2308.07057v3 [cs.SE] 23 Aug 2023

arxXiv

Understanding Hackers’ Work:
An Empirical Study of Offensive Security Practitioners

Andreas Happe
andreas.happe@tuwien.ac.at
TU Wien
Vienna, Austria

ABSTRACT

Offensive security-tests are commonly employed to pro-actively
discover potential vulnerabilities. They are performed by specialists,
also known as penetration-testers or white-hat hackers. The chronic
lack of available white-hat hackers prevents sufficient security test
coverage of software. Research into automation tries to alleviate this
problem by improving the efficiency of security testing. To achieve
this, researchers and tool builders need a solid understanding of
how hackers work, their assumptions, and pain points.

In this paper, we present a first data-driven exploratory qualita-
tive study of twelve security professionals, their work and problems
occurring therein. We perform a thematic analysis to gain insights
into the execution of security assignments, hackers’ thought pro-
cesses and encountered challenges. This analysis allows us to con-
clude with recommendations for researchers and tool builders, to
increase the efficiency of their automation and identify novel areas
for research.

CCS CONCEPTS

« Security and privacy — Usability in security and privacy.

KEYWORDS
software testing, offensive security testing, ethical hacking

ACM Reference Format:

Andreas Happe and Jurgen Cito. 2023. Understanding Hackers” Work: An
Empirical Study of Offensive Security Practitioners. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE °23), December 3-9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3611643.3613900

1 INTRODUCTION

For convenience and efficiency reasons, more and more devices
are being connected and thus exposed to public networks. While
beneficial, this has a dark undercurrent: the respective system’s
attack surface is increased and could be exploited by malicious
actors. In a perfect world, all created software would be free from
faults. As recent [19, 20], and not so recent [29], news implies,
we are sadly not there yet. While secure software development,
enabled by defensive security testing [49, 57, 63], is the long-term

ESEC/FSE °23, December 3-9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE °23), December 3-9, 2023, San Francisco,
CA, USA, https://doi.org/10.1145/3611643.3613900.

Jurgen Cito
juergen.cito@tuwien.ac.at
TU Wien
Vienna, Austria

goal, short-term interventions are needed. In addition, there is an
ever-increasing abundance of legacy software whose security needs
to be verified too. A pragmatic approach is to perform security
assessments, also known as penetration tests (pen-tests), to identify
vulnerabilities and remediate them before they are discovered and
exploited by malicious actors.

This approach is limited by the availability of skilled offensive
security professionals [41, 46]. While this situation should be reme-
diated through increased enrollment in IT security educational pro-
grams, improving the efficiency of the penetration testers through
tooling is an equally important measure. To accomplish this, re-
search and tooling should be well-aligned with security profession-
als’ activities and needs.

However, to the best of our knowledge, there has been no empir-
ical research into what type of security assessments are performed,
what actions are regularly performed within those, or how profes-
sionals select attacks to be run against their targets. Without this,
developments might be swift but misguided, and thus eventually
irrelevant.

Research Questions & Structure of this Work. We used three
research questions to drive the development of this work; the ap-
plied research method is described in the METHODOLOGY section.

Our first research question was “What do common security
tests look like?” We present the gathered information in section
PERFORMING SECURITY TESTs, detailing different types of assign-
ments, their particularities, common actions performed during as-
signments, and the role of automation.

The second research question “How do Hackers perform their
tasks?” focused on the inner world of our participants. Education
is an important part of socialization, therefore, results about this
aspect is included in section BEcomING A HACKER. In Section How
DO HACKERs THINK? we present recurring themes detected during
our analysis. We focus on thought processes during assignment
execution, target and attack selection, dealing with uncertainty,
and internal quality assurance.

The D1scussioNs AND IMPLICATIONS Section is the response to
the final “What tedious or time-consuming areas could be
improved?” question. We grouped the identified research and
development opportunities according to our target audience of
researchers and tool builders.

2 RELATED WORK

While there has been ample research on secure software develop-
ment and defensive security testing [49, 57, 63], the focus of our
study is offensive security testing. To the best of our knowledge,

https://orcid.org/0009-0000-2484-0109
https://orcid.org/0000-0001-8619-1271
https://doi.org/10.1145/3611643.3613900
https://doi.org/10.1145/3611643.3613900
https://doi.org/10.1145/3611643.3613900

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

this is the first work that focuses on how hackers work, i.e., the con-
text within which a security professional moves and the processes
that influence their decisions during security assignments.

Huaman et al. [40] performed a large-scale interview study of
German small-to-medium enterprises (SMEs). While SMEs are mak-
ing up a third of Germany’s GDP, they often lack resources for
establishing an effective cyber-security posture. It analyzes their
preconception with regards to cybercrime, their adoption of se-
curity measures and their experiences with attacks. In contrast
to our study, this focuses upon the potential “victims”, not upon
security operators. One interesting finding was that 45.1% of inter-
viewed companies had a cybersecurity incident warranting manual
response in the preceding 12 months — further highlighting the
need for trained personnel.

Smith, Theisen and Barik [54] describe Red Teams working at
Microsoft. They cover a wide range of topics including how cor-
porate culture and red teaming interact. They also lightly touched
on how people became security professionals and the interactions
in their daily work. Its interviewees were recruited from within
Microsoft, a single large-scale company, and thus might not reflect
wider industry practices which, as referenced by the previously
mentioned paper, consists to a large degree of SMEs. In contrast,
this publication focuses on the execution of security assignments,
highlights hacker’s thought processes and details challenges in
academic and automation research. Furthermore, this paper is not
limited to the discipline of red-teaming.

Van den Hout [60] investigated the impact of different penetra-
tion test methodologies on the quality of the tests performed but
concluded that only one reviewed methodology had widespread
adoption, but its recommendations for a structured approach were
not taken into account. This could indicate a gap between “real”
penetration testing and codified methodologies.

Multiple papers describe aspects of penetration-testing without
focusing on the operator’s mindset or their decision processes.
Munaiah et al. [48] analyze event datasets and manually map attack
patterns to MITRE ATT&CK Enterprise. This is used to show a-
posteriori attack patterns but does not analyze how hackers select
the attacks to execute. MITRE ATT&CK itself is a taxonomy of
TTPs (Tactics, Techniques, and Procedures) and not a full attack
methodology. Bhuiyan et al. [23] uses GitHub security bug reports
to identify the origins of bug reports. Examples of these origins
are software source code, software log files, binary files, etc. This
details what data are used during reporting, but does not explain
how a security professional identifies potential vulnerabilities for
research in the first place, e.g., why a security professional analyzes
a mentioned log file for relevant security information.

Other papers focus on narrow sub-disciplines of hacking which
cannot be projected upon the hacking industry at large. Ceccato
et al. [28] describes how hackers attack protected software, i.e.,
how software protection mechanisms in provided binary files are
analyzed through reverse engineering. Based upon the responses
of our interview series, reverse-engineering is not representative
for activities performed by offensive operators at large.!

!During the interview series, a single participant mentioned using fuzzing to hunt for
vulnerabilities. They were switching to other disciplines due to the high resource and
time requirements of fuzzing.

Andreas Happe and Jirgen Cito

Table 1: Participants

Participant Primary Secondary

Participant 1 web infrastructure, 15027001
Participant 2~ web infrastructure, mobile
Participant 3 red-team AD, OT, web

Participant 4 web social engineering
Participant 5 red-team, IoT/OT web, social engineering
Participant 6 web AD, social engineering
Participant 7 infrastructure web, tool development

Participant 8 web infrastructure
Participant 9 infrastructure AD
Participant 10 red-team, AD

Participant 11 OT, IoT web

Participant 12 web

AD denotes Internal network tests; web, infrastructure and IoT denote pen-tests.

The PhD thesis “How Hackers Think” [56] is a high-level treatise
on hacker history, culture and their thought processes. It identifies
multiple characteristics of hackers, e.g., being highly self-motivated
and curious, being able to tolerate ambiguity, and their use of mental
models and patterning. Its focus lies on a high conceptual level
and does not analyze how hackers actually identify and chose
vulnerabilities. Neither does the study identify how different areas
of penetration-testing, e.g., OT or red-teaming, might impact a
hacker’s mindset.

3 METHODOLOGY

This paper follows a pragmatist approach [47, 51] combining meth-
ods from the empiricist and summarist interpretist traditions [33].

We used semi-structured interviews to gather insights into hack-
ers’ work and thought processes.

Ethical Considerations. Our institution does not have a formal
IRB process but offers voluntary submission to a Pilot Research
Ethics Committee. As human interviews were conducted, the com-
mittee was consulted, and topics were discussed, including ethically
relevant methodological clarifications, more specifically questions
related to the involvement of voluntary participants in the research,
as well as mitigating the risk of contextual identification. Partici-
pants gave their informed consent before the interviews took place;
all data collected were anonymized by researchers prior to analysis.
All data storage and processing complied with national privacy reg-
ulations and the EU’s General Data Protection Regulation (GDPR).

Recruitment. We define the target population as offensive-
security practitioners that work directly with customer systems.
Previous research has found that security professionals are reluctant
to communicate with outsiders [45], especially when it comes to
their methodology and techniques. To counteract this, researchers
reached out to public figures: the initial seed was populated by con-
tacting security companies, finalists of public security challenges,
and security conference participants. We use snowball sampling to
improve the interview pool: At the end of each interview, we asked
the current interviewee to connect us with other offensive security
professionals. In addition, we cold-called both a hacking education

Understanding Hacker’s Work

YouTuber and a public hacking collective that is well known for
publishing vulnerability disclosures. Both were mentioned by the
participants during the interviews, both did not react to the contact
attempt further enforcing the idea of a close-knit community [45].

We sampled new interview participants until theoretical satura-
tion was reached, that is, no new information was obtained during
the interviews. When considering theoretical saturation we dif-
ferentiated between common themes and themes specific to the
interviewee’s specialty area. We continued interviews until neither
two subsequent interviews contributed new specialty area infor-
mation, nor three subsequent interviews contributed new common
themes. Theoretical saturation was reached after the 12th interview
which fit recommendations [31, 34].

Participants. We considered participants that worked primarily
in an offensive security field and excluded participants that primar-
ily worked within social engineering or physical security. If partici-
pants were working in a hybrid field, such as reverse-engineering
or source-code analysis, their primary focus had to be offensive. To
gain seasoned results, we only reached out to professionals with at
least four years of experience in the IT security field.

To our dismay, we were not able to recruit any offensive security
professionals that identified as non-male. While we come from a
culture that naively prides itself on blind meritocracy [24], we found
this contradiction disturbing. As we did not deem it relevant, we
did not ask about our participants’ religious or cultural affectivities,
but in hindsight, we can assume diversity in that area.

To protect the anonymity of the participants, we cannot detail
their employment status, ethnicity, work experience before security
work, and time of employment within the security field, etc. When
excluding education and CTF-participation, participants had an
average work experience of 9 years (i = 9.0, 0 = 6.5, median = 8).

Interview Protocol. We conducted semi-structured interviews
utilizing video conferencing software. All but two interviewees
enabled both video and audio transmission. The average duration
of the interview was 55 minutes. Before the interview started, the
participants were informed about data processing, and their rights,
and asked for their informed consent.

We opened the interviews with questions about the intervie-
wee’s job description and how they acquired the needed skill set.
Those were followed up by talking about the types of security as-
signments the participants are involved with. For 1-3 of these areas,
detailed questions about particularities, procedures, automation,
and problems were asked; since the questions were open-ended,
the interviews branched out to subtopics organically. The inter-
views were closed with questions about grievances and additional
thoughts related to the field of IT security.

We recorded and manually transcribed all interviews. During
the transcription, sensitive data was scrubbed from the interview;
the transcribed interview was then submitted for confirmation to
the interviewee. Scrubbed interviews were loaded into delve [5] for
thematic analysis.

Analysis. Reflexive Thematic Analysis [26] was chosen to per-
form a data-driven exploratory analysis of interview transcriptions.
In summary, when performing thematic analysis, the researchers
initially familiarize themselves with the data, and extracts of the
data are tagged with codes. These codes are then used to create
clusters that identify or construct underlying themes. Then, those

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

themes are reviewed, defined, and named. The results of the findings
are presented in Section 4-6.

Data Availability. The data used in this study was collected
through interviews with a close-knit community of ethical hackers.
Deanonymization would likely not be preventable. In accordance
with ethical guidelines and agreement with the interview partici-
pants, the decision was made not to release the interview data. All
meta-information related to the interviews, including the interview
guide and consent forms are part of our replication package.

Threats to Validity. Any interview-based study faces the threat
of selection bias (internal threat). To counteract this, we performed
snowball sampling, recruited random security professionals during
security conferences, and explicitly invited security professionals
from different disciplines. For ethical reasons, interview participa-
tion was limited to white-hat hackers (internal threat). According to
prior analysis, the activities of black-hat hackers, e.g., Ransomware
groups, can be seen as a subset of the activities performed by ethical
red-teams [3, 4] which are covered in this work.

Another potential bias would be experimenter bias (internal threat).
To reduce the risk, all the data collected was analyzed separately
by the different authors, and their respective labeling results were
compared for differences, ambiguities were discussed and resolved.

Hacking contains multiple disciplines. Our results might only
capture common themes of a subset of those (external validity). We
try to counteract this by inviting interviewees from various hack-
ing fields, as is reflected in Table 1. The geographical distribution
covered roughly Central Europe. Other geographic regions might
be more advanced when it comes to the utilization of the different
types of security assignment.

4 BECOMING A HACKER

The interview responses reveal several interesting themes regarding
the path to becoming a hacker.

Academic Education. All but one participant attended at least
a single university-level class. Nine completed bachelor’s degree
studies in IT (or related field, such as CS), and of those, all contin-
ued to add a master’s level degree. The percentage of interviewees
enrolled in IT security specific programs increased from 55% (n = 5)
for bachelor’s studies to 78% (n = 7) for master’s studies. This fits
the perceived lack of IT-Security and Secure Development lectures
during non IT-security centric programs, which was partially ad-
dressed by attending CTFs or enrolling for non-mandatory security
classes. Classes were often taken in an extra occupational capac-
ity. All fitting a common theme of “fascination with IT security”
combined with high intrinsic motivation.

Experience before IT-Security. Having 2-3 years of non-
security IT exposure before entering the IT security field was found
to be advantageous. Another related recommendation was to have
a broad IT security base combined with one or two specialization
areas. Within our group of interviewees, the common base was web
security or internal network assessments; examples of specializa-
tions were red teaming or cloud-specific knowledge.

Staying relevant. All interviewees perceived a need for ongo-
ing education. The ubiquitous information source was Twitter/X,
followed by other online services such as YouTube channels, blog
posts, Reddit, Github, or commercial online courses. In the physical

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Table 2: Types of Security Assessments

Type Covert Team-Size Effort in Days
Vulnerability Assessment not typical 1 2-4
Penetration Test optional 1-2 5-10
Internal Network Test optional 1-2 7-10
OT Test never 1-2 7-10
Red-Teaming always 3-4 30+

world, colleagues and conferences were mentioned. The quality of
online material was considered high, although one interviewee had
qualms about publishing information due to potential misuse. A
single participant regularly used the Darknet as a news source.

To CTF or not. CTF attendance was a common theme. Par-
ticipants saw a bidirectional information transfer: skills learned
in CTFs were applicable at work and vice versa. Tasks in CTFs
were considered very targeted in that they narrowly focus on a
vulnerability, and solving the challenge or reading a write-up were
considered efficient ways of gathering knowledge about the respec-
tive vulnerability. Specialized security practitioners, e.g., from the
OT or ICS area, found CTFs to be introductory and shallow.

5 HOW DO HACKERS WORK?

While we encountered the common muttering of “every projects is
different”, these sections identify types of penetration tests, each
with distinct requirements, strategies, and particular actions. When
looking at a pen-tester’s work, this is the external view, i.e., how a
pen-tester’s work is perceived from the outside.

5.1 Types of Security Tests and their Differences

Although different assignments have a similar project organization,
their execution differs due to the respective client and target en-
vironment. Table 2 shows the main types of security assignments
encountered during interviews.

Vulnerability Assessments focus upon achieving a high cov-
erage of the targeted assets, which are typically external IP-ranges
(including web servers) or internal networks (including clients and
internal infrastructure). Enumerating targets, e.g., through web
crawling or network scans, leads to the creation of important inven-
tory databases. Those are subsequently used to test against known
vulnerability databases, known configuration errors or generic vul-
nerability classes such as SQL injections. As assignments typically
include large amounts of potential targets, a high level of automa-
tion is necessary.

Penetration Tests (Pen-Tests) share similarities with vulner-
ability assessments. The demarcation point between those two
varied between interviewees. The situation is further complicated
as vulnerability scans are often used as an initial step during pen-
testing. Generally speaking, while vulnerability assessments focus
on breadth, pen-testing focuses on depth, i.e., thoroughly break-
ing a single target. Pen-Tests are within the realm of application
security: in addition to well-known vulnerabilities or configuration
errors, new vulnerabilities are hunted within the software under
test. Penetration tests are often performed against custom-written

Andreas Happe and Jirgen Cito

software where no prior vulnerabilities are published in vulnerabil-
ity databases. As the scope is tight, customers commonly provide
dedicated test environments against which destructive tests can be
performed. Another benefit of the limited scope is that the execu-
tion of a penetration test can be highly structured, some (n = 2)
interviewees went as far as calling them “catalog-based”. Pen-tests
are primarily performed manually.

Internal Network Tests verify the security and resilience of
internal networks. Their basic assumption is “assumed breach’, i.e.,
the adversary is already within the local network and now attempts
to gain sensitive data or achieve higher privileges — emulating
Ransomware scenarios that have recently scourged companies. Mi-
crosoft Active Directory (AD) is ubiquitous in corporate networks;
thus, if present, it is the main target. In these cases, the security
assignment’s intent is to obtain domain administrator privileges.
The focus lies on exploiting known vulnerabilities, product features,
mis-configurations, and insufficient access-control or hardening
measures. Another big aspect is Lateral Movement, i.e., using com-
promised systems to pivot to new targets. Assignments are made
against productive environments.

OT Tests target Operational Technology (OT) such as SCADA
or ICS (Industrial Control System) networks. They can be differ-
entiated into product tests and in-situ network tests of already
configured systems. As solutions consist of off-the-shelf software
that is highly customized for usage within the corresponding client
network, the latter are often preferred by the customer. Tested sub-
jects often use proprietary protocols; therefore, reverse engineering
is a common practice in OT tests.

OT facilities, e.g., power plants, are expensive and often hard
to come by, thus a dedicated testing environment is rarely avail-
able. Testing commonly occurs during scheduled down-times; this
severely impacts the available test window. Another related partic-
ularity: availability often trumps the breadth or depth of performed
security tests. As test subjects are “connected to the real world”,
negative side effects are potentially catastrophic. Security tests are
therefore highly coordinated with customers to prevent any neg-
ative fallout. This often prohibits any covert action. Regulatory
requirements [21] lead to a convergence between IoT and OT de-
vices. In addition, Microsoft Active Directory starts to encreep OT
networks, thus creating an overlap with Internal Network Tests.

Compared to other approaches, in Red-Teaming the attack-
ers have a concrete mission, e.g., gain access to a defined subset
of computers or a source code repository. While during Internal
Network Penetration Tests gaining Domain Admin is often the fi-
nal goal, this is only a means for achieving the mission during
Red-Teaming. Attackers holistically target a company and employ
additional techniques such as Open Source Intelligence (OSINT)
and Social Engineering; Post-Exploitation is more prominent com-
pared to other disciplines. Red teaming is not concerned with broad
coverage, but with achieving the team’s defined objective. Red-
Teaming does not only attack the target’s technical security posture
but also the response of the blue team, i.e., defenders. Thus covert
operations, hidden persistence, command&control systems (C2)
and evasion of defensive techniques enter the picture.

Assignments are often performed in larger teams and over exten-
sive time frames, making information transfer between participants
more important. Adding additional team members to speed up an

Understanding Hacker’s Work

ongoing operation is problematic as the new team members do not
share the existing member’s target system knowledge.

5.2 Black- vs. Gray-Box Security Testing

When it comes to test execution, an important distinction is the
amount of information and support provided by the customer. Dur-
ing black-box tests, practitioners go in “blind”; no information ex-
cept the scope is given. During white-box tests, full system access
or even the source-code of the tested application is given. Gray-box
tests lie in-between: often access credentials or system architecture
descriptions are provided before testing commences.

Pure white-box tests, as in “source-code reviews”, are rarely per-
formed due to their prohibitive costs. The type of assignment is
also of importance: red-teaming is almost always performed as a
black-box test as the target’s personnel is not involved beneficially.
OT tests are often performed in tight lock-step with customers
(to reduce the potential fallout) and thus are gray-boxed. Intervie-
wees overwhelmingly recommended moving from black-box
towards white-box testing. The reasons given were time and
thus cost efficiency, as well as potential for improved test coverage.

In other areas, customers are helping pen testers to improve
efficiency too. “Assumed breach” scenarios in Internal Network
Penetration Testing conceptually assume that a client computer
will be breached eventually and thus use a breached computer as a
starting point for investigations. During web pen tests or during
external scans, rate limits or firewalls are commonly disabled to
allow swift pen test execution. During web application pen-tests,
internal details, such as used technologies, are commonly provided
to reduce the search space.

5.3 Typical Testing Workflows

Participants were asked to detail the execution of the different
types of assignments. This section describes the peculiarities of the
different areas.

Activities performed during Web Penetration Tests can be
separated into exploratory intuitive testing and exhaustive testing
against checklists or standards. All interviewees utilized both, no
specific ordering between those two was detected, although if the
checklist-verification was automated, it often was run in parallel
to exploratory testing. If a high-level of automation is achieved,
the manual exploratory testing can be integrated into the automa-
tion: one interviewee detailed a multi-stage automated test-setup
containing multiple enumeration steps, where the result of each
step was manually verified, rectified and used to instrument subse-
quent automated steps. Manual testing, e.g., manual crawling, was
integrated as an additional input into the tested steps.

According to interviewees, most time and effort are spent upon
authorization tests. An application typically has multiple user groups
with different access rights. During testing, penetration testers re-
quest one or more users per existing group and try to perform
unauthorized data access with one user using data of another user.
To verify responses, testers need documentation about the imple-
mented access groups. If none was given, interviewees approximate
a model of the access rules through probing/testing and experience.

With the exception of testing for authentication or authoriza-
tion, automated testing was deemed well-established and automated

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

tooling was commonly employed. Common injection attack vec-
tors were well covered by tooling, for example, sqlmap [18] for
testing for SQL injections. Multiple Web-Application-Testers “com-
plained” that typical injection-based attacks which were common
10 years ago are now seldom seen and are rather used for illustra-
tive purposes during education. Their suspected “culprit” is the rise
of web application frameworks with sane defaults that automati-
cally prevent many attack classes. Multiple interviewees considered
switching their area of interest due to this development.

Multiple interviewees described API-based tests as tedious. Typ-
ically an API test is performed by calling a sequence of operations.
Each operation is detailed through an API specification provided
by the customer, e.g., through OpenAPI/Swagger or WSDL files. In
theory, directly testing the back-end API reduces the pen-testing
overhead as the tester can focus upon the core functionality; in
practice, API tests become time-consuming due to a lack of docu-
mentation with sufficient quality. API documentation only describes
single operations, often lacking detailed descriptions of valid input
formats and their semantics. In addition, to achieve good test cov-
erage, test cases need to perform a sequence of causally dependent
API calls, potentially reusing and refining data between operations.
While performing a traditional web application pen test, this causal-
ity and examples of input data can be derived from the captured
web traffic. When performing API tests, these have to be derived
from the API specifications or, more realistically, by pestering the
customer’s liaison contact.

Internal Network Tests often occur in phases which are or-
dered from “quiet” to “loud” when it comes to visibility. A typical
assignment targeting a Microsoft Active Directory might include
the following phases: initially, only network access is granted. The
attacker either sniffs the network for exposed access credentials
or utilizes MitM- and spoofing attacks to gain user credentials or
tokens. In addition, anonymously accessible network shares are
investigated for “juicy” information such as user or admin creden-
tials. Exploits are used against vulnerable network services if the
risks of detection and stability are deemed acceptable. In the second
phase, an attacker has either already gathered user credentials or
has been provided with those by the customer. These credentials
are typically for non-privileged domain users, and attackers utilize
them to further enumerate shares, gain access to additional domain
accounts or computers, or gain local administrative privileges. Lat-
eral Movement often incurs during this phase. In the next phase,
the attacker has either gained or is provided local administrative
privileges and tries to perform further Lateral Movement until a do-
main administrative account is compromised. With that, the whole
network is owned.

Please note, that phases do not follow a traditional waterfall
model. According to interviewees (n = 2), often the domain admin
credentials can be gathered during the initial phase. This is then
noted, and additional attacks are performed until the agreed upon
timebox is reached.

Many automated attacks, e.g., EternalBlue [25] or certify [7],
were described as “too loud” or “unstable” for use during the initial
phases. Another automation topic was the identification of “juicy”
files within network shares: this activity is performed primarily
manually as the identified data are context specific. In addition, cre-
ating a full-copy of a network share is time- and network-sensitive

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Table 3: Commonly Named Tools.

Tool Area Availability #
PortSwigger BURP Suite [12] Web-Testing free, commercial 7
BloodHound [2] AD Enumeration 0SS 5
SQLMap.py [18] Web/SQLi 0ss 3
nmap [14] Network 0SS 7
nessus [13] Network commercial 8
gobuster [8], dirbuster [6] Network 0SS 2
certify [7] AD Exploitation ~ OSS 4
metasploit [11] Exploitation 0SS 3
nuclei [15] Exploitation 0SS 3

denotes the interviewee count mentioning the corresponding tool.

as well as easily detectable, and countermeasure systems using
honey-tokens are beginning to be deployed at customers’ sites.

All interviewees in the IoT area mentioned applying indus-
trial standards as well as the usage of checklists that included the
OWASP IoT [36] and OWASP Firmware Testing guides [35].

Red-Teaming is special due to its evasion- and deception-based
methods as well as through its objective-based approach. A red
team initially has knowledge of its objective, e.g., gain access to a
special server in department X, as well as a broad allowed scope,
e.g., the targeted company. Teams initially model how to breach the
company, e.g., by identifying potential social engineering victims.
After the breach, low-key enumeration is used to covertly model
“how a company works” and then abuse that knowledge to derive
attacks that mirror expected traffic and behavior patterns. Through-
out a red-teaming campaign, a map of known or breached elements
is built and compared to the imagined map of the company that
includes the final objective: if both converge, the objective should
be achieved.

Automation employed for network lateral movement or breach-
ing web applications originate from the other pen-testing disci-
plines but have to be re-evaluated against their chance of being
detected. As red-team assignments are performed against real and
live systems, the scope of destructive operations might be limited.

OT-Tests have their own challenges. Due to the prevalence of
proprietary protocols, time-consuming reverse engineering of those
protocols often occurs. Mentioned experiences of our interviewees
indicate that Security-by-Obscurity is still common; this would
match the perceived resistance of some ICS suppliers when faced
with responsible disclosure requests. Due to the time burden of
reverse-engineering, it frequently has to be aborted due to the
timeboxed nature of testing.

Due to the potentially catastrophic side-effects of testing, a risk-
based approach is often applied: together with the customer, a
threat model workshop can be performed, and potential scenarios
that warrant testing identified. Those scenarios, and only those,
are subsequently manually executed against the OT system. As the
available amount of time is fixed, threat modeling and performing
the derived tests compete for the same temporal resources.

5.4 Automation

All interviewees used pre-made tooling, while few (n = 3) wrote
additional tooling on their own. Overall, the tooling situation for

Andreas Happe and Jirgen Cito

specific testing areas was seen in a positive light. In contrast, “ali-
in-one” tools were seen in a negative light. Multiple interviewees
remarked that a “fully automated tool cannot replace a pen-tester”
or, as one interviewee cynically replied, “yeah, I want a tool where
I can click a button and magically I get a finished pen-test report”.
Practitioners relied on multiple small tools for different areas, e.g.,
gobuster [8] for content discovery or sqlmap [18] for testing SQL
injections. PortSwigger’s BURP Proxy Suite [12] was used by every
web application pen-tester interviewed. See Table 3 for a list of
commonly named automated tools.

Problems with tooling. Interviewees remarked that the setup
overhead of automation tools can be problematic. Especially for
short-term projects, such as vulnerability assessments or tightly-
timed web application pen-tests, the initial setup overhead and
processing time can be prohibitive for deploying tooling. Another
problem was coverage: even within the same problem area, the
coverage of different tools widely diverges, and the situation is
made worse as commonly no tool provides full coverage of a testing
area. To counteract this, practitioners commonly use multiple tools
redundantly, yielding more processing time overhead and needing
manual merging of the different tools’ results.

Some areas were described as not suitable for automation. As OT
systems are finicky and the potential fallout catastrophic, automated
tests are often not feasible. Additionally, when performing social
engineering during red-team assignments, fully automated tools
are avoided for both fear of detection and ethical qualms because
they would be used on human targets.

Extendability and Community was identified as an important
discriminator by practitioners. Both are related to fast-paced devel-
opments within the exploit community: if a tool can be proactively
extended or be scripted by the community, it and its implemented
methods can evolve faster compared to reactive development within
walled gardens. An example of an OSS tool utilizing community-
provided detection rules is nuclei [15]; an example of a commercial
tool with good OSS extendability is the PortSwigger BURP Proxy
Suite [12] with its integrated BApp Store.

Manual fine-tuning to reduce search space. Multiple inter-
viewees mentioned that they are adjusting the tooling according to
their ongoing findings. Examples of this feedback loop would be
limiting tested vulnerability classes to feasible ones, e.g., not test-
ing a static website for SQL injections, or limiting tested database
queries to concrete database dialects.

6 HOW DO HACKERS THINK?

While Section 5 describes the external view on pen-tests, their type
and activities activities performed during them, this section focuses
on the inner workings and thoughts of security professionals during
testing, detailing their decision processes and potential sources of
their intrinsic motivation.

6.1 Exploiting Configuration vs. Applications

A reoccurring theme was the distinction between searching for
known vulnerabilities and hunting for new vulnerabilities.
Examples of the former would be executing a known vulnerabil-
ity scan against off-the-shelf software or investigating a Microsoft
Active Directory for misconfigurations; an example of the latter

Understanding Hacker’s Work

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Table 4: Excerpt of sub-themes of “Identifying Vulnerable Areas or Operations”

Subtheme # Representative Quotes
High-Level Targeting 7 “We select the attack that would be the most cost-effective for the attacker”

“... before we attack proprietary protocols we’ll attack a windows domain server missing updates.”
Experience 12 “How we actually work? We look for obvious vulnerabilities, those that jump out immediately”

‘T know that from my time programming C/C++...1 find the errors that I made back then”

“I search for vulnerabilities that I have seen and exploited before.”

“...often I see systems that I have already seen when doing CTFs...then I already know how to attack it”
Familiarity with Target 4 ’If it is a repeat customer then you already know how they tick and what their problems are”
Observed Features 10 “One runs through the web applications and sees a feature and thinks “this looks interesting, could it be

implemented weirdly”?”

“If there’s an upload function, I am interested.”

Observed Technology 11

“Some things cannot be done securely, for example PHP.”

“Well, you always feel happy when the application is somehow a PHP application.”

Modeling Behavior 9 “Testing is manual, as you need to get a feel how the application is supposed to work and answer”
“You search for unexpected behavior... for example a database that throws an error when you enter a . ”
Intuition 8 “This will be esoteric... but I believe there is some organ that tingles if an operation looks fishy”

Subthemes mentioned by interviewees, # denotes the interviewee count.

would be searching for SQL injections within a custom written
application or discovering a new vulnerability class.

Synonyms given for “searching for known vulnerabilities vs. hunt-
ing for new vulnerabilities” were “vulnerability assessments vs. ap-
plication security” or “hacking configuration vs. hacking programs”.

These two categories are fluid. For example, findings from “hunt-
ing for bugs”, i.e., a new 0-day exploit against a software, can end
up within “searching for known vulnerabilities”, i.e., when a rule for
detecting 0-day is added to a web vulnerability scanner.

While not stated explicitly during the interviews, we assume that
our interviewee’s mental model is primed through their understand-
ing of this divide, and highly impacts tool and technique selection.
As an interviewee mentioned, “you don’t hunt for 0-days during
an Active Directory assignment”. This implies that pen-testers will
not consider spending days fuzzing a domain controller for new
vulnerabilities during internal network scans.

6.2 Identifying Vulnerable Areas or Operations

Participants often described exploratory testing during which they
were guided by intuition. Through follow-up questions, further
information about this intuition was gathered.

All interviewees were analyzing requests and responses; the
former for conspicuous parameters and the latter for occurrences
of error messages or other suspicious behavior, that is, behavior
that does not fulfill the testers’ expectations.

During the interviews, multiple areas were identified where se-
curity testers possessed a mental model of the expected behavior of
the software-under-test; during testing security testers were trying
to find operations that could trigger unexpected behavior which, in
turn, might turn into a security vulnerability. Those mental models
were built from experience, e.g., prior assignments or experience
within the specific business area, as well as adapted during the secu-
rity test itself, e.g., “learning how the application works”. A summary
of multiple observed mental models is shown in Table 5.

Pen-testers attributed their intuition to experience which could
be built from previous penetration tests, participation in CTF events,
prior engagements with the same client or industry area, or by
implementing similar software solutions during their former life
as software developers. Participants remarked that during testing,
they are triggered by vulnerabilities or exploits they had recently
read about and, in response, would start additional research. One
penetration tester mentioned creating a topic map during everyday
research which they then refer back to during assignments.

Related to experience, practitioners had preconceptions about
the technologies used or features implemented. Some functional-
ity, e.g., file uploads or XML processing, were thought to be hard
to implement in a secure manner — to quote a participant, “there
are some things that just cannot be implemented correctly”. Similar
resentments were discovered about used technologies. Some pro-
gramming languages were deemed to increase the probability of an
application containing defects; an interviewee mentioned thinking
“let’s see how developers have been fooled again” when going into
assignments. As cynical as it may be, PHP was often mentioned as
such a technology.

Two distinct positions were experienced regarding the learnabil-
ity of this intuition. On one side, “nobody is born a super hacker”,
on the other hand, one interviewee mentioned that the best pene-
tration testers in their peer group exhibited hacking-style behavior
already during kindergarten. Debating nature-vs-nurture or art-vs-
craft would go beyond the scope of this publication. Regardless of
this, common consensus was found that hacking skills are improved
through practice.

It is important to note that participants may be subject to selection
and survivorship bias. They might find vulnerabilities in areas they
focus on, ignoring plentiful vulnerabilities in other areas they are
historically ignoring. After a vulnerability has been found in an
area, the increased attention upon that area often yields multiple
subsequent vulnerabilities [9].

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Andreas Happe and Jirgen Cito

Table 5: Excerpt of observed models

Area Input Identified Elements Describes Used for

Web Testing Web Traffic Access Rules ACL model Authentication Checks
Red-Teaming Network Traffic Communication Patterns Expected Communication Covert Channels
Network Tests local data and network shares File data and metadata Company Data find juicy information
OT tests data flows data flow model system architecture identify test scenarios
OT tests network traffic network commands network protocol protocol reversing

Web Testing web traffic, context used technologies technology stack potential vulnerabilities
Web Testing web traffic HTTP requests and responses input model generate tests

6.3 Dealing with Uncertainty

Pen-testers routinely have to deal with uncertainty as they lack
transparency of the tested system: pen-testers must make assump-
tions about requirements, the tested system’s architecture, as well
as about accepted input values and the corresponding expected out-
put parameters [59]. They evaluate those against their expectations,
and if a system deviates, examine the deviation for exploitability.
When in doubt, testers can escalate and query their clients, but this
is deemed to be time-inefficient and thus minimized.

Examples of uncertainty would be a pen-tester issuing a HTTP
request where they expect an “access denied” response but instead,
receive a successful response containing data that cannot be clearly
classified as belonging to the current user or not. Another example
would be testing for time-based blind SQL injection vulnerabilities
where the measured latency is not sufficiently deterministic for
verifying the vulnerability. Similarly, second-order attacks cannot
easily be attributed to the initial request but only to the operation
that eventually contained the vulnerability.

Penetration testers modify existing valid requests to include
malicious payloads. When these requests produce errors, the reason
can be uncertain: was it a potential vulnerability? A successful
input filtering algorithm? Or an application error that cannot be
exploited? This classification impacts the selection of subsequent
requests and attacks.

Another instance of uncertainty occurs during tool optimization:
tool output is continuously used to further optimize subsequent
tool invocations. Interviewees performed a sanity check if reported
system fingerprints were feasible and forfeited them otherwise. In
addition, some high-impact decisions, such as limiting the expecta-
tions to a single DBMS type, were verified with the client before
incorporating them into tooling selection or configuration.

6.4 Don’t waste my time

One theme discovered was that interviewees feel the need to be
time-efficient. This might be related to tight time-budgets or very
constrained test-bed availability being anathema to good test cov-
erage. Shortcuts were taken to reduce menial tasks. For example,
during internal network tests, a breach is already assumed. The
interviewees defended this decision through “this will eventually
happen through social engineering anyways”. A similar argument
was given for being provided accounts with local administrative
privileges: “a real attacker can just wait for the next 0-day”, or for
disabling Anti-Virus solutions as evading them “takes time not skill”.

Tests with foregone conclusions were considered tedious, one ex-
ample given was testing an Anti-Virus solution embedded within
a web-application with different payloads. The repetitiveness of
this task might contribute to this too. This aversion to responsible
disclosure procedures might be correlated to bad experiences dur-
ing prior disclosures: the vendor’s responses were mostly “wasting”
the interviewee’s time.

6.5 Quality Control

Pen-Testers were concerned about the quality of their work, espe-
cially when working with high-stakes data such as health records
— “nobody wants to be that pen-tester that overlooked a vulnerability
that was later exploited”. A tester’s attention is also a limited re-
source: at least one pen-tester remarked that web application tests
can be monotonous and that after 3-4 days their motivation de-
grades. Usage of checklists, automated baseline scans, and working
in teams were encountered as quality improvement measures.

The applicability of checklists depends upon the testing domain.
Some domains, e.g., Web-Applications or Mobile Applications, were
seen as narrow and thus supporting the creation of security check-
lists. Other domains such as IoT were described as diverse and
impeding the creation of a unified security checklist.

Checklists were often derived from open industry standards;
they were maintained and extended by companies, but the result-
ing in-house checklists were seldom given back to the community
and published. Common base for checklists was the OWASP tri-
fecta of Vulnerability Top 10, Software Verification Standard and
Testing Guide; instances of those are provided by OWASP for mul-
tiple domains such as Web-Applications [50, 61, 62], Mobile Appli-
cations [39, 52], IoT [36] or Firmware [35]. Surprisingly, neither
MITRE ATT&CK® [55] nor PTES [17] were mentioned by our in-
terviewees. Working in teams or asking colleagues can be seen as
a broadening of the available experience pool or as employing a
“human checklist”. The use of automated tools as baseline scans
that upheld minimal quality standards can also be interpreted as
quality control. Interviewees mentioned usage of fully-automated
commercial web vulnerability scanners such as NetSparker [10]
or Acunetix [1] for this purpose. Some HTTP interception proxies,
for example, PortSwigger BURP [12] or OWASP ZAP [16], have
gained similar scanning capabilities. Those were used by some of
the interviewees and encroached on terrain traditionally taken by
web vulnerability scanners. In defense of testers, full coverage of
the software-under-test is not feasible due to the black- to gray-box
nature of security assignments.

Understanding Hacker’s Work

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Table 6: Excerpts of Dealing with Change: How is Security-Testing changing?

Sub-Theme # Representative Quotes

Impact of Frameworks 5

“Security improves because frameworks help developers write secure code”

“Pen-Testing has become boring as critical vulnerabilities are found less often”
“Usage of secure frameworks pushed vulnerability hunting towards business logic.”

Defensive Mindset 3
Changing targets 7

“Developer awareness about security has become better.”
“In the future we might use social engineering not only for the initial foothold, but also for lateral movement”

“Rich-client applications are still fun...they feel like web applications twenty years ago.”
“Active-Directory: I moved into this area because it is fun to break into a system within days.”
“The situation in OT will stay the same. It’s hard to modernize all the legacy hard- and software.”
“Some OT networks are ransomware-ready.”

6.6 Dealing with Change

Security is in a constant state of flux. Compared to other disciplines,
the existence of active adversaries — the struggle between red and
blue teams — lead to a Red Queen’s Race: participants must run
to stand still [27, 38]. If not evolving, the respective adversary will
overcome.

Interviewees lamented that some areas — breaking into web ap-
plications, breaching external infrastructure/perimeters, and reverse-
engineering — have become harder due to boosted defenses such as
usage of frameworks, improved default configurations, and height-
ened awareness of security posture (cf. Table 6). They are partially
switching work areas, i.e., turning towards OT or internal network
testing.

7 DISCUSSION AND IMPLICATIONS

We review our findings following the structure of our initial re-
search questions to formulate points of discussion and implications
for security researchers and practitioners.

7.1 Alignment between Research and Industry

We started this study with two questions, “What do common
security tests look like?” and “How do Hackers perform their
tasks?”. Those questions were broadly formulated to gain insight
into how common assignments for practitioners look like, and how
practitioners navigate their tasks within those assignments. These
questions were particularly motivated by the fact that existing work
is not grounded in the realities of offensive security practices.

7.1.1 Research must match a Project’s Scope. During interviews,
we identified typical security assignments with their respective
typical resource allocations. Research should heed those resources
allocated. For example, when targeting web vulnerability assess-
ments, a typical project was given with 2-4 days of manual effort.
Setting up a fuzzing pipeline, running the fuzzer, and analyzing
its results is not feasible in this short time frame, thus rendering
generic fuzzing rather infeasible for web security practitioners.
Still, searching Google Scholar for “fuzzing web applications” yields
23000 results.

Given that interviewees mentioned the prevalence of web ap-
plication frameworks and their preference for grey-box testing,
SBOM-based solutions should be a better fit and would warrant
additional research.

Most assignment types were done in solitary or as a paired
team, indicating that research into collaborative solutions might
be of limited use. The one exception using larger teams was Red-
Teaming although here collaborative solutions integrated into C2-
frameworks are already commonly used.

Automation with direct target-interactions were deemed prob-
lematic in the Red-Teaming and OT areas due to the sensitivity of
their targets. In OT, security by obscurity still seems to be com-
mon, limiting the opportunities for source-code analysis based ap-
proaches. On the other hand, improvements to reverse-engineering
binaries or protocols would be appreciated by practitioners.

Recently, the usage of Large Language Models (LLMs) for auto-
mated security testing has been explored [37]. While preliminary
results look promising, to maximize their long-term impact the
resulting automations should be aligned to the mentioned industry
issues.

7.1.2 Security Researchers and Security Practitioners. Separating
security into academic research and industry creates a false di-
chotomy. Industry itself is, at least, separated into security practi-
tioners and security researchers. The former are practitioners that
perform customer-specific assignments: those are the people that
typically perform short-term penetration tests and directly commu-
nicate with clients to improve their security. In contrast, security
researchers do not exclusively work on short-term client projects
but spent time researching new attack techniques and vectors. An
example of the former would be an anonymous pen-tester working
on a different web-application every week; an example of the latter
would be James Kettle investigating and documenting a new attack
class, HTTP Request Smuggling, over many years [43, 44]. Security
researchers search for new attack vectors or analyze a software
product for a prolonged period of time to release exploits or be
awarded CVEs. Security Practitioners are more focused on hunt-
ing configuration errors, exploiting well-known vulnerabilities, or
identifying new instances of known attack classes. They utilize
information and tools from security researchers for that.

Tools such as fuzzers are thus more applicable to security re-
searchers than to security practitioners. The large amount of re-
search into fuzzing indicates that academic research is targeting
security researchers rather than practitioners and thus are only
indirectly improving the security landscape when information from
security researchers trickles down to practitioners.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

7.2 Opportunities for Research.

We now want to answer the important final question, “What te-
dious or time-consuming areas could be improved?” through-
out the rest of this section and frame them as opportunities for
future research that directly benefits security practitioners.

7.2.1 Automating Authorization Testing. For security tests
with a relatively restricted scope such as web application tests, we
suggest research into covering additional vulnerability classes. Au-
thorization Testing is currently performed manually and was
named one of the most time-consuming parts of testing and thus
would be a fruitful target for automation research. Current gaps are
manifold: detection of potential operations, accepted parameters,
and potentially malicious parameters; generation of payloads as
well as the assessment of an attack’s success. A subtle problem is the
classification of returned web pages and downloads into authorized
and unauthorized content as this is highly context specific.

7.2.2 Gray-box Testing. The preference for gray-box testing by
software security professionals was surprising and can have a signif-
icant impact on software testing design: if the target’s configuration
or source code can be accessed (or if the target is willing to instru-
mentalize the target software through sensors as is done in IAST),
automated software testing approaches using source-code or
configuration become increasingly feasible for security testing.
Further research into automated source code and configuration file
analysis from a security perspective, is currently underexplored
and ripe for investigation. Research in this area yields dual-use
tools, aiding both offensive security professionals searching for
vulnerabilities as well as defensive software developers trying to
prevent vulnerabilities from entering their code in the first place.

7.2.3 APl Workflow Discovery for Security Test Generation.
Interviewees lamented that the manual creation of API security
test-cases is a tedious and time-consuming process. While the au-
tomation of API test generation would be advantageous, the fol-
lowing gaps currently prevent this: discovery of API endpoints
and operations, generation of benign requests as a baseline, com-
bining single requests into test flows using social and semantic
information, deriving malicious test cases, and finally evaluating
test outcomes. The automatic generation of security test suites
based upon API definitions and traffic patterns would reduce
testers” odium for utilizing this important class of testing. While
there have been several works that propose approaches for API
discovery [58, 65], the kind of discovery we envision would focus
on maximizing coverage for security tests.

7.2.4 Information Discovery for Security Testing. Internal
Network Tests and Red-Teaming are highly dependent on discovering
and utilizing client-specific information. Stealthy information
gathering from compromised systems or network shares is
performed manually, and thus its efficiency could be improved. The
goal is the automated identification of “juicy” information while
reducing the number of read requests to minimize network impact
or the chance of triggering intrusion detection systems. Research
in this area would also benefit defenders as it would make forensic
work, e.g., analyzing data breaches, more efficient.

Andreas Happe and Jirgen Cito

7.2.5 Scaling Personalized Phishing with ML. Phishing is an
important part of the red-teaming workflow and is commonly done
manually, due to the nature of customization proper phishing re-
quires. We see an opportunity to investigate the increase of scala-
bility of social engineering through machine learning tech-
niques. To create highly effective phishing mails, currently, mails
are manually customized to fit the respective recipient. Machine
learning techniques could automate this and thus provide Spear
Phishing at Scale, as they have already been shown to personal-
ize natural language communication in other domains [30, 42, 64].
An additional avenue for research is the identification of potential
targets for social engineering, both from an external perspective
(identifying initial recipients within a company) as well as detect-
ing informal networks within companies to enrich subse-
quent social-engineering campaigns — this is an example of
the red-teaming theme of “understanding how companies function”.

7.2.6 Human-in-the-loop for OT testing. OT professionals
were weary of fully automated security tests due to the potential
negative impact on stability and thus availability. We suggest re-
search into supplemental areas while letting humans decide which
attacks to execute. One example would be to reduce the pain and
effort of reverse engineering protocols: OT tests are very time-
bound thus there is little time for fuzzing or reverse-engineering
OT protocols while the potential benefit might be immense due to
security being provided by the obscurity of those protocols. Com-
bining fuzzing with automatic reverse-engineering should yield
large benefits [32]. The fear of potential fall-out has other conse-
quences too: OT-tests are often performed by executing scenarios
in lockstep with the customer. The scenarios are identified through
threat modeling components and their data flows. To reduce the
time spent on this effort, ways of automatically deriving scenar-
ios including attack paths from system and data flow diagrams
should be investigated.

Both OT professionals and red-teams were weary of fully auto-
mated testing solutions due to the potential negative impact upon
stealth (red-teaming) or stability (OT). To facilitate the deployment
of automated systems, research into Human-Computer Interac-
tions to bolster the acceptance of ML and automated systems
is needed. It is assumed that important topics will include humans-
in-the-loop as well as the explainability of automated reasoning.

7.2.7 Studying Knowledge Communities for Security Testers.
Our interview participants unsurprisingly felt the need for ongo-
ing education w.r.t. new vulnerabilities and security trends. They
synthesized information from multiple sources, the pivotal one

being Twitter/X. Research on how developers stay current [53]

and how development communities shape around news outlets [22]

should be extended to the security arena, especially now that recent
stewardship changes at Twitter might impact its reach. Automated
recommender systems utilizing diverse hacking news sources

such as news outlets, social media, and, the “darknet” should enable

security professionals to stay up to date easier.

ACKNOWLEDGMENT

We thank the anonymous interview participants for their time, and
Loren Kohnfelder and Geraldine Fitzpatrick for providing feedback.

Understanding Hacker’s Work

REFERENCES

(1]

[2

—

(3]

(4]

[10]
[11]
[12]
[13]
[14]
[15]

[16

(17

(18]

[19]

[20]

[21

[22

[23

[25

[26

[27]

[28

[29]

[n.d.]. Acunetix: Web Vulnerability Scanner. https://www.acunetix.com/. Ac-
cessed: 2022-09-30.

[n.d.]. BloodHoundAD: Six Degrees of Domain Admin. https://github.com/
BloodHoundAD/BloodHound. Accessed: 2022-09-30.

[n.d.]. Conti cyber attack on the HSE, Independent Post Incident Re-
view. https://www.hse.ie/eng/services/publications/conti-cyber-attack-on-the-
hse-full-report.pdf. Accessed: 2022-09-30.

[n.d.]. Conti’s Hacker Manuals — Read, Reviewed & Analyzed. https://www.
akamai.com/blog/security/conti-hacker-manual-reviewed. Accessed: 2022-09-
30.

[n. d.]. Delve: Software Tool to Analyze Qualitative Data. https://delvetool.com/.
Accessed: 2022-10-01.

[n.d.]. DirBuster. https://www.kali.org/tools/dirbuster/. Accessed: 2022-09-30.
[n. d.]. GhostPack/Certify: Active Directory certificate abuse. https://github.com/
GhostPack/Certify. Accessed: 2022-09-30.

[n.d.]. gobuster: Directory/File, DNS and VHost busting tool written in Go.
https://github.com/OJ/gobuster. Accessed: 2022-09-30.

[n. d.]. https://nakedsecurity.sophos.com/2021/07/16/more-printnightmare-we-
told-you-not-to-turn-the-print-spooler-back-on/. https://nakedsecurity.sophos.
com/2021/07/16/more- printnightmare-we-told- you-not- to-turn- the-print-
spooler-back-on/. Accessed: 2022-10-03.

[n. d.]. Invicti: Web Application Security for Enterprise. https://www.invicti.com/.
Accessed: 2022-09-30.

[n.d.]. Metasploit: Penetration Testing Software. https://github.com/rapid7/
metasploit-framework. Accessed: 2022-09-30.

[n.d.]. Methodology for Top 10. https://groups.google.com/a/owasp.org/g/
leaders/c/pFLxDLE28ZA. Accessed: 2022-09-30.

[n.d.]. Nessus Vulnerability Assessment Solution. https://www.tenable.com/
products/nessus/nessus-professional. Accessed: 2022-09-30.

[n.d.]. Nmap: the Network Mapper — Free Security Scanner. https://nmap.org.
Accessed: 2022-09-30.

[n. d.]. Nuclei: Fast and customizable vulnerability scanner based on simple YAML
based DSL. https://github.com/projectdiscovery/nuclei. Accessed: 2022-09-30.
[n.d.]. OWASP Zed Attack Proxy (ZAP). https://www.zapproxy.org/. Accessed:
2022-09-30.

[n.d.]. PTES Technical Guidelines. http://www.pentest-standard.org/index.php/
PTES_Technical_Guidelines. Accessed: 2022-09-30.

[n.d.]. sqlmap: automatic SQL injection and database takeover tool. https:
//sqlmap.org/. Accessed: 2022-09-30.

[n. d.]. Windows Print Spooler Remote Code Execution Vulnerability (CVE-2021-
34527). https://msrc.microsoft.com/update- guide/vulnerability/CVE-2021-34527.
Accessed: 2022-09-30.

[n.d.]. Zero Day Initiative. https://www.zerodayinitiative.com/blog. Accessed:
2022-09-30.

2016-07-06. DIRECTIVE (EU) 2016/1148 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL of 6 July 2016 concerning measures for a high common
level of security of network and information systems across the Union. https://
eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L1148. Official
Journal of the European Union L 194 (2016-07-06), 1-30.

Mauricio Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto,
Margaret-Anne Storey, and Marco Aurélio Gerosa. 2018. How modern news
aggregators help development communities shape and share knowledge. In
Proceedings of the 40th International conference on software engineering. 499-510.
Farzana Ahamed Bhuiyan, Akond Rahman, and Patrick Morrison. 2020. Vulnera-
bility discovery strategies used in software projects. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering Workshops.
13-18.

Loyd Blankenship. 1986. The Conscience of a Hacker. Phrack 7 (Jan. 1986).
http://www.phrack.org/archives/issues/7/3.txt

Petar Boyanov. 2018. Educational exploiting the information resources and
invading the security mechanisms of the operating system Windows 7 with the
exploit Eternalblue and Backdoor Doublepulsar. Association Scientific and Applied
Research 14 (2018), 34.

Virginia Braun and Victoria Clarke. 2019. Reflecting on reflexive thematic analysis.
Qualitative research in sport, exercise and health 11, 4 (2019), 589-597.

Vit Bukac, Vaclav Lorenc, and Vashek Matyas. 2014. Red queen’s race: APT win-
win game. In Cambridge International Workshop on Security Protocols. Springer,
55-61.

Mariano Ceccato, Paolo Tonella, Cataldo Basile, Paolo Falcarin, Marco Torchiano,
Bart Coppens, and Bjorn De Sutter. 2019. Understanding the behaviour of hackers
while performing attack tasks in a professional setting and in a public challenge.
Empirical Software Engineering 24 (2019), 240-286.

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al.
2014. The matter of heartbleed. In Proceedings of the 2014 conference on internet
measurement conference. 475-488.

(30]

[31]

(32]

@
&

(34]

(35]

[36]

[37

[38

[39

[40

[41

"~
&

[43

[44

[45

[46

[47

[48

[49

[50

[51]

[52

[53

[54]

(55

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Stefano Ferretti, Silvia Mirri, Catia Prandi, and Paola Salomoni. 2016. Automatic
web content personalization through reinforcement learning. Journal of Systems
and Software 121 (2016), 157-169.

Jill J Francis, Marie Johnston, Clare Robertson, Liz Glidewell, Vikki Entwistle,
Martin P Eccles, and Jeremy M Grimshaw. 2010. What is an adequate sample size?
Operationalising data saturation for theory-based interview studies. Psychology
and health 25, 10 (2010), 1229-1245.

Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. 2015. Pulsar: Stateful black-box fuzzing of proprietary network protocols.
In Security and Privacy in Communication Networks: 11th EAI International Con-
ference, SecureComm 2015, Dallas, TX, USA, October 26-29, 2015, Proceedings 11.
Springer, 330-347.

Egon G Guba, Yvonna S Lincoln, et al. 1994. Competing paradigms in qualitative
research. Handbook of qualitative research 2, 163-194 (1994), 105.

Greg Guest, Arwen Bunce, and Laura Johnson. 2006. How many interviews are
enough? An experiment with data saturation and variability. Field methods 18, 1
(2006), 59-82.

Aaron Guzman. [n.d.]. OWASP Firmware Security Testing Methodology. https:
//scriptingxss.gitbook.io/firmware-security-testing-methodology/. Accessed:
2022-09-30.

Aaron Guzman and Cedric Bassem. 2020. OWASP IoT Security Verification
Standard. https://github.com/OWASP/IoT-Security- Verification- Standard-ISVS/
releases/download/1.0RC/OWASP_ISVS-1.0RC-en_WIP_.pdf.

Andreas Happe and Cito Jirgen. 2023. Getting pwn’d by Al: Penetration Testing
with Large Language Models. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (San Francisco, USA) (ESEC/FSE 2023). Association for Computing
Machinery, New York, NY, USA, 5 pages. https://doi.org/10.1145/3611643.3613083
Richard Harang and Felipe N Ducau. 2018. Measuring the speed of the Red
Queen’s Race. BlackHat: Las Vegas, NV, USA (2018).

Carlos Holguera, Bernhard Miiller, Sven Schleier, and Jeroen Willem-
sen. 2022. OWASP Mobile Application Security Verification Stan-
dard. https://github.com/OWASP/owasp-masvs/releases/latest/download/
OWASP_MASVS-v1.4.2-en.pdf.

Nicolas Huaman, Bennet von Skarczinski, Dominik Wermke, Christian Stransky,
Yasemin Acar, Arne Dreiffigacker, and Sascha Fahl. 2021. A large-scale interview
study on information security in and attacks against small and medium-sized
enterprises. In In 30th USENIX Security Symposium.

(ISC)2. 2022. (ISC)2 CYBERSECURITY WORKFORCE STUDY 2022.
https://www.isc2.org//-/media/ISC2/Research/2022- WorkForce-Study/ISC2-
Cybersecurity-Workforce-Study.ashx. Accessed: 2023-04-28.

Toannis Katakis, Grigorios Tsoumakas, Evangelos Banos, Nick Bassiliades, and
Toannis Vlahavas. 2009. An adaptive personalized news dissemination system.
Journal of intelligent information systems 32 (2009), 191-212.

James Kettle. 2019. HTTP Desync Attacks: Request Smuggling Reborn. https:
//portswigger.net/research/http-desync-attacks-request-smuggling-reborn. Ac-
cessed: 2023-08-18.

James Kettle. 2022. Browser-Powered Desync Attacks: A New Frontier in HTTP
Request Smuggling. https://portswigger.net/research/browser-powered-desync-
attacks. Accessed: 2023-08-18.

Andrew G Kotulic and Jan Guynes Clark. 2004. Why there aren’t more informa-
tion security research studies. Information & Management 41, 5 (2004), 597-607.
Sydney Lake. 2022. The cybersecurity industry is short 3.4 million workers—
that’s good news for cyber wages. https://fortune.com/education/articles/the-
cybersecurity-industry-is- short-3-4-million- workers- thats- good-news- for-
cyber-wages/. Accessed: 2023-04-28.

Noella Mackenzie and Sally Knipe. 2006. Research dilemmas: Paradigms, methods
and methodology. Issues in educational research 16, 2 (2006), 193-205.

Nuthan Munaiah, Akond Rahman, Justin Pelletier, Laurie Williams, and Andrew
Meneely. 2019. Characterizing attacker behavior in a cybersecurity penetration
testing competition. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1-6.

Bruce Potter and Gary McGraw. 2004. Software security testing. IEEE Security &
Privacy 2, 5 (2004), 81-85.

Elie Saad and Rick Mitchell. 2020. OWASP Web Security Testing Guide. https:
//github.com/OWASP/wstg/releases/download/v4.2/wstg-v4.2.pdf.

MNK Saunders and PC Tosey. 2013. The layers of research design. Technical
Report. University of Surrey.

Sven Schleier, Bernhard Mueller, Carlos Holguera, and Jeroen Willemsen. 2022.
OWASP Mobile Application Security Testing Guide. https://github.com/OWASP/
owasp-mastg/releases/latest/download/ OWASP_MASTG-v1.5.0.pdf.

Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. 2014. Software
engineering at the speed of light: how developers stay current using twitter. In
Proceedings of the 36th International Conference on Software Engineering. 211-221.
Justin Smith, Christopher Theisen, and Titus Barik. 2020. A Case Study of
Software Security Red Teams at Microsoft. In 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 1-10.

Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G
Pennington, and Cody B Thomas. 2018. Mitre att&ck: Design and philosophy. In

https://www.acunetix.com/
https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/BloodHound
https://www.hse.ie/eng/services/publications/conti-cyber-attack-on-the-hse-full-report.pdf
https://www.hse.ie/eng/services/publications/conti-cyber-attack-on-the-hse-full-report.pdf
https://www.akamai.com/blog/security/conti-hacker-manual-reviewed
https://www.akamai.com/blog/security/conti-hacker-manual-reviewed
https://delvetool.com/
https://www.kali.org/tools/dirbuster/
https://github.com/GhostPack/Certify
https://github.com/GhostPack/Certify
https://github.com/OJ/gobuster
https://nakedsecurity.sophos.com/2021/07/16/more-printnightmare-we-told-you-not-to-turn-the-print-spooler-back-on/
https://nakedsecurity.sophos.com/2021/07/16/more-printnightmare-we-told-you-not-to-turn-the-print-spooler-back-on/
https://nakedsecurity.sophos.com/2021/07/16/more-printnightmare-we-told-you-not-to-turn-the-print-spooler-back-on/
https://www.invicti.com/
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://groups.google.com/a/owasp.org/g/leaders/c/pFLxDLE28ZA
https://groups.google.com/a/owasp.org/g/leaders/c/pFLxDLE28ZA
https://www.tenable.com/products/nessus/nessus-professional
https://www.tenable.com/products/nessus/nessus-professional
https://nmap.org
https://github.com/projectdiscovery/nuclei
https://www.zapproxy.org/
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
https://sqlmap.org/
https://sqlmap.org/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-34527
https://www.zerodayinitiative.com/blog
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L1148
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L1148
http://www.phrack.org/archives/issues/7/3.txt
https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
https://scriptingxss.gitbook.io/firmware-security-testing-methodology/
https://github.com/OWASP/IoT-Security-Verification-Standard-ISVS/releases/download/1.0RC/OWASP_ISVS-1.0RC-en_WIP_.pdf
https://github.com/OWASP/IoT-Security-Verification-Standard-ISVS/releases/download/1.0RC/OWASP_ISVS-1.0RC-en_WIP_.pdf
https://doi.org/10.1145/3611643.3613083
https://github.com/OWASP/owasp-masvs/releases/latest/download/OWASP_MASVS-v1.4.2-en.pdf
https://github.com/OWASP/owasp-masvs/releases/latest/download/OWASP_MASVS-v1.4.2-en.pdf
https://www.isc2.org//-/media/ISC2/Research/2022-WorkForce-Study/ISC2-Cybersecurity-Workforce-Study.ashx
https://www.isc2.org//-/media/ISC2/Research/2022-WorkForce-Study/ISC2-Cybersecurity-Workforce-Study.ashx
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/browser-powered-desync-attacks
https://portswigger.net/research/browser-powered-desync-attacks
https://fortune.com/education/articles/the-cybersecurity-industry-is-short-3-4-million-workers-thats-good-news-for-cyber-wages/
https://fortune.com/education/articles/the-cybersecurity-industry-is-short-3-4-million-workers-thats-good-news-for-cyber-wages/
https://fortune.com/education/articles/the-cybersecurity-industry-is-short-3-4-million-workers-thats-good-news-for-cyber-wages/
https://github.com/OWASP/wstg/releases/download/v4.2/wstg-v4.2.pdf
https://github.com/OWASP/wstg/releases/download/v4.2/wstg-v4.2.pdf
https://github.com/OWASP/owasp-mastg/releases/latest/download/OWASP_MASTG-v1.5.0.pdf
https://github.com/OWASP/owasp-mastg/releases/latest/download/OWASP_MASTG-v1.5.0.pdf

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

[56]

[57]

[58]

[59]

[60]

[61]

Technical report. The MITRE Corporation.

Timothy C Summers. 2015. How hackers think: A mixed method study of men-
tal models and cognitive patterns of high-tech wizards. Case Western Reserve
University.

Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. 2018. Fuzzing
for software security testing and quality assurance. Artech House.

Romina Torres, Boris Tapia, et al. 2011. Improving web api discovery by leveraging
social information. In 2011 IEEE International Conference on Web Services. IEEE,
744-745.

Catia Trubiani, Pooyan Jamshidi, Jurgen Cito, Weiyi Shang, Zhen Ming Jiang,
and Markus Borg. 2019. Performance Issues? Hey DevOps, Mind the Uncertainty.
IEEE Software 36, 02 (2019), 110-117.

Niek Jan van den Hout. 2019. Standardised Penetration Testing? Examining the
Usefulness of Current Penetration Testing Methodologies. Ph.D. Dissertation.
Andrew van der Stork, Brian Glas, Neil Smithline, and Torsten Gigler. 2021.
OWASP Top 10:2021. https://owasp.org/Top10/0x00-notice/.

[62

[63

[64

[65

]

]

Andreas Happe and Jirgen Cito

Andrew van der Stork, Josh Grossman, Daniel Cuthbert, Elar Lang,
and Jim Manico. 2021. OWASP Application Security Verification Stan-
dard. https://github.com/OWASP/ASVS/raw/v4.0.3/4.0/OWASP+Application+
Security+Verification+Standard+4.0.3-en.pdf.

Chris Wysopal, Lucas Nelson, Elfriede Dustin, and Dino Dai Zovi. 2006. The art of
software security testing: identifying software security flaws. Pearson Education.
Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. 2018.
Deeptype: On-device deep learning for input personalization service with min-
imal privacy concern. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 2, 4 (2018), 1-26.

Kuat Yessenov, Ivan Kuraj, and Armando Solar-Lezama. 2017. DemoMatch: API
discovery from demonstrations. ACM SIGPLAN Notices 52, 6 (2017), 64-78.

Received 2023-05-18; accepted 2023-07-31

https://owasp.org/Top10/0x00-notice/
https://github.com/OWASP/ASVS/raw/v4.0.3/4.0/OWASP+Application+Security+Verification+Standard+4.0.3-en.pdf
https://github.com/OWASP/ASVS/raw/v4.0.3/4.0/OWASP+Application+Security+Verification+Standard+4.0.3-en.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Becoming a Hacker
	5 How do Hackers work?
	5.1 Types of Security Tests and their Differences
	5.2 Black- vs. Gray-Box Security Testing
	5.3 Typical Testing Workflows
	5.4 Automation

	6 How do Hackers think?
	6.1 Exploiting Configuration vs. Applications
	6.2 Identifying Vulnerable Areas or Operations
	6.3 Dealing with Uncertainty
	6.4 Don't waste my time
	6.5 Quality Control
	6.6 Dealing with Change

	7 Discussion and Implications
	7.1 Alignment between Research and Industry
	7.2 Opportunities for Research.

	References

