2309.03914v2 [cs.SE] 14 Feb 2024

arxXiv

DevGPT: Studying Developer-ChatGPT Conversations

Tao Xiao
Nara Institute of Science and Technology
Japan
tao.xiao.ts2@is.naist.jp

Hideaki Hata
Shinshu University
Japan
hata@shinshu-u.ac.jp

ABSTRACT

This paper introduces DevGPT, a dataset curated to explore how
software developers interact with ChatGPT, a prominent large lan-
guage model (LLM). The dataset encompasses 29,778 prompts and
responses from ChatGPT, including 19,106 code snippets, and is
linked to corresponding software development artifacts such as
source code, commits, issues, pull requests, discussions, and Hacker
News threads. This comprehensive dataset is derived from shared
ChatGPT conversations collected from GitHub and Hacker News,
providing a rich resource for understanding the dynamics of devel-
oper interactions with ChatGPT, the nature of their inquiries, and
the impact of these interactions on their work. DevGPT enables
the study of developer queries, the effectiveness of ChatGPT in
code generation and problem solving, and the broader implications
of Al-assisted programming. By providing this dataset, the paper
paves the way for novel research avenues in software engineering,
particularly in understanding and improving the use of LLMs like
ChatGPT by developers.

CCS CONCEPTS

+ Information systems — Data mining.

KEYWORDS
ChatGPT, LLM, Generative Al, dataset

ACM Reference Format:

Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024.
DevGPT: Studying Developer-ChatGPT Conversations. In 21st International
Conference on Mining Software Repositories (MSR °24), April 15-16, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3643991.3648400

1 HIGH-LEVEL OVERVIEW

The emergence of large language models (LLMs) such as ChatGPT
has disrupted the landscape of software development. Many studies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’24, April 15-16, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04

https://doi.org/10.1145/3643991.3648400

Christoph Treude
University of Melbourne
Australia
christoph.treude@unimelb.edu.au

Kenichi Matsumoto
Nara Institute of Science and Technology
Japan
matumoto@is.naist.jp

are investigating the quality of responses generated by ChatGPT,
the efficacy of various prompting techniques, and its comparative
performance in programming contests, to name a few examples. Yet,
we know very little about how ChatGPT is actually used by software
developers. What questions do developers present to ChatGPT?
What are the dynamics of these interactions? What is the backdrop
against which these conversations are held, and how do the con-
versations feedback into the artifacts of their work? To close this
gap, we introduce DevGPT, a curated dataset which encompasses
29,778 prompts and ChatGPT’s responses including 19,106 code
snippets, coupled with the corresponding software development
artifacts—ranging from source code, commits, issues, pull requests,
to discussions and Hacker News threads—to enable the analysis of
the context and implications of these developer interactions with
ChatGPT.

To create DevGPT, we leveraged a feature introduced by OpenAI
in late May 2023, which allows users to share their interactions
with ChatGPT through dedicated links.! We collected all such links
shared on GitHub and Hacker News at nine specific points from July
to October. If users chose to delete or deactivate their shared con-
versations in the intervening periods, we ensured data consistency
by accessing the original shared link across all these snapshots.

Table 1 provides an overview of the snapshot 20231012. Com-
prising 4,733 shared ChatGPT links sourced from 3,559 GitHub
or Hacker News references, the dataset contains a total of 29,778
prompts/answers. This includes 19,106 code snippets, with Python
(6,084), JavaScript (4,802), and Bash (4,332) as the top three program-
ming languages. 940 of these links are referenced across multiple
sources, resulting in a unique count of 3,794 individual ChatGPT
shared links within DevGPT.

Figure 1 shows an instance of a ChatGPT conversation from the
dataset, together with the pull request it was related to and how
the code was updated after the ChatGPT conversation.

2 INTERNAL STRUCTURE

The dataset consists of a collection of JSON files collected from
the six sources detailed in Table 1. For each source, we provide
distinct metadata in the JSON file to enable source-specific analysis.
Apart from the source-specific metadata, every JSON contains a
consistent attribute: a list of shared ChatGPT links. Each shared
link includes the URL to the ChatGPT conversation, the associ-
ated HTTP response status codes, the access date of the URL, and

!https://help.openai.com/en/articles/7925741-chatgpt-shared- links-faq

https://orcid.org/0000-0003-4070-585X
https://orcid.org/0000-0002-6919-2149
https://orcid.org/0000-0003-0708-5222
https://orcid.org/0000-0002-7418-9323
https://doi.org/10.1145/3643991.3648400
https://doi.org/10.1145/3643991.3648400
https://doi.org/10.1145/3643991.3648400
https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq

MSR °24, April 15-16, 2024, Lisbon, Portugal

Xiao et al.

Table 1: Summary Statistics of the snapshot 20231012

Sources # Mentioned in Shared ChatGPT Links ChatGPT Conversations
Shared Links # Accessible Links # Conversations with Code # Prompts # Code Snippets
GitHub Code File 1,843 Code 2,708 2,540 1,184 22,799 14,132
GitHub Commit 694 Message 694 692 674 1,922 1,828
Comment 404 382 215 1,212 821
GitHub Issue 507 Description 228 212 141 1,103 841
Title 4 4 4 50 77
Description 94 93 59 529 384
GitHub Pull Request 267 Review Thread 109 102 66 201 166
Comment 98 91 54 430 425
Comment 267 234 44 849 127
Hacker News 187 Attached URL 42 37 2 376 54
Story 15 12 4 48 63
Comment 40 34 17 138 76
GitHub Discussion 61 Description 21 20 12 93 87
Reply 9 7 5 28 25

Figure 1: Example of a ChatGPT conversation in the context of a GitHub pull request

FlatAHB Dump: Don't use new GUID for otherwise unchanged lines #158

Author merged 4 commits into main from dont-use-new-guid [5J 3 weeks ago

O
L) @

Reviewer reviewed 3 weeks ago

src/kohlrahbi/unfoldedahb/unfoldedahbtable.py (Outdated

299
300
301
302

if dump_equals_existing_file_except_for_guids:
ahb_line_schema = AhbLineSchema()

+ o+ o+ o+

@ Reviewer 3 weeks ago - edited ~

This is a C# pattern for deep copies isn't it?

| thought in Python there are methods to create deep copies.
asking chatGPT

ah yes there is a standard lib called copy

See https://chat.openai.com/share/4ad4cl1ad-6f13-4a21-a0e3-aaf75e17c556

©}

Reply...

o @ besser

the content within the HTML response. Additionally, each conver-
sation contains a list of prompts/answers, inclusive of any code
snippets. We provide details including the date of the conversa-
tion, the count of prompts/answers, their token information, and
the model version involved in the chat. Attributes detailing where
the conversation was referenced are also included—such as the
referencing URL, the nature of the mention (e.g., a comment), the
individual who mentioned it, and the context in which it was cited.
A comprehensive breakdown of the data structure is available at
https://github.com/NAIST-SE/DevGPT. Additionally, we provide a
CSV file cataloging all shared ChatGPT links gathered from GitHub
and Hacker News.

for line, existing_line in zip(flat_ahb.lines, existing_flat_ahb.lines):
line_copy = ahb_line_schema. load(ahb_line_schema.dump(line))

Deep Copy in Python.

View reviewed changes You are a Python expert.

How can create a deep copy of a variable?

Certainly!In Python,if you want to create a deep copy of a variable, especially for complex
objects like lists or dictionaries that contain nested objects, you should use the “copy

module which provides the “deepcopy " function.

Here's how you can useit:

Collaborator

original 1ist[01[0] =

ChatGPT shared conversation

Modified commit based on the review
X 23edecf

3 HOW TO ACCESS

The DevGPT dataset is available for download on Zenodo, see
Section 6. It is formatted in JSON, making it easily parsable with
any standard JSON library. Additionally, we include the HTTP
response, which can be analyzed using any HTML parser. The
dataset also categorizes code snippets by type, enabling researchers
to use corresponding compilers for execution. No credentials are
needed to access the dataset.

4 POTENTIAL RESEARCH QUESTIONS

The following provides a sample list of research questions that can
be answered with the DevGPT dataset:

https://github.com/NAIST-SE/DevGPT

DevGPT: Studying Developer-ChatGPT Conversations

(1) What types of issues (bugs, feature requests, theoretical ques-
tions, etc.) do developers most commonly present to Chat-
GPT?

(2) Can we identify patterns in the prompts developers use when
interacting with ChatGPT, and do these patterns correlate
with the success of issue resolution?

(3) What is the typical structure of conversations between de-
velopers and ChatGPT? How many turns does it take on
average to reach a conclusion?

(4) In instances where developers have incorporated the code
provided by ChatGPT into their projects, to what extent do
they modify this code prior to use, and what are the common
types of modifications made?

(5) How does the code generated by ChatGPT for a given query
compare to code that could be found for the same query on
the internet (e.g., on Stack Overflow)?

(6) What types of quality issues (for example, as identified by
linters) are common in the code generated by ChatGPT?

(7) How accurately can we predict the length of a conversa-
tion with ChatGPT based on the initial prompt and context
provided?

(8) Can we reliably predict whether a developer’s issue will be
resolved based on the initial conversation with ChatGPT?

(9) If developers were to rerun their prompts with ChatGPT
now and/or with different settings, would they obtain the
same results?

5 RELATED WORK

To situate the DevGPT dataset in the existing literature, in this
section, we discuss existing research on link sharing and large
language models (LLMs) in the field of software engineering.

5.1 Link Sharing

Link sharing, a prevalent method of knowledge sharing, is exten-
sively adopted within developer communities, including Q&A sites,
GitHub, and code reviews. Gémez et al. [10] found that a consider-
able number of links on Stack Overflow were used to share knowl-
edge about software development innovations, such as libraries and
tools. Ye et al. [38] examined the structural and dynamic aspects of
the knowledge network on Stack Overflow, noting that developers
use links for various purposes, predominantly for referencing in-
formation to solve problems. Hata et al. [12] noted that over 80%
of repositories feature at least one link in source code comments.
Xiao et al. [35] expanded this research to include the role of links
in commit messages, observing that inaccessible and patch links
were most common. The practice of link sharing was also studied in
the context of code review. Zampetti et al. [40] explored the extent
and purpose of external online resource references in pull requests,
finding that developers often consult external resources to gain
knowledge or resolve specific issues. Wang et al. [30] employed a
mixed-method approach to underscore the importance of shared
links in review discussions, highlighting their role in satisfying the
information needs of patch authors and review teams.

MSR ’24, April 15-16, 2024, Lisbon, Portugal

5.2 LLMs for SE

Since the introduction of the Transformer architecture in 2017 [29],
LLMs have become increasingly significant in Software Engineering
(SE). Hou et al. [13] conducted a systematic review of 229 research
articles from 2017 to 2023, revealing the widespread use of LLMs in
addressing software development problems. Prominent models in
this area include GPT-2/GPT-3/GPT-3.5 [7, 17, 19, 20, 23, 31, 39],
GPT-4 [3, 9, 14, 20], and the BERT series [16, 41], demonstrating
effectiveness in code generation, completion, and summarization.

Code completion, integral to Integrated Development Environ-
ments (IDEs) and code editors, has been enhanced by tools like
Codex [5, 6, 18, 25, the BERT series [15], GitHub Copilot [6, 18, 26],
CodeParrot [18, 37], and the GPT series [24, 37]. Conversely, code
summarization technologies like Codex [1, 2, 8], CodeBERT [4, 8, 11],
and T5 [21, 22] focus on generating natural language descriptions
from source code to facilitate maintenance, search, and classifica-
tion.

In software maintenance, nearly a quarter of the studies reviewed
by Hou et al. [13] address program repair, code review, and debug-
ging. In program repair, Codex [32, 33] and ChatGPT [34] have
shown strong performance. For code review, LLMs like BERT [27]
and ChatGPT [28] are effective in detecting issues and suggesting
optimizations. Additionally, Copilot for PRs powered pull re-
quests need less review time and have a higher likelihood of being
merged [36].

Despite these advances, there is limited research on how software
developers interact with LLMs. The DevGPT dataset addresses this
gap, offering a valuable resource for in-depth analysis of these
interactions. This dataset can enable the research community to
understand and improve the ways developers use LLMs in their
work, marking a step forward in the practical application of Al in
software development.

6 LINKS

https://github.com/NAIST-SE/DevGPT and https://doi.org/10.5281/
zeno0do.10086809

REFERENCES

[1] Toufique Ahmed, Kunal Suresh Pai, Premkumar Devanbu, and Earl T Barr. 2023.
Improving Few-Shot Prompts with Relevant Static Analysis Products. arXiv
preprint arXiv:2304.06815 (2023).

Shushan Arakelyan, Rocktim Jyoti Das, Yi Mao, and Xiang Ren. 2023. Exploring

Distributional Shifts in Large Language Models for Code Analysis. arXiv preprint

arXiv:2303.09128 (2023).

[3] Patrick Bareif3, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. 2022. Code
generation tools (almost) for free? a study of few-shot, pre-trained language
models on code. arXiv preprint arXiv:2206.01335 (2022).

[4] Fuxiang Chen, Fatemeh H Fard, David Lo, and Timofey Bryksin. 2022. On the
transferability of pre-trained language models for low-resource programming lan-
guages. In Proceedings of the 30th [EEE/ACM International Conference on Program
Comprehension. 401-412.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[6] Jean-Baptiste Doderlein, Mathieu Acher, Djamel Eddine Khelladi, and Benoit
Combemale. 2022. Piloting Copilot and Codex: Hot Temperature, Cold Prompts,
or Black Magic? arXiv preprint arXiv:2210.14699 (2022).

[7] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023. Self-collaboration Code
Generation via ChatGPT. arXiv preprint arXiv:2304.07590 (2023).

[8] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, and Michael R Lyu.
2023. Constructing Effective In-Context Demonstration for Code Intelligence
Tasks: An Empirical Study. arXiv preprint arXiv:2304.07575 (2023).

[2

https://github.com/NAIST-SE/DevGPT
https://doi.org/10.5281/zenodo.10086809
https://doi.org/10.5281/zenodo.10086809

MSR °24, April 15-16, 2024, Lisbon, Portugal

(9]

[10]

[11]

[12

[13

[14

(15

[16

[17

(18]

[19]

[20

[21]

[22

[23

[24

[25

[26]

[27

[28]

[29

[30]

[31]

[32

Henry Gilbert, Michael Sandborn, Douglas C Schmidt, Jesse Spencer-Smith, and
Jules White. 2023. Semantic Compression With Large Language Models. arXiv
preprint arXiv:2304.12512 (2023).

Carlos Goémez, Brendan Cleary, and Leif Singer. 2013. A study of innovation
diffusion through link sharing on stack overflow. In 2013 10th Working Conference
on Mining Software Repositories (MSR). IEEE, 81-84.

Jian Gu, Pasquale Salza, and Harald C Gall. 2022. Assemble foundation models for
automatic code summarization. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 935-946.

Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 2019.
9.6 million links in source code comments: Purpose, evolution, and decay. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
1211-1221.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu
Luo, David Lo, John Grundy, and Haoyu Wang. 2023. Large Language Mod-
els for Software Engineering: A Systematic Literature Review. arXiv preprint
arXiv:2308.10620 (2023).

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. SelfEvolve: A Code Evolution
Framework via Large Language Models. arXiv preprint arXiv:2306.02907 (2023).
Junaed Younus Khan and Gias Uddin. 2022. Automatic detection and analysis of
technical debts in peer-review documentation of r packages. In 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 765-776.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Wen-tau Yih, Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-1000: A
natural and reliable benchmark for data science code generation. In International
Conference on Machine Learning. PMLR, 18319-18345.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Enabling Programming Thinking in
Large Language Models Toward Code Generation. arXiv preprint arXiv:2305.06599
(2023).

Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai
Wang, and Cuiyun Gao. 2023. Cctest: Testing and repairing code completion
systems. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 1238-1250.

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang,
and Meng Yan. 2023. Improving ChatGPT Prompt for Code Generation. arXiv
preprint arXiv:2305.08360 (2023).

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. arXiv preprint arXiv:2305.01210 (2023).

Antonio Mastropaolo, Luca Pascarella, and Gabriele Bavota. 2022. Using deep
learning to generate complete log statements. In Proceedings of the 44th Interna-
tional Conference on Software Engineering. 2279-2290.

Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
usage of text-to-text transfer transformer to support code-related tasks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
336-347.

Nathalia Nascimento, Paulo Alencar, and Donald Cowan. 2023. Comparing
Software Developers with ChatGPT: An Empirical Investigation. arXiv preprint
arXiv:2305.11837 (2023).

Marcel Ochs, Krishna Narasimhan, and Mira Mezini. 2023. Evaluating and im-
proving transformers pre-trained on ASTs for Code Completion. In 2023 IEEE In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 834-844.

Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan
Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair with large language
models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2339-2356.
Rohith Pudari and Neil A Ernst. 2023. From Copilot to Pilot: Towards Al Supported
Software Development. arXiv preprint arXiv:2303.04142 (2023).

Oussama Ben Sghaier and Houari Sahraoui. 2023. A Multi-Step Learning Ap-
proach to Assist Code Review. In 2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 450-460.

Giriprasad Sridhara, Sourav Mazumdar, et al. 2023. ChatGPT: A Study on its
Utility for Ubiquitous Software Engineering Tasks. arXiv preprint arXiv:2305.16837
(2023).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Dong Wang, Tao Xiao, Patanamon Thongtanunam, Raula Gaikovina Kula, and
Kenichi Matsumoto. 2021. Understanding shared links and their intentions to
meet information needs in modern code review: A case study of the OpenStack
and Qt projects. Empirical Software Engineering 26 (2021), 1-32.

Jian Wang, Shangqing Liu, Xiaofei Xie, and Yi Li. 2023. Evaluating AIGC Detectors
on Code Content. arXiv preprint arXiv:2304.05193 (2023).

Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan,
Petr Babkin, and Sameena Shah. 2023. How Effective Are Neural Networks for
Fixing Security Vulnerabilities. arXiv preprint arXiv:2305.18607 (2023).

Xiao et al.

[33] Chungqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated

program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association

for Computing Machinery.

Chungqiu Steven Xia and Lingming Zhang. 2023. Conversational automated
program repair. arXiv preprint arXiv:2301.13246 (2023).

Tao Xiao, Sebastian Baltes, Hideaki Hata, Christoph Treude, Raula Gaikovina
Kula, Takashi Ishio, and Kenichi Matsumoto. 2023. 18 million links in commit
messages: purpose, evolution, and decay. Empirical Software Engineering 28, 4
(2023), 91.

Tao Xiao, Hideaki Hata, Christoph Treude, and Kenichi Matsumoto. 2024. Gener-
ative Al for Pull Request Descriptions: Adoption, Impact, and Developer Inter-
ventions. In Proceedings of the ACM on Software Engineering (PACMSE).

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1-10.
Deheng Ye, Zhenchang Xing, and Nachiket Kapre. 2017. The structure and
dynamics of knowledge network in domain-specific q&a sites: a case study of
stack overflow. Empirical Software Engineering 22, 1 (2017), 375-406.

Burak Yetistiren, Istk Ozsoy, Miray Ayerdem, and Eray Tiiziin. 2023. Evalu-
ating the Code Quality of Al-Assisted Code Generation Tools: An Empirical
Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv preprint
arXiv:2304.10778 (2023).

Fiorella Zampetti, Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano
Di Penta, and Michele Lanza. 2017. How developers document pull requests with
external references. In 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC). IEEE, 23-33.

Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program under-
standing and generation. In Proceedings of the 31st ACM SIGSOFT international
symposium on software testing and analysis. 39-51.

	Abstract
	1 High-level overview
	2 Internal structure
	3 How to access
	4 Potential research questions
	5 Related work
	5.1 Link Sharing
	5.2 LLMs for SE

	6 Links
	References

