
Intrusion Detection System with Machine Learning and Multiple

Datasets

Haiyan Xuan1, Mohith Manohar2*

1Carmel High School, Carmel, IN, United States of America

2SimplyFixable, New York, NY, United States of America

2Department of Computer Science, Columbia University, New York, NY, United States of America

* Correspondence:

Mohith Manohar

mm5874@columbia.edu

Keywords: Intrusion Detection System, Artificial Intelligence, Network Security, Machine

Learning, Hyperparameter Tuning

Abstract

As Artificial Intelligence (AI) technologies continue to gain traction in the modern-day world, they

ultimately pose an immediate threat to current cybersecurity systems via exploitative methods.

Prompt engineering is a relatively new field that explores various prompt designs that can hijack

large language models (LLMs). If used by an unethical attacker, it can enable an AI system to offer

malicious insights and code to them. In this paper, an enhanced intrusion detection system (IDS) that

utilizes machine learning (ML) and hyperparameter tuning is explored, which can improve a model's

performance in terms of accuracy and efficacy. Ultimately, this improved system can be used to

combat the attacks made by unethical hackers. A standard IDS is solely configured with pre-

configured rules and patterns; however, with the utilization of machine learning, implicit and

different patterns can be generated through the models' hyperparameter settings and parameters. In

addition, the IDS will be equipped with multiple datasets so that the accuracy of the models

improves. We evaluate the performance of multiple ML models and their respective hyperparameter

settings through various metrics to compare their results to other models and past research work. The

results of the proposed multi-dataset integration method yielded an accuracy score of 99.9% when

equipped with the XGBoost1 and random forest2 classifiers and RandomizedSearchCV3

hyperparameter technique.

1 Introduction

1.1 Problem Statement

The emergence of newly advanced LLMs poses a potential danger to existing IDS and other

monitoring systems from unforeseen attacks from LLM-targeted exploitative methods. A new study

has shown how injected prompts can alter the behavior of LLMs through exploitative methods,

1 https://xgboost.readthedocs.io/en/stable/

2 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

3 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

https://xgboost.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

including remote code execution, unwanted intrusion, and more (Greshake et al., 2023). Therefore, to

combat this danger, a intrusion detection system enhanced with machine learning is necessary to

achieve evaluation metrics that perform highly.

1.2 Network

A network is the accumulation of the interconnections between two or more systems. Networks can

vary in size, depending on the number of devices connected to them as well as the use case for them.

Smaller units of data, called packets, travel within networks between devices. Packets carry crucial

information, such as a request to retrieve a webpage's content from a web server, a print job request,

etc. In this research, we discuss these packets in the form of datasets that contain typical fields and

information, like a packet.

1.3 IDS

In essence, an IDS monitors and detects malicious network activities. A standard IDS utilizes

patterns and rules to detect whether a packet is malicious. It must be able to process network

activities on a large scale and quickly. However, it is crucial to note that the IDS itself has no

capability of preventing or resolving malicious activities. Therefore, an administrator is typically

responsible for resolving the issue. There are two types of IDS: host-based (HIDS) and network-level

(NIDS). In a host-based IDS, the system is deployed at one of the device’s endpoints, allowing the

system to monitor the specifics of the device, including its specific network traffic, running

processes, etc. On the other hand, a network-level IDS is deployed onto the entire network, which

means that it can review all the network traffic that flows through the network. NIDS, however, does

not have the full capability of "knowing" every single detail on the host-based level.

1.4 ML with IDS

Machine learning is a prevalent field that essentially enables computers to learn patterns and

parameters from a dataset, which can be used to make predictions based on those datasets. There are

two main methods that machine learning can utilize: supervised learning and unsupervised learning.

In supervised learning, there is a clear input and output, and the dataset is divided into testing and

training datasets. On the other hand, unsupervised learning is mainly to explore and discover new

patterns and trends in a dataset and is completely up to the model to develop the patterns. In this

paper, supervised learning will be utilized to ensure that the chosen ML model is able to correctly

identify if a packet is benign or malicious. Given the fields and entries of IPV4 packets, the model

will be responsible for drawing the connections and patterns given the input and output. The ultimate

purpose is to increase the accuracy score while also maintaining a sensible confusion matrix, which

measures how well the model can correctly identify if a packet is malicious or benign.

1.5 Practical Aspects of ML

1.5.1 Preprocessing

Before the dataset is loaded into the model, there are a few steps that are required in terms of

preprocessing: splitting, encoding, class imbalance handling, and feature selection. Splitting is the

process of splitting the dataset into two sub-groups: training and testing. The training dataset is

predominantly used to train the machine learning model. On the other hand, the testing dataset is

used to measure the performance of the model. ML models require numerical values to process the

dataset; therefore, encoding is required to convert non-numerical values, such as strings and empty

values, into numerical values. Datasets may have a class imbalance where a majority and a minority

class can exist. Therefore, class imbalance handling tackles this problem by generating synthetic

instances in the minority class using a 𝑘-nearest neighbors algorithm, ultimately augmenting the

minority class and balancing the dataset. Consequently, the performance of the machine learning

models will be enhanced. Lastly, feature selection involves the process of choosing a subgroup of a

dataset's features to effectively train an ML model.

1.5.2 Hyperparameter Tuning

Hyperparameter tuning is the process of searching for and identifying the best set of hyperparameter

configurations (Mahfouz et al., 2020). Hyperparameters are external settings that are used to modify

the behavior and efficacy of how the parameters are learned. Parameters are internal configurations

that are set after a model has learned. In essence, parameters are deduced by the learning of the ML

model, whereas hyperparameters are manually set by the programmer. Typically, hyperparameter

tuning involves two main methods: manual or algorithmic. The manual method involves tweaking

hyperparameter settings by hand, and it can be quite tedious to do. There are three main algorithms

that can be used as an alternative to the manual approach: Bayesian optimization, grid search, and

random search. The Bayesian optimization method is a more efficient method that identifies the best

set of configurations based on previous runs, probability, and regression analysis. Grid search

involves brute-forcing all combinations of hyperparameter settings to find the best set. Obviously,

this implies that this method is more resource-intensive and time-consuming. Finally, a random

search involves random configurations and returns the best set after the iterations.

1.6 Previous Work

There have been much past research works that have been conducted to devise various methods and

techniques to produce an IDS with evaluation metrics that perform highly. With the growing

prevalence of AI, many methods adopt AI-based principles to create an accurate IDS, and some

utilize hyperparameter tuning techniques. Wazirali (2020) performed k-nearest neighbor

hyperparameter tuning on the NSL-KDD dataset, which yielded an accuracy score of 99.1%.

Dhaliwal et al. (2018) discovered that the XGBoost library on the NSL-KDD dataset worked better

than other classifiers. Kanimozhi and Jacob (2019) used artificial neural networks and

hyperparameter tuning, which resulted in a high accuracy score of 99.97% with the GridSearchCV

technique.

Halimaa A. and Sundarakantham (2019) explored two main machine learning techniques, support

vector machines (SVM) and naive bayes, and determined that SVM worked better than naive bayes.

Patgiri et al. (2018) observed that random forest classifier performed better than the SVM classifier

before feature selection. Ugochukwu and Bennett (2018) also determined that random forest and

random tree algorithms generally perform better on the KDDCup99 dataset than Bayes Net and J48

algorithms.

1.7 Contributions

In this paper, we propose a method that involves equipping multiple datasets during the training and

testing stages to increase the accuracy and performance of the chosen ML models. We apply

hyperparameter tuning to each of the ML models to enhance their performance. We then evaluate the

performance of the model through various metrics and compare the results.

2 Method

2.1 Dataset Description

One of the datasets that is utilized in this research is the UNSW-NB15 dataset, which was collected

by Cyber Range Lab of UNSW Canberra (Moustafa and Slay, 2015). In this research, the 1st out of 4

CSV files has been used. The dataset features real-world and synthetic data that contains more than

600,000 malicious/benign, real-life network packets, with 3% of the dataset containing malicious

packets. It has 49 columns that detail various attributes of each packet, some of which pertain to each

packet, and some of which classify the packet. The columns include basic attributes, such as

source/destination IP addresses, time-to-live (TTL) values, record total duration, etc. The UNSW-

NB15 is also a multi-class dataset that contains detailed information regarding which category a

malicious packet falls under (Fuzzers, Analysis, Backdoors, DoS Exploits, Generic, Reconnaissance,

Shellcode, and Worms). Sydney (2015) provides a thorough list of the features.

Another dataset that is utilized is the KDDCup 1999 dataset. The KDDCup 1999 dataset contains

around 4,900,000 entries, comprising both benign and malicious packets. It is a popular dataset that

has been used extensively to evaluate the effectiveness of anomaly-based detection systems

(Tavallaee et al., 2009). The dataset contains 41 features that describe each capture network packet,

including duration, service type, etc. Lab (1999) provides the full and detailed list of the KDD-CUP

1999 dataset.

2.2 Hardware Specifications

The code was executed on Google Colab using Python 3 Runtime Type, CPU Hardware Accelerator,

51 GB of RAM, and 225.8 GB of disk storage.

2.3 Dataset Preprocessing

By default, the dataset itself isn't prepared to be deployed into the ML models. One of the issues is

the presence of non-numerical values, which include dashes (in replacement of null values), empty

values, words, etc. To combat this, we apply encoding to the dataset to convert non-numerical values

to numerical values by iterating through the entries and using the appropriate conversion method.

Afterwards, we divide the dataset into training and testing datasets. Lastly, the chosen datasets have a

class imbalance, meaning that a small percentage of the dataset contains malicious packets. Figure 1

illustrate the distribution of the number of benign and malicious packets in the UNSW-NB15 and

KDDCup 1999 datasets. Figures 1a and 1c show the existence of the class imbalance, therefore we

select and utilize the SMOTE4 library to create a more balanced dataset of malicious and benign

packets. Figure 1b indicates the increased number of malicious packets to rebalance the dataset,

whereas Figure 1d depicts that the benign class increased in quantity to rebalance the dataset. To

combine the two datasets together, both datasets must have the same number of features; therefore,

we utilize feature selection to choose the most relevant, similar datasets to concatenate the two

models together and train the chosen ML models. The full list of the chosen features can be found in

Table 1.

4 https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html

https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html

Figure 1 (A) Bar graph that depicts the distribution of benign (blue) and malicious (red) packets

before applying SMOTE library to the UNSW-NB15 dataset. (B) Bar graph that depicts the

distribution of benign (blue) and malicious (red) packets after applying SMOTE library to the

UNSW-NB15 dataset. (C) Bar graph that depicts the distribution of benign (blue) and malicious (red)

packets before applying SMOTE library to the KDD-CUP 1999 dataset. (D) Bar graph that depicts

the distribution of benign (blue) and malicious (red) packets after applying SMOTE library to the

KDD-CUP 1999 dataset.

2.4 ML Models

The following ML models are considered for this research work:

1. Gradient Boosting Machines (XGBoost)

2. Logistic Regression5

3. Random Forest Classifier

2.5 Hyperparameter Tuning

We equip the RandomizedSearchCV technique for all the ML models to efficiently determine the

best hyperparameter setting. The optimal hyperparameter settings for the XGBoost is as follows:

n_estimators are 200, max_depth is 3 and learning_rate is 0.1. For logistic regression, when penalty

5 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

is L2 and when C is 100, the performance is optimal. When the n_estimators is 200 and

min_samples_leaf is 4, the random forest classifier achieves its best performance.

3 Results

3.1 Evaluation Metrics

To measure the performance of each model, we record the values in Table 2, with the training set

consisting of 10% of the total data. Additionally, the different evaluation metrics were recorded with

varying training dataset sizes (2%, 4%, 6%, 8%, and 10%) to observe any key patterns and

observations. We record each of these metrics for the ML models in Figure 2. We acknowledge that

usually the training set is larger than the testing set, but in our case, we utilized a smaller training set.

The following evaluation metrics are recorded for each model, and the equation for them are shown

below.

𝟏. 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝟐. 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝟑. 𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝟒. 𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
𝟐 ∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍

Figure 2 (A) Line graph that features the accuracy score of the progressive learning for each of the

selected ML models. (B) Line graph that features the precision score of the progressive learning for

each of the selected ML models. (C) Line graph that features the recall score of the progressive

learning for each of the selected ML models. (D) Line graph that features the F1 score of the

progressive learning for each of the selected ML models.

3.2 Overall Performance

It can be clearly seen from the evaluation metrics in Table 2 that XGBoost and random forest

performs more accurately compared to the logistic regression model when using the

RandomizedSearchCV method. Additionally, Figure 2 supports the observation that the XGBoost

and random forest models perform exceptionally well for any of the tested and varying training

dataset, whereas the performance of the logistic regression varies depending on the size of the

training dataset. From Table 2, the XGBoost and random forest classifiers had an accuracy score of

was 99.9%, and the logistic regression model had an accuracy score of 80.6%. Therefore, our

proposed method of combining multiple datasets together yields a better accuracy score.

4 Discussion

4.1 Conclusion

Certain models perform better than other models. Specifically, the XGBoost and random forest

classifiers perform better than the logistic regression model. The accuracy score from the combined

dataset approach results in 99.91% and 99.93% for the XGBoost and random forest classifiers,

respectively. The accuracy of the IDS, particularly the XGBoost model, has improved with multiple

datasets and hyperparameter tuning using the RandomizedSearchCV technique. XGBoost trained

only on NSL-KDD dataset has an accuracy score of around 98.7% (Dhaliwal et al., 2018).

4.2 Future Work

To truly see if the performance of the model is sufficient to combat against AI-generated network

activities, further research must be done to see if the discussed models are effective against abnormal

network attacks as well. Research on prompt engineering attacks is limited, since LLMs were

introduced to the public relatively recently; therefore, further investigation is required to investigate

how LLMs can be exploited, so that these abnormal techniques can be considered for further

improvements to the IDS. Additionally, various hyperparameter techniques can be used and

compared to identify the best technique for each of the chosen models in this research.

Table 1 List of the selected features used to combine the UNSW-NB15 and KDD-CUP 1999

datasets.

UNSW-NB15 KDD-CUP 1999

Dintpkt duration

Djit src_bytes

Dload dst_bytes

Dpkts land

Sintpkt wrong_fragment

Sjit urgent

Sload hot

Spkts num_failed_logins

Stime logged_in

ackdat num_compromised

ct_dst_ltm root_shell

ct_dst_sport_ltm su_attempted

ct_dst_src_ltm num_root

ct_src_dport_ltm num_file_creations

ct_src_ltm num_shells

ct_srv_dst num_access_files

ct_srv_src num_outbound_cmds

ct_state_ttl is_host_login

dbytes is_guest_login

dloss count

dmeansz srv_count

dsport serror_rate

dstip srv_serror_rate

dttl rerror_rate

dur srv_rerror_rate

dwin same_srv_rate

is_ftp_login diff_srv_rate

is_sm_ips_ports srv_diff_host_rate

proto_icmp dst_host_count

proto_tcp dst_host_srv_count

proto_udp dst_host_same_srv_rate

res_bdy_len dst_host_diff_srv_rate

sbytes dst_host_same_src_port_rate

service_ftp dst_host_srv_diff_host_rate

service_ftp-data dst_host_serror_rate

service_http dst_host_srv_serror_rate

service_irc dst_host_rerror_rate

service_pop3 dst_host_srv_rerror_rate

service_smtp protocol_type_icmp

service_ssh protocol_type_tcp

sloss protocol_type_udp

smeansz service_IRC

sport service_ftp

srcip service_ftp_data

sttl service_http

swin service_pop_3

synack service_smtp

tcprtt service_ssh

Table 2 Evaluation metrics of the chosen ML models using the combined dataset with 10% size

training dataset.

 Accuracy Precision Recall F1 Score

XGBoost 0.9991 0.9991 0.9996 0.9994

Logistic

Regression

0.8064 0.9351 0.7796 0.8503

Random Forest 0.9993 0.9992 0.9998 0.9995

References

Dhaliwal, S., Nahid, A.-A. and Abbas, R. (2018) ‘Effective intrusion detection system using

XGBoost’, Information, 9(7), p. 149. doi:10.3390/info9070149.

Dina, A.S. and Manivannan, D. (2021) ‘Intrusion detection based on machine learning techniques in

computer networks’, Internet of Things, 16, p. 100462. doi:10.1016/j.iot.2021.100462.

Greshake, K. et al. (2023) ‘Not what you’ve signed up for: Compromising Real-World LLM-

Integrated Applications with Indirect Prompt Injection’. arXiv.

Kanimozhi, V. and Jacob, T.P. (2019) ‘Artificial intelligence based network intrusion detection with

hyper-parameter optimization tuning on the Realistic Cyber Dataset CSE-CIC-IDS2018 using

cloud computing’, ICT Express, 5(3), pp. 211–214. doi:10.1016/j.icte.2019.03.003.

Lab, M.L. (1999) ‘KDD Cup 1999 Data’.

Mahfouz, A.M., Venugopal, D. and Shiva, S.G. (2020) ‘Fourth International Congress on

Information and Communication Technology’, in Comparative Analysis of ML Classifiers for

Network Intrusion Detection. Singapore: Springer Singapore, pp. 193–207.

Moustafa, N. and Slay, J. (2015) ‘2015 Military Communications and Information Systems

Conference (MilCIS)’, in UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set), pp. 1–6.

Patgiri, R. et al. (2018) ‘2018 IEEE Symposium Series on Computational Intelligence (SSCI)’, in An

Investigation on Intrusion Detection System Using Machine Learning, pp. 1684–1691.

Sydney, U. (no date) ‘The UNSW-NB15 Dataset’.

Tavallaee, M. et al. (no date) ‘2009 IEEE Symposium on Computational Intelligence for Security

and Defense Applications’, in A detailed analysis of the KDD CUP 99 data set, pp. 1–6.

Ugochukwu, C.J. and Bennett, E.O. (2018) ‘An Intrusion Detection System Using Machine Learning

Algorithm’, International Journal of Computer Science and Mathematical Theory, 4(1).

Wazirali, R. (2020) ‘An improved intrusion detection system based on KNN hyperparameter tuning

and cross-validation’, Arabian Journal for Science and Engineering, 45(12), pp. 10859–

10873. doi:10.1007/s13369-020-04907-7.

	1 Introduction
	1.1 Problem Statement
	1.2 Network
	1.3 IDS
	1.4 ML with IDS
	1.5 Practical Aspects of ML
	1.5.1 Preprocessing
	1.5.2 Hyperparameter Tuning

	1.6 Previous Work
	1.7 Contributions

	2 Method
	2.1 Dataset Description
	2.2 Hardware Specifications
	2.3 Dataset Preprocessing
	2.4 ML Models
	2.5 Hyperparameter Tuning

	3 Results
	3.1 Evaluation Metrics
	3.2 Overall Performance

	4 Discussion
	4.1 Conclusion
	4.2 Future Work

	References

