
An Approach to Abstract Multi-stage Cyberattack
Data Generation for ML-Based IDS in Smart Grids

Ömer Sen∗, Philipp Malskorn∗, Simon Glomb∗, Immanuel Hacker∗, Martin Henze†‡, Andreas Ulbig∗
∗IAEW, RWTH Aachen Univserity, Aachen, Germany

Email: {o.sen, i.hacker, a.ulbig}@iaew.rwth-aachen.de, {philipp.malskorn, simon.glomb}@rwth-aachen.de
†Security and Privacy in Industrial Cooperation, RWTH Aachen University, Aachen, Germany

‡Cyber Analysis & Defense, Fraunhofer FKIE, Wachtberg, Germany
Email: henze@cs.rwth-aachen.de

Abstract—Power grids are becoming more digitized, resulting
in new opportunities for the grid operation but also new chal-
lenges, such as new threats from the cyber-domain. To address
these challenges, cybersecurity solutions are being considered in
the form of preventive, detective, and reactive measures. Machine
learning-based intrusion detection systems are used as part
of detection efforts to detect and defend against cyberattacks.
However, training and testing data for these systems are often
not available or suitable for use in machine learning models
for detecting multi-stage cyberattacks in smart grids. In this
paper, we propose a method to generate synthetic data using a
graph-based approach for training machine learning models in
smart grids. We use an abstract form of multi-stage cyberattacks
defined via graph formulations and simulate the propagation
behavior of attacks in the network. Within the selected scenarios,
we observed promising results, but a larger number of scenarios
need to be studied to draw a more informed conclusion about
the suitability of synthesized data.

Index Terms—Intrusion Detection, Smart Grid, Cyberattacks,
Machine Learning, Knowledge Graphs

I. INTRODUCTION

The cyber-physical characteristic of the power grid, in
particular the increasing penetration of information and com-
munication technology (ICT), addresses the issues of the
distribution grid with respect to structural changes resulting
from the integration of distributed energy resource (DER) [1].
In particular, it enables active grid operation at the distribution
grid level and provides the backbone for the realization of
smart grid (SG) concepts [2], [3]. This circumstance provides
not only new opportunities, but also new threats resulting from
the increasing interconnectedness of systems and actors [4].
The new threat landscape consists not only of threats aris-
ing from cyber domain interdependencies, but also of new
attack surfaces for cyberattacks that threaten the stability and
reliability of the grid [5]. To adequately address these new
threats, defense and countermeasures must be integrated as an
essential part of the SG infrastructure, encompassing a holistic
approach of preventive, detective, and reactive measures [6].
One challenge in integrating countermeasures in the form
of active security concepts into power grids is the consid-
eration of legacy compliance, especially for countermeasures
that actively interfere with grid operations [7]. More passive
countermeasures such as intrusion detection system (IDS) offer
the opportunity to support cybersecurity observability without

imposing restrictive requirements on existing infrastructures,
such as the performance specification of endpoint hosts [8].
More autonomous IDS build on Machine Learning (ML) that
uses training data from operational or attack scenarios to
classify anomalies or false positives from other IDS to support
Security Operation Center (SOC) [9]. However, this requires
attack data for the development and validation of these mea-
sures, especially data-driven approaches, which often cannot
be accessed for security or privacy reasons [10]. To address
these challenges, attack data are generated synthetically [11] or
under laboratory conditions [12]. Laboratory environments can
provide accurate data, but are costly to set up and consequently
inflexible and difficult to scale. Synthetically generated data
are more flexible and transferable to other use cases due to
their level of abstraction, but can also suffer in quality due to
inaccurate modeling and simulation.

To provide a basis for studying the cybersecurity of the SG
by enabling the generation of attack data, a viable approach
that compromises accuracy and effort is required. More specif-
ically, the challenges we address in this paper are:

(i) Replication of the SG with all layers relevant for attack
data synthesis and considering multi-stage patterns.

(ii) Execution of multi-stage attacks that replicate consistent
and flexible attack patterns for dataset diversity.

(iii) Generation of adequate data sets using processable for-
mats and consistent data structures based on use cases.

Therefore, in this paper, we propose a multi-stage approach
to synthesize cyberattack data that allows generating datasets
for ML based IDS in an abstract manner. To this end, we
present an approach based on a knowledge graph that abstracts
the network and multi-stage attack procedures in SG applica-
tion scenarios. In particular, our contributions are:

1) We present the state of the art in synthesizing multistage
cyberattack data and highlight the challenges of attack
data generation (Section III).

2) We describe the overall approach consisting of modeling,
knowledge graph representation, and simulation of multi-
stage cyberattacks in SG (Section IV).

3) We demonstrate and discuss the dataset generation capa-
bilities and quality of our proposed approach through case
studies and comparisons with real datasets (Section V).

Author’s version of a paper accepted for publication in Proceedings of 2023 IEEE Belgrade PowerTech.
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

31
2.

13
73

7v
1

 [
cs

.C
R

]
 2

1
D

ec
 2

02
3

II. BACKGROUND

In this section, we describe the structure of SGs (Sec-
tion II-A), anomaly detection (Section II-B), multi-stage cyber-
attacks (Section II-C) and attack data synthesis (Section II-D).

A. Smart Grid

Based on Purdue Enterprise Reference Architecture (PERA)
for Industrial Control System (ICS), SGs are composed of
five main levels: field devices, control systems, and manage-
ment/operation as well as corporate systems [13]–[15]. Field
devices, Level 0, make up the physical infrastructure of the
SG and are responsible for monitoring and controlling various
aspects of the SG. Control systems, Level 1, process and ana-
lyze the data collected from the field devices to make decisions
and perform control actions. Management systems, Level 2,
provide higher-level oversight and coordination of the SG and
provide a connection to external networks and systems. The
third level, Level 3, handles the management of production
processes, such as managing batches, utilizing manufacturing
operations management systems and manufacturing execution
systems, and maintaining records of data. Level 4 encompasses
systems like enterprise resource planning software, databases,
email servers, and other tools that are used for logistics and
communication, as well as for data storage. Lastly, the fifth
level, Level 5, is the enterprise network, which is not part of
the ICS but is used to gather data from the ICS systems to
make business decisions.

B. Anomaly Detection

SGs, which are a type of ICS, are vulnerable to cyberattacks.
Therefore, it is important to develop methods for detecting
anomalies in network traffic that may indicate the presence of
a cyberattack [16]. One approach to anomaly detection in SGs
is to analyze network traffic patterns [17]. By analyzing sensor
readings, control signals, communication logs, and network
traffic it is possible to identify deviations from normal behavior
that may indicate the presence of a cyberattack [18]. Another
aspect to consider in anomaly detection for SGs is the possi-
bility of multi-stage cyberattacks [19]. These types of attacks
involve multiple steps, each of which may be difficult to detect
individually. Therefore, it is important to consider not only
individual anomalies, but also the potential for multiple attacks
to be connected in a coordinated fashion. Overall, anomaly
detection in SGs requires a combination of techniques that can
analyze network traffic patterns and identify deviations from
normal behavior. By using ML algorithms and other advanced
techniques, it is possible to detect anomalies that may indicate
the presence of a multi-stage cyberattack and take appropriate
action to prevent damage to the system [20].

C. Multi-Stage Cyberattack

Multi-stage cyberattacks on SGs can be difficult to detect
and mitigate due to their complexity and the ability for
attackers to adapt and evolve their tactics [21]. To better
understand and combat these types of attacks, researchers
have developed various methods for structuring and analyzing

multi-stage cyberattacks in a systematic and structured way.
One common approach is the use of kill-chain like concepts,
which divide the attack process into distinct stages such as
reconnaissance, weaponization, delivery, and exploitation [22].
Another approach is the use of open-source datasets, such
as the MITRE ATT&CK Matrix, which catalogs observed
cyberattack incidents and can be used to identify patterns and
trends in the attack process [23], [24]. The MITRE ATT&CK
Matrix for ICSs is a comprehensive tool used to catalog
observed cyberattack incidents in the ICS environment. It maps
96 types of attacks to 11 types of tactics and 67 new techniques
specific to the ICS environment. The matrix is useful resource
for generating synthetic multi-stage cyberattack data for ML-
based anomaly detection and help security professionals un-
derstand and detect the various methods and tactics used by
adversaries in attacks on ICSs.

D. Attack Data Generation

The generation of an attack dataset for anomaly detection in
ICSs is a critical aspect of security research. One of the major
challenges in generating multi-stage cyberattack data for ML-
based anomaly detection is the reproducibility of the attack
sequence [25]. It is essential to design an attack sequence that
is suitable for the purpose of the dataset and implement it
through automation using an integrated representation. This
allows for the reproduction of the attack sequence and enables
the explanation of the abnormal dataset information [26].
Additionally, generating a diverse range of attack sequences
with specific requirements can be difficult, so a model that can
reflect more diverse attack sequences is needed. One approach
for generating an attack dataset is to analyze existing attack
cases from the viewpoint of the MITRE ATT&CK framework,
which catalogs observed cyberattack incidents and maps them
to specific tactics and techniques. Another approach is to use
an integrated representation, such as the hidden Markov model
(HMM), to reproduce a sequence of attacks in a systematic and
structured way. This allows for the creation of diverse attack
sequences that reflect the reality of observed attacks and meet
specific requirements, such as reproducibility and diversity.

III. RELATED WORK & PROBLEM ANALYSIS

In this section, we present related work (Section III-A) and
give a problem statement for this work (Section III-B).

A. Related Work

One direction within this research field are approaches that
generate attack data in the lab. An example of this is the
work of Sharafaldin et al. [27]. A dataset called CICIDS2017
was generated via a lab experiment. This contains recent
attacks from DoS, DDoS, brute force, XSS, SQL injection,
infiltration, port scan, and botnet. Another interesting approach
to generating new datasets is presented by Cordero et al. [28].
Cordero et al. have developed the ID2T framework, which
generates reproducible datasets for ML based IDS. Instead of
generating more datasets, Pandey et al. [29] attempt to modify
existing datasets. To test this method, the dataset UNSW-NB15

is considered. This consists of normal traffic and a variety of
attacks from nine categories. With the Deep Auto Encoder
(DAE) and the Wasserstein Generative Adversarial Network
(WCGAN), additional data are generated and added to the
original dataset. The main goal of this work is to investigate
the detection quality of IDS trained on a synthetic dataset. For
this purpose, we select a suitable ML based IDS method that
exploits the structure and temporal dynamics of the dataset.
For instance, Gwon et al. [30] investigate whether Long Short-
Term Memory (LSTM) networks are suitable for binary clas-
sification of network packets. The LSTM network classifies
each network packet as part of normal or as part of malicious
traffic. Oliveira et al. [31] investigate the performance of
different ML models for anomaly detection. In this context,
the performance of a Random Forest, a MultiLayer Perceptron
(MLP), and an LSTM network on the CIDDS-001 dataset are
compared. The results show that the LSTM network performs
with an accuracy of 99.94% and a F1 score of 0.91 provides
the best results.

B. Problem Analysis

The process of creating datasets in a laboratory environment
involves planning and implementing the infrastructure and
scenarios, monitoring the system during execution, recording
data, and ensuring proper execution. This process is highly
labor-intensive and requires expertise in various subfields of
computer science such as networks and cybersecurity. How-
ever, these datasets are not modifiable, making it difficult to
add or remove attacks or change network topologies without
re-running the experiment. Additionally, attack data is often
underrepresented in these datasets as normal network traffic
usually dominates. Care must be taken to prevent attacks on
the network while data is being recorded to avoid compro-
mising the dataset. This becomes more difficult to ensure
depending on the size and complexity of the observed network.
In addition, a separate network must be set up in the laboratory
to record normal traffic, or a procedure must be implemented
to obscure identifying information in the data for privacy
reasons. There is also the problem of limited diversity in
using public datasets to create additional datasets due to their
limited availability. Researchers in ML also face the challenge
of evaluating the performance of their models using only one
dataset, leading to models that may not perform well in real
network environments. This is further compounded by the lack
of suitable datasets for training ML models.

IV. ABSTRACT MULTI-STAGED ATTACK DATA SYNTHESIS

To overcome the problems mentioned in Section III-B, this
paper presents an approach that abstracts multi staged attack
data and generates it synthetically. To achieve this goal, an
abstracted data format based on real data must first be devised.
In the second step, a framework for synthetic generation of this
data must be developed. For this work, different forms of data
representation for the attack data are examined. Among them
are network packets, network flows and IDS alert logs. The
decision which of these data representations are most suited

for the abstracted data synthesis is based on the following
criteria:

(D1) Representation of data that is accessible in ICS and
enterprise networks.

(D2) Representation of data that is collected in a standardized
format.

(D3) Representation of data that is accessible in a human-
readable and understandable form.

The investigation of the different forms of representation of
the attack data has shown that IDS-alert logs are suitable
for abstraction and synthesis as they fulfill all requirements.
For Requirement (D1), the survey A SANS 2021 Survey:
Operational Technology (OT)/ICS Cybersecurity shows that
62% of grid operators use signature-based IDS [32]. Require-
ment (D2) is satisfied as there are standardized file formats for
IDS-alert such as the unified2 format used by the Snort IDS
[33]. The last Requirement (D3) is met because IDS-alerts are
designed to provide information to grid operators such that
they can initiate countermeasures.

A. Requirement Analysis

In this section, requirements for the data synthesis frame-
work are identified. The requirements can be divided into func-
tional and non-functional requirements. Functional require-
ments describe the desired functionalities of the system while
non-functional requirements describe the boundary conditions
and quality in which those functionalities must be provided.
The non-functional requirements include:

(N1) The framework must not use any additional hardware or
virtualization.

(N2) The framework must not use additional applications for
data generation.

(N3) The framework must not use attack signatures from
existing IDS.

(N4) The framework must not require existing attack datasets.

Requirements (N1) and (N2) ensure that the effort for the
configuration and setup does not exceed the effort of lab
attempts. This is necessary because data from laboratory tests
are closer to reality and should therefore be preferred if the
production effort is the same. Requirements (N3) and (N4)
ensure that poor data quality of existing datasets or poor
documentation of existing IDS signatures do not affect this
work. The following functional requirements set request to
the synthesis framework and the abstract data:
(F1) Attack data must be generated in the form of identified

data representation, i.e. as IDS log files.
(F2) Attack data must contain False Positives (FPs).
(F3) Attack data must contain False Negatives (FNs).
(F4) Networks must be flexible and scalable, i.e. must be

freely configurable.
(F5) Networks must be representative, i.e. contain Enterprise

and ICS Devices.
(F6) Attacks must be diverse, i.e. be freely configurable.
(F7) Attacks must be multi-staged.

TABLE I
DATA FIELDS OF THE ABSTRACTED IDS ALERTS.

Field Description
Source-IP IP address of the attacker.
Target-IP IP address of the target.
Source-Platform MITRE platform of the attacker.
Target-Platform MITRE platform of the target.
MITRE-Tactic Detected MITRE tactic.
MITRE-Technique Detected MITRE technique.
Sensor-IP IP address of the detecting sensor.
FP-Flag A flag that indicates if the alert is FP.
Attack-Label The attack label indicates which multilevel

attack generated the alert.

The framework should generate data in the form of abstracted
IDS alert logs, taking into account the different probabilities
of FNs and FPs in real-world scenarios. Users should have
the capability to configure networks and attacks for defining
flexible and scalable scenarios. To provide a representative
depiction of SG, the networks should include devices from
both enterprise and ICS layers. The framework should be able
to simulate both FNs and FPs cases based on IDS-detection
accuracy and placement in network. Multi-stage attacks are
more complex and have multiple phases or stages, rather than
being a single action. To simulate different scenarios, the
configurable attacks should be able to represent and simulate
complex and diverse attack strategies and actions. This way,
the framework will be able to provide a realistic representation
of how IDS behaves.

B. Data Abstraction

In this section, the data format selected for synthesis is
reduced to a simplified representation. In the following, the
individual data fields of Snort’s unified2 format are used as a
basis because it is efficient and can store large amounts of data.
MITRE ATT&CK matrix is used to abstract the cyberattack
data and focus on essential information for cyberattack analy-
sis, such as tactics and techniques used by attackers. This form
of abstraction provides an efficient way to store and analyze
large amounts of IDS data and allows for rapid identification
of patterns and trends in the data. Table I gives an overview
of the data fields of the abstracted data format.

C. Framework Overview

The framework architecture is designed to provide an
overview of the system for data synthesis. It is implemented in
Python, which is a suitable programming language for proto-
typing due to its debugging capability and high abstraction.
The system architecture is divided into different modules,
as shown in Figure 1. It illustrates the inputs, outputs and
interactions of the different modules. All inputs to the system
are in Resource Description Framework (RDF) data in Turtle
format. For handling RDF, the Python library rdflib [34]
is used, which allows for reading, writing and querying
RDF files using SPARQL. To use RDF in combination with
Shapes Constraint Language (SHACL), another library called
pyshacl [35] is used, which allows for testing RDF data
against previously defined constraints. In the following the

Fig. 1. Overview of the developed data synthesis framework.

interaction of the individual modules is addressed. First of all,
the Network Manager reads a network configuration, which
contains the description of a network. Network-Manager then
generates a network graph from this information and provides
functions for path finding. Next, the network graph is handed
over to the attack coordinator. This module reads the attack
configuration, which defines a multi-staged attack. Based on
this configuration, a set of attack instances is determined
by executing the attack on the network graph. These attack
instances, along with the network graph, are then passed to the
simulator. The simulator uses this information to generate IDS
alerts for selected attack instances by checking if the attack
communication is detected by an IDS. In addition, FN and
FP are generated. The rate of FN and FP can be controlled.
Finally, the simulator bundles the generated alerts into a csv
file. Due to the efficient use of the integrated SPARQL query
language in rdf, the generation is done in a reasonable time
frame.

D. Model Network

The network is modeled by a connected and undirected
graph Gnet = (Vnet, Enet). In our model, an edge between
two nodes v1, v2 ∈ Vnet exists if and only if there is a defined
communication connection between them. The set of nodes
Vnet consists of four types of nodes, which can be used for
constructing a network. These can be found in Table II. Each
node must contain at least an IP address and a MITRE plat-
form. The IP address must be unique, because in this frame-
work it is used to identify nodes. MITRE platforms are a set
of platforms that are referenced as possible targets by MITRE
Techniques. These are later used to find possible targets for the
configurable multi-stage attacks. For both attributes sets can be
defined. The set IP-addresses can be defined with a Range of
ipv4 or ipv6 addresses and the set Platforms is a subset of all

TABLE II
TYPES OF NODES IN THE NETWORK GRAPH.

Node Type Description

Computer
Computers represent all devices in the network,
which provide or use services for the control of
the SG.

Router Routers represent the edge router of the net-
work.

Switches
Switches connect the individual components of
the network and are possible nodes for the
implementation of IDS.

Firewalls Firewalls restrict the communication of the net-
work and can be configured by rules.

MITRE Platforms, which can be selected based on the network
being modeled. For instance, it can include IP addresses in
the range of ”172.32.0.0 - 172.47.255.255”, ”192.168.0.0 -
192.169.255.255” or ”198.20.0.0 - 198.255.255.255”.

IP-addresses ={0.0.0.0, ..., 255.255.255.255} (1)
Platforms ={Network, Windows, Linux, ..., Containers,

Control Server, Data Historian, ...,} (2)

The Set of all nodes Vnet consists of the union of all node sets
Vnet = {Computer} ∪ {Router} ∪ {Switches} ∪ {Firewalls}.
In the following the attributes of the individual node types are
specified. Computers and routers contain only ip and platform
therefore this can be formally stated as:

Computer ={(pi, ipi)|pi ∈ Platform, ipi ∈ IP-addresses} (3)
Router ={(pj , ipj)|pj ∈ Platform, ipj ∈ IP-addresses}

(4)

Switches must also contain the information whether an IDS
has been implemented. A Network-based IDS collects data
from a switch via network taps or mirrored ports (SPAN-Ports)
configured on the switch to detect and alert on suspicious
network activity. For this an additional boolean variable Is-
NIDSActiv must be added. If the value is True, it is assumed
that a IDS is active at this switch. The set of Switches is
formally stated as follows:

Switches ={(pk, ipk, IsNIDSActiv)|
pk ∈ Platform,

ipk ∈ IP-addresses,
IsNIDSActiv ∈ {True, False}} (5)

Finally, the set of firewalls and their rules must be defined.
The rules consist of a tuple with three items, which refers to
a switch s1, a switch s2 and a computer c1.

Firewalls ={(pl, ipl, R)|
pl ∈ Platform,

ipl ∈ IP-addresses,
R ⊆ Rules} (6)

Rules ={(ci, sk1, sk2)|
ci ∈ Computer,
sk1, sk2 ∈ Switches} (7)

To understand how the rules work, the possible edges and the
concept of communication for Gnet has to be defined first. The
edges Enet of the network graph Gnet consists of a subset of
the cross product of Vnet with Switches.

Enet ⊆ {(e1, e2)|e1 ∈ Vnet, e2 ∈ Switches} (8)

This implies that each edge must be connected to at least one
switch. A device v1 can start to communicate with another
device v2 if there exists a path from v1 to v2, where each
firewall allows the device v1 to communicate. A possible paths
can contain either no, one, or several firewalls. In case there is
no firewall on the path, device v1 can communicate with device
v2. In the two other cases, each firewall must contain a rule
that allows communication. The evaluation of the firewall rules
works the same way in both cases. Without loss of generality
we can consider the following path:

v1 → ... → s1 → f1 → s2 → ... → v2 (9)

For v1 to communicate with v2, the firewall f1 must contain
the rule (s1, s2, v1). Here s1 references the switch that is on
the path directly before the firewall, s2 references the switch
that is directly after the firewall and v1 is the device which
would like to start the communication. Over the given switches
each rule gets a direction, this is reflected in the fact that
the communication in the graph Gnet is not symmetrical. In
this way, the communication in the network can be precisely
controlled.

An example of a simple network graph can be seen in Fig-
ure 2. This contains seven nodes, including three computers,
two switches, a router and a firewall with a rule. This rule
allows computer with IP 192.168.0.20 to communicate with
computer 192.168.0.22.

Fig. 2. An example network graph.

E. Model Attacks

Multi-staged attacks are represented as directed graphs
Gatt = (Vatt, Eatt). It should be noted that these are not attack
graphs in a traditional sense. The set of nodes Vatt represents
wildcards, which later have to be filled with nodes from the
network graph to execute an attack. Vatt consists of a subset
of the natural numbers:

Vatt ⊆N (10)

The edge set Eatt represents the single step attacks that occur
between the nodes and together represent the multi-staged
attack. To model the attacks Eatt the techniques and tactics of
the MITRE ATT&CK Matrix are needed. Both are represented
by a set containing the IDs.

Tactics ={T0100, T0101, ..., T0111,
T0001, T0002, ..., T0011,
T0040, T0042, T0043} (11)

Techniques ={T0800, T0801, ..., T0891,
T1001, T1003, ..., T1649} (12)

With this information, Eatt can be formally stated as:

Eatt ⊂{(v1, v2, step, tactic, technique)|
v1, v2 ∈ V,

step ∈ N,

tactic ∈ Tactics,
technique ∈ Technique} (13)

Each attack configuration also contains exactly one root node
from which the attack originates. It additionally contains a
single MITRE platform, which specifies the device type where
the attack starts. For the remaining nodes, possible MITRE
platforms can derived from the incoming edges. For this,
the MITRE ATT&CK matrix is used again. It provides a
mapping TechniqueToP latforms that assigns each MITRE
technique to a subset of the MITRE platforms. This subset
represents possible targets for the technique. If a node has
only one incoming edge, the platforms can be found directly
via TechniqueToP latforms. If a node has several incoming
edges, all platforms for the individual techniques must first
be determined using TechniqueToP latforms. After that the
intersection of the different platform sets must be formed. The
Platforms that are in the intersection are common goals of the
different techniques. An example of an attack configuration
Gatt can be seen in the Figure 3.

Fig. 3. A example attack graph.

F. Data Synthesis

The attack configurations discussed in Section IV-E are
now used together with the network configurations from
Section IV-D to generate appropriate IDS alerts. For this,
the instances of the attack configuration for the network
configuration must be found. An instance of an attack is
represented by a mapping function, denoted as F , which
assigns nodes from the set of attack nodes, Vatt, to nodes
in the network, Vnet. For any pair of nodes, x1 and x2, in
Vatt that have an edge between them, denoted as Ex1, x2,
the function F must map the nodes such that F (x1) and
F (x2) are in Vnet and F (x1) can communicate with F (x2),
as outlined in Section IV-D. Additionally, for each node x1

in Vatt, the platform of the node F (x1) must be present in
the platform set of node x1, as outlined in Section IV-E. To
find all instances, a complete graph traversal is performed
using an algorithm described in Listing 1. The function
network graph.get step values(attack edges) is used to
find a set of possible solutions for each attack step in Eatt

that comply with the conditions stated above. These sets are
called step values. To generate instances from these partial
solutions, the function solve attack step is called for each
attack step with the corresponding step values. The result
is a list of dictionaries, where each dictionary represents the
function F and thus represents an instance of an attack.

1
2 def s o l v e a t t a c k s t e p (a t t a c k e d g e , s t e p v a l u e s , i n s t a n c e s) :
3 n e w i n s t a n c e s = []
4 x1 , x2 = a t t a c k e d g e
5 f o r i n s t a n c e in i n s t a n c e s :
6 f o r n1 , n2 in s t e p v a l u e s :
7 i co py = i n s t a n c e . copy ()
8
9 i f i co py [s r c] i s None and i c opy [t a r g e t] i s None :

10 i co py [s r c] = n1
11 i co py [t a r g e t] = n2
12 n e w i n s t a n c e s . append (i co py)
13
14 e l i f i c opy [s r c] == n1 and i c opy [t a r g e t] == n2 :
15 n e w i n s t a n c e s . append (i co py)
16
17 e l i f i c opy [s r c] i s None :
18 i f i co py [t a r g e t] == n2 :
19 i co py [s r c] = n1
20 n e w i n s t a n c e s . append (i co py)
21
22 e l i f i c opy [t a r g e t] i s None :
23 i f i co py [s r c] == n1 :
24 i co py [t a r g e t] = n2
25 n e w i n s t a n c e s . append (i co py)
26 re turn n e w i n s t a n c e s
27
28 def f i n d a l l i n s t a n c e s (ne twork graph , a t t a c k g r a p h) :
29 a t t a c k e d g e s = a t t a c k g r a p h . g e t e d g e s ()
30 s t e p v a l u e s = ne twork g raph . g e t s t e p v a l u e s (a t t a c k e d g e s)
31 i n s t a n c e s = []
32 f o r i , p a i r in enumerate (a t t a c k e d g e s) :
33 i n s t a n c e s = s o l v e a t t a c k s t e p (p a i r , s t e p v a l u e s [i] , i n s t a n c e s)
34 re turn i n s t a n c e s

Listing 1. Algorithm for finding all instances of an attack on a network.

Figure 4 shows an attack instance of the attack defined in
Figure 3, executed on the network in Figure 2. To verify
that this instance is valid, there are several conditions that
must be met. Firstly, the root of the attack must be a node
that uses the Linux MITRE platform, which is confirmed
in this case. Secondly, the MITRE techniques used in the
attack must match the platforms of the target nodes. In this
instance, node 192.168.0.21 uses technique T1190 to attack
node 192.168.0.20. T1190 is known to target Linux, Network,
Windows and macOS platforms, thus the platform condition is
fulfilled. In the second step, node 192.168.0.20 uses technique

TABLE III
THIS TABLE SHOWS THE ALERTS THAT WERE GENERATED WITH THE

EXAMPLE INSTANCE IN FIGURE 4.

Name Alert 1 Alert 2
Source-IP 192.168.0.21 192.168.0.20
Target-IP 192.168.0.20 192.168.0.22
Source-Plattform Computer Computer
Target-Plattform Computer Field Controller
MITRE-Taktik TA0001 TA1190
MITRE-Technik TA0106 TA0106
Sensor-IP 192.168.0.2 192.168.0.2
FP-FLAG False False
Attack-Label Attack 1 Attack 1

T0836 to attack node 192.168.0.22, T0836 can target Control
Server, Field Controller, HM and SIS, fulfilling this condition
as well. Finally, the nodes must be able to communicate with
each other. There is no firewall between nodes 192.168.0.21
and 192.168.0.20, they are connected to a switch, they can
communicate with each other. However, on the path between
nodes 192.168.0.20 and 192.168.0.22, there is a firewall which
allows communication for node 192.168.0.20 on the path
20 → 2 → 3 → 4 → 22 (IP addresses without Prefix
192.168.0.). Therefore, all conditions are met and this instance
is valid. The next step is to convert the instances of the attack

Fig. 4. A instance of the Attack from Figure 2 executed on the network graph
from Figure 3.

into IDS alerts. This process requires the mapping function
F , and the network graph Gnet and the attack graph Gatt.
For each attack edge (x1, x2) ∈ Eatt, it is verified if the path
between the nodes F (x1) and F (x2) in the network graph
contains a switch that is configured as IDS. If such a switch
exists, an alert is generated with the attributes listed in Table I.
The IP addresses and MITRE platforms are obtained from the
network graph Gnet, while the MITRE tactic, technique and
attack label are obtained from the corresponding edges in the
attack graph Gatt. These alerts are considered True Positives
(TPs), thus the FP flag is set to False. The alerts generated
for the instance in Figure 4 can be found in Table III. There
are two methods for adding FNs to the generated IDS alerts.
One method is to selectively omit certain IDS devices from

the network, which will increase the rate of FNs since attacks
will go undetected. Another method is to randomly remove
TPs from the data, which allows for more precise control over
the proportion of FNs. This second method will be used here.
In addition to generating FNs and TPs, it is also necessary
to generate FPs. To do so, two nodes, x1, x2, are randomly
selected from the network graph Gnet, and it is checked if x1

can communicate with x2, and if there is an IDS device on
the communication path. If such nodes are found, a suitable
attack is randomly selected from the MITRE ATT&CK matrix
and an alert is generated with it.

V. EVALUATION & DISCUSSION

In this section, we evaluate the effectiveness of using
synthesized data for ML-based IDS by testing the performance
of MLP and LSTM models, which are trained with synthesized
data. The models are tested on both synthesized data and a
data set from a laboratory experiment, evaluating both alert
classification and attack detection. Additionally, the models are
tested with both the full set of alert attributes and a reduced
set of attributes that exclude the MITRE Tactic and Technique.

A. Procedure for Investigation

The investigation will be carried out as follows. First,
configurations for the data synthesis framework are created for
various scenarios. Then IDS-alert data sets with the required
properties (TP-rate FN-rate and FP-rate) are generated. Finally,
MLP and LSTM models are trained on this data and the
performance will be measured. For the LSTM network, 2
layers are used. The first is an LSTM layer with 300 units
and a dropout of 0.2 units and a dropout of 0.2. This layer
receives a two-dimensional input whose size is equal to the
feature vector times the length of the sequence. Three layers
are used for the MLP. These include an input layer, a hidden
layer, and an output layer. The input layer has the size of the
feature vector. For the hidden layer, a dense layer is always
used in the MLP. This has a size of 200 and uses the ReLU
function as activation function. To give an indication of the
performance on real data, the ML models, which are trained
on the synthesized data, getting tested with the data from a
lab experiment. For this purpose, the Packet Capture (PCAP)
file of the laboratory experiment must be manually transferred
to the abstract data format (cf. Section IV-B).

B. Scenarios

The network configuration used in the study were developed
using the PERA and the National Institute of Standards and
Technology (NIST) publication Guide to Industrial Control
Systems Security. The NIST publication contains recommen-
dations for securing ICS networks and, in particular, struc-
tures for network architectures [36]. The multi-stage attack
configurations used in the study were created using the ICS
kill chain and the MITRE software database. The ICS kill
chain describes cyberattacks that aim to destroy the ICS
infrastructure or temporarily disrupt production. The MITRE
software database divides software into tools and malware.

For each software, the MITRE techniques used are listed. In
addition, each technique has an explanation of exactly what
it is used for. The created configurations replicate attacks
of known malware. Among them are Stuxnet, Industroyer,
WannaCry and PLC-Blaster.

C. Data Set Creation

To generate data with the presented framework in a way
that ML models can utilize them, larger datasets have to be
generated. In this work, datasets were generated by producing
IDS alerts for a specific network configuration with a set of
different attacks. The number of alerts for an attack configu-
ration can be chosen arbitrarily. In addition, attributes of the
whole dataset, such as the ratio of TP to FP or TP to FN, can be
controlled. This is helpful to generate the appropriate training
datasets for the different applications of the ML models. In our
case these are the alert classification and the attack detection.

D. PCAP Transformation

The data of the laboratory experiment contains the network
traffic of a test network in which the WannaCry ransomware
is spreading [37]. To make the network packets of a PCAP
file usable for our ML models, they first have to be converted
into the abstracted IDS alerts. To generate IDS alerts from
a PCAP file, the IDS Snort is used. Snort is a rule-based
IDS and can also apply rules to archived data in the form
of PCAPs [33]. In this work the Emerging Threats ruleset
is used [38]. By applying the ruleset, the PCAP file with
46654 network packets is converted into a log file with 7874
alerts. This list contains a lot of duplicate alerts. To filter
them out, duplicates that follow each other directly in time
are removed. This reduces the number of alerts to 5406. These
generated alerts contain a timestamp, the rule ID, a description,
the protocol and the IP addresses. The number of alerts must
be further reduced to manually assign labels. For this purpose,
the priorities specified in the definition of each rule are used.
All alerts with a low priority are removed. After this step,
66 alerts remain, which were generated by seven different
rules. For these 66 alerts we have to manually assign MITRE
ATT&CK tactics and techniques, while the alerts generated
by the same rule get the same tactics or techniques. Using
the manually assigned MITRE information and the knowledge
about the platforms of the devices in the PCAP, the 66 alerts
are transferred into the abstracted alert format. The Sensor ID
attribute is ignored because the PCAP file does not contain any
information about sensors. The FP label is set to False and the
Attack label is set to WannaCry, since the PCAP contains only
the WannaCry attack. FPs are needed to complete the dataset.
These are generated using the synthesis environment for the
period of the WannaCry attack. The final data set has 10 times
as many FP as TP. Thus, the data set consists of 66 TP and
660 FPs.

E. Result

The results in this section were generated through a thor-
ough process of training and testing the ML algorithms

multiple times. The consistency in the results indicates the ro-
bustness of the models and the lack of significant difference in
multiple runs of the algorithm makes it unnecessary to include
standard deviation in the graphs. Additionally, the models have
not been fine-tuned to their full potential, indicating room for
improvement. Therefore, these results can be considered as a
strong starting point for further optimization and refinement.
The first experiment tests the performance of the ML models
for alert classification. Here, the ML models should recognize
the TP and thus separate them from the FP to simplify the
manual processing of IDS alerts by the operator of the SG.
For this two datasets were generated with 0% FN and with a
TP to FP ratio of 100%. Alerts for attacks were generated
until 2000 alerts were collected for each attack mentioned
in Section V-B. This means that the datasets contain a total
of 8000 TP and 8000 FP, this results in a balanced dataset.
The MLP and LSTM are trained on the first data set and
tested on the second one. The results of this test can be
shown as a roc curve because we are looking at a binary
classification tested on a balanced dataset. This roc curve is
shown in Figure 5. It was expected that the LSTM would
perform better than the MLP, since the LSTM can correlate
successive alerts and thus derive further insights. The MLP,
on the other hand, can only look at individual alerts. The roc
curve shows that the LSTM performs better on the whole data
set as well as on the data set which only uses the attributes
source-IP, target-IP, source-platform and target-platform. Next,

Fig. 5. Alert classification results on synthesized data. xaxis ∈ {0, 0.2} and
yaxis ∈ {0.6, 1.0}

the performance of the ML models trained on the synthesized
data is tested on the laboratory data set from Section V-D.
The results are visualized here as bar diagram of the TP rate
and the FN rate. The roc curve cannot be used here because
this is not a balanced data set. On the complete dataset the
performance of the models is very good, reaching a TP rate
of 0.99 and on the subset of the data set a TP rate over 0.8.
The expected performance difference between the two models
cannot be confirmed here. Here, the LSTM model no longer
provides the expected advantage. The next experiment tests the

Fig. 6. Alert classification results on laboratory data.

performance of the ML models for attack detection. Here, the
ML models should recognize the ongoing Attack so that SG
operators can take appropriate countermeasures. For this two
data sets were generated with 0% FN and with a TP to FP ratio
of 0.25. Again, alerts were generated until 2000 alerts were
collected for each attack. This means that the data sets contain
a total of 2000 for each attack and 2000 FP, so again balanced
but over 5 classes. In this experiment, the ML models must
assign the alerts to one of these 5 classes: Stuxnet, Industroyer,
WannaCry and PLC-Blaster or False-Positive. The MLP and
LSTM are trained on the first data set and tested on the second
one. The results of this test can be shown as bar diagram,
which takes the accuracy and recall into account. The class of
false positives (n.A. = no attack) is considered individually,
since there should be as few TP alerts as possible sorted into
this class to not miss any attacks in the network. The results
are shown in Figure 7. The results for the detection of FP (or
no attack) for both models do not differ significantly, just as in
the previous experiment. This can be seen from the fact that the
Precision and the Recall for the class no Attack are in the same
region. When detecting to which attack an alert belongs, alerts
must be correlated to improve detection performance, since
the same alert can belong to multiple attacks. This reveals the
strength of LSTM. The average precision and recall across all
classes is 10 percentage points higher with LSTM than with
MLP. This holds for the whole data set as well as for the
subset. Lastly, the performance of the ML models trained on
synthesized data of the previous experiment is tested on the
laboratory dataset. The results are shown in Figure 8. Again,
the advantages of the LSTM are no longer apparent.

F. Discussion

In this section, the results of Section V-E are critically re-
viewed. Although the results of the ML models are promising,
this is not an indication that proposed approach is transferable
to real scenarios for the following reasons. The results of
the LSTM were always better than those of the MLP in the
experiments with the synthetic data. This indicates that the

Fig. 7. Attack detection results on synthesized data (n.A = no Attack).
yaxis ∈ {0.5, 1.0}

Fig. 8. Attack detection results on laboratory data (n.A = no Attack).

synthetic data contains a structure that can be recognized by
the LSTM. The data from the laboratory experiment did not
show such a clear performance advantage for the LSTM. This
suggests that the attacks in the lab data do not have the same
structure. This could be due to the manual steps necessary to
convert the PCAP into a usable format. A second reason could
be that in the data set the FP is so strongly overweighted. This
could have made the examined sequence length of the LSTM
too small. Another point that needs to be addressed is the
performance of the ML models. The TP rate of the models
is very close to 100%. This is usually a sign that the models
are being used incorrectly or that the training data contains
data that should not be there, such as labels. In our case, it
is likely that the models can separate the TP and FP alerts
too well via the MITRE tactic and technique attribute. In the
attack configurations only a small subset of all techniques are
used. This means that a large part of the FPs can be detected
by their techniques, because they are exclusively used in the
FPs. This leads to the next problem is the FP generation. The

FP from the synthesis environment are randomly generated. As
already stated this is a problem because the attacks configured
in the study does not cover all techniques. FP found in real
environments are not random and can occur for many different
reasons, such as bad configurations or hardware errors. Also,
the framework and the ML models were not tested extensively.
The reason for this is that all configurations in this work were
configured manually. The results were generated with a set of
4 attack configurations and only one network configuration. To
make a statement about whether the synthesized data can be
used for ML based IDS, these test cases should be greatly
expanded. Nevertheless, synthetic data has been shown to
have many advantages. Among them are availability and the
flexibility to generate data for different problems. Another
advantage is that the data can be generated in a way that they
are optimally suited for training ML models.

VI. CONCLUSION

To improve the security of SGs, ML-based IDSs are being
implemented to detect attacks at an early stage. However, these
systems require training data, which is often not available or
suitable. This work investigated whether abstracted and syn-
thetically generated data can be used to train ML-based IDSs.
The investigation focused on IDS log files as a suitable data
format for abstraction and synthesis. A system was presented
that simulates multi-stage attacks on a network graph using
the MITRE ATT&CK matrix, and generates IDS log files
containing TPs, FPs, and FNs. The influence of the individual
parameters of the abstracted data format on the performance
of the ML models was investigated, and it was found that the
MITRE ATT&CK related information in the IDS log files had
the largest influence on their performance. The ML models
were also tested on a dataset containing real attack data and
were able to separate TP from FP and assign them to correct
attacks. The resulting performance is promising in terms of
training anomaly detection systems for SG without requiring a
large number of datasets for training. Future work will address
the study of synthetic, multi-stage cyberattacks in laboratory
environments using digital twin approaches where the refer-
ence grid is replicated in our framework and a comparision
with the lab is performed. In addition, other constellations
of dataset construction will be investigated, e.g. the degree of
blending of real and synthetic data also in terms of recognition
and classification performance.

REFERENCES

[1] Z. Vale et al., “Distributed energy resources management with cyber-
physical scada in the context of future smart grids,” in IEEE Mediter-
ranean Electrotechnical Conference, 2010.

[2] M. R. Hossain et al., “Smart grid,” in Smart Grids, 2013.
[3] D. van der Velde et al., “Methods for Actors in the Electric Power

System to Prevent, Detect and React to ICT Attacks and Failures,” in
IEEE ENERGYCon, 2020.

[4] Y. Yan et al., “A survey on cyber security for smart grid communica-
tions,” IEEE communications surveys & tutorials, 2012.

[5] C.-M. Mathas et al., “Threat landscape for smart grid systems,” in ARES,
2020.

[6] A. I. Kawoosa et al., “A review of cyber securities in smart grid
technology,” in ICCAKM. IEEE, 2021.

[7] S. Sridhar et al., “Cyber–physical system security for the electric power
grid,” Proceedings of the IEEE, 2011.

[8] T. Krause et al., “Cybersecurity in Power Grids: Challenges and Oppor-
tunities,” Sensors, 2021.

[9] K. Demertzis et al., “The next generation cognitive security operations
center: network flow forensics using cybersecurity intelligence,” Big
Data and Cognitive Computing, 2018.

[10] A. J. Burstein, “Toward a culture of cybersecurity research,” UC
Berkeley Public Law Research Paper, 2008.

[11] B. B. Zarpelão et al., “How machine learning can support cyberattack
detection in smart grids,” in Artificial Intelligence Techniques for a
Scalable Energy Transition, 2020.

[12] A. Ashok et al., “Powercyber: A remotely accessible testbed for cyber
physical security of the smart grid,” in IEEE ISGT, 2016.

[13] M. J. Assante et al., “The industrial control system cyber kill chain,”
SANS Institute, 2015.

[14] E. Hossain et al., Smart grid communications and networking. Cam-
bridge University Press, 2012.

[15] K. Es-Salhi, “Segmentation and segregation mechanisms and models to
secure the integration of industrial control systems (ics) with corporate
system,” Ph.D. dissertation, 2019.

[16] M. Baptiste et al., “Systematic and efficient anomaly detection frame-
work using machine learning on public ics datasets,” in IEEE CSR,
2021.

[17] Á. L. Perales Gómez et al., “Madics: A methodology for anomaly
detection in industrial control systems,” Symmetry, 2020.

[18] K. Wolsing et al., “IPAL: Breaking up Silos of Protocol-dependent and
Domain-specific Industrial Intrusion Detection Systems,” in RAID, 2022.

[19] Ö. Sen et al., “On Using Contextual Correlation to Detect Multi-stage
Cyber Attacks in Smart Grids,” Sustainable Energy, Grids and Networks,
vol. 32, 12 2022.

[20] D. Kus et al., “A False Sense of Security? Revisiting the State of
Machine Learning-Based Industrial Intrusion Detection,” in CPSS, 2022.

[21] A. Ju et al., “Mckc: a modified cyber kill chain model for cognitive apts
analysis within enterprise multimedia network,” Multimedia Tools and
Applications, 2020.

[22] T. Yadav et al., “Technical aspects of cyber kill chain,” in International
symposium on security in computing and communication, 2015.

[23] O. Alexander et al., “Mitre att&ck for industrial control systems: Design
and philosophy,” The MITRE Corporation, 2020.

[24] W. Xiong et al., “Cyber security threat modeling based on the mitre
enterprise att&ck matrix,” Software and Systems Modeling, 2022.

[25] S. Choi et al., “A comparison of ics datasets for security research based
on attack paths,” in International Conference on Critical Information
Infrastructures Security. Springer, 2019.

[26] S. Choi et al., “Probabilistic attack sequence generation and execution
based on mitre att&ck for ics datasets,” in Cyber Security Experimen-
tation and Test Workshop, 2021.

[27] I. Sharafaldin et al., “Toward generating a new intrusion detection
dataset and intrusion traffic characterization.” ICISSp, 2018.

[28] C. G. Cordero et al., “On generating network traffic datasets with
synthetic attacks for intrusion detection,” ACM TOPS, 2021.

[29] S. K. Pandey et al., “Gan-based data generation approach for ids:
Evaluation on decision tree,” in AISC: V14, 2021.

[30] H. Gwon et al., “Network intrusion detection based on lstm and feature
embedding,” arXiv:1911.11552, 2019.

[31] N. Oliveira et al., “Intelligent cyber attack detection and classification
for network-based intrusion detection systems,” Applied Sciences, 2021.

[32] M. Bristow, “A sans 2021 survey: Ot/ics cybersecurity,” eng. In, 2021.
[33] B. Caswell et al., Snort 2.1 intrusion detection. Elsevier, 2004.
[34] M. A. Bamboat et al., “Performance of rdf library of java, c# and python

on large rdf models.”
[35] J. E. Labra Gayo et al., “Rdfshape: An rdf playground based on shapes,”

in Proceedings of ISWC, 2018.
[36] K. Stouffer et al., “Guide to industrial control systems (ics) security,”

NIST, 2011.
[37] David Szili, “pcap of wannacry spreading using etnernalblue,” 2017.

[Online]. Available: https://www.malware-traffic-analysis.net/2017/05/
18/index2.html

[38] Proofpoint Inc, “Emerging threats rules,” 2022. [Online]. Available:
https://rules.emergingthreats.net/

https://www.malware-traffic-analysis.net/2017/05/18/index2.html
https://www.malware-traffic-analysis.net/2017/05/18/index2.html
https://rules.emergingthreats.net/

	Introduction
	Background
	Smart Grid
	Anomaly Detection
	Multi-Stage Cyberattack
	Attack Data Generation

	Related Work & Problem Analysis
	Related Work
	Problem Analysis

	Abstract Multi-Staged Attack Data Synthesis
	Requirement Analysis
	Data Abstraction
	Framework Overview
	Model Network
	Model Attacks
	Data Synthesis

	Evaluation & Discussion
	Procedure for Investigation
	Scenarios
	Data Set Creation
	PCAP Transformation
	Result
	Discussion

	Conclusion
	References

