applications in Ethereum and discussed how to
defend against attacks from the victim contract’s perspective. Su et
al. [45] focused on DApp security and analyzed related transactions
to understand how to detect attacks through transaction analysis.
They developed a tool called DEFIER that can identify the stage of
a potential attack. However, BlockWatchdog can detect attacker
contracts without any attack transactions, making it possible to
prevent financial loss.

8 CONCLUSION AND FUTURE WORKS

In this paper, we present BlockWatchdog, a tool for detecting reen-
trancy attacker contracts and identifying vulnerable victims with
reentrancy vulnerabilities. To reduce false positives, we use the
detection of attacker contracts as an entry point, and identify vul-
nerable victim contracts based on callback flow. To design Block-
Watchdog, we conducted an empirical study to understand the
attack logic used by hackers in attacker contracts.BlockWatchdog
disassembles a contract’s bytecode and monitors all potential call
chains that initiate from its public functions and extend to acces-
sible contracts and functions. Besides, BlockWatchdog formulates
the xCFG and xCG to facilitate cross-contract data flow analysis be-
tween different procedures and to determine whether the callback
flow can be exploited by malicious contracts to execute a successful
reentrancy attack. Our experiment results demonstrate that Block-
Watchdog effectively detects 113 attacker contracts among 421,889
real-world contracts and identifies 159 victim contracts with reen-
trancy vulnerabilities. These vulnerable contracts contain Ethers
and tokens worth approximately 908.6 million USD. Only 18 of
them are identified by other detection tools.

Furthermore, we reveal all potential call chains of the 421,889
real-world contracts, and whether they contain external calls in
hook functions identified by BlockWatchdog. The detection results
can be helpful for further security analysis. In the future, we plan
to deploy BlockWatchdog for real-time detection purposes, in order
to find more vulnerable contracts in practice and help prevent them
from being attacked. In addition, we will extend BlockWatchdog
to cover new types of attacks, remaining effective in the face of
ever-evolving threats on Ethereum.

ACKNOWLEDGMENTS

This research/project is supported by the National Key R&D Pro-
gram of China (2022YFB2702203), the National Natural Science
Foundation of China (No. 62302534 and No. 62332004), and the Ant
Group Research Fund.

(1]

=
&

=
o)

[17

[18

[19

[20

[21

[22

[23

[24]

[25

[26

[27]

[28

™~
0,

[30

[31

ICSE 2024, April 2024, Lisbon, Portugal

REFERENCES

2022. Hacker drains $1.4 million worth of ETH from NFT lender
Omni. https://www.theblock.co/post/156800/hacker-drains-1-4-million-worth-
of-eth-from-nft-lender-omni Section: Hacks.

2022. Medium - Where good ideas find you. https://medium.com/

alchemy 2023. alchemy. https://www.alchemy.com/.

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507-525. https://doi.org/10.1109/TSE.2014.2372785
Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE 07). IEEE, 85-103.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209-224.

Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and
Sang Kil Cha. 2021. Smartian: Enhancing smart contract fuzzing with static and
dynamic data-flow analyses. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 227-239.

consensys 2023. Consensys. https://consensys.net/.

CRE.AM. Finance 2023. CRE.A.M. Finance. https://docs.cream.finance/.

EIP 2023. Ethereum Improvement Proposals. https://eips.ethereum.org/.
eip-55 2023. EIP-55. https://eips.ethereum.org/EIPS/eip-55.
ERC-3156: Flash Loans 2023. ERC-3156:
https://eips.ethereum.org/EIPS/eip-3156.

ercl155 2023. ERC-1155 MULTI-TOKEN STANDARD.
https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/.

erc777 2022. ERC-777 TOKEN STANDARD.
https://ethereum.org/en/developers/docs/standards/tokens/erc-777/.

etherscan 2023. Etherscan - The Ethereum Blockchain Explorer.
https://etherscan.io/.

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in ethereum
smart contracts. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1-27.

Neville Grech, Sifis Lagouvardos, Ilias Tsatiris, and Yannis Smaragdakis. 2022.
Elipmoc: advanced decompilation of Ethereum smart contracts. Proceedings of
the ACM on Programming Languages 6, OOPSLA1 (2022), 1-27.

Harvard CodeBlue 2018. EIP-721: Non-Fungible Token Standard.
https://eips.ethereum.org/EIPS/eip-721.

ivisor 2021. Visor Finance Suffers another DeFi Hack as Losses Mount Up to
$8.2M. https://www.fxempire.com/news/article/defi-protocols-have-lost-680-
million-so-far-in-2021-795829.

Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection. In 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 259-269.

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:
analyzing safety of smart contracts.. In Ndss. 1-12.

Queping Kong, Jiachi Chen, Yanlin Wang, Zigui Jiang, and Zibin Zheng. 2023.
DeFiTainter: Detecting Price Manipulation Vulnerabilities in DeFi Protocols.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. 1144-1156.

Johannes Krupp and Christian Rossow. 2018. teether: Gnawing at ethereum to
automatically exploit smart contracts. In 27th {USENIX} Security Symposium
({USENIX} Security 18). 1317-1333.

lendfme 2020. About Recent Uniswap and Lendf.Me Reentrancy At-
tacks. https://medium.com/imtoken/about-recent-uniswap-and-lendf-me-
reentrancy-attacks-7cebe834cb3.

Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. 2020. A survey
on the security of blockchain systems. Future generation computer systems 107
(2020), 841-853.

Zeqin Liao, Zibin Zheng, Xiao Chen, and Yuhong Nan. 2022. SmartDagger: a
bytecode-based static analysis approach for detecting cross-contract vulnerability.
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 752-764.

Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe.
2018. Reguard: finding reentrancy bugs in smart contracts. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings.
65-68.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254-269.

Bernhard Mueller. 2018. Smashing ethereum smart contracts for fun and real
profit. HITB SECCONF Amsterdam 9 (2018), 54.

Mythril 2023. Mythril. https://mythril-classic.readthedocs.io/en/master/module-
list.html.

Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proceedings of

Flash Loans.

https://www.theblock.co/post/156800/hacker-drains-1-4-million-worth-of-eth-from-nft-lender-omni
https://www.theblock.co/post/156800/hacker-drains-1-4-million-worth-of-eth-from-nft-lender-omni
https://medium.com/
https://doi.org/10.1109/TSE.2014.2372785

ICSE 2024, April 2024, Lisbon, Portugal

[32]

[33

[34

[35

[36]

[37

[38]

[39

[40

[41]

[42
[43]
[44]

[45]

[47]

[48

[49
[50

[51]

[52
[53]

[54

[55]

[56

[57

o
&

[59

the ACM/IEEE 42nd International Conference on Software Engineering. 778-788.
Ivica Nikoli¢, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th annual computer security applications conference. 653-663.

Robert Norvill, Beltran Fiz, Radu State, and Andrea Cullen. 2019. Standardising
smart contracts: Automatically inferring ERC standards. In 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 192-195.
peckshield 2023. Peckshield - Industry Leading Blockchain Security Company.
https://peckshield.com/.

Daniel Perez and Benjamin Livshits. 2021. Smart Contract Vulnerabilities: Vul-
nerable Does Not Imply Exploited.. In USENIX Security Symposium. 1325-1341.
Phalcon 2023. Powerful Transaction Explorer Designed For DeFi Community.
https://explorer.phalcon.xyz/.

primitivefinance 2023. Whitehack by Primitive Finance: MOST FUNDS ARE
SAFE. User action required. https://primitivefinance.medium.com/whitehack-
by-primitive-finance-most-funds-are-safe-user-action-required-4dd31c387b8.
Kaihua Qin, Stefanos Chaliasos, Liyi Zhou, Benjamin Livshits, Dawn Song,
and Arthur Gervais. 2023. The blockchain imitation game. arXiv preprint
arXiv:2303.17877 (2023).

Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsiannikov, and
Damian Reeves. 2012. Sailfish: A framework for large scale data processing. In
Proceedings of the Third ACM Symposium on Cloud Computing. 1-14.

revest 2022. Revest Finance Vulnerabilities: More than Re-entrancy.
https://blocksecteam.medium.com/revest-finance-vulnerabilities-more-
than-re-entrancy-1609957b742f.

Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. 2018. Sereum:
Protecting existing smart contracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934 (2018).

Securify 2.0 2023. Securify 2.0. https://github.com/eth-sri/securify2.

Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
Jianzhong Su, Hong-Ning Dai, Lingjun Zhao, Zibin Zheng, and Xiapu Luo. 2022.
Effectively generating vulnerable transaction sequences in smart contracts with
reinforcement learning-guided fuzzing. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1-12.

Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang, Luyi Xing,
and Baoxu Liu. 2021. Evil under the sun: understanding and discovering attacks
on Ethereum decentralized applications. In 30th USENIX Security Symposium
(USENIX Security 21). 1307-1324.

Nick Szabo. 1997. Formalizing and securing relationships on public networks.
First monday (1997).

Christof Ferreira Torres, Ramiro Camino, and Radu State. 2021. Frontrunner
jones and the raiders of the dark forest: An empirical study of frontrunning on
the ethereum blockchain. arXiv preprint arXiv:2102.03347 (2021).

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 67-82.

Twitter 2023. Twitter. https://twitter.com/.

UniswapV2 2023. UniswapV2. https://github.com/Uniswap/v2-
core/blob/master/contracts/UniswapV2Pair.sol.
uniswap_v3 2023. The Uniswap V3
https://docs.uniswap.org/contracts/v3/overvie.

web3py 2023. web3py. https://web3py.readthedocs.io/en/stable/web3.eth.html.
Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz,
and William Knottenbelt. 2022. Sok: Decentralized finance (defi). In Proceedings
of the 4th ACM Conference on Advances in Financial Technologies. 30-46.
whitehats 2023. Why White Hat Hackers Are Vital to the Crypto Ecosys-
tem. https://www.coindesk.com/layer2/2022/02/23/why-white-hat-hackers-
are-vital-to-the-crypto-ecosystem/.

Kaidong Wu. 2019. An empirical study of blockchain-based decentralized appli-
cations. arXiv preprint arXiv:1902.04969 (2019).

Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng.
2020. Cross-contract static analysis for detecting practical reentrancy vulner-
abilities in smart contracts. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 1029-1040.

Shuo Yang, Jiachi Chen, and Zibin Zheng. 2023. Definition and Detection of
Defects in NFT Smart Contracts. In Proceedings of the 32nd ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA
2023). Association for Computing Machinery, New York, NY, USA, 373-384.
https://doi.org/10.1145/3597926.3598063

Zhuo Zhang, Yan Lei, Meng Yan, Yue Yu, Jiachi Chen, Shangwen Wang, and
Xiaoguang Mao. 2022. Reentrancy vulnerability detection and localization: A
deep learning based two-phase approach. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1-13.

Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
Weng, and Muhammad Imran. 2020. An overview on smart contracts: Challenges,
advances and platforms. Future Generation Computer Systems 105 (2020), 475-491.

Smart Contracts.

Shuo Yang, Jiachi Chen, Mingyuan Huang, Zibin Zheng, and Yuan Huang

[60] Zibin Zheng, Neng Zhang, Jianzhong Su, Zhijie Zhong, Mingxi Ye, and Jiachi

[61

]

Chen. 2023. Turn the Rudder: A Beacon of Reentrancy Detection for Smart
Contracts on Ethereum. arXiv:2303.13770 [cs.SE]

Shunfan Zhou, Zhemin Yang, Jie Xiang, Yinzhi Cao, Min Yang, and Yuan Zhang.
2020. An ever-evolving game: Evaluation of real-world attacks and defenses in
ethereum ecosystem. In Proceedings of the 29th USENIX Conference on Security
Symposium. 2793-2809.

https://doi.org/10.1145/3597926.3598063
https://arxiv.org/abs/2303.13770

	Abstract
	1 introduction
	2 Background and Motivation
	2.1 Solidity Smart Contracts
	2.2 Reentrancy
	2.3 Prior Research and Their Limitations

	3 Attacker Smart Contracts for Reentrancy
	3.1 Data Collection
	3.2 Data Analysis
	3.3 Attacker Contract Features

	4 Methodology
	4.1 Overview
	4.2 Flow Information Extraction
	4.3 Cross-contract Static Analysis
	4.4 Attacker Contract Detection

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Answer to RQ1: Effectiveness on the Ground Truth Dataset
	5.3 Answer to RQ2: Attacker Contracts Detection in a Large-scale Dataset
	5.4 Answer to RQ3: Financial Loss of Victims

	6 Discussion
	6.1 Case Study
	6.2 Capability of Finding Vulnerabilities
	6.3 Limitations
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion and Future Works
	Acknowledgments
	References

