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Abstract—Consumer Internet of Things (IoT) devices often
leverage the local network to communicate with the correspond-
ing companion app or other devices. This has benefits in terms of
efficiency since it offloads the cloud. ENISA and NIST security
guidelines underscore the importance of enabling default local
communication for safety and reliability. Indeed, an IoT device
should continue to function in case the cloud connection is
not available. While the security of cloud-device connections is
typically strengthened through the usage of standard protocols,
local connectivity security is frequently overlooked. Neglecting
the security of local communication opens doors to various
threats, including replay attacks. In this paper, we investigate
this class of attacks by designing a systematic methodology
for automatically testing IoT devices vulnerability to replay
attacks. Specifically, we propose a tool, named REPLIOT, able
to test whether a replay attack is successful or not, without
prior knowledge of the target devices. We perform thousands
of automated experiments using popular commercial devices
spanning various vendors and categories. Notably, our study
reveals that among these devices, 51% of them do not support
local connectivity, thus they are not compliant with the reliability
and safety requirements of the ENISA/NIST guidelines. We find
that 75% of the remaining devices are vulnerable to replay
attacks with REPLIOT having a detection accuracy of 0.98-1.
Finally, we investigate the possible causes of this vulnerability,
discussing possible mitigation strategies.

Index Terms—Internet of Things, replay attack, security,
privacy, IoT device

I. INTRODUCTION

Consumer Internet of Things (IoT) devices, such as smart
TVs, speakers, surveillance cameras, and appliances, offer
numerous advantages to their users [I]-[3]. These devices
can be managed remotely by the users through smartphone
apps connected to cloud platforms. However, in most cases,
to optimize the performance, when the smartphone is in the
same network of the device, local communication between
the app and the device is enabled. In this way, the latency
time is reduced and the device still works even if the
remote connection is not available. This latter point is crucial
for reliability and safety reasons. This principle is reported
in the ENISA security guideline GP-TM-17 [5]], which states
that IoT devices should continue to work if the cloud back-end
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fails. Indeed, despite a user may be in the same network of the
IoT device, physical access to the latter may still be hard (e.g.,
for impaired users or in case the device is difficult to reach
because of its position). In these cases, the loss of connectivity
to the Internet should not limit the possibility for the user to
control a device that may have a safety impact (e.g., to turn
off a smart oven, open a smart lock, start a camera recording,
etc.).

On the other hand, enabling local connectivity requires
proper security measures as highlighted by the security guide-
lines of ENISA [5] and NIST [[6]. As a matter of fact, each
device should not rely on the security of firewalls or other
security practices implemented in the access point but should
have its own security mechanisms. As witnessed recently by
Girish et al. , despite its importance, the security of IoT
local connectivity has not been deepened in the scientific
literature.

In this paper, we focus on one of the main threats arising
in the local network, i.e., replay attacks [8], [9]. Replay
attacks are performed by eavesdropping the network traffic,
intercepting it, and replaying the packets after a given time.

In smart homes [10], this class of attacks is very relevant for
two reasons. First, replay attacks can be easily performed by a
single malicious device inside the local network [I1]-[13]]. We
expect this scenario to become increasingly likely given the
proliferation of IoT devices [14]], [I5]. Second, replay attacks
may be part of a more complex attack strategy, serving as a
means to furnish adversaries on insights into the controllability
of a device [16]. While the prior knowledge of the target device
may enable ad hoc solutions to perform replay attacks [17],
a challenging question is whether they can be automatically
performed on generic devices. To the best of our knowledge,
no papers in the scientific literature pursue this ambitious goal.

In this work, we propose REPLIOT, a tool for automatic
testing replay attacks in a smart home environment. The tool
is designed to be agnostic and works with any type of device
and communication protocol. Our innovative methodology
is based on black-box processing of the sniffed traffic to
increase the chances of making the attack successful. Being
our tool device-agnostic, it can also be used in a household
environment by non-technical users . To this aim, we
equip REPLIOT with a detection module that works on the



device’s responses to automatically detect whether the attack
is successful or not. This module is particularly relevant in
the case in which the user launching the tool has no physical
access to the device to observe the effect of a replayed
command. Furthermore, there exist commands that may not
trigger an external change in the device (e.g., a change in the
sensitivity level of a motion detection sensor).
Our key research contributions include:
o We develop an automated methodology for large-scale
testing replay attack vulnerabilities on IoT devices;
o« We demonstrate the feasibility of detecting the success
of the attack;
o We assess the (in)effectiveness of 41 popular IoT devices
in preventing such attacks;
« and finally, we examine the potential causes behind these
vulnerabilities, shedding light on the factors contributing
to these security weaknesses.

We find that 21 IoT devices do not support local connec-
tivity in contrast to the reliability and safety guidelines of
ENISA [5]. Out of the 20 remaining devices, 15 are vulnerable
to replay attacks through our tool. We perform thousands of
automated experiments to validate REPLIOT and show the
effectiveness of the designed detection module. The code of
our tool and the data collected in our experiments are publicly
available at: https://github.com/SafeNetloT/ReplayAttack.

Responsible Disclosure. We responsibly disclosed our re-
sults with the IoT manufacturers in this study. We received
responses from one manufacturer. We include these responses
(with permission) in Section

II. ASSUMPTION, GOALS AND NON-GOALS

In this section, we set the assumptions, the goals, and the
non-goals for this work.

A. Threat Model

We consider the following threat model.
Victim. The victim is any person who uses or benefits from
consumer IoT devices.
Adversary. The adversary is any party that can access the
local IoT device traffic. Examples include internal privacy and
security threats, and malicious 10T devices, placed within the
local network, with the ability to sniff promiscuously [19].
Remote attackers can also exploit router vulnerabilities (e.g.,
default passwords) to access the local network [20]. We
observe that when our tool is adopted for defensive purposes,
it assumes the role of an adversary (without leading to threats).
It can be placed directly on the access point or a device
connected to the same network.
Threat. The adversary can trigger commands on smart home
IoT devices, thus instructing them to perform some actions
without the victim’s will.
Plausibility. Several security guidelines of ENISA [5] and
NIST [6] (Logical Access to Interfaces) witness the impor-
tance of protecting the local network segment. Furthermore,
also the scientific literature acknowledges this problem [[19]],
[21], [22]]. As highlighted by Miettinen et al. [19], also

remote attacks through “NAT hole punching” [23]], may be
effective by compromising a device (e.g., a smartphone) with
access to the local network. As a result, devices should not
depend on the security provided by firewalls or other measures
implemented in the access point. This aligns with the GP-TM-
43 of ENISA [5].

B. Goals

The main goal of this work is to design a methodology
to automatically verify whether an IoT device might be
vulnerable to replay attacks. In particular, this work answers
the following research questions (RQ):

RQ1: Can replay attacks against IoT devices be automated
without prior knowledge of the device-specific features? To
answer this question we build a tool (REPLIOT) able to
actively perform replay attacks against generic IoT devices.
We also design a methodology to employ this tool for a large-
scale study of replay attack vulnerabilities of IoT devices.

RQ2: Is it possible to automatically detect whether a replay
attack is successful? Since also non-technical users can adopt
our tool in a real environment, we design a methodology to
automatically detect whether a replay attack is successful on
a given device. Overall, our tool is conceived to minimize
human intervention.

RQ3: Does the attack apply to a variety of IoT devices?
To answer this question, we employ commercial [oT devices
spanning various vendors and categories.

C. Non-Goals

In this work, we do not consider the following as goals.
Development of an Intrusion Detection System [24]. The
goal of our tool is not to verify that a device is undergoing
a replay attack. On the contrary, our tool acts preemptively
by identifying potential device vulnerabilities, regardless of
whether these devices may be in a potentially protected
network segment (see GP-TM-43 of ENISA [35]).

Design of ad hoc procedures for vulnerability testing. Our
tool is based on network traffic analysis, thus it does not
require any knowledge of the device under test.

Usability testing. We do not perform usability testing on
our tool. Even though REPLIOT is deployed to be used in
the home environment and not just in a lab environment,
some refinements are needed to enhance its user-friendliness.
However, addressing these aspects is beyond the scope of this

paper.
III. METHODOLOGY

We answer our research questions by proposing a tool
to automatically test the replay attack vulnerabilities of an
IoT device. Our tool works with consumer IoT devices that
are managed through a proper companion app provided by
vendors. REPLIOT is based on network traffic analysis. At a
high level, it works as follows. First, we sniff the local traffic
(if any) exchanged between the companion app and the target
device. Then, we replicate in a proper fashion the sniffed traffic
and monitor the (possible) responses received by the device.
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Finally, we analyze these responses to automatically check the
success or failure of the performed attack.

REPLIOT presents three modules: Training Module,
Attack Module, Detection Module. Overall, each of
the three modules corresponds to a different phase in which
the tool works. In the following sections, we describe the three
modules in detail.

A. Preliminary Considerations

1) Machine Learning Algorithms Selection: REPLIOT im-
plements a detection module to automatically check the suc-
cess or failure of the performed attack. This module includes
a machine learning (ML) algorithm that falls in the class
of anomaly detection, specifically novelty detection [25]]. We
train the algorithm using the responses sent by the device to
the companion app. When REPLIOT performs the attack, it
also detects its success or failure by feeding the ML algorithm
with the obtained responses.

The intuition is that, when the replay attack works, the
responses received by REPLIOT are similar to those exchanged
by the device with its companion app. We refer to this type
of response as regular response. On the other hand, when the
attack does not work, REPLIOT does not receive any response
or the device sends an error message. Such error messages
should appear different from legitimate responses (with which
the ML algorithm is trained). We refer to the responses
carrying the error messages as irregular responses. The ML
module distinguishes between regular and irregular responses.
We observe that, in the ML terminology, an irregular response
is considered a novelty. Novelty detection requires that the
training instances do not contain any anomalies. This fits our
scenario in which no error message is expected during the
legitimate use of the device with the companion app.

2) Observed Types of Responses: From a preliminary study,
we observe four types of responses in the local traffic.

o Full Cleartext Responses: words from natural language,
mostly organized in a structured format (e.g., JSON).

o Standard Encrypted Responses: responses encrypted
through standard protocols, e.g., TLS, QUIC, etc.

+ Non-standard Encrypted Responses: responses en-
crypted through non-standard protocols, which can also
carry cleartext metadata along with encrypted data.

« Encoded Responses: responses that are neither encrypted
nor expressed in natural language, but they contain fixed
bytes encoding some messages of proprietary protocols.

When a device executes a command (triggered by

REPLIOT), if it replies with cleartext or encoded messages,
we expect they present some similarity with the responses
provided by the device when it is triggered by the legitimate
companion app. Indeed, when no encryption mechanism is
adopted, the responses to the same command are exactly the
same or present minor changes (e.g., identifiers or times-
tamps). Then, our ML algorithm can detect them as regular
responses. On the other hand, when the devices do not execute
a command (the replay attack does not work), we expect that
the responses (if any) include error messages not included in

the legitimate responses. Then, the ML algorithm can detect
these responses as irregular.

Regarding standard encrypted responses, we expect that
the replay attack does not work and the ML module is not
applicable, due to the fact that the encryption of two identical
cleartext messages results in different encrypted payloads.

Finally, when a device uses non-standard encrypted re-
sponses, we cannot predict a well-defined behavior. The re-
sponse may present insufficient randomness, suffer from key
reuse, or contain some cleartext metadata. Then, it is possible
that the responses to the same command present a given degree
of similarity, and the replay attack may work. Otherwise,
similarly to standard encrypted responses, we expect the replay
attack does not work.

B. Training Module

The training phase is devoted to the collection of some
responses of the target device to train the ML model. We
obtain the responses by triggering some functions on the
device through its companion app and sniffing the traffic. We
collect all network traffic traversing the testbed using tcpdump.

We set as a usability requirement the fact that the ML model
should perform well with a few training data.

Once collecting them, REPLIOT processes the responses,
via Pyshark [26], a Python tool adopting Wireshark dissec-
tors. Specifically, we extract the payloads of the transport level
(TCP or UDP) messages to train the ML model.

C. Attack Module

We trigger the attack when a function (e.g., switching on/off
the light of a smart bulb, watching live from a camera, etc.)
on the target device is performed. The aim is to understand if
our tool can trigger the same function at a later time.

The first step of this phase consists of sniffing the traffic
exchanged between the legitimate companion app and the
target device via tcpdump when this function is triggered.

We process the captured traffic, through Pyshark, by
extracting the transport level payloads. However, differently
from the training phase, we collect both the requests and the
responses. Subsequently, we organize the extracted payloads
in flows. Each flow is represented by a list of consecutive
requests from the companion app to the device and a list of
consecutive responses from the device to the companion app.
Once the flows are collected, the responses can be discarded,
and we are ready to launch the attack.

The attack consists of replaying the requests of each flow
and storing the received responses (if any). The list of flows
is organized as a stack so that the last flow will be the first to
be replayed. The rationale behind this empiric design choice
is that, for some devices, it may happen that, to trigger a
specific function, several requests and responses (and then
several flows) are exchanged. However, the first flows may
not contain the actual command (that triggers the function)
but just accessory information (e.g., the information needed
to exchange some secret or synchronization messages). On
the other hand, it is more likely that the actual command
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Fig. 1. REPLIOT Operation Steps.

is contained in the last flows. Moreover, we observe that
starting the attack by the first flow may change the state
of the target device. Thus, when the tool replicates the flow
containing the actual command, the attack may fail because of
the state change of the device and not because of an effective
countermeasure implemented on the device. However, being
our tool device-agnostic there is a lack of prior knowledge
about which specific flow contains the actual command. Hence
the need to replicate all flows rather than solely focusing on
the last one.

D. Detection Module

The aim of the detection module is to automatically detect
whether the replay attack is successful.

We perform two preliminary checks: (i) response check and
(ii) protocol check.

Response Check: If our tool receives no response during the
attack phase, the attack is considered FAILED.

Protocol Check: If the companion app and the device commu-
nicate through standard security protocols (i.e., TLS, QUIC,
etc.), the attack is considered FAILED.

In all the other cases, we assume a list of responses orga-
nized in a queue (the first response received during the attack
phase is the first response scheduled in the detection phase).
We recall that, the flows during the attack phase are scheduled
in reverse order with respect to the order of arrival. We then
expect that the response of an actual command (triggering a
function) is contained in the first response stored by the queue.
In particular, as a heuristic approach, we consider the first j
responses received.

The ML algorithm receives as input these responses to check
if they are detected as regular or irregular. If all the j responses
are detected as irregular, we consider the attack FAILED.
Otherwise, we consider the attack SUCCESSFUL. We assume
that the fact that a device sends at least one regular response to
a replayed request may be a security issue. This is the reason

for which we consider the attack SUCCESSFUL when at least
one response is detected as regular.

On the other hand, if in place of j, we feed all the responses
sent by the target device to the ML algorithm, the chance of
having false positives could be very high. To explain this,
we consider an example. We suppose that, before sending a
command, the companion app performs an initial handshake
with the IoT device (e.g., exchanging keys). Then, by replaying
the first request sent by the app (i.e., a request belonging to
the initial handshake), the target device would most likely send
a regular response. Then our tool would consider the attack
as successful based on this response only, while it may not
succeed in triggering the desired command. This is the reason
why we limit the detection to the last j responses.

E. REPLIOT Operation

In this Section, we provide an example of the application
of REPLIOT. Figure [I] shows how REPLIOT operates. We
consider 6 steps, described below.

Step 1: We assume that a series of requests/responses are
exchanged between the smartphone and the IoT device in the
order shown in Step 1 of Figure [}

Step 2: We sniff the traffic and organize it in flows. As an
example, we consider that Flow 1 includes a single request
(A1) and a single response (A3). Flow 2 includes a request
(B1) and two responses(Bs and Bs). Flow 3 includes two
requests (C7 and C5) and a response (C's).

Step 3: We perform the attack by scheduling the Flows in
reverse order.

Step 4: We replicate the captured requests to the device.
In this example, we take into account that the device may
not provide some responses (e.g., because the state of the
device is changed and the requests sent are not meaningful
anymore). Specifically, in this example, the response to the
requests C7 (or C3) of Flow 3 is lost. We observe that,
in general, the received responses during the attack are not
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identical to the original responses (for example, they may
contain different identifiers or timestamps). To highlight this,
we use the overline notation (Cs, Bs, B3, As).

Step 5: We store the responses in the order we receive them
for creating the queue.

Step 6: Finally, we use the responses to feed the detection
module. If the Response Check and the Protocol Check do
not output FAILED, then the first j responses are fed into the
ML algorithm. In this example, we consider j = 2.

IV. VALIDATION

In this section, we describe the procedure we follow to
validate REPLIOT and assess the effectiveness of 41 popular
IoT devices in preventing replay attacks. Figure [2] shows the
steps of our validation.

A. Testbed

In order to have a controlled environment for testing the
vulnerability to replay attacks of IoT devices, we build an IoT
testbed. Our testbed consists of: (1) 41 consumer IoT devices,
(2) a smartphone in which we install the companion apps to
control the IoT devices, (3) an access point (installed on a
server) to which the smartphone and the target IoT devices are
connected, (4) a set of support scripts to automatically turn
on and off an IoT device, trigger a function, and determine
whether the device has local connectivity.

TABLE I
OBVERSE AND REVERSE STATES PER 10T DEVICE

OBVERSE-REVERSE
State
ON - OFF

Device

Arlo pro 4 camera, Govee lightstrip, Furbo
camera, Lepro bulb, Lifx bulb, Meross
smartplug, Nanoleaf triangle, Tapo smart-
plug, Wiz ligthbulb, Wyze cam pan, Yee-
light bulb, Yeeligth lightstrip

Coffee maker Lavazza, Cosori airfrier, Eco-
vacs vacuum, Eufy robovac, iRobot roomba
i7, OKP vacuum, Swan Alexa Smart Kettle,
WeeKett Kettle, Xiaomi blender

Blink camera, Blink video doorbell, Bose
Speaker, Boyfun Baby monitor, Ring door-
bell, Ring spotlight camera, Simplisafe cam-
era, Sonos Speaker, Vtech baby monitor
Aqara hub, Eufy doorbell, Meross Garage
Opener, Switchbot hub mini

Echodot 4, Echodot 5, Eufy doorbell chime
Netatmo Weather Station

START - STOP

PLAY - PAUSE

ACTIVATE - DISACTI-
VATE

MAX - MIN VOLUME
POSITIVE - NEGATIVE
OFFSET

SET KG-SET LB

SET °C-SET °F
LOCK-UNLOCK

Withings smart scale
Withings thermo
Petsafe Automatic Feeder

1) IoT Devices: The devices we consider are consumer IoT
devices typically deployed in a smart home. We have chosen
devices under different categories (see the second column of
Table [I). The devices are simultaneously connected to the
network. We distinguish them by their MAC address.

2) Smartphone: We use a standard smartphone (Google
Pixel 3a) to manage the IoT devices through their apps.

3) Access point: The access point offers IP connectivity
to the IoT devices under test, and the ability to capture and
control the network traffic exchanged between the IoT devices
and the apps. REPLIOT is installed on the access point.

4) Support Scripts: We deploy the following 4 sup-
port scripts to automatize the validation procedure. The
CaptureCoordinates script records the coordinates of
the screen taps when we trigger a function to set the device
in the OBVERSE or REVERSE state. The ProbeCommand
takes such coordinates as input and uses them to automatically
set the device in the OBVERSE or REVERSE state. The
CheckLocalConnectivity script verifies whether the
device and the companion app communicate through the lo-
cal network. Finally, the RestartDevice script physically
restarts a device by turning off a plug powering the device,
and then turning it on.

In the following, we describe the steps followed to conduct
the validation procedure.

B. State Phase

This phase consists of finding the state in which the IoT
device can be set in the companion app. We assume that an
IoT device cannot be in two states at the same time (e.g., the
ON and OFF states). We call one of these states as OBVERSE
(i.e., smart light on) state and the other state as REVERSE
(i.e., smart light off).



Table [Il shows the state OBVERSE and REVERSE con-
sidered for each IoT device in the testbed. For example, for
the vacuum cleaners, the air fryer, the kettles, and the blender
we consider the START-STOP state. The speakers and several
cameras offer the PLAY-PAUSE state. For Withings smart
scale and Withings thermometer, the states are represented by
the unit of measurement for weight and temperature.

Since our experiments require to trigger the states several
times, we adopt an automatic procedure for triggering them
inspired by Mandalari et al. [27]’s study. Specifically, we lever-
age the Android Debug Bridge (ADB) tool to programmati-
cally trigger the function of the device by emulating the user’s
taps on the companion app. At first, we follow a one-time
procedure. We manually perform some taps in the companion
app to trigger the OBVERSE state and the REVERSE state.
Meanwhile, the CaptureCoordinates script records the
coordinates of the screen taps. These coordinates are the input
of the ProbeCommand script. We then leverage this script to
automatically set the device to the desired state.

To validate the correct execution of the ProbeCommand
script (setting the OBVERSE or REVERSE state on the
device), we employ the following procedure. Each time we
invoke the ProbeCommand script, we capture the screenshot
of the companion app and compare it to a previously retrieved
screenshot where we know that the command was correctly
executed. For example, we invoke the ProbeCommand script
to turn on the smart light bulb and we capture the screenshot
on the app to check whether the bulb is actually in state ON.

C. Check Local Connectivity

In this phase, we filter out the devices that do not commu-
nicate with the companion app in the local network but only
via the cloud. In general, some devices may work by default
through the cloud even though the companion app and the IoT
device are in the same network. To verify this, we leverage
the CheckLocalConnectivity. This script forces the
devices to communicate with their companion app via the
local network (i.e., we prevent the devices from connecting to
the Internet) by setting firewall rules at the access point. This
script starts using tcpdump to capture the traffic in the local
network. Meanwhile, we invoke the ProbeCommand script to
set the device in the OBVERSE and the REVERSE state. The
CheckLocalConnectivity script checks the presence of
packets during this phase. If no packets are detected then the
validation procedure ends (see Figure 2)).

D. Training Phase

This phase starts by invoking the Training Module. We
recall that this module first launches tcpdump to sniff the
traffic sent from the device to the companion app when the
latter issues some commands. We automatically trigger these
commands via ADB through the ProbeCommand script.
Specifically, we first invoke this script to set the device in the
OBVERSE state and then to set the device in the REVERSE
state. We repeat this procedure five times.

Overall, the training set is composed of the responses
to ten commands sent by the companion app (setting of
OBVERSE and REVERSE states five times), along with
possible control messages (e.g., synchronization messages or
handshake messages). In the home environment, this procedure
(i.e., the trigger of some commands) is performed manually
by the users. We intentionally choose a small number of times
(five) in which the two commands are repeated with the aim to
easily get the dataset in the real-life application of the tool by
users. Finally, the Training Module feeds the responses
collected during the sniffing time to an ML model. For our
validation, we select 3 standard models of ML for novelty
detection [25]], [28]], [29]]: Isolation Forest, Elliptic Envelope,
and Local Outlier Factor.

E. Attack Phase

During this phase, we first invoke the ProbeCommand
script to set the device in the OBVERSE state. The Attack
Module of REPLIOT sniffs and processes the traffic ex-
changed by the device and the companion app (as described
in Section [[TI-C). We then invoke again the ProbeCommand
script to set the device in the REVERSE state.

At this point, we perform the replay attack. This attack is
successful if REPLIOT manages to switch the device from
the REVERSE state to the OBVERSE state. On the other
hand, if the device remains in the REVERSE state, we assume
the attack fails. As ground truth, to check the final state
of the device (OBVERSE or REVERSE), we perform the
screenshot of the companion app screen and compare it with a
previously captured screenshot taken when the device is known
to be in the OBVERSE state.

We perform the above procedure in two different scenarios.

o Non-Restart Scenario: in this scenario, we first set the
device in the REVERSE state and then we perform the
replay attack.

o Restart Scenario: in this scenario, we first restart the
device via the RestartDevice script, and then we set
the device in the REVERSE state. Finally, we perform
the attack.

The two scenarios capture two different situations. The
Non-Restart Scenario represents a real-life scenario, in which
we simulate a replay attack after a user legitimately set the
device in the REVERSE state. In this case, the effect of the
replay attack is to change the state of the device against the
will of the user. We point out that this is not the simplest sce-
nario in which we test REPLIOT. Indeed, a Real-time attack, in
which we replicate a command immediately after capturing it,
may have more chances to be successful. However, the impact
of such an attack would be minimal since the device would be
set in the same state desired by the user. On the other hand,
the Restart Scenario is a more challenging scenario in which
to test our tool. Indeed, the restart forces the device to clear its
working memory (possibly negotiated temporary keys, tokens,
agreed ports, etc.). When the REVERSE state is set, there are
more chances that the device would possibly renegotiate some
values (i.e., keys, tokens, ports, and so on), thus making the



attack ineffective. In our validation, we perform the attack 30
seconds after the restart to give the device the time to run the
initial configuration procedure.

FE. Detection Phase

In this phase, we invoke the Detection Module of
REPLIOT. We recall that this module takes as input the packets
(properly pre-processed) sniffed by the Attack Module.
Moreover, this module requires a parameter j to be set
representing the number of responses to provide to the ML
algorithm. In our validation procedure, we set 7 = 3. This
value is set empirically by testing manually a subset of devices.

To evaluate the performances of the Detection
Module, we invoke the Attack Module 50 times. For each
of these, we invoke the Detection Module that returns a
boolean output: whether the replay attack is successful or not.
We observe that the ground truth remains the same for all 50
experiments, i.e., the attack either always works or does not. To
measure the Detection Module performance, for a given
device, we consider the accuracy measured as the number
of times in which the Detection Module successfully
classifies the attack over the total number of experiments. The
accuracy coincides with the recall while the precision is not
significant because it is always 1. Indeed, by considering as
positive instance the result of the ground truth, there are no
false positive and true negative instances. Then, the accuracy
(i.e., the recall) is the only meaningful metric to consider.

G. Validation through API

In case no local traffic is exchanged or the replay attack
is not successful, we consider an additional step. We check
whether the IoT device maintains some open ports for devel-
oping personal applications and communicates with the device
through some APIs [30]]. This interaction is referred to as
local APIs. The main goal of our investigation remains the
interaction between the companion app and the target device.

To test the robustness of devices when APIs are adopted,
we implement ad hoc scripts for these devices, emulating the
behavior of the smartphone through APIs. Then, we repeat the
methodology described in Figure 2] with the difference that,
this time, the device is not set in the OBVERSE/REVERSE
state through the ProbeCommand script but through cus-
tomized scripts using the available APIs.

V. RESULTS

We answer our research questions by applying the method-
ology described in Section [[II] and [[V] to understand whether
it is possible to automate replay attacks against IoT devices
and automatically detect whether the attack is successful.

A. Local Connectivity

By leveraging the procedure described in Section [[V-C| we
find that out of the 41 devices of our testbed, 22 do not
communicate with the related app through the local network.
Among the devices that do not use local connectivity, one (the
Govee lightstrip) uses local APIs. This means that 21 devices

TABLE II
REPLAY ATTACK RESULTS. v INDICATES WHETHER THE REPLAY ATTACK
IS SUCCESSFUL OR NOT (X).

Device (*Tested via APIs) Non-Restart

Scenario

Restart
Scenario

Bose Speaker *
Boyfun Baby monitor X X
Eufy robovac
Furbo camera X X
Govee lightstrip *
iRobot roomba i7 X X
Lepro bulb

Lifx bulb

Meross smartplug
Meross Garage Opener
Nanoleaf triangle *
OKP vacuum

Sonos Speaker *

Tapo smartplug

Vtech baby monitor X
WeeKett Kettle
Wiz ligthbulb
Wyze cam pan X X
Yeeligth lightstrip
Yeelight bulb

| >

out of 41 are not compliant with the principle stated in the
ENISA security guideline (GP-TM-17 [5]]), stating that an IoT
device should continue to function if the cloud back-end fails.
Takeaways. The finding that, among 41 devices, 21 lack local
connectivity, is inherently significant. It underscores the press-
ing need for substantial improvements in the reliability of IoT
devices. In addition, allowing devices to work independently of
the cloud enables users to have greater control over their data
and reduces the risk of data exposure during cloud outages or
breaches. Finally, local connectivity reduces the dependency
on the cloud, thus resulting in lower latency and energy saving.

B. Replay Attack

Table [lI| shows the result of the performed replay attacks
on the 20 devices that leverage local connectivity in the two
considered scenarios (i.e., Non-Restart and Restart). To fairly
validate our results, besides using the screenshot procedure as
described in Section [IV-E| we manually verify whether the
replay attack is working or not for each device.

As reported in Section [IV-G| in case no local traffic is
exchanged or the replay attack is not successful, we test
whether IoT devices present vulnerable local APIs. This hap-
pens for 4 devices (i.e., Govee lightstrip, Bose speaker, Sonos
speaker, and Nanoleaf triangle). We denote these devices by
* in Table [l Specifically, as reported in Section [V-Al the
Govee lightstrip does not leverage the local network when
communicating with the companion app. On the other hand,
the Bose speaker and the Sonos speaker leverage TLS to
communicate with their companion apps. Then, our tool is not
able to perform the attack. Finally, the Nanoleaf triangle uses
a secure proprietary protocol based on HTTP to communicate
with its companion app, and again the attack is not successful.
Despite this, we found that these devices present local APIs
vulnerable to replay attacks.



TABLE III
RESPONSE DISTRIBUTION
Response Device
Cleartext Bose Speaker, Govee lightstrip, Meross Garage

Opener, Meross smartplug, Nanoleaf triangle,
Sonos Speaker, Wiz ligthbulb, Yeelight bulb,
Yeeligth lightstrip

Standard Encrypted | iRobot roomba i7

Non-Standard Boyfun Baby monitor, Furbo camera, Tapo

Encrypted smartplug, Vtech baby monitor, Wyze cam pan
Encoded Eufy robovac, Lepro bulb, Lifx bulb, OKP vac-
uum, WeeKett Kettle
TABLE IV
EXAMPLES OF RESPONSES’ PAYLOAD

Device Payload

WeeKett Kettle | ER;iiiigO§EDIlyy:CZEFI{iyB6PU*Q*U

{{“error_code”:0, result”:{ “response”:“CO07WBT2x

Tapo smartplug BhRLO50IZbhAEuf/FjQEEa596JE3+X 1ubE="}}

“header”:{“messageld™:“08..6c”,“namespace”:“Ap-
pliance.System.DNDMode”,“triggerSrc”:“Android-
Local”,“method”:“SETACK”,““payload Version™:1,
“from”:*“/appliance/22..1b/publish”, “timestamp™:16..90,
“timestampMs™:814,“sign":“41..3d"},“payload”:{ } }

Meross Garage
opener

Surprisingly, among the 20 devices, 15 are found to be vul-
nerable to the replay attack. This attack successfully exploits
all the devices in the Non-Restart Scenario and is effective
against 14 of them in the Restart Scenario.

To investigate the reasons behind our results, we manually
study the response payloads of the 20 devices during the
replay attack. As reported in Section we observe four
types of responses in the local traffic: full cleartext, standard
encrypted, non-standard encrypted, encoded. Table [III] de-
scribes the type of responses adopted by each device. We
observe that 9 devices adopt cleartext responses, 5 devices use
encoded responses, 5 devices adopt non-standard encrypted
responses, and only 1 device (i.e., the iRobot roomba i7)
employ standard encrypted responses (i.e., TLS).

Table |IV| describes response payloads interesting to discuss.

In the Restart Scenario, the 14 devices vulnerable to replay
attacks all communicate through protocols that adopt either
encoded or cleartext responses. In Table we give an exam-
ple of an encoded response for a smart kettle. This response
(and also the associated request) always presents the same
payload. These devices do not perform any authentication with
the companion app after rebooting.

The Tapo smartplug is vulnerable only in the Non-Restart
Scenario. This device leverages a proprietary protocol that
includes partially encrypted responses (see Table [[V). How-
ever, this protocol is not secure since an encrypted packet
remains valid over time until the device is rebooted (Restart
Scenario). In this case, the device exchanges a new key with
the companion app and thus the attack is not successful. We
point out that the Non-Restart Scenario is the most plausible
in real-world situations.

Two devices that deserve attention are the Meross smartplug
and the Meross Garage opener. These devices leverage clear-

text messages that include a signature to prevent commands
from being altered. However, the signature remains valid when
the tool replicates the same message so that the devices are
vulnerable. We report in Table an example of a response
that includes such a signature (highlighted in red).

We now focus on the remaining 5 devices in which the
replay attack is not successful. Four of the devices are smart
cameras. A manual inspection reveals that the cameras ex-
amined use (on the local network) proprietary protocols that
do not appear to be vulnerable to REPLIOT. We observe that
this does not guarantee that they are not vulnerable to replay
attacks as they do not adopt standard security protocols. As
such, our findings represent a lower-bound of such vulnera-
bility, using an approach that can be automated. The iRobot
roomba i7 communicates with the companion app via the TLS
protocol. Generally speaking, the adoption of standard security
protocols should be preferable to counter replay attacks.
Takeaways. Our findings demonstrate the effectiveness of
REPLIOT. Despite its agnostic nature, REPLIOT can auto-
matically identify 15 out of 20 devices vulnerable to replay
attacks, thus positively answering the research questions RQ1
and RQ3. In addition, our manual investigation highlights
that IoT devices use proprietary protocols with weak (or
not) security measures. This makes them vulnerable to replay
attacks. Finally, out of 20, 14 devices are still vulnerable to
replay attacks in the Restart Scenario. This denotes a lack of
an authentication procedure. To prevent the attack from work-
ing, well-known security protocols with mutual authentication
mechanisms (e.g., TLS with embedded certificates) should be
adopted.

C. Detection Module

As reported in Section we investigate three differ-
ent ML algorithms. We find that the Local Outlier Factor
algorithm outperforms the other two algorithms. Specifically,
with the Local Outlier Factor model, the accuracy of the
Detection Module ranges (over all the devices) from
0.98 to 1 for both the Restart and Non-Restart scenarios.
Concerning the Isolation Forest model, we have an accuracy of
0% for a single device, while for the other devices the accuracy
ranges from 0.98 to 1. Regarding the Elliptic Envelope model,
we have an accuracy of 0% for two devices, while for the other
devices the accuracy ranges from 0.78 to 1.

We recall that the Detection Module performs two
preliminary checks, before (possibly) feeding the responses to
the ML algorithm. The Response Check consists of verifying
if the device under test responds to our tool during the
attack phase. It outputs FAILED when our tool receives
no responses. The Protocol Check consists of verifying if
the device adopts standard security protocols for local com-
munication. If so, it outputs FAILED. If none of the two
checks output FAILED. The Detection Module feeds the
received responses to the ML algorithm.

Table [V] shows how the Detection Module works for
each device. Specifically, we observe that for 4 devices the



TABLE V
DetectionModule RESULTS

Device

Boyfun Baby monitor, Furbo camera, Vtech
baby monitor, Wyze cam pan

iRobot roomba 17

Bose Speaker, Eufy robovac, Govee light-
strip, Lepro bulb, Lifx bulb, Meross Garage
Opener, Meross smartplug, Nanoleaf trian-
gle, OKP vacuum, Sonos Speaker, Tapo
smartplug, WeeKett Kettle, Wiz ligthbulb,
Yeelight bulb, Yeeligth lightstrip

Detection
Response check

Protocol check
ML intervention

Response Check outputs FAILED and for 1 device the
Protocol Check outputs FAILED.

There are two main reasons to explain the high accuracy

values of the Detection Module. First, the two prelimi-
nary checks (avoiding the intervention of the ML algorithm)
allow us to effectively detect that the replay attack does not
work. This is the case for 5 devices where either our tool
receives no response or the devices use secure communication
protocols. Secondly, when the ML algorithm is invoked (for
the remaining 15 devices), the responses fed to it have many
similarities. Indeed, by manual investigation, we observe that
for some devices the responses are exactly the same while
for other devices just a few fields (e.g., identifiers and times-
tamps) change. Hence, the ML algorithm readily identifies this
similarity.
Takeaways The performance achieved by the Detection
Module, included in REPLIOT, shows an accuracy value
ranging from 0.98 to 1, thus positively answering the research
question RQ2. Accuracy is crucial for determining the efficacy
of our tool for autonomously detecting vulnerabilities to replay
attacks in IoT devices. This is fundamental since the tool’s
intended adoption is by non-technical users in domestic set-
tings. The detection module is particularly relevant in the case
in which the user launching the tool has no physical access to
the device to observe the effect of a replayed command, or the
effect of the command may not trigger any visible changes in
the device status.

The results obtained encourage us to believe that our tool
can be adopted (beyond the lab) by non-technical users to
detect whether the IoT devices they own are vulnerable to
replay attacks.

VI. DISCUSSION

In this section, we discuss the implications of our findings,
possible mitigation, limitations, and ethical considerations.
Safety and Reliability implications. We highlight that the
absence of local connectivity (detected in more than 50% of
our devices) may harm the safety and reliability of an IoT
device. This principle is stated in the ENISA security guideline
GP-TM-17 [5], stating “essential features should continue to
work with a loss of communications and chronicle negative
impacts from cloud-based systems ... a loss of communications
shall not compromise the integrity of the device, and the device
should continue to function if the cloud back-end fails”.

Safety problems arise also when local connectivity is sup-

ported but replay attacks are effective. For example, among
vulnerable devices, we found two different smart plugs, a
garage opener, and a smart kettle. The impact of the attack
on these kinds of devices is particularly critical in terms of
safety. Indeed a smart plug can be used to power a generic
device (it may be a medical device or a security camera).
Thus a vulnerable plug may directly affect the user safety.
Similarly, a replayed “open” command sent to a garage door
opener may enable a domestic violation. Also, if a heat-
related device (such as a smart kettle) is turned on without
any authorization, there might be a risk of overheating, thus
potentially leading to a fire. This could pose a threat to the
safety of the home occupants. It is also worth noting that
unauthorized activation of a generic smart device could lead
to unplanned and excessive energy consumption.
Security and Privacy implications. The effectiveness of our
tool denotes a lack of proper security measures on the IoT
devices in the local network. This violates several guidelines
of ENISA and NIST (see Section [). Our results clearly
highlight that devices rely on the security provided by firewalls
and access points, rather than offering security mechanisms
themselves (in contrast with GP-TM-43 of ENISA).

While the impact in terms of security is evident (devices can
be managed without users’ will), we observe that replay at-
tacks may lead to privacy issues. For example, the activation of
a recording function on a smart speaker may be used to record
the voice of a user without their explicit consent, opening the
door to new potential IoT tech-abuse phenomena [31]].
Mitigation. Possible mitigations could include the adoption
of a mutual authentication procedure. This would ensure that
only authorized parties can issue commands to the IoT device.
This solution should always be adopted in conjunction with
standard security protocols. Indeed, we can find an attempt
at an authentication procedure in the Tapo smartplug. Un-
fortunately, it is not performed via a security protocol, as it
suffers from a lack of randomness and key reuse. Hence this
device is still vulnerable to replay attacks. We suggest the
adoption of WPA3 that prevents traffic interception from a
malicious device in the same network also in the case the
network password is known. However, it is not effective in
the case of a compromised access point. In addition, we point
out that WPA2 is still widely deployed, thus the threat we
identified is very likely.

Limitations. While we have made our best effort to investigate
how IoT devices react to reply attacks, as a first attempt at this
space, this work has a few limitations.

Assessing Device Vulnerability. The agnostic nature of our tool
does not allow us to leverage customized vulnerabilities of a
target device. As a consequence, when our tool fails to perform
a replay attack on the device, it is not a guarantee that the
device is not vulnerable. As such, our findings represent a
lower bound of such vulnerability, using an approach that can
be automated, i.e., automatically detecting the effectiveness of
the attack. On the other hand, the fact that out of 20 potentially
vulnerable devices, REPLIOT succeeds in performing the



attack against 15 devices, confirms the efficacy of our tool.
Scalability. While every step of the validation of our approach
is fully automated, including the execution of function trigger
scripts, the creation of these scripts is a manual process that
needs to be repeated individually for every function tested on
each device. One mitigating factor is that devices within the
same categories can often reuse existing scripts with minimal
modifications. Lastly, our study is limited to the number of
popular devices in our testbed, and we do not investigate all
IoT devices on the market. However, REPLIOT is designed
to be device-agnostic and will easily scale to other devices.
Testing more devices and performing longitudinal studies will
be a valuable next step in future works; hence we make
publicly available our tool and data, to ease the reproducibility
of our experiments.

Non-Observable Functions. Our approach is designed to op-
erate exclusively with device functions that can be assessed
using trigger scripts. Certain functions, such as device main-
tenance or synchronization tasks, cannot be initiated directly.
To test whether the attack works with these functions, one can
follow manual steps.

Ethical Considerations. In our experiments we do not cause
any real threat on the Internet. All experiments are contained
within our own testbed. No traffic related to human activity
was collected during the experiments. When conducting the
experiments, we fully respected the ethical guidelines defined
by our affiliated organization, and we received approval. In
testing the functionality of REPLIOT, we exclusively test our
own devices, eliminating the privacy risk to others.
Feedback from Vendors. To this date, only TP-Link, the
manufacturer of the Tapo smart plug, has acknowledged the
identified issue and taken proactive steps by releasing a new
firmware to address the vulnerability. This corrective action
extends its positive impact to millions of Tapo devices, under-
scoring the significance of our work in enhancing the security
and resilience of IoT devices.

VII. RELATED WORK

In this section, we discuss the scientific literature related to
replay attacks in the IoT domain. To the best of our knowledge,
no proposal in the literature pursues the same goals of this
paper. The problem of replay attacks in IoT is acknowledged
in the literature [32]]. As a consequence, several scientific
works [33[|-[|35]] propose solutions to mitigate it. However, no
commercial device currently implements them.

Other papers are devoted to the detection of replay attacks
against IoT devices [36]-[38]]. Similarly, [39]-[41] focus on
detecting replay attacks against voice-activated services. How-
ever, the primary purpose of these works is to identify whether
a device is currently under a replay attack and these solutions
are integrated as part of an intrusion detection module, thus
proposing mitigation techniques for replay attacks. In contrast,
as explained in Section (Non-Goals), our paper addresses
the active automated execution of replay attacks with the goal
of assessing the vulnerability of devices to replay attacks.

Wara and You [42]’s study is the closest to our work
since it shows how replay attacks can be performed on IoT
devices supporting ZigBee. However, the tool proposed is not
agnostic and the experimental evaluation is quite limited (the
experimental validation is conducted on three devices only).

Other works [[17]], [43] actively perform replay attacks on
smart speakers. However, again, they are not device-agnostic
and the replay attack refers to record and replay the voice of
users to trigger commands, not testing generic functions of a
consumer I[oT device.

Finally, our work is closely aligned with a relevant technique
known as IoT fuzzing [44]. However, there are some inherent
distinctions. Fuzzing is not primarily designed for detecting
or preventing replay attacks. Fuzzing is a software testing
technique that involves sending intentionally malformed or
random data to a target to discover vulnerabilities. As a
matter of fact, our tool aims to replay legitimate messages
to verify whether possible authentication mechanisms put in
place by an IoT device can be bypassed. Indeed, our tool
preserves the original messages including potential signatures,
authentication tokens, nonces etc., thus it has more chances
than a fuzzer to craft messages that will be accepted by IoT
devices.

VIII. CONCLUSION

Due to the proliferation of IoT devices in smart home, the
protection of the local network segment is a crucial aspect to
take into consideration. In this paper, we focused on replay
attacks that can be performed by an adversary with access to
the local network to trigger functions on the devices without
the user’s will. We developed a tool, called REPLIOT, for
automatically testing replay attacks on consumer IoT devices.
The tool is designed to be device-agnostic, thus not requiring
prior knowledge of the specific devices. We employed this
tool to perform a large-scale experiment involving 41 devices
spanning different vendors and categories.

Our experiments reveal the existence of several vulnerable
devices or not compliant with safety guidelines, thus demon-
strating that this threat is real and can potentially harm users’
households.

As future work, we plan to extend our tool with new
features. Specifically, we intend to leverage Natural Language
Processing (NLP) techniques, enabling us to differentiate the
diverse commands associated with devices, facilitating the
precise triggering of specific actions.

To support further research, all software and data we pro-
duced as part of this work are publicly available at https:
//github.com/SafeNetloT/ReplayAttack.
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