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ABSTRACT

This paper introduces DevGPT, a dataset curated to explore how
software developers interact with ChatGPT, a prominent large lan-
guage model (LLM). The dataset encompasses 29,778 prompts and
responses from ChatGPT, including 19,106 code snippets, and is
linked to corresponding software development artifacts such as
source code, commits, issues, pull requests, discussions, and Hacker
News threads. This comprehensive dataset is derived from shared
ChatGPT conversations collected from GitHub and Hacker News,
providing a rich resource for understanding the dynamics of devel-
oper interactions with ChatGPT, the nature of their inquiries, and
the impact of these interactions on their work. DevGPT enables
the study of developer queries, the effectiveness of ChatGPT in
code generation and problem solving, and the broader implications
of Al-assisted programming. By providing this dataset, the paper
paves the way for novel research avenues in software engineering,
particularly in understanding and improving the use of LLMs like
ChatGPT by developers.
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1 HIGH-LEVEL OVERVIEW

The emergence of large language models (LLMs) such as ChatGPT
has disrupted the landscape of software development. Many studies
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are investigating the quality of responses generated by ChatGPT,
the efficacy of various prompting techniques, and its comparative
performance in programming contests, to name a few examples. Yet,
we know very little about how ChatGPT is actually used by software
developers. What questions do developers present to ChatGPT?
What are the dynamics of these interactions? What is the backdrop
against which these conversations are held, and how do the con-
versations feedback into the artifacts of their work? To close this
gap, we introduce DevGPT, a curated dataset which encompasses
29,778 prompts and ChatGPT’s responses including 19,106 code
snippets, coupled with the corresponding software development
artifacts—ranging from source code, commits, issues, pull requests,
to discussions and Hacker News threads—to enable the analysis of
the context and implications of these developer interactions with
ChatGPT.

To create DevGPT, we leveraged a feature introduced by OpenAI
in late May 2023, which allows users to share their interactions
with ChatGPT through dedicated links.! We collected all such links
shared on GitHub and Hacker News at nine specific points from July
to October. If users chose to delete or deactivate their shared con-
versations in the intervening periods, we ensured data consistency
by accessing the original shared link across all these snapshots.

Table 1 provides an overview of the snapshot 20231012. Com-
prising 4,733 shared ChatGPT links sourced from 3,559 GitHub
or Hacker News references, the dataset contains a total of 29,778
prompts/answers. This includes 19,106 code snippets, with Python
(6,084), JavaScript (4,802), and Bash (4,332) as the top three program-
ming languages. 940 of these links are referenced across multiple
sources, resulting in a unique count of 3,794 individual ChatGPT
shared links within DevGPT.

Figure 1 shows an instance of a ChatGPT conversation from the
dataset, together with the pull request it was related to and how
the code was updated after the ChatGPT conversation.

2 INTERNAL STRUCTURE

The dataset consists of a collection of JSON files collected from
the six sources detailed in Table 1. For each source, we provide
distinct metadata in the JSON file to enable source-specific analysis.
Apart from the source-specific metadata, every JSON contains a
consistent attribute: a list of shared ChatGPT links. Each shared
link includes the URL to the ChatGPT conversation, the associ-
ated HTTP response status codes, the access date of the URL, and

!https://help.openai.com/en/articles/7925741-chatgpt-shared- links-faq
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Table 1: Summary Statistics of the snapshot 20231012

Sources # Mentioned in Shared ChatGPT Links ChatGPT Conversations
# Shared Links  # Accessible Links # Conversations with Code # Prompts # Code Snippets
GitHub Code File 1,843 Code 2,708 2,540 1,184 22,799 14,132
GitHub Commit 694 Message 694 692 674 1,922 1,828
Comment 404 382 215 1,212 821
GitHub Issue 507 Description 228 212 141 1,103 841
Title 4 4 4 50 77
Description 94 93 59 529 384
GitHub Pull Request 267 Review Thread 109 102 66 201 166
Comment 98 91 54 430 425
Comment 267 234 44 849 127
Hacker News 187  Attached URL 42 37 2 376 54
Story 15 12 4 48 63
Comment 40 34 17 138 76
GitHub Discussion 61 Description 21 20 12 93 87
Reply 9 7 5 28 25

Figure 1: Example of a ChatGPT conversation in the context of a GitHub pull request
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the content within the HTML response. Additionally, each conver-
sation contains a list of prompts/answers, inclusive of any code
snippets. We provide details including the date of the conversa-
tion, the count of prompts/answers, their token information, and
the model version involved in the chat. Attributes detailing where
the conversation was referenced are also included—such as the
referencing URL, the nature of the mention (e.g., a comment), the
individual who mentioned it, and the context in which it was cited.
A comprehensive breakdown of the data structure is available at
https://github.com/NAIST-SE/DevGPT. Additionally, we provide a
CSV file cataloging all shared ChatGPT links gathered from GitHub
and Hacker News.

for line, existing_line in zip(flat_ahb.lines, existing_flat_ahb.lines):
line_copy = ahb_line_schema. load(ahb_line_schema.dump(line))

Deep Copy in Python.
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How can create a deep copy of a variable?

Certainly!In Python,if you want to create a deep copy of a variable, especially for complex
objects like lists or dictionaries that contain nested objects, you should use the “copy

module which provides the “deepcopy " function.

Here's how you can useit:
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3 HOW TO ACCESS

The DevGPT dataset is available for download on Zenodo, see
Section 6. It is formatted in JSON, making it easily parsable with
any standard JSON library. Additionally, we include the HTTP
response, which can be analyzed using any HTML parser. The
dataset also categorizes code snippets by type, enabling researchers
to use corresponding compilers for execution. No credentials are
needed to access the dataset.

4 POTENTIAL RESEARCH QUESTIONS

The following provides a sample list of research questions that can
be answered with the DevGPT dataset:


https://github.com/NAIST-SE/DevGPT
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(1) What types of issues (bugs, feature requests, theoretical ques-
tions, etc.) do developers most commonly present to Chat-
GPT?

(2) Can we identify patterns in the prompts developers use when
interacting with ChatGPT, and do these patterns correlate
with the success of issue resolution?

(3) What is the typical structure of conversations between de-
velopers and ChatGPT? How many turns does it take on
average to reach a conclusion?

(4) In instances where developers have incorporated the code
provided by ChatGPT into their projects, to what extent do
they modify this code prior to use, and what are the common
types of modifications made?

(5) How does the code generated by ChatGPT for a given query
compare to code that could be found for the same query on
the internet (e.g., on Stack Overflow)?

(6) What types of quality issues (for example, as identified by
linters) are common in the code generated by ChatGPT?

(7) How accurately can we predict the length of a conversa-
tion with ChatGPT based on the initial prompt and context
provided?

(8) Can we reliably predict whether a developer’s issue will be
resolved based on the initial conversation with ChatGPT?

(9) If developers were to rerun their prompts with ChatGPT
now and/or with different settings, would they obtain the
same results?

5 RELATED WORK

To situate the DevGPT dataset in the existing literature, in this
section, we discuss existing research on link sharing and large
language models (LLMs) in the field of software engineering.

5.1 Link Sharing

Link sharing, a prevalent method of knowledge sharing, is exten-
sively adopted within developer communities, including Q&A sites,
GitHub, and code reviews. Gémez et al. [10] found that a consider-
able number of links on Stack Overflow were used to share knowl-
edge about software development innovations, such as libraries and
tools. Ye et al. [38] examined the structural and dynamic aspects of
the knowledge network on Stack Overflow, noting that developers
use links for various purposes, predominantly for referencing in-
formation to solve problems. Hata et al. [12] noted that over 80%
of repositories feature at least one link in source code comments.
Xiao et al. [35] expanded this research to include the role of links
in commit messages, observing that inaccessible and patch links
were most common. The practice of link sharing was also studied in
the context of code review. Zampetti et al. [40] explored the extent
and purpose of external online resource references in pull requests,
finding that developers often consult external resources to gain
knowledge or resolve specific issues. Wang et al. [30] employed a
mixed-method approach to underscore the importance of shared
links in review discussions, highlighting their role in satisfying the
information needs of patch authors and review teams.
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5.2 LLMs for SE

Since the introduction of the Transformer architecture in 2017 [29],
LLMs have become increasingly significant in Software Engineering
(SE). Hou et al. [13] conducted a systematic review of 229 research
articles from 2017 to 2023, revealing the widespread use of LLMs in
addressing software development problems. Prominent models in
this area include GPT-2/GPT-3/GPT-3.5 [7, 17, 19, 20, 23, 31, 39],
GPT-4 [3, 9, 14, 20], and the BERT series [16, 41], demonstrating
effectiveness in code generation, completion, and summarization.

Code completion, integral to Integrated Development Environ-
ments (IDEs) and code editors, has been enhanced by tools like
Codex [5, 6, 18, 25, the BERT series [15], GitHub Copilot [6, 18, 26],
CodeParrot [18, 37], and the GPT series [24, 37]. Conversely, code
summarization technologies like Codex [1, 2, 8], CodeBERT [4, 8, 11],
and T5 [21, 22] focus on generating natural language descriptions
from source code to facilitate maintenance, search, and classifica-
tion.

In software maintenance, nearly a quarter of the studies reviewed
by Hou et al. [13] address program repair, code review, and debug-
ging. In program repair, Codex [32, 33] and ChatGPT [34] have
shown strong performance. For code review, LLMs like BERT [27]
and ChatGPT [28] are effective in detecting issues and suggesting
optimizations. Additionally, Copilot for PRs powered pull re-
quests need less review time and have a higher likelihood of being
merged [36].

Despite these advances, there is limited research on how software
developers interact with LLMs. The DevGPT dataset addresses this
gap, offering a valuable resource for in-depth analysis of these
interactions. This dataset can enable the research community to
understand and improve the ways developers use LLMs in their
work, marking a step forward in the practical application of Al in
software development.

6 LINKS

https://github.com/NAIST-SE/DevGPT and https://doi.org/10.5281/
zeno0do.10086809
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