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Adversarial Attacks Assessment of Salient
Object Detection via Symbolic Learning
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Abstract—Machine learning is at the center of mainstream technology and outperforms classical approaches to handcrafted feature
design. Aside from its learning process for artificial feature extraction, it has an end-to-end paradigm from input to output, reaching
outstandingly accurate results. However, security concerns about its robustness to malicious and imperceptible perturbations have
drawn attention since its prediction can be changed entirely. Salient object detection is a research area where deep convolutional
neural networks have proven effective but whose trustworthiness represents a significant issue requiring analysis and solutions to
hackers’ attacks. Brain programming is a kind of symbolic learning in the vein of good old-fashioned artificial intelligence. This work
provides evidence that symbolic learning robustness is crucial in designing reliable visual attention systems since it can withstand even
the most intense perturbations. We test this evolutionary computation methodology against several adversarial attacks and noise
perturbations using standard databases and a real-world problem of a shorebird called the Snowy Plover portraying a visual attention
task. We compare our methodology with five different deep learning approaches, proving that they do not match the symbolic paradigm
regarding robustness. All neural networks suffer significant performance losses, while brain programming stands its ground and
remains unaffected. Also, by studying the Snowy Plover, we remark on the importance of security in surveillance activities regarding
wildlife protection and conservation.

Index Terms—Adversarial examples, Visual attention, Brain programming, Adversarial patch, Wildlife conservation.
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1 INTRODUCTION

ADVERSARIAL robustness is a critical feature that recent
deep learning (DL) architectures are searching for due

to their inability to defend themselves from adversarial
attacks (AAs), which are strategies that attempt to fool them.
Therefore, despite the enormous advantages DL has brought
to several research areas, including visual attention (VA),
they are untrustworthy. Adversarial examples (AEs) are
maliciously-constructed inputs that fool machine learning
models by usually degrading the output performance of
image classification.

Robustness is a required property when security, safety,
and certainty are mandatory in surveillance, life conserva-
tion, and defense applications. Robustness is part of a new
wave of computer science that is not alien to evolutionary
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computation [1]. Robustness captures whether the system
can deliver correct service conditions beyond the typical
domain of operation and without fundamental changes to
the original system, i.e., the ability to resist shocks without
adapting or changing its behavior.

1.1 Related Work
Recent work has shown that these attacks are generalized
to salient object detection (SOD) [2]. Li et al. have made
the problem of AAs evident since VA is usually an input for
more complex visual tasks. The performance of highlighting
conspicuous objects is seriously affected by corrupt input
images (AEs) in such a way that succeeding stages produce
poor results, compromising the entire system. This first
work describing the lack of robustness shows how DL com-
promises the application of such technologies in situations
where security and reliability are critical features to avoid
failure when detecting the object of interest. Nevertheless,
this first work considers only non-target attacks leaving
aside other methodologies regarding AAs [3]. In Section 1.2,
we review a scheme to classify AAs and introduce later the
experimental design strategy that we conduct in this work.

In the most recent survey of SOD, the authors included
a small section about the lack of robustness against AEs [4].
Wang et al. provided some experiments showing that VA
based on deep SOD models is brittle since their performance
degrades when contaminated with corrupted inputs. In the
first set of experiments, the authors contrasted the behavior
of three deep models against heuristic methods. According
to their results, heuristic methods do not match deep models
in terms of performance; hence, comparing both approaches
from a robustness standpoint against AEs is pointless.
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Among the three deep models, the authors highlight the
excellent robustness of Pixel-wise Contextual Attention for
Saliency Detection (PICANet) against a wide range of input
perturbations, including Gaussian blur, Gaussian noise, and
rotation [5]. Authors attribute this result to its effective non-
local operation, revealing that effective network designs
improve robustness to random perturbations. Later, in the
experimental section, we challenge this idea by showing
that this network exhibits poor robustness to Gaussian, Salt
& Pepper, and Speckle noise. In [4], authors presented a sec-
ond set of experiments by adopting and modifying an AA
algorithm for semantic segmentation to evaluate robustness.
They kept the same three deep SOD models for the analysis
while excluding the heuristic methods. The results confirm
the poor robustness against AEs since attacks designed with
the knowledge of deep SOD models fail to highlight the
complete salient objects while wrongly recognizing salient
objects as part of the background areas. Such attacks pre-
vent SOD models from producing reliable salient object
candidates for other safety-critical applications. However,
the proposed attack presents weak transferability between
the three different network structures. Again, our results
contradict this idea, as reported in the experimental section,
by showing that many designed attacks affect networks
with different architectures.

As we have observed from the reviewed literature, AAs
in SOD are rarely studied. Nevertheless, this topic has the
potential to become mainstream in computer science as
one of the current studies on the susceptibility of deep
neural networks for classification tasks [6]. In fact, in this
study, we incorporated the most recent work of DL for SOD
considering AAs [7], which we introduce in Section 2.1.
Currently, SOD plays a significant role in several security
applications for detecting candidate interest targets, and
the fact that a technique from evolutionary computation is
reliable and secure against inconspicuous attacks crafted to
affect the functioning of a vast range of government and
commercial applications is, without a doubt, a research area
to be explored in the future. The present study represents
the first attempt to show the effectiveness of artificial evo-
lution as a symbolic learning paradigm against malicious
threats in the case of SOD.

1.2 Problem Statement
AA is a relevant topic in the current study of DL models,
which it started to attract attention in image classification
models where the phenomenon was first discovered. Soon,
the subject spread to diverse areas where it has been demon-
strated to appear as a vulnerability in DL modeling. In
this section, we summarize the explanation of how AAs
affect DL models while focusing on VA modeling. Therefore,
given a set of images I = {I1, I2, . . . In} and their cor-
responding proto-objects P = {P1,P2, . . .Pn}, the deep
SOD model establishes a relationship between an image (Ii)
and the proto-object (Pi) through the following equation:

P = f(I) = A(W⊺I) , (1)

where function f(·) is the deep SOD model, W are the
associated weight parameters, and A(·) is an activation
function.

AAs denote the erroneous behavior of such models
when the input image suffers a small change in its pixels
by adding a perturbation ρ to create the AE Iρ = I+ρ such
that:

f(I) ̸= f(Iρ) s.t. ||I− Iρ||p < α (2)

where p ∈ N | p ≥ 1 and α ∈ R | α ≥ 0. The AE
is considered the intentionally modified input image that
is recognized differently than the I. The level of change
in the pixels is defined by ||I − Iρ||p < α that constrains
the AE to be too small so it may be imperceptible to the
human eye, although this constraint can be overlooked. A
simple explanation of how AAs break DL models, rendering
them vulnerable, is that if we compute the dot product
with the associated weight matrix from the model. For the
AE, we obtained W⊺Iρ = W⊺I + W⊺ρ. This is caused
by the linearity of neural networks, which are intentionally
designed with activation functions that perform linearly so
that they are easier to optimize. Therefore, the AE will grow
the activation function by W⊺ρ.

Additionally, the linearity of DL models reveals another
consequence of AAs. Every AE that is easy or difficult to
compute in a specific model affects another model, even
with different architectures. They only have to be trained for
the same task. However, we extend this effect between dif-
ferent tasks, as explained in Section 2.4.3. This phenomenon
is defined as the transferability effect that establishes the
spread of this erroneous behavior between DL models with
such small perturbations. AAs are usually classified de-
pending on their strategy, which defines how the pertur-
bation is created. White box attacks assume the complete
knowledge of the architecture model, its parameter values,
and the trained task. On the contrary, a black box attack opti-
mizes the perturbation during a testing procedure to change
the original prediction without knowing the model. These
strategies are also considered to fool a model into believing
a specific label (targeted attack) or that the predicted label
is irrelevant (untargeted attack) while it is not the original
label.

1.3 Contributions

This research is part of discovering new properties that
evolutionary algorithms possess against DL. We extend the
first results reported at the 25th International Conference on
the Applications of Evolutionary Computation, where we
reported the first discoveries about the robustness against
AAs of brain programming (BP) for the problem of SOD [1].
We note the following contributions:

1) This study shows the robustness of a symbolic SOD
algorithm against AAs by conducting a deeper analysis
and contrasting it with five DL models, three AAs, three
different noises, and five different datasets.

2) This study considers not only standard databases, but
a real-world problem focused on wildlife conservation
that proves a real challenge for deep-learning SOD
methods.
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Fig. 1: The proposed method encodes an individual as a template, and we apply artificial evolution to discover a set of
mathematical and computational functions optimized for the task of salient object detection. The evolved solutions are
robust against different AEs, as the experiments exemplify.

2 METHODOLOGY

This section contains four subsections. First, we describe six
learning-based methods commonly applied to SOD prob-
lems. Then, we provide a mathematical formulation for
learning-based SOD modeling. Later, we introduce the idea
of robustness through continuity criteria. Finally, we list our
choice of AAs.

2.1 Symbolic and Subsymbolic Approaches for SOD

Nowadays, SOD researchers predominantly prefer solutions
based on DL in contrast to traditional solutions that lack the
idea of learning, so the latter’s influence has been reduced
recently. However, current research continues the tradition
by using the same databases and assessment schemes out-
lined before the flourishing of DL in VA. BP is a design
scheme where we incorporate symbolic learning to enhance
traditional methodologies. All research follows the path
of empirical investigation while modeling hand-designed
solutions regardless of the approach. In conventional meth-
ods, features were designed by hand, and in DL methods,
architectures are still designed by hand. Here, we propose
to compare five different networks with a recently designed
algorithm under the BP scheme, the results of which we
will describe later. The five selected networks have similar
characteristics since all architectures are fully convolutional
networks, adopt a fully supervised learning, bottom-up or
top-down network scheme, and follow single-task learning.

• BP is an evolutionary computation paradigm loosely
based on the inner workings of the visual cortex. In this
paper, we focus on the analogy to the dorsal stream
to create computational models of SOD from an input
image (Figure 1). The goal is to show the robustness
of the methodology against AEs. The strategy follows

a goal-oriented framework where we study learning as
a symbolic optimization process where an individual
consists of a template describing the VA model while
discovering critical parts of the algorithm through arti-
ficial evolution. This study focuses on the mathematical
notation to formulate the SOD problem from the view-
point of robustness and leaves the full explanation of
the algorithm to consult in a previous document [8].

• Adversarial Robust SOD Networks with Learnable
Noise (LeNo) proposes the usage of simple shallow
noise and noise estimation embedded in the encoder
and decoder of arbitrary SOD networks to defend
against AAs [7]. Introduced in 2022, LeNo initializes
the shallow noise with a cross-shaped Gaussian distri-
bution inspired by the center prior of the human VA
mechanism. Instead of adding additional network com-
ponents for post-processing, the proposed noise estima-
tion modifies only one decoder channel. This method
outperforms previous works on adversarial and clean
images, contributing to the stronger robustness of SOD.

• SOD via Extremely-Downsampled Network (EDN) fo-
cuses on enhancing high-level features through extreme
downsampling to effectively learn a global view of
the whole image, leading to accurate salient object
localization [9]. Proposed in 2022, improved multi-level
feature fusion is accomplished through the construc-
tion of the scale-correlated pyramid convolution to
build a decoder for recovering object details from the
above extreme downsampling. Not only does this work
achieve state-of-the-art performance, but it also focuses
on working at real-time speeds.

• Boundary-Aware SOD (BASNet) is a deep convolu-
tional neural network (CNN) focusing on the bound-
ary quality that appears in 2019 [10]. The proposed
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BASNet consists of two modules, the first inspired by
U-Net and a semantic segmentation model (SegNet),
which implement a salient object prediction module
as an Encoder Decoder network, capturing high-level
global contexts and low-level details at the same time.
The input convolutional layer and the first four stages
are adopted from [11], the transfer Residual Neural
Network (ResNet-34), while the residual refine module
consists of filters followed by a batch normalization and
a Rectified Linear Unit (ReLU) activation function [12].

• Learning PICANet aims to generate an attention map
at each pixel over its context region and construct an
attended contextual feature to enhance the feature rep-
resentability of convolutional networks [5]. The authors
proposed the network in 2018 based on two pixel-wise
attention modes: global attention and local attention.
For each location, the former generates attention based
on the Recurrent Neural Network over the whole fea-
ture map [13], while the latter works on a local region
using several convolutional layers. The whole network
is based on the VGG 16 layer [14] as the backbone
while applying U-Net, which is a CNN developed for
biomedical image segmentation.

• The Deep Hierarchical Saliency Network (DHSNet) is
an end-to-end CNN detecting salient objects that ap-
peared in 2016 [15]. It consists of a global view step
followed by a Hierarchical Recurrent CNN. Based on
the Very Deep Convolutional Networks (VGG net), the
first network creates a coarse global saliency map to
roughly detect and localize salient objects. The second
step refines saliency maps in detail by incorporating
local contexts.

We have appreciated all five networks based their ar-
chitectures on previous development of CNNs. The idea of
incorporating symbolic learning based on previous neuro-
scientific research is equivalent; therefore, we aim to show
the robustness of symbolic modeling.

2.2 SOD Evaluation

The image-based SOD problem can be formulated as fol-
lows. Given an input image I ∈ Ru×v×3 of size u × v for
each color channel, an SOD model f maps the input image I
to a proto-object P = f(I, F, T, a)|P ∈ {0, 1}u×v , where F
and T represent the function and terminal sets, respectively,
from the feature extraction, and a is the set of parameters
controlling the evolutionary process.

BP is the algorithm in charge of tuning (F, T ), looking
for optimal feature extraction from the input images using
the visual operators embedded into the artificial dorsal
stream. For learning-based SOD, the meta-model f(·) is
learned through a set of training samples. Given a set of
images I = {I1, I2, . . . In}, with n defining the number
of training images, and corresponding binary SOD ground-
truth masks

G = {G1, . . . ,Gn|G ∈ {0, 1}u×v},

the goal of learning is to find f ∈ F that minimizes the
prediction error, i.e., ΣnQ(Pn,Gn), where Q as a quality
criterion in this case is a certain distance measure (e.g., Fβ

measure), and F is the set of potential mapping functions.
Deep SOD methods typically model f(·) through modern
DL techniques, as we reviewed in Section 2.1.

In the case of BP, we have f(I, F, T, a), such that

P∗ ∈ S : Z(P∗,G) ≥ Z(P ,G)

which maximizes the overlap between P and G from the
solution space S , such that

Z =
n∑

i=1

Z(Pi,Gi)

where Z is a statistical measure of accuracy, Z ≜ Fβ(·) , that
is computed as follows:

Fβ(Pi, Ri) =
n∑

i=1

m∑
j=1

(1 + β2)pj · rj
β2pj + rj

(3)

with m representing the number of thresholds to build
the proto-object, and n defines the number of training
images. Precision data of an image are denoted with Pj =
(p1, p2, . . . , pn) and recall data by Rj = (r1, r2, . . . , rn) with

p =
tp

tp+fp
,

r =
tp

tp+fn
,

where tp means true positive, fp is false positive, and fn
denotes false negative. Fβ measures the effectiveness of
retrieval with respect to a user who attaches β times as
much importance to recall as precision. β2 is set to 0.3 to
emphasize the precision following the standard protocol
[16].

We empirically calculate precision and recall based on a
number n of thresholds for each image in the dataset while
considering each algorithm run. The Fβ measure of each of
these results is calculated based on the generated saliency
map and splicing it with the ground-truth image. After this,
we take the maximum value to obtain each image’s best Fβ

score. Then, we calculate the average of all the images’ Fβ

scores to obtain the final Fβ value according to Equation (3),
which corresponds to Z .

2.3 Model Robustness through Continuity Criteria

Let P = f(I), where f(·) is the model (NN, BP, etc.). For
example, P = f(I, F, T, a) ∼ f(I) ∴ f(I) ̸= f(Iρ) : ||I −
Iρ|| < α.

AEs find input Iρ in the subspace I ′, such that Iρ ∈ I ′

and f(I) ̸= f(Iρ). Nevertheless we denote robustness in
terms of function continuity. Given a model’s function f()
in an input subspace. I is said to be robust at I ∈ I ; if
Ik 7→ I, then f(Ik) 7→ f(I). Equivalently, f(I) is robust at
I, for all I′ ∈ I , if given a ϵ > 0, there is a δ > 0, such that
||I − I′|| < δ implies ||f(I) − f(I′)|| < ϵ. Hence, if f(I) is
robust for every I, then f(I) is said to be robust on I .
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2.4 AAs

2.4.1 Fast Gradient Sign Method (FGSM)
FGSM was first implemented by Goodfellow et al. by
noting that linear behaviors of high-dimensional spaces
easily generate AEs [17]. FGSM proposes to increase the
loss of the detector by solving the following equation:
ρ = ϵ sign(∆J(θ, I,G)), where ∆J() computes the gradient
of the cost function around the current value of the model
parameters θ with respect to the image I, and the ground
truth G. sign() denotes the sign function, which maximizes
the magnitude of the loss and ϵ is a small scalar value that
restricts the norm L∞ of the perturbation.

2.4.2 Multipixel Attack
The multipixel adversarial perturbation is a black box untar-
getted attack since it does not require network information.
The one-pixel attack is the basis for this algorithm [18].
However, the original algorithm is not suitable for real-
world problems since it can only work for icon images.
In summary, let the vector I = (I1, . . . , In) be an n-
dimensional image, which is the input of the salient object
detector f() that correctly predicts the object t from the
image. The statistics of I associated with the object t is
Z(f(I), f(I+e(I))). It builds an additive adversarial pertur-
bation vector e(I) = (e1, . . . , en) according to I, the salient
object detector, and the limitation of maximum modifica-
tions d, a small number that expresses the dimensions that
are modified, while other dimensions of e(I) that are left are
zeros. The main purpose is to find the optimal solution e(I)∗

that solves the following equation:

min
e(I)∗

Z(f(I), f(I) + e(I))

s.t.||e(I)||0 ≤ d

2.4.3 Adversarial Patch (AP)
The AP is a white box attack that creates a particular form
of perturbation, which builds a universal perturbation with
a patch shape [19]. Even though this attack is performed to
be used on image classification tasks, its universality makes
it perfect to be analyzed with the transferability effect that
this perturbation provokes. The AP builds the perturbation,
maximizing ftarget(I+ p̂)) to a specific class where it finds
the optimal patch p̂. Universal perturbations such as the AP
pose a powerful foolproof that relies on the wide variety
of transformations that can be applied to the patch to fool
the system, or it can even be printed to work in real-world
conditions.

The algorithm trains the AP p̂ using a set of images
I , and a variant of the expectation over transformation
framework to optimize the following equation:

p̂ = argmax
p̂

EI∈I.t∈T.l∈L[log f(ytarget, A(p, I, l, t))] , (4)

where ytarget represents the target class in the image
classification model and A(p, I, l, t) is a function that first
applies the transformation t from a distribution over trans-
formations T to the patch p. Next, it puts the transformed
patch p at the location l from a distribution over locations
L to the image I. The effectiveness of these patches resides

in the expectation over the training images that increases
success, regardless of the background.

2.4.4 Noise-based Attacks
AEs are usually interpreted as strategically perturbed im-
ages that fool DL models. However, randomly perturbed
images are also studied to verify the robustness of SOD
models. We employ three types of noise (Gaussian, Salt &
Pepper, and Speckle noise) to study the behavior of such
algorithms with randomly perturbed inputs. Gaussian noise
adds a white noise with a probability density function of
a normally distributed random variable with an expected
value µ and variance σ. The general probability density
function is as follows:

g(x) =
1

σ
√
2π

e
−(x−µ)2

2σ2 (5)

Salt & Pepper noise with density (d) assigns each pixel (p),
from the total pixels (tp) in an image, a random probability
value (pv) from a standard uniform distribution between
(0, 1). Therefore, it applies to the following cases

• p = 0, for pv ∈ (0, d/2) limited to d× tp/2 pixels.
• p = max value, for pv ∈ [d/2, d) limited to d × tp/2

pixels.
• p = p, for pv ∈ [d, 1).

Speckle noise add a multiplicative perturbation using the
following equation J = I +m × I, where m is a uniformly
distributed random noise with µ = 0 and σ = 0.05.

3 EXPERIMENTAL RESULTS

We organize this section into three subsections describing
the databases, the generation of AEs, and validation results.

3.1 Databases
In this work, we use five different image databases as
a way to evaluate adversarial robustness. Four of these
databases show common everyday objects. However, we ex-
perimented with a new image database not used in previous
SOD research that holds real-world objects. By “real-world,”
we refer to objects in a scene positioned in their natural and
unperturbed environment and occurring naturally without
any external factors. A good example is nature photography,
where photographers capture an animal without manipulat-
ing the scene. Data collection normally includes respecting
the many properties that might be present when taking a
photograph, i.e., light and weather conditions, debris, low
contrast, obstructions, and object position, among others.
Experimenting with a real-world database is a big step
toward SOD, given that many research papers focus on
using images specifically designed to test a novel algorithm
and where the properties for detection are mostly advanta-
geous [4]. These databases mostly show large objects with
a high contrast between the foreground and background.
The databases used in this work that refer to the point just
mentioned are FT [20], ImgSal [21], PASCAL-S [16], and
DUTS [22].

FT contains 800 images for training and 200 for testing,
and Figure 2 provides some images of the dataset. The
dataset includes diverse portraits of animate and inanimate
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Fig. 2: Example images of the FT database with the corre-
sponding ground-truth.

Fig. 3: Example images of the ImgSal database with the
corresponding ground-truth.

objects with image sizes ranging from 324 × 216 up to
400 × 300 pixels. PASCAL-S consists of 680 images for
training and 170 images for testing (Figure 3). PASCAL-S
contains scenes of domestic animals, persons, and means of
air and sea transport, with images ranging from 200 × 300
to 375 × 500 pixels. IMGSAL provides 235 images, split
into 188 training images and 47 images for testing (Figure
4). This dataset includes wild animals, flora, and different
objects and people with image sizes of 480 × 640 pixels.
Finally, regarding standard datasets, DUTS is comprised of
10,553 training images and 5,019 test images (Figure 6).
DUTS portrays people, animals, insects, and objects in a
wide variety of scenarios with image sizes ranging from
266× 400 to 400× 192 pixels.

Fig. 4: Example images of the PASCAL-S database with the
corresponding ground-truth.

This work has another purpose: for experimenting
with AAs using a live bird database. The Snowy Plover
(Charadrius nivosus) was listed by the U.S. Fish & Wildlife
Service (USFWS) as a threatened species under the federal
Endangered Species Act. The Snowy Plover is a small
shorebird that can reach a length of 6.7 in (17 cm) with

Fig. 5: Example images of the SNPL database with the
corresponding ground-truth.

Fig. 6: Example images of the DUTS database with the
corresponding ground-truth.

a wingspan of 13.4 in (34 cm). The bird has a short, thin,
black bill and gray legs. The upper body varies from grayish
to light-brown, with a white belly and black on the fore-
head and ears. The Snowy Plover inhabits sandy beaches.
Many organizations have been working for the protection
of the Snowy Plover, incorporating mainstream technology
based on DL. However, AAs expose the vulnerabilities of
many neural networks used for wildlife conservation. These
neural networks are part of real-life monitoring systems
such as camera traps for animal identification, and counting
[23], drones for scanning a habitat [24], and even acoustic
recording devices [25]. Many of these applications involve
defending against the attacks of individuals performing
illegal activities that put wildlife in danger, such as poach-
ing, which has become an increasing problem in today’s
world and a subject that conservationists desperately need
a solution to, not only regarding accuracy but reliability and
security. Other activities threatening species’ well-being are
the constant increase in human population and their distur-
bance of the animal’s natural habitat, such as beaches where
the Snowy Plover and many other birds reside. By exposing
the vulnerabilities of these neural networks, the scientific
community can focus on improving the resilience of their
algorithms to prevent attacks by malicious individuals. This
work shows that an evolutionary computation technique is
appropriate to approach SOD, with the advantage of not
being susceptible to AAs while performing high detection.

The fourth real-world database used in this work com-
prises 250 images of the Snowy Plover, named the SNPL
database (Figure 5). We took images using a Nikon DSLR
camera and a 200-500mm f/5.6 Supertelefoto lens, consid-
ering different weather, exposure, and range conditions.
We took each of the 250 photographs in the bird’s natural
habitat, consisting of sandy beaches and mudflats on the
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Pacific coast of Baja California, Mexico. Each one of these
images shows one or more Snowy Plovers, whose size on
the scene varies according to the distance at which we
took a photograph while adjusting the focal length. Another
essential feature involves the background, where a variety
of distractors, such as plants, water bodies, and small objects
(shells and debris), are present. Also, many of these images
contain occlusions that partially cover the (ground truth)
object of interest. Note also that the animal’s sandy beach
habitat and the primary color of its feathers have similar
color tones. Many of these images lack a high contrast
between the background and the Snowy Plover. Due to
these characteristics, the SNPL database is a great basis to
study such a real-world problem. This dataset represents a
challenging scenario to test different SOD models. Also, we
can compare it with the previous datasets to understand
the limitations of academic datasets whose optimal size
and exposure conditions prevent us from understanding the
effect of AEs on VA.

3.2 Generation of AEs

In order to test the robustness, or resistance of the detection
algorithms to AAs, including BP, we generated AEs for the
validation set of each database used in this work. We used
the Python programming language, version 3.8.3 and the
machine learning framework PyTorch, version 1.6.0 [26] and
explained the process for generating each AE.

We created six sets of AEs for the validation set of each
database using FGSM coupled with the training stage of
PICANet. We generated each of the six sets with a value
of ϵ = {2, 4, 8, 16, 32, 64}, so the images of each set have
disturbances with different intensities, with 2 being the
lowest perturbation and 64 being the highest variation. The
second row of Figure 7 shows examples of this perturbation
applied to an image of the Snowy Plover.

Regarding the AP, we created two sets using ResNet-50.
The first set contains images where the patch covers an area
of 70 × 70 pixels, named Patch, corresponding to 31% of
the original image. The second set contains images whose
patch is 50 × 50 pixels, named Patch(S), covering 22% of
the original image (Figure 7). The reason for generating two
sets with patches of different sizes was to assess whether
the performance of the detection algorithms depends on
the patch size, how much the results vary, or whether it
ultimately depends on the pure disturbance regardless of
size. We placed the patch randomly, without discriminating
its location even when the patch was wholly or partially
covering the object of interest.

We validated each dataset using the multipixel method,
whose disturbance value d = 10, 000 specifies the number of
modified pixels. This result reflects a significant number of
pixels that are not inconspicuous while allowing protruding
objects to remain noticeable. This attack did not require
knowledge of the internal parameters of any machine learn-
ing approach.

Next, we created for each database a set of AEs using
Gaussian noise. Regarding all generated examples, we apply
a σ = 30, which implements a grain of magnitude sufficient
to distinguish the objects in the scene without a problem.
Generating these examples did not require knowing the

internal parameters of any learning approach. Also, we
validated each dataset with Salt & Pepper noise. Instead of
applying it to grayscale images, we use color images, so the
noise does not appear as black and white points but as color
dots. This effect is because the Salt & Pepper noise takes
the values of the maximum and minimum pixels of each
color band and distributes them throughout the image. The
generation of Salt & Pepper noise did not require knowledge
of the internal parameters of any neural network. Finally,
we create AEs for each dataset using Speckle noise. Since
Speckle noise originates from physical conditions, it was
necessary to implement a method to simulate it. Thus,
random values were taken from a Gaussian distribution
along image dimensions and multiplied by a variance of
0.3. Similar to the other noises, the Speckle noise does not
require knowing the parameters of any neural network to
implement it.

3.3 Validation Results

In this section, we explain how the experiment demon-
strates the threats that recent models could face. We provide
four tables divided by each studied database: FT, ImgSal,
PASCAL-S, and SNPL. We organize each table by the kind
of attack: a white box attack (FGSM), the transferability
effect (AP), and black box attacks (multipixel and noise-
based attacks). Values in bold correspond to the lowest score
an algorithm obtained among all types of AAs. Finally, we
present the results of applying the symbolic and subsym-
bolic methods learned with the FT dataset to the AAs made
on the DUTS database. The goal is to validate the robustness
of the proposed models using a different dataset from that
used during learning.

3.3.1 FT database
Table 1 shows the results of applying an adversarial FGSM
attack to the five neural networks and the BP algorithm
using the FT database. In tests with the original images
(no AA), neural networks outperformed the BP algorithm.
However, as the attack is applied and the epsilon value
increases, the networks’ performance drops. PICANet’s per-
formance suffers a significant loss, starting with a score
of 81.45% and steadily falling to 40.52% at ϵ = 64, thus
losing around 50% of its performance. Although the BASNet
network has the best score in the test, with the original
images achieving 92.67%, it also loses its performance and
drops to 58.65%. The second best model with the original
images is EDN, which achieved 90.93% before dropping to
53.43% with ϵ = 64. LeNo achieves the fourth-best score at
87.49% while declining to 65.54%, which is lower than those
of DHSNet and BP. Although the DHSNet network does not
lower its score so drastically, it is also affected. On the other
hand, BP is virtually unaffected after applying all epsilon
values, indicating that it possesses significant robustness
and is quite resistant to this type of attack, being able to
detect protruding objects in the scene even with the most
intense disturbance, which is unlike neural networks. It is
worth mentioning that the FT database consists of images
whose objects of interest cover a large part of the image,
so these algorithms have an excellent facility for achieving
detection, which is reflected in the high scores.
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Fig. 7: Perturbations over an image of the SNPL database. On top is the original image, while in the second row we observe
the image with different levels of perturbation using FGSM; the third row provides the resulting AEs using two versions
of the adversarial patch, the multipixel attack, and the three different noises.

Table 1 also shows the results when applying the mul-
tipixel, AP, and noise attacks to the five neural networks
and the BP algorithm using the FT database. PICANet is
primarily affected by the multipixel attack, reaching the
lowest score of 66.86%, while EDN and LeNo reached the
second and third lowest scores, respectively. The remaining
methods (BP, BASNet, and DHSNet) keep their scores after
the multipixel attack. We can observe that the AP causes
a score decrease in all detection algorithms, including BP.
However, this decrease is more severe in the BASNet and
PICANet networks, which had shown a high score with the
undisturbed images. The DHSNet network, which had been
shown to be unaffected by the FGSM attack, finally loses
its score with the AP, dropping to 74.48%. On the other
hand, the BP algorithm shows for the first time a decrease in
its detection capacity, down to 67.96%, which suggests that
the AP is a fairly powerful attack since the patches inserted
in the images are, in many cases, classified as outstanding
objects. EDN and LeNo scores also decreased after AP was
applied. Lastly, although the smallest AP manages to lower
the score of most algorithms, it fails to compare with the
score of the largest patch, which was expected but may not
be the case in the following experiments.

Regarding noise, the detection algorithms BP, BASNET,
and DHSNet are practically unaffected, but not so with
LeNo, EDN, and PICANet. These last three networks lose
detection ability against all three types of noise, although
the score loss is not as drastic, suggesting that they are still
resistant to these attacks. It is important to note that one of
the possible reasons for the high robustness to noise attacks
is because this database, as already mentioned, contains
objects of interest of considerable size and high contrast
with the background, making them easy to spot. This feature
contrasts with the results of the following databases, where

noise attacks affect the score of the neural networks while
BP maintains its high robustness.

3.3.2 ImgSal database
Table 2 shows the results of applying FGSM to the five
neural networks and the BP algorithm using the ImgSal
database. It is important to emphasize that the ImgSal
database does not have correctly segmented ground truths,
so the results in the table should be taken as an approxi-
mation of the actual score that the algorithms would have
returned if the segmentation had been correct. In this case,
the five neural networks, even BASNet and PICANet, are
severely affected by the FGSM attack, losing great detection
capacity from the value ϵ = 8. Their performance has
already dropped considerably for the value ϵ = 64, in
the following order: EDN, BASNet, PICANet, LeNo, and
DHSNet, down to 25% for EDN. BP remains at an acceptable
score even after the intense disturbance ϵ = 64, dropping
only by 8%. This result again underscores the robustness of
BP against this type of AA.

Table 2 also displays the results when applying the
multipixel, AP, and noise attacks to the five neural networks
and the BP algorithm using the ImgSal database. In this case,
unlike the FT databases, the multipixel attack significantly
affects the five neural networks’ performance. This result
may be because the objects in the ImgSal database images
are not as large as those in FT, so detection is more challeng-
ing. The BP algorithm is not affected by this attack. Regard-
ing the AP, this seriously affects the detection capacity of all
algorithms, with BASNet and PICANet losing around 50%
of their performance. Also, the small patch causes singular
behavior in the LeNo, BP, and DHSNet algorithms; the score
obtained is lower than in the regular-sized patch. This result
indicates that a larger patch will not necessarily affect the
performance of an algorithm to a greater extent.
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TABLE 1: Summary of the results obtained with adversarial attacks (FGSM, multipixel, patch, and noises) applied to the
FT database.

FT
Algorithm Measure Original ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 64 Multipixel Patch Patch(S) Gaussian S&P Speckle
Brain [8]
Programming

Avg. 73.84 73.79 73.63 73.69 73.44 72.97 71.64 74.31 67.96 69.63 73.84 73.90 73.96
σ 12.48 12.53 12.52 12.53 12.56 12.70 13.68 12.23 14.02 14.06 12.28 12.60 12.35

LeNo [7] Avg. 87.49 87.40 87.17 87.16 86.74 83.65 65.54 72.99 80.17 80.61 86.59 83.56 82.37
σ 14.38 14.43 14.85 14.58 15.18 17.57 25.22 24.17 16.31 16.34 15.55 18.64 19.35

EDN [9] Avg. 90.93 90.87 90.77 90.42 88.25 82.20 53.43 69.10 81.48 83.28 86.08 86.01 82.88
σ 12.82 12.81 12.89 13.12 16.12 21.04 26.38 26.95 17.06 16.12 18.33 18.77 21.95

BASNet
[10]

Avg. 92.67 90.92 89.74 88.92 87.30 82.60 58.65 90.79 67.01 73.00 92.27 92.41 90.88
σ 12.51 15.38 16.94 16.78 18.02 23.28 37.96 15.54 20.47 23.16 12.72 12.69 14.75

PICANet
[5]

Avg. 81.45 74.26 67.84 61.01 57.04 51.21 40.52 66.86 61.04 69.78 78.39 78.95 75.89
σ 15.27 18.74 20.83 22.58 22.91 22.76 22.19 22.14 19.79 17.06 17.42 19.40 20.97

DHSNet
[15]

Avg. 88.63 87.92 87.46 86.68 85.62 83.85 78.92 85.67 74.48 79.04 87.84 86.98 86.89
σ 12.43 12.86 13.30 13.74 14.48 15.95 19.90 14.50 17.67 16.38 13.31 14.12 14.73

In the case of noise, BP is not affected by any method,
keeping its score very close to the original. Instead, the five
neural networks decreased their performance, especially in
Salt & Pepper and Speckle noises. Unlike FT, where no
algorithm was affected by noise, the case of ImgSal does
affect them due to the nature of its images, which pose an
even more significant challenge at the time of detection.

3.3.3 PASCAL-S database
Table 3 shows the results of applying an adversarial FGSM
attack to the five neural networks and the BP algorithm us-
ing the PASCAL database. At first glance, we can appreciate
that the BP algorithm is not affected by this attack, keeping
its score very close to the original and consistently above
60%. This result demonstrates once again the excellent ro-
bustness of BP. On the other hand, as we already observed
in previous databases, neural networks do not keep up
with this type of attack, and this case is no exception.
Even though BASNet had the highest score in the original
images (80.20%), its score dropped to 14.96% in the highest
epsilon. The BP algorithm may not have had the highest
score using the original images, but it outperforms four out
of five neural networks, with the exception of LeNo, when
applying the FGSM with the most severe perturbation.

Table 3 also shows the results when applying the mul-
tipixel, AP, and noise attacks to the five neural networks
and the BP algorithm using the PASCAL-S database. In
the case of the multipixel attack, the neural networks are
considerably affected, especially BASNet, which drops from
80.20% to 57.26%. For the AP, the BASNet score drops
even further, while PICANet mysteriously recovers at 4.63%
compared with its multipixel score. This result indicates
that the algorithm’s performance highly correlates with the
database, and in the AP, the PICANet algorithm tolerated
the patch slightly better than EDN. Note that the LeNo score
is slightly better than the PICANet score regarding the AP.
However, robustness is more evident in the BP algorithm,
which can acceptably withstand these two types of attacks,
starting at 62.94% in the original images and up to 57.5%
in Patch(S). Again, attacking BP with a normal-sized patch
did not result in a lower score than attacking it with a small
patch.

In the case of noise attacks, the BP and LeNo algorithms
are largely unaffected, but we cannot say the same regarding
the other neural networks. Even though it seems that the
noise attack does not manage to affect the performance of
these four neural networks so drastically, there is no doubt
that there is a decrease in the detection capacity. EDN, BAS-
Net, and PICANet are down an average of 8%–15%, while

DHSNet, which already proves robust to noise attacks, is
down only 3% this time.

3.3.4 SNPL database
Unlike previous databases, the Snowy Plover (SNPL) im-
ages contain characteristics that come quite close to a
real-world problem. In other words, we planned the pho-
tographs of these images in natural environments, with
cameras for bird photography, and with different weather,
lighting, and zoom conditions. This dataset allows it to test
detection algorithms that are mostly only tested against
databases with larger objects of interest that are optimally
illuminated and have no real-world purpose.

Table 4 shows the results of applying an adversarial
FGSM attack to the five neural networks and the BP al-
gorithm using the SNPL database. The first observation in
this experiment is the decrease in the scores of most of the
algorithms compared with the previous databases. Except
for PICANet in the test with the original images, the neural
networks and BP lose most of their performance when try-
ing to achieve detection with the SNPL database. This result
is due to the different zoom and obstruction characteristics
in this set of images. Even though the neural networks
scored reasonably well against the other databases, where
the objects of interest have a relatively high salience, a more
significant challenge begins to break them. This outcome
becomes much more evident when attacking them with
AEs. For the case of FGSM, all neural networks show a
gradual decrease starting at ϵ = 2 and ending with a
practically nonexistent score when attacking with a value
of ϵ = 64. LeNo loses more than half of the score reach-
ing 39.79%, while BASNet completely loses the score with
0.99%. In the case of BP, when testing the BP algorithm with
the original images, it starts with a score of 52.6%, below
those of the PICANet, LeNo, EDN, and BASNet scores, in
order of performance, but still better than that of DHSNet.
However, by attacking with ϵ = 32, BP already beat all
neural networks, finishing with a score well above theirs. In
the end, when attacking with ϵ = 64, the BASNet network
shows a total decrease of 98.3%, 89.6% for PICANet, 87.8%
for EDN, 59.4% for DHSNet, and 55.86% for LeNo, while
BP only drops to 19.7%.

Table 4 also shows the results when applying the mul-
tipixel, AP, and noise attacks to the five neural networks
and the BP algorithm using the SNPL database. In the
case of the multipixel attack, the massive decrease in the
score of PICANet and BASNet is remarkable, to the point
that the PICANet network dropped from 86.04% to 13.29%
only with this attack, and the BASNet network suffered
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TABLE 2: Summary of the results obtained with adversarial attacks (FGSM, multipixel, patch, and noises) applied to the
ImgSal database.

ImgSal
Algorithm Measure Original ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 64 Multipixel Patch Patch(S) Gaussian S&P Speckle
Brain [8]
Programming

Avg. 62.66 62.56 62.52 61.96 60.30 58.87 54.20 60.37 46.25 46.12 62.27 62.18 61.28
σ 23.96 23.83 24.09 24.11 24.43 24.72 24.73 23.54 25.13 24.61 23.91 24.21 23.73

LeNo [7] Avg. 72.80 72.54 72.60 72.74 70.75 57.62 28.92 60.79 59.51 57.42 69.73 67.42 63.80
σ 24.52 25.10 24.70 24.48 25.80 29.76 24.15 29.48 26.80 27.38 25.88 24.69 27.37

EDN [9] Avg. 69.85 69.30 69.00 69.09 63.63 42.62 17.41 41.27 52.17 54.55 55.28 53.95 44.66
σ 24.73 25.22 24.98 24.64 27.07 30.24 16.72 30.25 28.22 27.92 30.22 29.76 29.98

BASNet
[10]

Avg. 63.75 59.84 55.96 53.78 54.76 44.34 20.69 54.19 27.92 31.49 60.01 57.27 55.06
σ 31.73 33.32 34.43 35.62 34.19 35.76 30.10 35.81 26.28 27.64 34.68 34.57 34.18

PICANet
[5]

Avg. 71.60 63.73 56.14 50.71 49.52 44.85 25.78 50.33 35.6 38.49 65.12 67.23 64.29
σ 22.16 28.51 29.29 28.36 28.58 28.75 22.96 30.62 23.57 22.48 29.82 30.56 29.41

DHSNet
[15]

Avg. 53.63 53.25 52.51 50.86 49.22 45.96 39.89 49.12 41.94 41.60 51.19 48.83 49.04
σ 24.85 24.62 24.73 24.97 24.81 24.98 24.34 25.66 26.80 25.84 24.83 25.37 25.77

TABLE 3: Summary of the results obtained with adversarial attacks (FGSM, multipixel, patch, and noises) applied to the
PASCAL-S database.

PASCAL-S
Algorithm Measure Original ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 64 Multipixel Patch Patch(S) Gaussian S&P Speckle
Brain [8]
Programming

Avg. 62.94 62.79 62.34 62.53 62.38 61.53 60.53 61.74 58.05 57.50 62.55 61.51 61.55
σ 20.89 20.65 20.80 21.13 21.60 21.28 21.54 18.28 18.84 17.96 18.12 18.41 18.58

LeNo [7] Avg. 73.59 73.11 73.48 72.97 72.01 70.01 62.29 69.65 69.74 70.37 72.58 72.51 72.72
σ 17.15 17.16 17.19 17.27 17.62 18.56 21.33 19.51 18.49 17.54 17.94 17.45 17.25

EDN [9] Avg. 72.68 72.49 72.24 71.82 69.07 58.11 47.96 57.45 66.52 68.89 65.26 67.26 63.93
σ 18.67 18.78 18.99 18.83 19.45 22.13 21.99 21.85 20.50 18.84 20.91 19.71 21.29

BASNet
[10]

Avg. 80.20 77.24 74.64 71.13 65.96 50.82 14.96 57.26 53.12 54.67 67.66 74.66 66.49
σ 21.15 23.16 23.53 26.03 27.74 33.78 29.49 32.54 26.26 29.63 28.86 25.69 29.32

PICANet
[5]

Avg. 75.81 68.16 59.38 51.12 52.00 53.61 50.08 63.31 67.94 69.34 70.16 72.06 68.65
σ 19.80 20.74 20.17 21.48 21.54 20.64 20.33 19.69 17.24 17.53 17.29 17.25 19.19

DHSNet
[15]

Avg. 68.14 66.57 65.41 63.44 61.65 60.03 57.07 64.54 62.03 64.41 65.69 66.32 65.19
σ 21.03 21.36 21.07 20.96 21.17 21.37 21.38 20.92 21.67 20.83 20.46 20.97 21.42

the same consequences. Also, EDN and LeNo achieved
poor performances, decreasing their scores by 46.44% and
38.06%, respectively. Again, due to the nature of the SNPL
database images, these networks fail to maintain the robust-
ness necessary to achieve detection. The BP algorithm only
shows a 9.3% decrease in its score, demonstrating its high
robustness. For the case of the AP, PICANet manages to
be surprisingly robust, going down from 86.04% to 72.06%
in the regular-size patch and 82.66% in the smallest size
patch, achieving a high level of detection even when we
designed the patch to be another type of protruding object
in the scene. On the other hand, BP manages to hold close
to 40% of the patch attacks of both sizes, outperforming the
BASNet and DHSNet networks. Note that BASNet scored
the worst results, with 20.47% for the regular-size patch
and 20.53% for the small patch. LeNo decreases its score
reaching to 53.17% for the regular patch while improving
up to 61.08% for the small patch, losing 24% and 12.7%,
respectively. EDN maintains a similar score for both patches
at around 49%, but its performance still decreased by 25%.

Noise attacks continue to show that neural networks
are not immune to them. In all types of noise attacks,
the BP algorithm outperforms the five neural networks,
with only Speckle noise managing to lower its score to
44.98% while remaining above all networks. PICANet and
BASNet suffer huge performance drops, with Speckle noise
destroying their scores almost entirely (PICANet down to
91% and BASNet down to a total of 80%). LeNo, DHSNet,
and EDN demonstrate some robustness, but not enough to
outperform BP.

3.3.5 DUTS database
As a way to validate our results, we selected 300 ran-
dom images from the 5019 testing pictures available in
the DUTS dataset [22]. In this manner, we were able to
generate a validation set that was comparable in size to prior
databases. Additionally, we used the models that resulted
from training on the FT database so that we could observe

how the different algorithms would behave on an unrelated
collection of photos.

Table 5 shows the results of applying an adversarial
FGSM attack to the five neural networks and the BP al-
gorithm using the DUTS database. The consistency in the
results obtained by the BP algorithm is worth mentioning,
hovering around 50%. Similar to the results obtained with
previous databases, the LeNo and EDN neural networks
show resiliency for smaller gradient attacks, and then con-
siderably deteriorate after ϵ = 32 attacks. Scoring 57.1%
in the original images, LeNo drops its score to 37.0% with
ϵ = 64, while EDN has a more prominent drop in score,
starting at 58.63%, and falling down to 26.2%. BASNet has
the highest score in this experiment, with 82.43%, but also
starts deteriorating sooner with ϵ = 4 attacks. PiCANet
scores slightly better (62.25%) than LeNo and EDN, but
quickly deteriorates after ϵ = 2 attacks, reaching a score
of 19.37% on the strongest epsilon attack. Finally, while
DHSNet does not deteriorate as prominently as other neural
networks, it does have the lowest score out of all algorithms,
starting at 25.77%, and reaching a score of 16.42% with
ϵ = 64.

Table 5 also shows the results when applying the mul-
tipixel, AP, and noise attacks to the five neural networks
and the BP algorithm using the DUTS database. Again, BP
shows the highest robustness, with the AP causing its most
significant drop in performance, going from 50.22% down
to 47.66%. PiCANet, EDN, LeNo, and DHSNet show a high
sensitivity against multipixel, and speckle noise attacks,
while algorithms such as BASNet seem to be most affected
by AP attacks.

Figure 8 illustrates example saliency maps generated on
the validation DUTS dataset and provides a visual explana-
tion of the behavior observed in Table 5. We included AAs
that produced the most variance across all algorithms in
comparison with the original saliency maps. For reference,
we also included the colored images that were passed as
inputs to the various algorithms to achieve a better un-
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TABLE 4: Summary of the results obtained with adversarial attacks (FGSM, multipixel, patch, and noises) applied to the
SNPL database.

SNPL
Algorithm Measure Original ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 64 Multipixel Patch Patch(S) Gaussian S&P Speckle
Brain [8]
Programming

Avg. 52.60 53.31 52.13 50.31 49.09 45.01 42.24 47.70 41.26 39.32 48.40 45.74 44.98
σ 19.72 19.23 19.64 20.73 21.21 20.27 20.28 21.12 21.65 19.89 20.98 21.91 21.26

LeNo [7] Avg. 69.97 69.72 70.51 69.42 63.80 39.79 30.88 43.34 53.17 61.08 51.39 46.58 39.15
σ 17.67 17.49 16.90 17.66 19.21 21.98 20.23 23.98 19.95 20.41 22.03 25.01 21.92

EDN [9] Avg. 66.32 66.10 65.44 62.78 52.22 32.69 8.10 35.52 49.43 49.58 42.46 42.75 30.95
σ 18.23 18.64 19.09 20.95 23.87 23.99 6.54 26.22 21.34 24.74 24.73 27.08 23.83

BASNet
[10]

Avg. 60.27 57.36 53.88 50.66 35.28 13.63 0.99 18.09 20.47 20.53 31.27 30.63 10.01
σ 35.12 35.40 34.43 31.85 31.80 24.72 2.05 28.11 21.30 26.71 34.50 34.73 19.84

PICANet
[5]

Avg. 86.04 72.91 63.7 57.64 44.85 9.26 8.90 13.29 72.61 82.66 32.79 26.93 7.37
σ 14.64 23.56 25.12 25.32 22.41 8.16 5.65 12.09 25.58 21.02 22.22 23.42 6.63

DHSNet
[15]

Avg. 43.98 43.23 43.04 42.12 38.63 31.67 17.84 36.13 34.76 30.01 38.92 38.19 33.60
σ 19.88 19.46 19.37 19.88 19.57 19.48 15.77 21.02 17.76 15.59 19.42 20.86 20.01

TABLE 5: Summary of the results obtained with adversarial attacks (FGSM, multipixel, patch, and noises) applied to the
DUTS database, using models trained on the FT database.

DUTS
Algorithm Measure Original ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16 ϵ = 32 ϵ = 64 Multipixel Patch Patch(S) Gaussian S&P Speckle
Brain [8]
Programming

Avg. 50.22 50.06 50.08 49.96 49.90 50.4 49.39 49.82 47.66 49.02 50.07 50.13 50.47
σ 22.23 22.32 22.33 22.24 22.42 22.63 22.40 22.47 22.25 22.39 22.27 22.36 22.37

LeNo [7] Avg. 57.10 57.59 57.70 56.77 55.13 49.13 37.00 47.21 51.96 51.03 54.10 50.57 48.16
σ 25.04 24.79 24.77 24.64 24.92 25.19 23.29 26.28 24.04 24.69 25.02 25.34 25.23

EDN [9] Avg. 58.63 58.53 58.32 57.71 55.40 44.02 26.20 44.70 50.73 52.28 52.25 51.09 46.51
σ 25.61 26.64 25.68 26.11 26.46 26.89 21.84 27.11 25.85 25.28 26.67 26.59 27.44

BASNet
[10]

Avg. 82.43 81.20 76.67 67.08 53.96 42.14 29.11 63.34 45.97 55.97 71.18 75.16 67.64
σ 24.13 24.87 28.10 31.97 33.47 30.92 23.10 30.47 26.73 29.69 28.81 27.14 30.33

PICANet
[5]

Avg. 62.25 55.86 42.06 31.59 27.48 24.17 19.37 40.62 47.71 48.29 50.61 51.06 47.34
σ 23.64 24.81 24.55 22.15 20.75 19.33 16.64 23.87 24.34 23.63 24.94 26.30 25.79

DHSNet
[15]

Avg. 25.77 25.71 25.54 24.68 21.65 17.32 16.42 17.25 23.90 24.50 18.48 19.90 18.16
σ 17.81 17.79 17.71 17.36 16.17 14.64 14.59 14.70 16.76 17.16 14.84 15.43 14.93
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Fig. 8: Saliency maps are generated on the DUTS database
using algorithms trained with the FT database. Columns
group results by the original image, FGSM attack with
ϵ = 32 and ϵ = 64, multipixel, patch, and speckle noise
attacks. The first row shows the original colored image with
its corresponding AAs, followed by the results generated by
the various algorithms.

derstanding of the produced outputs. Starting with BP, the

first thing that comes to our attention is how constant the
resulting saliency maps are. The cases where we can see the
most distortion are in the AP, just as the table results hint. If
we look carefully at the colored images, we will notice that
the cases showing the biggest distortion are those where the
patch fully covers the salient object. Now, the LeNo algo-
rithm produces results that are reminiscent of smoke; it is
worth noting how every single one of the attacks portrayed
in the figure manages to completely change the computed
output. While LeNo showed the highest resiliency out of
the five networks according to the table results, these exam-
ples show that even the most robust state-of-the-art neural
network does not comply with the proposed definition
of robustness. In the cases of EDN and BASNet, we can
observe how FGSM attacks tend to obscure the resulting
saliency maps, leading to the highest loss in performance.
PiCANet seems to be very susceptible to various attacks
since the algorithm appears to prefer the attacked pixels of
the image over the salient object. Lastly, we can observe
how DHSNet is also affected by AAs, failing to produce
consistent saliency maps.

3.3.6 Summary of Results

Table 6 shows the standard deviations of each of the detec-
tion models for each database. Here, it is clearly shown that
the dispersion of the results obtained by the BP algorithm is
low compared with those of all other neural networks. This
outcome is due to the high robustness of BP, which keeps the
experiments’ values with AAs close to the original images.
In the case of neural networks, the results deviated quite a
bit, especially in the case of PICANet for the SNPL database.
Even though it scored highly in the original images, it fell
apart in the attacks. DHSNet also demonstrated low disper-
sion in the data; however, as seen in the tables above, it is
susceptible to attacks such as FGSM, so it cannot compete
with BP.
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TABLE 6: Standard deviation of each detection model with
respect to adversary attack experiments for each database.

Standard Deviation σ
Algorithm FT ImgSal PASCAL-S SNPL DUTS
BP [8] 1.93 5.96 1.73 4.47 0.75
LeNo [7] 6.56 12.02 3.03 13.81 5.77
EDN [9] 10.63 15.15 7.32 17.10 8.93
BASNet [10] 11.09 13.74 17.14 19.39 16.20
PICANet [5] 12.04 13.82 8.90 29.76 12.94
DHSNet [15] 4.37 4.56 3.02 7.15 3.67

4 CONCLUSION

In this work, we studied SOD with an emphasis on measur-
ing the robustness of various algorithms concerning AAs.
The BP methodology was defined to detect conspicuous
objects by involving a process similar to that of the artificial
visual cortex in humans. After the experiments, BP proved
highly robust, supporting even the highest-disturbance im-
ages. AEs were implemented, such as the FGSM, AP, Mul-
tipixel Attack, and three types of noise: Gaussian, Salt &
Pepper, and Speckle. By attacking the neural networks with
each of these AEs, we confirmed that they are not reliable at
all. Even the slightest disturbance in the input images lowers
their performance significantly, not to mention that feeding
them a strong disturbance renders them virtually unusable.
The advantage of BP is that it is highly robust and reliable
during detection, and although a neural network achieves
higher performances than the evolutionary algorithm, it can
collapse with virtually any disturbance to its input data.
These experiments were carried out in five databases: FT,
ImgSal, PASCAL, DUTS, and SNPL. The first four contain
highly detectable and unnatural objects since they cover a
large part of the scene and have high contrast. Nevertheless,
the SNPL database is different, as it contains objects with
characteristics that resemble the real world more closely.
By using this database, we can get closer to a detection
problem with a practical purpose that directly helps solve
a real-world problem, which is, in this case, wildlife conser-
vation. In future research, we will focus on improving the
performance of BP.
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K. O. Babaagba, Eds. Berlin: Springer International Publishing,
2022, pp. 603–618.

[2] H. Li, G. Li, and Y. Yu, “Rosa: Robust salient object detection against
adversarial attacks,” IEEE Transactions on Cybernetics, vol. 50, no. 11,
pp. 4835–4847, 2020.

[3] Z. Che, A. Borji, G. Zhai, S. Ling, J. Li, G. Guo and P. Le Callet,
“Adversarial attack against deep saliency models powered by non-
redundant priors,” IEEE Transactions on Image Processing, vol. 30,
no. 1, pp. 1973–1988, 2021.

[4] W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling, and R. Yang, “Salient
object detection in the deep learning era: An in-depth survey,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 6, pp. 3239–3259, 2022.

[5] N. Liu, J. Han, and M.-H. Yang, “Picanet: Learning pixel-wise
contextual attention for saliency detection,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3089–3098, 2018.

[6] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep
learning in computer vision: A survey,” IEEE Access, vol. 6, pp.
14410–14430, 2018.

[7] H. Wang, L. Wan and H. Tang, “LeNo: Adversarial Robust Salient
Object Detection Networks with Learnable Noise,” arXiv preprint
arXiv:2210.15392, 2022. accepted by AAAI 2023.

[8] G. Olague, J. A. Menendez-Clavijo, M. Olague, A. Ocampo,
G. Ibarra-Vazquez, R. Ochoa, and R. Pineda, “Automated design of
salient object detection algorithms with brain programming,” 2022.
Applied Sciences 2022, vol. 12, no. 20. Available: https://www.mdpi.
com/2076-3417/12/20/10686

[9] Y. -H. Wu, Y. Liu, L. Zhang, M. -M. Cheng and B. Ren, “EDN:
Salient object detection via extremely-downsampled network,” in
IEEE Transactions on Image Processing, vol. 31, pp. 3125–3136, 2022.

[10] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and
M. Jagersand, “Basnet: Boundary-aware salient object detection,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7471–7481, 2019.

[11] H. Kaiming, Z. Xiangyu, R. Shaoqing, and S. Jian, “Deep Residual
Learning for Image Recognition,” in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 770–778, 2016.

[12] A. F. Agarap, “Deep learning using rectified linear units (relu),”
arXiv preprint arXiv:1803.08375, 2018.

[13] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville and Y.
Bengio, “ReNet: A Recurrent Neural Network Based Alternative to
Convolutional Networks,” arXiv preprint arXiv:1505.00393, 2015.

[14] S. Liu and W. Deng, “Very deep convolutional neural network
based image classification using small training sample size,” in
3rd IAPR Asian Conference on Pattern Recognition, Kuala Lumpur,
Malaysia, pp. 730–734, 2015.

[15] N. Liu and J. Han, “Dhsnet: Deep hierarchical saliency network
for salient object detection,” in IEEE Conference on Computer Vision
and Pattern Recognition, pp. 678–686, 2016.

[16] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of
salient object segmentation,” in IEEE Conference on Computer Vision
and Pattern Recognition, pp. 280–287, 2014.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in 3rd International Conference on
Learning Representations, 2015.

[18] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Transactions on Evolutionary Computa-
tion, vol. 23, no. 5, pp. 828–841, 2019.
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CICESE, México, in 2022. Roberto works as
software engineer at ONEIL. His areas of inter-
est include animal conservation through science,
particularly bird conservation through salient ob-
ject detection algorithms and the positive impact
these could have on vulnerable bird species.

Gerardo Ibarra was born in Ciudad Victoria
Tamaulipas in 1985. He received the B.S. degree
in communications and electronics engineering
from the Universidad Autónoma de Tamaulipas,
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2012, and the M.Sc. degree in Marine and
Coastal Sciences from Universidad Autónoma
de Baja California Sur, México, in 2017. He is
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