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To Healthier Ethereum:

A Comprehensive and

lterative Smart Contract Weakness Enumeration

Jiachi Chen, Mingyuan Huang, Zewei Lin, Peilin Zheng, Zibin Zheng

With the increasing popularity of cryptocurrencies and blockchain technology, smart contracts
have become a prominent feature in developing decentralized applications. However, these smart
contracts are susceptible to vulnerabilities that hackers can exploit, resulting in significant financial
losses. In response to this growing concern, various initiatives have emerged. Notably, the SWC
vulnerability list played an important role in raising awareness and understanding of smart
contract weaknesses. However, the SWC list lacks maintenance and has not been updated with
new vulnerabilities since 2020. To address this gap, this paper introduces the Smart Contract
Weakness Enumeration (SWE), a comprehensive and practical vulnerability list up until 2023. We
collect 273 vulnerability descriptions from 86 top conference papers and journal papers,
employing open card sorting techniques to deduplicate and categorize these descriptions. This
process results in the identification of 40 common contract weaknesses, which are further
classified into 20 sub-research fields through thorough discussion and analysis. SWE provides a
systematic and comprehensive list of smart contract vulnerabilities, covering existing and
emerging vulnerabilities in the last few years. Moreover, SWE is a scalable, continuously iterative
program. We propose two update mechanisms for the maintenance of SWE. Regular updates
involve the inclusion of new vulnerabilities from future top papers, while irregular updates enable
individuals to report new weaknesses for review and potential addition to SWE.

Index Terms—Smart Contracts, Weakness, Empirical Study

1 INTRODUCTION

With the boost of cryptocurrencies, blockchain technology
has attracted both academic and industry attention. Some
blockchain platforms support a Turing-complete program
called smart contracts, which allows developers to imple-
ment complex Decentralized Apps (DApps) for different
scenarios through high-level programming languages (e.g.,
Solidity [1]]). As the first blockchain platform to support
smart contracts, Ethereum [2|] has achieved remarkable suc-
cess, with a market cap [3] of over 200 billion by 2023.
While security experts and the community have contin-
uously tried to better understand and defend against com-
mon contract weaknesses, for example, automated tools and
standard libraries [4] are proposed to reduce the weakness
of the contract code; new types of weakness continue to
emerge, such as token standard violations. Therefore, it is
essential to integrate existing weaknesses to help developers
raise awareness of the solution and guide the development
of new tools and libraries. However, there is a lack of a
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complete, reliable, and practical smart contract weakness list
in both academia and industry.

Although some well-known lists have been proposed,
they are no longer comprehensive and practical enough to
meet the current demands of industry and academia. In
the case of the two famous lists, SWC and DASP10 [5],
they are widely applied in academia. However, these lists
have not been well maintained, with SWC not being up-
dated after 2020 and DASP10 not being updated after 2018.
Some new weaknesses (e.g., token standard violations) are
not included in these lists, and the issues of the existing
weakness (e.g., Github issues [6] for SWC-100, SWC-125,
SWC-136) have also not been replied or solved. Hence, a
new comprehensive and practical weakness list is required
to cover weaknesses since 2016 and to be continuously
maintained in the future.

In this paper, we propose Smart Contract Weakness
Enumeration (SWE), a collection of common smart con-
tract weaknesses. Firstly, we convened 32 Ph.D. students in
the field of smart contract security for two meetings, we
discussed and confirmed the experimental methodology to
construct the SWE. According to this methodology, we col-
lected 273 weakness descriptions from 86 top conference pa-
pers and journal papers. Then, we utilized open card sorting
to de-duplicate and categorize these weakness descriptions,
resulting in 40 general contract weaknesses. Finally, the



weakness list was validated by 22 Ph.D. students, with twice
reversions according to their suggestions. Note that weak-
nesses are errors that can lead to vulnerabilities [7]; thus, the
vulnerabilities introduced in many academic works can also
be regarded as weaknesses.

SWE covers contract weaknesses that have been pub-
lished in top papers since 2016. We have included exist-
ing weaknesses from collection efforts such as SWC and
DASP10, which are covered by SWE. Additionally, we have
included new weaknesses of academic interest, such as
token standards and self-destruct functions, that have been
published within the last 3 years. SWE covers existing
weakness lists such as SWC and DASP10, as well as new
weaknesses that have gained academic interest over the
past three years, such as token standards and self-destruct
functions.

Furthermore, our weakness list is designed to be dy-
namic and continuously updatable, allowing us to incor-
porate the latest developments in the field. To achieve
this, we have devised two distinct update mechanisms
for seamless future maintenance. The first update method
involves regular updates. Our team at SWE (Smart Contract
Weakness Explorer) will diligently monitor and analyze
the top research papers published in the field. The second
update method is through irregular updates. We actively
encourage individuals to contribute to the enhancement
of our list by reporting any newly discovered weaknesses
they encounter, which can further strengthen the SWE.
The SWE is publicly available in our GitHub repository:
https://github.com/InPlusLab/SWE.

The main contributions of this paper are as follows:

e We propose Smart Contract Weakness Enumeration
(SWE), which concludes 40 weaknesses reported by
top papers before 2023. SWE covers all existing SWC
weaknesses and a few emerging weaknesses.

o We illustrate 40 SWE weaknesses in this paper, in-
cluding the weakness mechanism and potential de-
fensive measures, which can help developers to raise
security awareness.

o We propose two update mechanisms for SWE, which
can solve the poor maintenance of the existing weak-
ness list and ensure SWE can be practical in the long
term.

2 BACKGROUND

This section provides fundamental knowledge about
blockchain technology, smart contracts, and their vulnera-
bilities.

2.1 Blockchain and Smart Contracts

A blockchain is a distributed ledger that records growing
lists of blocks, containing information such as transaction
records [8]. The security of information on the blockchain
is guaranteed by cryptographic hashing and consensus al-
gorithms, which eliminates the need for reliance on any
trusted third party. Prominent blockchain platforms encom-
pass Bitcoin [9], Ethereum (ETH) [3]], Binance Smart Chain
(BSC) [10] and others. Ethereum is one of the most popu-
lar blockchain platforms, as Ethereum supports executing
Turing-complete smart contracts first.
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Smart contracts are essentially programs that are de-
ployed on the blockchain and will be executed automatically
when the pre-defined conditions are met [11]. Users on the
blockchain can create contracts or invoke functions within
contracts by initiating transactions. Smart contracts are im-
mutable due to the features of the blockchain. Once a smart
contract is deployed on the blockchain, making changes to
it becomes either impossible or costly.

Several blockchain platforms offer diverse methods
for developing smart contracts, including contract pro-
gramming languages and code execution options. Taking
Ethereum as an example, it offers a Turing-complete virtual
machine called the Ethereum Virtual Machine (EVM) [12]
and a high-level programming language called Solidity [1].
In smart contracts, data can be stored and managed within
different compartments, such as persistent storage space
storage, temporary storage space memory, or argument space
calldata [1]. To prevent malicious operations and misuse
of network resources, Ethereum has implemented the gas
mechanism [13].

2.2 Weaknesses and Vulnerabilities

Weaknesses in smart contracts are considered as unexpected
or harmful code fragments in the contracts, while vul-
nerabilities in smart contracts are considered as internal
faults that allow external events to cause harm to the smart
contracts [14]. Hence, if smart contract weaknesses can not
be fixed correctly, it may lead to vulnerabilities, which are
malicious contract behaviors. As smart contract weaknesses
are code-level reasons that can lead to vulnerabilities [7], the
detailed vulnerability descriptions in many academic works
can also be used to identify smart contract weaknesses.

Smart contract weaknesses exhibit certain characteristics
due to the immutability of blockchains and smart con-
tracts [[15]. Firstly, once a smart contract containing weak-
ness is deployed on the blockchain, it becomes almost
impossible to rectify. Typically, only a new contract can be
redeployed. Secondly, in the event of an attacker exploiting
the vulnerabilities in a smart contract and causing financial
loss, it can be challenging to repair these losses. Further-
more, smart contract vulnerabilities can lead to significant
financial losses because of the extensive use of smart con-
tracts in Decentralized Finance (DeFi) [16].

The classification and detection of smart contract weak-
nesses are currently drawing significant attention from both
academic and industrial sectors. One of the most famous
weakness classifications is Smart Contract Weakness Clas-
sification (SWC) [17]. It encompasses 37 weaknesses along
with their corresponding test cases. Another instance is the
Decentralized Application Security Project (DASP) [5]. It is
an open and cooperative list supported by NCC Group and
currently provides information on ten types of well-known
smart contract weaknesses [5].

3 METHODOLOGY
3.1 Overview

In this section, we propose an investigation method to
collect and classify code vulnerabilities in smart contracts.
As shown in Figure |1} we collect 273 weaknesses from 86


https://github.com/InPlusLab/SWE

@ Data Collection

Research Papers :
(CCF A, B) S E
BE =E=-_
Papers Vulnerability List E
(Blockchain Security) v i :cCards

Fig. 1. Investigation method for vulnerability categorization

research papers and then use the card sorting method to
categorize them into 40 groups.

3.2 Data Collection

To obtain practical vulnerabilities in smart contracts, we
select conference and journal papers as data sources, which
can match the current research state in smart contract vul-
nerabilities. The CCF (China Computer Federation) con-
ference and journal classification system [18] is a widely
recognized classification standard for academic conferences
and journals related to computer science and technology.
We select all CCF A and CCF B conferences and journals
in Computer Security and Software Engineering, which can
provide solid vulnerabilities for our investigation.

As only partial papers mentioned code vulnerabilities
in smart contracts, we manually identify research papers
related to blockchain security according to each paper’s
title, keywords, and abstract, and finally filter 86 papers in
25 conferences and journals. These referenced papers are
available in our dataset [19].

We have established a set of criteria for identifying weak-
nesses within the 86 papers under review. Specifically, a
weaknesses must meet the following conditions: (1) it must
be clearly defined in the paper. For example, if the paper
only mentions a weakness by name without providing any
text explanation, it will be filtered; (2) it must be exploitable
under specific conditions, resulting in potential damage or
financial loss to the smart contract. For example, the bad
code style is not considered as a weakness, as it can not be
exploitable by hackers; and (3) it must originate from the
contract code itself. For example, the 51% attack is a weak-
ness in some blockchain platforms, but this weakness results
in the PoW consensus mechanism design, but not the smart
contract code. We have hired four researchers, each with
more than two years of experience in Solidity development.
They are asked to follow the criterion to extract weakness
information, including the name, description, and source
paper reference for each weakness they extracted.

Following this, the volunteers label 351 text mentions
of the weaknesses from these papers and filter 273 valid
weaknesses according to our criteria. Finally, we conclude
these 273 information items into one weakness list.

3.3 Card Sorting

However, this weakness list still contains many duplications
and redundancies, which should be refined. For example,
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the reentrancy weakness has been mentioned 41 times in
the list, and the 41 mentions should be categorized into one
group. We utilize the card sorting method [20] to efficiently
pre-process and categorize vulnerabilities, and convert this
list to 273 cards. Each card contains the vulnerability name,
text description, and the referenced paper. In this process,
we hire three smart contract developers who have three
years of contract development experience. There are three
types of card sorting [20]: closed card sorting, open card
sorting, and hybrid card sorting. Close card sorting requires
categorizing cards into predefined categories. Open card
sorting has no predefined categories and requires defining
new categories. Hybrid card sorting combines these two
methods.

We design an open card sorting method to classify
vulnerabilities, as we do not have predefined categories.
We hire another three experienced Solidity developers in
this process, each with over three years of experience. Our
method contains two rounds of sorting processes. In the
first round, one volunteer is asked to identify and group
the vulnerabilities that repeatedly occur more than 10 times
and define the category names for these groups. The 207
duplicate cards are grouped in this round, and we get the
most common 24 categories. In the second round, two other
volunteers are asked to review the categorized cards and
classify the remaining 66 lesser-known cards independently.
They are allowed to create new categories or group these
cards into existing categories we get from the first round.
The volunteer of the first round combines the two results.
The overall kappa value [21] is over 0.8, which means a high
agreement in classification results. Eventually, we categorize
all 273 cards into 40 types of vulnerabilities.

The 40 vulnerability categories pertain to diverse secu-
rity concerns in smart contracts, and their readability may
pose a challenge for researchers and developers. To enhance
the usability of the classification result, we further group
related vulnerability types into a unified field. 5 experienced
researchers discuss the research field of these vulnerabilities
and summarize 40 vulnerabilities into 24 fields.

As shown in Figure 2} we give an example card that
is utilized in our open card sorting process. In the first
round, one volunteer identified the vulnerability name as
“Unchecked External Call" according to the card description
and confirmed the context from the referenced paper. Next,
this volunteer goes through all the cards and identifies all
five duplicates that pertain to the “Unchecked External Call"



vulnerability. Then, the volunteer removes the duplicates to
streamline the list. In the second round, another two volun-
teers review this sorted card and understand the definition
of the “Unchecked External Call" category. Following this,
they categorized the remaining unique cards and added
another three cards into this category. Eventually, this cat-
egory is summarized as a research field. During entire card
sorting, we utilize the vulnerability names from the earliest
paper as category names, as names mentioned earlier are
typically more familiar and recognizable to the academia
and industry.

4 SMART CONTRACT WEAKNESSES

As shown in Table [I} we list all fields and weaknesses
according to their frequencies of being mentioned in the
papers. There are a total of 40 general weaknesses covering
the currently known vulnerability/weakness list and also
concluding emerging vulnerabilities in the last two years.
In this section, we will briefly review these weaknesses and
corresponding research fields.

4.1 Reentrancy

Reentrancy is a common weakness in smart contracts. This
weakness is related to the fallback mechanism of Ether and
other tokens. The fallback mechanism allows the executed
contract to switch contexts to other external contracts af-
ter performing some specific operations (e.g., ether/token
transfer). For example, a smart contract can define an anony-
mous fallback function that will be automatically executed
when the contract receives Ethers. By re-invoking the exter-
nal function in the fallback function, a malicious contract can
circularly execute the transfer logic in the external function.
Notably, the fallback function is executed immediately after
the transfer rather than after the entire external function has
been executed. Hence, if the victim contract only updates
the important variables (e.g., recording and limiting the
transfer amount) after the transfer operation, the malicious
contract can successfully execute multiple unchecked trans-
fer operations before the contract state changes. Similar to
Ether transfer, reentrancy attacks can also occur in token
contracts, and developers should pay attention to functions
with fallback-like execution conditions.

Checks Effects Interactions pattern [22] is a method to
avoid this weakness. The CEI pattern involves structuring

Card
Description: ‘

Unchecked External Call. Solidity provides a series of external call
functions, e.g., address.send(), address.call(), address.delegatecall().
These methods may fail due to network errors or out-of-gas error.
‘When errors happen, these methods will return a boolean value (False),
but never throw an exception. If callers do not check the return values
of external calls, they cannot ensure whether code logic is correct.

Description

Referenced Paper: ‘
Title: Finding Ethereum Smart Contracts Security Issues by Comparing History Versions Reference

Journal / Conference: ASE ‘

Fig. 2. Card example for vulnerability categorization
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smart contracts into three processes: checks, effects, and in-
teractions. In the checks process, the smart contract verifies
that the input parameters are valid and that the caller has
the necessary permissions to execute the function. In the
effects process, the smart contract updates the state of the
contract and performs any necessary calculations or data
transformations (e.g., recording and limiting the transfer
amount). Finally, the smart contract transfers Ether to other
accounts in the interactions phase. As the transfer behavior
is executed after checks and effects, the malicious re-invoke
via the fallback function can not bypass the necessary checks
as the contract state has changed.

4.2 Arithmetic Error

Arithmetic error is a field that contains weaknesses related
to arithmetic operations. Improper calculations may lead to
unexpected program behavior (e.g., transfers of unexpected
value). Arithmetic error contains two typical types of vul-
nerabilities: integer overflow and unsafe type conversion.

4.2.1 Integer Overflow

In smart contracts, an integer overflow occurs when an
arithmetic operation on an integer variable exceeds the
maximum value stored in that data type. For example,
uint256 is a wide-used data type in smart contracts, which
ranges from 0 to 22°¢ — 1. If two uint variables add beyond
2256 — 1, the calculation result is incorrectly returned as
the overflow part —1 (e.g., 22°® would be returned as 0).
Attackers can construct an input that causes a program
variable to overflow to produce an unexpected program
behavior. Before Solidity 0.8.0, the compiler will not report
integer overflow, and developers must manually check the
calculation result. Some famous libraries are created for
overflow checks, such as SafeMath, and SignedSafeMath.
After Solidity 0.8.0, the compiler adds the additional checks
for the original supported arithmetic operators (e.g. +, -, *,
and /).

4.2.2 Unsafe Type Conversion

Solidity supports explicit type conversion, allowing for the
conversion of variables from one type to another (e.g., con-
verting a uint8 variable to a uintl16 variable). However,
it is essential to note that performing variable conversions
can pose safety risks in certain situations. There are two
major types of risky situations. (1) Conversion from a signed
number to an unsigned number (e.g., converting int256 to
uint256). Signed numbers comprise a sign bit and a value
bit, where the sign bit indicates positive or negative. In
contrast, unsigned numbers contain only a value bit. The
sign bit is incorrectly converted to a value bit when convert-
ing to unsigned numbers, resulting in incorrect values. (2)
Conversion from an integer type with more bits to an integer
type with fewer bits(e.g., converting uint256 to uint128). In
this situation, the corresponding higher bits of the original
integer will be discarded, and the converted integer will be
smaller than the expected value.

4.3 Time Dependency

Time dependency is a research field that studies the vulner-
abilities associated with using manipulable time in smart



TABLE 1

Overview of the Smart Contract Weakness Enumeration

Feild

Weakness

Feild

Weakness

1. Reentrancy

Reentrancy

2. Arithmetic Error

Integer Overflow
Unsafe Type Conversion

12. Strict Conditions

Strict require()
Strict assert()
Strict Balance Equality

3. Time Dependency

Timestamp Dependency
Block Number Dependency
Random Value Dependency

13. Signature Weakness

Signature Malleability
Lack of Signature Verification
Unencrypted Private Data

4. Transaction Dependency

Transaction Dependency

14. Missing Reminders

Missing Reminders

5. Unchecked External Call

Unchecked External Call

6. Input Validation

Input Validation

7. Missing Return Value

Missing Return Value

15. Extra Gas Consumption

High Gas Consumption Functions
High Gas Consumption Data
Unused Elements

8. Access Control

Ether / Token Leaking
Arbitrary Write
Arbitrary Jump
Unsafe Constructor
Unsafe Self Destruct
Backdoor Threat

16. Hardcoded Gas Limit

Hardcoded Gas Limit

17. Outdated Compiler Version

Outdated Compiler Version

18. Floating Pragma

Floating Pragma

19. Uninitialized Data Structures

Uninitialized Storage Pointer
Uninitialized Variables

20. Incorrect Inheritance Order

Incorrect Inheritance Order

9. Ether / Token Locking Ether / Token Locking 21. Typographical Error Typographical Error

10. Token Standard Violation | Token Standard Violation 22. Right-To-Left-Override Right-To-Left-Override

11. Denial of Service (DoS) DoS of Failed Calls 23. Code with No Effects Code with No Effects
DoS of Gas Limit 24. Shadowed Elements Shadowed Elements

contracts. In some blockchain platforms (e.g., such as
Ethereum), the time in contracts is controlled by manners,
as manners can decide the execution time of transactions.
28 papers discuss these weaknesses, and we conclude three
major variables that manners can manipulate.

4.3.1 Timestamp Dependency

The block. timestamp is a Unix timestamp that represents
the creation time of a block, and now is a synonym for
block.timestamp. Noticeably, the execution time of a
transaction in Ethereum can be adjusted by manners within
a flexible range as long as it falls between the latest times-
tamp and the time limit to create a new block.

4.3.2 Block Number Dependency

Miners cannot directly modify the block.number value of
the next block, but they can decide whether to add a specific
transaction to the next block. Therefore, the block number
for a certain transaction can also be manipulated.

4.3.3 Time-based Random Value Dependency

Some contracts use block. timestamp or block.number
as a seed to generate random numbers. However, since
timestamps and block numbers can be manipulated, these
random numbers are essentially pseudo-random, and min-
ers can indirectly manipulate the result of the random
number generation. Other methods can be used to generate
more reliable random numbers, such as leveraging external
oracles, which can provide secure and unbiased sources
of randomness. By relying on external sources of random-
ness, smart contracts can avoid the risks associated with
timestamp-based random number generation and improve
their overall security and reliability.

4.4 Transaction Ordering Dependency

Transaction Ordering Dependency arises from the fact that
the order in which transactions get processed by the net-
work may impact the execution of the smart contract. As
Solidity transactions are processed in a decentralized envi-
ronment, the order of execution can be affected by various
factors such as network congestion, gas prices, and timing.

For example, in an auction scenario, a hacker could
read and analyze bids from other participants to arrive
at the optimal price and prioritize transactions with the
contract by raising the gas fee. The auction contract can use
incoming encryption to prevent the transaction information
from being interpreted. It is important for developers to
be aware of TOD vulnerabilities and to carefully consider
the potential ordering of transactions when designing and
implementing smart contracts.

4.5 Unchecked External Call

Unchecked external call is a weakness associated with
unhandled return values of external calls. In blockchain
platforms like Ethereum, contracts can interact with other
contracts via external calls, such as send (). However, these
functions may fail due to network or out-of-gas errors. If
errors occur, these functions do not throw any exception.
Similar errors may also occur in other call types, such
as call(), and delegatecall(). These functions will
return a false value after this error, and the vulnerability
occurs when the contract does not check the return values
properly. In that case, the contract cannot ensure the ex-
ternal calls succeed. For some popular external calls, such
as ERC20 token transfer [23], some tools (e.g., SafeERC20
library [24]) have been developed to handle return values,
which is also a good paradigm for handling return values.



4.6

Input validation is a method to protect contract func-
tions from being invoked appropriately. Due to differ-
ent business scenarios, real-world contracts are heteroge-
neous regarding input checks. We illustrate this weak-
ness through a classic attack mentioned in three pa-
pers [25]-[27], i.e., the short address attack. For example,
transfer(address _to, uint256 _value) is a stan-
dard function in ERC20 token contract. If the address vari-
able _to is less than 32 bytes, such as 30 bytes, the entire
binary input will left-shift by 2 bytes, and the missing byte
on the right side will be completed by 2 zero bytes, which
means the second variable _value will be multiplied by
4. If input validation is lacking, hackers can transfer tokens
than expected.

Input Validation

4.7 Missing Return Value

This weakness occurs when a function is expected to return
a value but returns nothing, which may lead to some unex-
pected contract behaviors. For example, suppose a function
is designed to return a boolean value indicating whether a
transaction was successful or not, but the function fails to
return anything. In that case, the caller will get the return
value from an invalid location. Since the contract cannot
judge the result of an external call, this can potentially allow
an attacker to exploit the contract.

4.8 Access Control

Access control is an important research field in smart con-
tract security. In smart contracts, some sensitive operations
are only restricted to specific users. Hence, these operations
should be wrapped in check statements, thus rejecting unau-
thenticated users. If the check is invalid or missing, attackers
can gain access to perform dangerous operations, eventu-
ally leading to vulnerabilities. According to the different
impacts, five main weaknesses are concerned in the access
control field.

4.8.1 Ether/ Token Leaking

Ether or Token Leaking is a fundamental weakness in ac-
cess control, whereby a smart contract lacks appropriate
authorization checks before initiating a transfer of Ether or
Token. This deficiency can result in unauthorized transfers,
compromising the system’s integrity and confidentiality. In
particular, without robust access controls, a contract may
permit unapproved users to initiate transfers or allow non-
owners to distribute tokens through airdrops, posing serious
risks to the contractual parties.

4.8.2 Arbitrary Write

Arbitrary write is a security weakness that can occur in
smart contracts when an attacker can write to arbitrary
storage locations within the contract. This can potentially
lead to unauthorized changes in the contract state, such as
overwriting a field that stores the address of the contract
owner. The lack of proper authorization checks can enable
an attacker to circumvent authorization controls, compro-
mising the integrity and confidentiality of smart contracts.

4.8.3 Arbitrary Jump

In Solidity, function types are supported to hold a reference
to a function with a matching signature. When a hacker is
able to arbitrarily change a function type variable, they can
execute random code instructions. While Solidity does not
support pointer arithmetic, which limits changing variables
to arbitrary values, there are cases where an attacker can
exploit certain assembly instructions, such as the mstore
or assignment operators. In the worst case, this weakness
is more severe than Arbitrary Write, as function variables
theoretically allow an attacker to manipulate function type
variables to point to any code instruction, bypassing the
necessary validation and causing an unexpected change in
program state.

4.8.4 Unsafe Constructor

Before Solidity 0.4.22, developers could only define a con-
structor by declaring a function with the same name as
the contract. This function is executed during deployment.
However, if the developer mistakenly declared the function
with an incorrect name, it would not be recognized as a
constructor. Instead, it would become an unprotected public
function.

To mitigate this issue, one suggested defense method is
to update the Solidity version to 0.4.22 or higher. Starting
from that version, developers can use the constructor key-
word to explicitly define a constructor function.

4.8.5 Unsafe Self Destruct

The selfdestruct function is a built-in function in Ethereum
that allows a contract to be removed from the blockchain
and transfer all its remaining Ether to the owner’s address.
Typically, the owner should only invoke the selfdestruct
function, but anyone can kill the contract if there is a lack
of access control to the selfdestruct function. In addition,
if the killed contract is relied on by other contracts, it will
make other contracts unusable to further execute and even
lock up assets. A famous real-world attack case is the Parity
Wallet [28], whose signature contract was destroyed by
hackers, ultimately losing over 30 million dollars.

4.8.6 Backdoor Threat

Backdoor Threat is a special type of access control weakness.
Developers can insert hidden code or functions into smart
contracts to bypass normal access controls. Some DApp
developers can steal assets pledged by other participants
by calling hidden codes or functions. This type of attack is
known as “rug pull", and such attacks can undermine users’
trust in developers and lead to significant property loss.

4.9 Ether/Token Locking

Ether / Token locking occurs when the contract is unavail-
able for withdrawal operations. In this situation, users may
be unable to retrieve their deposited Ether or tokens from
the contract, resulting in a significant loss of funds. This
weakness is usually related to errors in the logic or execution
of the contract. For example, if a contract fails to release
funds after a specific period of time, or if the contract’s
functionality fails completely due to an error or oversight in
the code, the Ether or tokens may be locked and unusable.



The impact of this weakness could be severe, as users may
not be able to retrieve their funds for a long period of time,
and even lose the fund permanently.

4.10 Token Standard Violation

Solidity-based tokens can exhibit inconsistent behaviors for
various reasons, including flawed design and implementa-
tion. Such flaws can lead to an incorrect method invocation,
lack of proper event modification, improper implementation
of fee-charging or token minting/burning, standard method
invocation, and unit conversion. Additionally, modification
of the balance of a specified account or transfer of a specified
amount of tokens, rather than those indicated by standard
method interfaces or events, can cause inconsistencies. To
ensure reliable and secure token performance, developers
and users of Solidity-based tokens must be aware of these
potential issues and take appropriate measures to address
them.

4.11

Denial of Service (DoS) refers to a situation where an
attacker intentionally disrupts the normal features of the
smart contracts. Smart contracts are widely utilized in cer-
tain scenarios (e.g., auctions, gambling, and voting) where
the principle of equal participant interaction is fundamental.
Nevertheless, a hacker may initiate a transaction and subse-
quently launch a DoS attack on the contract, impeding the
ability of other users to interact with the contract. In this
situation, only the attacker may acquire access to the assets
stored in the contract at a lower cost (e.g., by being the sole
participant in an auction).

In over investigation, we find 15 papers illustrating the
DoS attack, and there are two main types of DoS weakness.

Denial of Service (DoS)

4.11.1 DoS of Failed Calls

DoS of failed calls is a classic DOS vulnerability. Smart
contracts can interact with other contracts within a single
transaction, but failed calls to other contracts can cause z
the entire transaction to roll back. When a contract invokes
another contract, the execution of the first contract is sus-
pended until the second contract returns a result. If the
second contract fails to execute properly, it will also cause
the first contract to fail. Thus, an attacker creates a contract
that intentionally fails when called by another contract (e, by
forcing a revert in the function. if the victim contract cannot
avoid calling the function, it continues to roll back and
cannot continue working. One way to mitigate this type of
attack is to implement response time checks in the contract,
which can ensure that calls to other contracts are handled
correctly. In addition, operations related to external calls
can be further decoupled from other operations to avoid
affecting other contract logic due to the failed external calls.

4.11.2 DoS of Gas Limit

DoS with gas limitation is another type of DoS weakness.
Contract developers may construct loops in the contracts
that contain large amounts of gas, and attackers can deplete
the gas consumption by increasing the round of the loops.
Some operations with high gas consumption (e.g., storing
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data, encrypting data, external calls, etc.) should be carefully
avoided for multiple executions. Saving gas or decoupling
high-gas operations to multiple transactions can mitigate
this weakness.

4.12 Strict Conditions

As Turing-complete programs, smart contracts support
checking certain conditions and automatically perform sen-
sitive operations after the check. However, if these condi-
tions are set too stringent, they may make the contract chal-
lenging to use. We will discuss some conditional statements
which can make the program unusable under overly strict
conditions.

4.12.1 Strict require()

The require() is one of the most common statements for
input validation. The require() function determines if a
specific condition is met before executing the rest of the con-
tract code. If the condition is unmet, it throws an exception
and reverts the transaction. However, if the condition is too
strict, it may cause the contract’s legal input to be rolled
back.

4.12.2 Strict assert()

The assert() is similar to the require() in that it
checks for certain conditions before executing the rest of the
code. However, unlike require(), assert() throws an
invalid opcode exception when the condition is met, which
permanently stops and invalidates the contract. Therefore,
assert() is often used to check whether the state of a
contract is normal, and developers should use assert()
more carefully.

4.12.3 Strict Balance Equality

Smart contracts often determine the current status by check-
ing the contract balance. For example, in a crowdfunding
contract, the contract determines whether the crowdfunding
has been successful based on the amount of balance raised.
Using == to determine if the balance is equal to a specific
value is too ideal, especially when other accounts are al-
lowed to transfer more balance to the contract. If strict bal-
ance equality is utilized in the last example, the fundraiser
that raises more money than it expects to receive is also
considered a failure. Therefore, a more practical condition is
using >= or <= to determine whether the balance meets the
requirement.

4.13 Signature Weakness
4.13.1 Signature Malleability

This weakness allows attackers to modify the signature of
a transaction without invalidating it, which can be used to
perform a replay attack or modify the transaction’s data.
To mitigate this weakness, developers should use signature
schemes resistant to malleability or techniques such as sig-
nature normalization to prevent tampering.

This weakness occurs when an attacker modifies the
signature from an existing transaction without invalidating
it, which can be used to perform replay attacks or modify
the transaction data. A well-known case is the ECRecovery



library [29], which supports multiple valid (r, s, v)
signatures for the same content. The attacker can replay
the signatures multiple times, causing unintended actions
or draining funds from the contract.

4.13.2 Lack of Signature Verification

This weakness occurs when the smart contract does not
properly verify the signature sender, allowing attackers to
execute unauthorized transactions. A famous example is
relying on msg.sender to identify the signature creator.
However, transactions can be created from a proxy contract,
meaning the contract can not assume the msg.sender
signed the signature.

4.13.3 Unencrypted Private Data

This weakness occurs when sensitive data is stored in the
smart contract without proper encryption, making it vul-
nerable to attackers. To mitigate this weakness, developers
should encrypt all sensitive data using strong encryption
algorithms and ensure that the keys are securely stored and
managed.

4.14 Missing Reminders

This weakness occurs when the contract fails to notify
relevant parties of critical operations such as token transfers
or changes in contract ownership. Smart contracts are often
used for financial transactions and can hold significant
value. In Solidity, the contract can emit a message by invok-
ing the emit () function. In addition, the require () func-
tion also supports a string parameter to emit an exception
message. Any changes to the contract state can significantly
impact the stakeholders of the smart contract. For example,
when a token transfer is executed, the contract should emit
a message for both the sender and the recipient. This notifi-
cation is important as it provides proof of the transfer and
allows parties to track their transactions. If the contract fails
to provide these notices or alerts, there is potential confusion
and disputes between the parties involved. In addition, the
lack of alerts may make it more difficult for contract owners
to detect hacking transactions and even miss out on time to
recoup losses.

4.15 Extra Gas Consumption

In Ethereum, the execution of smart contracts relies on
miners’ verification. Expensive and unnecessary logic will
cost extra gas, which can be avoided by optimizing smart
contracts.

4.15.1 High Gas Consumption Functions

There are two general aspects that can lead to extra gas
in a function. The first aspect is the function type. Public
functions will cost more gas than internal functions, as
Solidity needs to allocate memories for the input parameters
of public functions while that can be easily read from
calldata for internal functions. Hence, functions that do not
need to interact with external accounts should be clarified
as internal functions. The second aspect this the parameter
type. For public functions, the input parameters should be
as simple as possible, avoiding complex data structures
because the cost of copying complex data (e.g., int arrays) is
higher than general data (e.g., int).

4.15.2 High Gas Consumption Data

In solidity, some data types may cost more gas in smart
contracts. For example, bytes and byte[] are both
dynamically-sized byte arrays, but byte[] cost more gas
than bytes, as it is not tightly packed in calldata and
allocate 32 bytes for each element, which means a great
waste of memory. In contrast, bytes is packed tightly in
calldata, meaning less gas cost and memory usage.

4.15.3 Unused Elements

Unused elements refer to code within smart contracts that
are not utilized, such as unused variables and functions. So-
lidity permits the presence of unused code, which does not
pose any immediate security risks. However, the presence of
unused code in smart contracts can have multiple negative
effects. Firstly, it consumes storage space and increases
execution time, leading to higher costs and longer deploy-
ment and transaction times. Additionally, it can decrease
the readability of the smart contract, which can make it
more difficult for developers to understand and maintain it.
Therefore, it is highly recommended to thoroughly examine
smart contracts and eliminate unused code.

4.16 Hardcoded Gas Limit

In Solidity, a hardcoded gas limit refers to explicitly setting
a specific gas limit for the function execution. Although
these gas limits can work properly in the present, a potential
hard fork in the future may cause gas consumption to rise
for operations within certain functions. Therefore, it is not
recommended to use functions with hard-coded gas limits
(e.g., the transfer() and send() functions forward a fixed
amount of 2300 gas), and base statements such as call should
be used directly whenever possible.

4.17 Outdated Compiler Version

This weakness indicates that the outdated version of the
smart contract compiler is being used, which could lead
to security, compatibility, and performance issues. Firstly,
there are security issues. Outdated compilers may have
known weaknesses or flaws that attackers can exploit to
steal assets from the contract or perform unauthorized
operations. Secondly, there are compatibility issues. Out-
dated compiler versions may not work properly with the
latest smart contract platforms, causing contracts to fail to
execute or interact with other contracts. Thirdly, there are
performance issues. Outdated compiler versions may not
support the latest optimizations or algorithms, resulting in
inefficient contract execution or excessive consumption of
computational resources.

For example, Solidity’s version 0.8.0 and later introduced
safe arithmetic operations to prevent integer overflow and
underflow. In these versions, whenever an integer addition,
subtraction, multiplication, division, or remainder operation
yields a result that is outside of the specified data type
range, an exception will be thrown instead of an overflow
or underflow occurring. However, if the developer uses an
outdated version of Solidity and does not constrain the
computation of integers, an overflow or underflow may
occur. To ensure the security, compatibility, and performance
of smart contracts, it is recommended to use the latest
version of the compiler to compile them.



4.18 Floating Pragma

Floating pragma means that a smart contract utilizes an
unlocked pragma declaration, a keyword in the Solidity
language that informs the Solidity compiler on handling
the source code. The floating pragma can result in version
compatibility issues that render the code incompatible with
different versions of the Solidity compiler. As a result, the
smart contract may fail to compile or produce unpredictable
errors. Additionally, the use of a floating pragma could
expose smart contracts to known security weaknesses if they
utilize outdated Solidity compilers. To ensure both version
compatibility and security in smart contracts, it is crucial to
lock the pragma version and take into account any known
bugs in the selected compiler version.

4.19 Uninitialized Data Structures

Uninitialized data structures refer to data structures in smart
contracts that have not been properly initialized. This can in-
clude uninitialized storage pointers, uninitialized variables,
and undefined functions.

4.19.1

The storage pointer in a smart contract serves as a means
to access and manage the smart contract’s storage space.
However, if a storage pointer is not initialized before it is
used, this can result in various problems. Firstly, accessing
unallocated storage can occur if an uninitialized storage
pointer points to unallocated storage, leading to unexpected
errors and behavior. Secondly, reading or writing uncertain
data is also possible, which can result in unpredictable
behavior, such as reading or writing random values, over-
writing other data, or even causing the smart contract to
crash.

Uninitialized Storage Pointer

4.19.2 Uninitialized Variables

In a smart contract, if a variable is not initialized, it will
have an undefined initial value. This can lead to unpre-
dictable behavior, such as reading or writing uncertain
values through uninitialized variables, similar to uninitial-
ized storage pointers. Additionally, an attacker may ex-
ploit uninitialized variables to execute malicious operations,
which can result in security vulnerabilities such as integer
overflows or underflows.

4.20

Incorrect inheritance order refers to the situation where
a parent contract is inherited in the wrong order. Solid-
ity allows for multiple inheritances, which means that a
contract can inherit from multiple other contracts. This
introduces an ambiguity known as the Diamond Problem:
if two or more base contracts define the same function,
which one should be called in the child contract? To resolve
this ambiguity, Solidity uses reverse C3 linearisation, which
establishes priorities between the base contracts. Therefore,
the order of inheritance is crucial, as ignoring it may result
in unexpected behavior.

Suppose a contract inherits from multiple base contracts,
and those contracts define functions or state variables with
the same name. In that case, an incorrect inheritance order

Incorrect Inheritance Order

9

can result in unintended function calls or conflicting state
variables. This can lead to unexpected behavior that is
difficult to predict and control. To avoid these potential
issues, smart contract developers should carefully specify
the inheritance in the correct order. A good practice is to
inherit contracts from more generic to more targeted.

4.21 Typographical Error

A typographical error in a smart contract refers to an error
caused by a developer’s carelessness during its develop-
ment, which can include misspelling variable names, using
the wrong type or order of operators, and other similar
mistakes. For example, consider when a developer intends
to sum a number with a variable using the += operator, but
accidentally uses the =+ operator, which is a valid operator,
and initializes the variable again instead of calculating the
sum. To prevent this problem, smart contract developers
should take measures such as double-checking critical code
in their contracts or utilizing a vetted library, such as the
SafeMath developed by OpenZeppelin.

4.22 Right-To-Left-Override

The presence of the right-to-left-override control character
(U+202E) in smart contracts creates a weakness that mali-
cious actors can exploit. By using Unicode characters that
cover from right to left, these actors can force the rendering
of RTL text, leading users to misunderstand the true pur-
pose of the contract. Given that the U+202E character has
very few legitimate uses, it should not be present in the
source code of smart contracts.

4.23 Code with No Effects

Code with No Effects in smart contracts refers to
code that does not execute the intended action cor-
rectly. In some specific cases, code not executed cor-
rectly can create security vulnerabilities. For instance, in
call.value(address(this).balance) (""), if the fi-
nal bracket is missing, the function may execute without
transferring funds to the intended recipient, which could
potentially result in a loss of funds. To ensure smart con-
tracts do not contain code not executed correctly, smart
contract developers may write unit tests that confirm the
intended behavior of the code.

4.24 Shadowed Elements

Shadowed Elements occur when variables or functions have
the same name as a built-in global variable or function,
leading to the built-in element being “shadowed". This can
result in unexpected behavior, as the shadowed element
may be unintentionally overridden. Hackers may exploit
Shadowed Built-in Elements to gain unauthorized access to
sensitive data or perform unauthorized actions, making it
a potential security risk. It is crucial for Solidity developers
to be aware of these issues and adhere to best practices for
naming conventions.



5 UPDATE MECHANISM

As blockchain technology and smart contracts continue to
develop, new weaknesses may arise. However, the current
repository of smart contract weaknesses lacks an efficient
and comprehensive mechanism to update and include these
new weaknesses in a timely manner. To address this con-
cern, we propose an update mechanism for the weaknesses
list. The update mechanism consists of two types: regular
updates and irregular updates.

5.1 Regular Update

The regular updates are achieved by collecting and catego-
rizing new papers on smart contract weaknesses after their
publication. The sources of the paper are all CCF A-level
and B-level conferences and journals in Computer Security
and Software Engineering. The weakness maintainers then
integrate these weaknesses into the current weakness types
or generate new types of weakness when necessary. The
regular update process consists of two steps:

Step 1: Once relevant recollections and journal papers
have been published, researchers will read the papers re-
lated to smart contract weaknesses and generate cards by
organizing the weaknesses mentioned in them according to
the criteria outlined in Section 3.3l

Step 2: At least two experienced smart contract re-
searchers will classify the smart contract weaknesses using
the open card sorting method. In case of disagreement
between the two researchers, a third experienced researcher
will make the final decision.

5.2

An irregular update occurs when a user submits a new
smart contract weakness to the weakness list maintainer,
e.g., from our GitHub repository. After reviewing the sub-
mission, the maintainer will update the weakness list if
the weakness is confirmed to be new. The irregular update
process consists of four steps:

Step 1: Users report new smart contract weaknesses
based on specific criteria, including the weakness’s name
and definition, as well as the field to which the weakness
belongs. If the weakness does not fit into an existing field,
additional comments are required. Users should also pro-
vide the specific smart contract case associated with the
weakness.

Step 2: The maintainer of the smart contracts weakness
list will select a group of experienced smart contract re-
searchers, who will each assess the reported weakness and
determine whether it meets the criteria for inclusion as a
new weakness on the list.

Step 3: Once the researchers have individually assessed
the weakness, they will convene and vote on whether to
include it in the list of weaknesses. Each researcher will
provide their reasoning for their decision. If the majority
of researchers agree, the maintainer will add the weakness
to the smart contract weaknesses list.

Step 4: The maintainer will send an email response to the
user who reported the weakness. If the weakness is deemed
ineligible for inclusion in the weaknesses list, the reason for
the rejection will also be explained.

Irregular Update
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6 RELATED WORK
6.1 Vulnerabilities Classification

The two primary sources for classifying smart contract
vulnerabilities are academic research and the blockchain
community.

6.1.1 Academic Research

There has already been some academic work dedicated to
a comprehensive classification of smart contract vulnerabil-
ities. Atzei et al. provide the first analysis of the security
vulnerabilities in Ethereum and its programming language,
Solidity [30]. The vulnerabilities are categorized into three
main groups based on the stage at which they are intro-
duced in Ethereum’s smart contracts: Solidity, EVM Byte-
code, and Blockchain. Kaleem rt al. was the first to analyze
both the development environment of Vyper and the vul-
nerabilities in Solidity smart contracts. They then provided
a first classification of the security vulnerabilities present
in Vyper [31]. Argafiaraz et al. classified vulnerabilities in
smart contracts into two categories: security vulnerabilities,
which can result in attacks by users or malicious contracts,
and functional vulnerabilities, which can cause the failure of
a scheduled functionality [32]. Zhou et al. expands on [30]
by adding some of the missed vulneraibilities and maps
all the vulnerabilities to Common Weakness Enumeration
(CWE) [33]]. Amiet et al. classifies smart contract vulnerabil-
ities into two main categories: blockchain platform-related
vulnerabilities and smart contract source code-related vul-
nerabilities [34]. Staderini et al. categorizes a set of 33
Solidity vulnerabilities based on the Common Weakness
Enumeration (CWE) language-independent taxonomy [35].

6.1.2 Blockchain Community

The blockchain community is dedicated to classifying vul-
nerabilities in smart contracts. The Smart Contract Weakness
Classification (SWC) is one of the most widely recognized
classifications of smart contract vulnerabilities [17]. It en-
compasses 37 vulnerabilities along with their corresponding
test cases. However, the SWC is presented in a flat list
structure, which can sometimes make it unclear to distin-
guish between different vulnerabilities. The Decentralized
Application Security Project (DASP) was started by NCC
Group. It aims to provide information on ten types of well-
known smart contract vulnerabilities, including their corre-
sponding losses, real-world impacts, and code examples [5].
SIGP [36] offers a classification of vulnerabilities found in
Solidity smart contracts, and a GitHub repository [37] is
provided to encourage contributions or issue submissions
for any errors that may have been made. The SMARTDEC
has classified smart contract vulnerabilities into three cate-
gories: blockchain vulnerabilities, which are caused by the
nature of the blockchain system; language vulnerabilities,
which are caused by insecure use of Solidity language or
any other language used for smart contracts; and model
vulnerabilities, which are caused by mistakes in the system’s
model [38].

The current effort to classify smart contract vulnerabil-
ities has two main inadequacies. Firstly, it is not compre-
hensive enough to encompass all vulnerabilities. Secondly,
it lacks an update mechanism to promptly include emerging
vulnerabilities.



6.2 Vulnerabilities Detection

Numerous researchers are currently working on detecting
vulnerabilities in smart contracts using various approaches
such as symbolic execution, fuzzing, formal verification,
machine learning, among others [14].

6.2.1 Symbolic Execution

Symbolic execution is a program analysis technique that
models all possible paths and states of program execution
by representing program variables as symbolic expressions,
rather than concrete values. Luu et al. introduced Oyente,
which is a pioneering smart contract vulnerability detection
tool that utilizes symbolic execution for identifying vulner-
abilities based on control flow graph (CFG) [39]. Nikoli¢ et
al. have developed MAIAN, a tool that allows for accurate
specification and analysis of trace properties. MAIAN uses
inter-procedural symbolic analysis, along with a concrete
validator, to identify actual exploits [40].

6.2.2 Fuzzing

Fuzzing is a software analysis technique that generates a
vast array of test samples for programs and monitors their
behavior during execution for any unusual activities. Jiang
et al. introduced ContractFuzzer, the first dynamic analysis
method that employs fuzzing techniques to detect security
vulnerabilities in Ethereum smart contracts [41]. He et al.
present ILF, utilizes symbolic execution to create an efficient
and rapid fuzzer and the learning process is accomplished
through imitation learning framework [42].

6.2.3 Formal Verification

Formal verification utilizes mathematical and logical rea-
soning to validate the accuracy of a computing system.
Grishchenko et al. has converted the source code and byte-
code of the smart contract into the functional programming
language F* and utilized the F* Framework to analyze the
security and verify the correctness of functions [43]. Kalra et
al. introduced ZEUS, which combines abstract interpretation
and symbolic model checking, along with the effectiveness
of constrained horn clauses, to efficiently verify safety con-
tracts [44].

6.2.4 Machine Learning

Over the past few years, machine learning has gained pop-
ularity for detecting smart contracts vulnerabilities, owing
to its superior accuracy and the lack of reliance on expert
knowledge. Tann et al. proposed an approach that uses long-
short term memory (LSTM) to accelerate the detection of
emerging weaknesses [45]. Zhuang et al. utilized graph
neural networks (GNNs) for smart contract vulnerability
detection [46].

7 CONCLUSION AND FUTURE WORK

This paper introduces Smart Contract Weakness Enumera-
tion (SWE), a comprehensive collection of common smart
contract weaknesses until 2023, which includes 40 common
smart contract weaknesses identified from 273 academic
papers. By consolidating existing weaknesses and incor-
porating emerging weaknesses, SWE provides a valuable
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resource for developers, researchers, and the wider commu-
nity. The weakness descriptions outlined in this paper serve
as a guide to enhance security practices in smart contract de-
velopment. Furthermore, the proposed update mechanisms
ensure that SWE remains a relevant and reliable resource in
the face of evolving threats.

Future research will focus on expanding and updat-
ing Smart Contract Weakness Enumeration (SWE) to keep
pace with evolving weaknesses. With the development of
SWE, we will refine the categorization scheme, which can
provide a more precise understanding of weaknesses and
improve defensive guidance. Furthermore, we will establish
collaborative platforms for SWE knowledge sharing to en-
sure ongoing maintenance and community involvement in
addressing emerging weaknesses. These future efforts will
enhance the practicality and effectiveness of smart contract
weakness enumeration, bolstering security practices and
facilitating wider adoption of blockchain technology.
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