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ABSTRACT In recent years, the increase in non-Windows malware threats had turned the focus of the
cybersecurity community. Research works on hunting Windows PE-based malwares are maturing, whereas
the developments on Linux malware threat hunting are relatively scarce. With the advent of the Internet
of Things (IoT) era, smart devices that are getting integrated into human life have become a hackers’
highway for their malicious activities. The IoT devices employ various Unix-based architectures that follow
ELF (Executable and Linkable Format) as their standard binary file specification. This study aims at
providing a comprehensive survey on the latest developments in cross-architectural IoT malware detection
and classification approaches. Aided by a modern taxonomy, we discuss the feature representations, feature
extraction techniques, and machine learning models employed in the surveyed works. We further provide
more insights on the practical challenges involved in cross-architectural IoT malware threat hunting and
discuss various avenues to instill potential future research.

INDEX TERMS Cybersecurity, cross-architecture, IoT, elf, linux, survey, taxonomy, machine learning,

malware classification, malware detection.

I. INTRODUCTION
Each day the digital world is exposed to millions of new
malware (Malicious Software) attacks, and unfortunately,
almost all of them are oblivious to the day-to-day users
while they happen. In the past two decades, the machine
learning approaches adapted to the domain of malware detec-
tion/classification strove towards convergence at better han-
dling of malware threats as hard as zero-day attacks. In recent
years, deep learning approaches are also taking part in the
arena to cope with the explosion of malware variants.
Despite the COVID-19 pandemic, malware attacks are
steadily on the rise [1], [2]. While some financially motivated
attack groups focus on big industry players, surprisingly,
more than 60% of the attacks are directed towards small and
mid-sized businesses [3]. Such cybercrimes are estimated to
cause a world-wide damage of 6 Trillion in 2021 [3] and
are expected to reach 10.5 Trillion by 2025. Particularly,
ransomware-based attacks grew by more than 150% since
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2020, with extortion demands exceeding millions in the top
cases [4].

Several malware groups such as Egregor, and Netwalker,
have started providing Ransomware-as-a-Service (RaaS),
accounting for up to 64% of the total ransomware attacks
in 2020. Recently, Sierra Wireless, an IoT (Internet of Things)
product vendor, suffered a ransomware attack, leading to
disruption of its IT operations and production halt [5].

The IoT devices are deemed to be the most targeted at
present times. Even the wearables like FitBit device’s appli-
cations are also vulnerable to getting hacked and may allow
a threat actor to tap onto a wealth of PII (Personally Iden-
tifiable Information) of end-users [6]. Smartly connected
devices such as security cameras, refrigerators, and toasters
were surprisingly part of the BotNets (roBot Networks) in
the infamous massive DDoS (Distributed Denial of Service)
cyber-attack against Dyn DNS provider by Mirai, which
caused parts of the world inaccessible to major sites like
Airbnb, Twitter, PayPal, GitHub, Amazon, Netflix [7].

Following the Mirai attack, DDoS attacks via BotNets are
now the extensively used distributed attack source targeting
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IoT devices, and their strains spread over 25 different mal-
ware families [8]. DDoS-for-hire had become one of the
trending hack-for-hire services, where botnets with GBps to
TBps attack bandwidth are being sold in the underground
forums of the dark web. In early 2019, honeypots tracked
and monitored by Kaspersky Labs found about 105 mil-
lion such IoT device DDoS attacks that originated from
276,000 unique IPs.

In light of the above issues, the problem of malware detec-
tion and/or classification continues to be a topic of much
importance. We address this problem of detecting and/or
classifying the malware threats commonly with the term
‘Malware Threat Hunting’.

While there are a vast number of works on Win-
dows PE (Portable Executable) based malwares such
as [9]-[12], [13]-[16], [17]-[19], the research works pro-
posed for IoT-based malwares are comparatively scarce espe-
cially in the context of cross-architectural IoT malware threat
hunting. This is due to the complexity that naturally arises
when there are multiple CPU architectures, OS platforms, and
diverse target devices to be taken care of by a single learning
approach [20], [21].

There are few valuable survey works that exist on IoT
malwares, such as [22] for static analysis and [23] for
dynamic analysis. The purpose of this survey is to com-
plement the existing works as well as provide insights into
the critical cross-architectural dimension covering the latest
developments.

The main contributions of this survey are: (1) to bridge
the gaps in existing surveys by providing a comprehensive
review on the recent developments in research methods for
IoT malware threat hunting, (2) to discuss the benefits and
limitations of those recent works, (3) to provide a modern
taxonomy of features for learning malwares and analyzing
their usability for detecting cross-architectural threats, and (4)
to explore the challenges and issues in conducting research in
the context of cross-architecture IoT malware threat hunting.
Furthermore, (5) it highlights the gap in the existing literature
and discusses various directions for potential future research.

The rest of this article is organized as follows: Section II
provides a brief background on IoT-based malware and a
brief overview of the ELF (Executable and Linkable For-
mat) specification and useful tools for feature extraction.
Section III describes the modern taxonomy of malware
detection approaches based on the type of features used,
and Section IV systematically discusses the surveyed papers
along with the feature representations used and feature selec-
tion mechanisms employed. The existing challenges and
future research opportunities are discussed in Section V.
Section VI discusses the related survey works in terms of gen-
eral IoT ELF approaches and cross-architectural approaches.
Section VII concludes the study.

II. loT MALWARE BACKGROUND
Internet-of-Things (IoT) is a large set of devices connected
via the private or public internet, and that is infused with the
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ability to talk to each other streaming real-time data with less
or no intervention required from humans, thereby building a
unified intelligence.

Nowadays, devices of any size with a chip installed for
enabling centralized control, device-to-device control, wire-
less sensor networks, and embedded systems are considered
IoT devices. For example, security motion sensors, smart-
phones, voice assistant-controlled home automation devices
like TVs, speakers, home lighting systems are considered IoT
devices.

IoT devices are generally equipped with less computing
and storage compared to traditional laptops and PCs. These
reduced configurations impose tight constraints leading to the
need for specialized operating systems (OS) and CPU archi-
tectures. While the OSes such as Windows, Linux, Android,
and iOS dominate the PCs, Laptops, servers, and mobile
devices, they are not directly suitable for embedded devices
in the constrained IoT space, where deployments to a scale of
millions of devices are expected in addition to satisfying the
lower cost and economical operational constraints.

Therefore, an OS for IoT device should be lightweight
to support the minimal hardware, yet following the security
requirements, as suggested by Pal et al. [26], which includes
energy awareness, security by privacy, location privacy, stor-
age, communication, scalability by incremental deployment,
load balancing, robustness, fault tolerance, connectivity, and
usability. Linux flavors and distributions such as Ubuntu
Core, Raspbian (Debian) support such requirements and
hence are widely used by IoT developers.

Currently, the world of 10T devices is still poorly secured,
inviting the threat actors with open doors. ELF-based mal-
ware gained attention from the cybersecurity community only
in the mid of the past decade when a large number of samples
started accumulating with VirusTotal [27], [28], before which
it was generally believed that Linux was not as vulnerable as
Windows. Threat hunting techniques proposed specifically to
OSes such as Windows and Android would follow a one-of-
a-kind approach and usually make use of features tailored for
that specific OS and would not be transferable to other OSes.
Techniques proposed for Linux ELF threat hunting suffer
from not being able to follow the many-of-the-same-kind
approach to accommodate the multiple distributions and vari-
ants within the Linux landscape.

Most known IoT malware indeed can be labeled more
generically as Linux malware. Bots are malicious software
programs that are designed to perform predetermined tasks
using the resources of the host system that they infect. They
could aid the attacker to compromise other devices in the
host network [29] and steal confidential and/or sensitive
information.

Figure 1 shows that Linux variants are the most utilized
operating systems for IoT devices, according to a survey
by Eclipse Foundation, 2018 [24]. As of 2020, Linux and
FreeRTOS were the top OSes IoT developers preferred with
43% and 35% ratings, respectively. Figure 2 illustrates the
ranking among distros within Linux.
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TABLE 1. Types of segment entries in ELF [25].

Segment Type Description
PT_NULL PT_NULL allows program header table to contain entries that can be ignored during execution
PT_LOAD is used to define a loadable segment using the values specified by p_memsz & p_filesz. Such loadable
PT_LOAD segment entries are sorted by by their p_vaddr member and are listed in the ascending order in the program header
table
PT_DYNAMIC PT_DYNAMIC is used to describe dynamic linking information
The segment type PT_INTERP meaningful only for executable files and possibly shared objects occurs once,
PT_INTERP preceding any of the loadable segment entry. It is used to describe the size and location of an interpreter to be
invoked via a null terminated path
PT_NOTE PT_NOTE segment is used to describe the size and location of auxiliary information
PT SHLIB Having unspecified semantics, the PT_SHLIB is a reserved segment type entry whose presence indicate that the
- binary may not conform to the ABI (Application Binary Interface)
The segment type PT_PHDR occurs once in a binary file preceding any of the loadable segment entry when program
PT_PHDR header table is part of the program’s memory image, and is used to describe size and location of the program Header
table in both the disk file as well as program’s memory image
PT TLS PT_TLS is not a mandatory entry program header table. It is used for the specification of the template for thread-

local storage.
PT_LOOS to PT_HIOS

PT_LOPROC to PT_HIPROC

Operating system specific semantics are described via these reserved entries
Processor-specific semantics are decribed via these reserved entries
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FIGURE 1. Ranking of operating systems for loT [24].

Lastly, much of the existing research work on IoT malware
threat hunting declare the problem of handling the different
CPU architectures such as MIPS, AARCH, and ARM, as the
prominent challenge being encountered. This malware threat
hunting problem is much more complex when the wide and
diverse environments of the target devices are considered,
such as medical equipment, wearables, scanners, and security
cameras. Linux program binaries need not necessarily specify
the target environment for which they are configured to run.
Such a lack of standards further amplifies the problem of
threat hunting.

A. ELF FILE FORMAT

Executable and Linkable Format (ELF) is the standard binary
file format [45] for the file types Linux executables, shared
libraries, core dumps, and object codes, used by operating
systems like Linux, BSD, Solaris, BeOS, and Android. It was
initially specified for Unix System V by Unix System Labora-
tories (USL) and Unix International (UI). The cross-platform
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FIGURE 2. Ranking among linux distros for loT [24] .
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FIGURE 3. ELF file format - source [44].

properties of ELF allowed it to be used across different
CPU architectures: Intel (x86, x64), ARM, MIPS, Motorola,
SPARC, PowerPC, Renesas SH, Motorola m68k, and differ-
ent target devices: Routers, Printers, Cameras, Smart TVs,
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TABLE 2. Tools for ELF static analysis.

Tool Used By Purpose of Use / Description
bindiff [21] Binary file analysis tool for disassembled code similarity and function similarity
binwalk [30] Extracting firmware images and reverse engineering
. Advanced binary program diffing tool with support to assembler and CFG diffing, call graph
diaphora [23] . .
matching calculation, etc
Available under Solaris and FreeBSD. Useful to find detailed information about dynamic linkages,
elfdump - relocations, non-stripped binary’s symbol details, dependencies on shared objects, functions, sec-
tions and program segments [31]
elfutils [32] Faster, more featureful alternative tools to GNU Binutils purely for Linux [33]
Useful to determine type of a file - not to be used as a security tool as it can be easily fooled by
file [8], [30] . > .
abusing a file’s magic
hidra (34] Reverse engineering tool like IDA. Extensible, supports analysis of very large firmware images,
& ability to decompile object code back to source code
hexdum . Utility for inspecting files via hex, decimal, octal and ASCII views. Allows data recovery and reverse
P engineering
hexedit - Helps to view/edit files in hex or ASCII
IDAPro [28], [21], [34], [35], [36], [30]  Prominently used interactive disassembler and debugger tool
magic - file command’s magic pattern file
A structural control flow graph analysis based compiler agnostic function detection tool for binaries
nucleus [28] .
proposed by Andriesse et al. [37].
obj(ect)dump [38]. [39]. [40] Information dump about object files including intended target instruction set architecture (ISA) and

od (octal dump)

structural information. Relies on BFD.
Tool for debugging, visualizing executable code, and dumping in octal (default), hex, ASCII formats.

Python library to parse and analyze ELFs and debugging
Binary forensic analysis, reverse engineering, exploiting and debugging tool. Options such as ‘afl’

openwrt [21] For benign firmwares
pyelftools (28]

radare2 [32], [34], [41]

readelf [28], [42], [8], [43]

size [8]

strings (81, [1]

can be used to disassemble function lists, get count of functions etc.

Prominently used to obtain ELF structural information. Provides more details than objdump. It is
independent of Binary File Descriptor (BFD) library.

Provides total ELF size as well as section sizes

ASCII strings information from binary

medical devices, and VoIP. The ELF file format also allows
Linux programs to specify arbitrary loaders.

Figure 3 illustrates the general ELF file format [44]. ELF
file is composed of three major categories: Program Header
that aids in handling memory segments during run time
execution by providing information to the system on how
to create process images, the individual ‘sections’ that hold
various types of information such as ‘code’ and ‘text,” and
finally, the Section Header that describes the various file
sections such as their offset information and also helps in
linking and relocation process.

Shared objects and executables employ the program header
that provides an array of structural information describing
segments and other information needed to execute a program.
Each segment can represent one or more sections, and a
binary must contain at least one loadable segment to allow the
system to load it. However, this requirement is not mandated
by the file format [25]. Table 1 provides a list of some segment
types typically found in an ELF binary.

There are two types of views: 1) Linking view, where the
sections and the section header table are important but the
program header table is optional; 2) Execution view, where
the segments and the program header table are important, but
the section header table is optional.

Windows PE file format and Linux ELF file format are
similar in structure in that both use a Header that defines
meta-information about the rest of the file structure, and
in that, both formats use a Section Header to define the
individual sections. Unlike PE format, ELF additionally uses

VOLUME 9, 2021

the ‘Program Header’ table that steps into action during
runtime.

The ELF holds other essential data for runtime execution
support, to aid debugging, and to provide a human-readable
view, such as symbols representing the symbolic names to
functions and data [42]. There are two different symbol table
sections found in the shared objects and dynamic executables:
1) “.symtab’ that keeps information to locate or relocate
symbolic definitions and references of a program, and 2)
‘dynsym’ - a smaller version of the symtab containing global
data. The dynsym table also helps to understand the runtime
functionality and the expected behaviors of an ELF program
by determining the system calls that the executable could
import during run time. The system call address that this table
provides can be used for further debugging.

B. IoT CPU ARCHITECTURES
The rapid proliferation of IoT devices that can perform an
assortment of functionalities calls for complex product design
across the IoT landscape to achieve high performance with
low power demands. For instance, ARM follows a reduced
instruction set architecture (RISC) that requires less hard-
ware and less power than a complex instruction set architec-
ture (CISC) such as x86. This makes ARM more suitable for
wearable technologies, while x86 chips are more suitable for
laptops and desktops [46].

Each CPU architecture in the IoT market is built for a
specific purpose under various constraints that arise due to
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the trade-offs between power and performance. Such con-
straints include memory address width and hierarchy, depth
of processor pipeline, size of the data bus, operation fre-
quencies, and out-of-order execution. The complexity is com-
pounded with recent developments in IoT to support Artificial
Intelligence and Machine learning tasks, which require far
greater performance, power, and latency requirements. For
instance, home-based IoT devices require motion tracking,
speech recognition, and response and image analysis. These
constraints and complexities give rise to different instruction
set architectures and explain the need for the neutrality of
selected feature representation across various instruction set
architectures for effective malware threat hunting.

Some examples of different CPU architectures are x86,
ARM, MIPS, SPARC, AARCH64, PowerPC, Renesas
SH, Motorola 68020. More information on the instruc-
tion sets, opcodes, and assembly language specifications
for various architectures can be found in these resources:
[47]-[50], [51]-[53].

C. IoT OS PLATFORMS

Similar to standard operating systems like Windows, iOS,
and Linux, the [oT operating systems are expected to manage
the embedded device functions but operate under the lim-
ited memory footprint, power, and processing capabilities,
yet possess the properties such as portability, scalability,
security, connectivity, modularity. Some open-source operat-
ing systems for IoT include Raspbian, Contiki, FreeRTOS,
Ubuntu Core, ARM mbed, Yocto, Apache Mynewt, and
Zephyr OS and some of the commercial IoT OSes include
Windows 10 IoT, Android Things, WindRiver VxWorks,
Freescale MQX, Mentor Graphics Nucleus RTOS, Express
Logic ThreadX, TI RTOS and Particle. In light of these
diverse OSes, it is crucial to choose feature representations
with capabilities for OS platform independence.

D. FEATURE EXTRACTION TOOLS FOR ELF STATIC
ANALYSIS

A Linux-based operating system interprets the desired
machine instructions using the formal ELF file format spec-
ification, which is the binary output format of a compiler
or linker [54]. In Table 2, we provide a short overview of
the tools, including the tools used in surveyed works, that
are helpful to analyze, debug and extract useful information
from ELF files. Many of the surveyed works used the scan-
ning services such as VirusTotal, Shodan, and Zmap to label
their ground truth and validate the datasets employed in their
studies.

E. MALWARE THREAT HUNTING APPROACHES
The malware analysis phases involved in the malware threat
hunting process can be generally classified into static,
dynamic, and hybrid analysis categories.

Static malware analysis where a binary file is reverse
engineered, disassembled, or dissected using tools discussed
in section 2 to analyze various structural and semantical
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ELF 64-bit LSB shared object,

x86-64, version 1 (SYSV),

dynamically linked,
BuildID[shal]=3b41c6707ba33ecc7afe...,
stripped

FIGURE 4. Basic information provided by ‘file’ command.
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FIGURE 5. ML pipeline for static malware threat hunting process.

information found in the binary file without any execution.
This method is susceptible to evasive methods like anti-
disassembly, code obfuscation, and adversarial techniques.
Dynamic analysis is a behavioral method that observes or
debugs a malware’s behavior in an isolated host such as
sandboxes. Dynamic methods are also susceptible to evasive
techniques such as anti-debugging and deferred execution.
Hybrid analysis methods combine both static and dynamic
methods and leverage their advantages.

Similar to Windows portable executables (PE), ELF bina-
ries can also be broadly categorized into static and dynami-
cally linked. Statically linked binaries include a copy of all
libraries required for execution, making them more portable
but bigger in size. Dynamically linked binaries depend on
the execution environment to supply libraries needed during
runtime.

Ngo et al. [22] claimed that the static analysis method has
more ability than dynamic methods in analyzing malware
structure without the need to consider processor architecture.
Figure 4 provides a sample basic information that can be
obtained using Linux ‘file’ command.

As shown in Figure 4, symbol, debugging, and relocation
information could be stripped from an ELF binary to make
them lightweight. However, studies have shown that IoT
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Taxonomy of ELF Feature Representations
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(n-grams)

FIGURE 6. Taxonomy of ELF feature representations.

malwares are mostly statically linked [35] and not stripped
to reduce the dependency on the diverse IoT execution envi-
ronments and avoid runtime failures. It also makes them hard
to analyze under static analysis.

Figure 5 illustrates the generic machine learning-based
pipeline for static malware threat hunting. It also showcases
where the feature extraction tools described in Section II-D
and the modern taxonomy described in Section III fit the
pipeline.

lll. TAXONOMY

In this section, we provide a taxonomy of feature represen-
tations used for static analysis-based malware threat hunting
in the IoT landscape and highlight the features specifically
useful for cross-architectural IoT malware threat hunting
that requires the abilities of ISA neutrality and OS plat-
form independence as described in Sections II-B and II-C
respectively. The basis for this modern taxonomy is to
account for the latest developments for such latter tasks and
also provide the high-level gaps in existing research (see
Section V-B).

Figure 6 provides the categorization of the feature
representations based on four major divisions, namely:
metric-based, graph/tree-based, sequence-based, and inter-
dependence. These divisions encompass representations
extracted from the content within a sample, such as strings
and opcodes, as well as the external characteristics of a sam-
ple such as file-to-machine relations. We next provide a brief
summary of these divisions and the feature types categorized
under them.

A. METRIC BASED

1) HIGH-LEVEL FEATURES

This section describes the high-level informative metrics that
can be extracted from binaries and used as features.

VOLUME 9, 2021

i Feature used in Cross-architectural studies

a: ELF HEADER

The ELF is the standard file specification/framework for
executables, shared objects, and relocatables in a Linux-based
system. ELF Header stores rich structural information that
is important to support the framework [45], [54], such as
file’s magic data, class (32-bit or 64-bit), entry points, target
application binary interface (ABI), file interpretation indi-
cators, sizes, and addresses to program headers and section
headers. ELF Header contains both machine-dependent and
machine-independent features. Structural information from
ELF headers was used by Alhanahnah et al. [21] and Shahzad
and Farooq [43].

b: STRINGS

Concerning static malware analysis, a binary file may not be
human-readable in its entirety. However, it may contain some
human-readable strings or sequence of characters within the
binary content [55], such as IP addresses, DLL names, error
messages, and code comments.

¢: SYMBOL TABLE

It acts as the lookup table holding the location and relocation
information of symbolic references in a binary file to sup-
port the processes of linking and debugging. For instance,
the non-allocable symbol table ‘.symtab’ holds information
on register symbols, local symbols, and section symbols that
are not used during runtime. The allocable dynamic sym-
bol table ‘.dynsym’ holds global symbols that may be used
during runtime execution [56]. Note that the ‘.symtab’ can
be stripped from a binary file to make it lightweight, while
‘.dynsym’ is not.

d: SYSTEM CALLS AND APIs

System calls act as an interface to access the operating sys-
tem provided services such as file and device management
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TABLE 3. Architecture dependency of Mnemonics for dvrHelper (Mirai).

Mnemonic
Architecture  Function call  Move operation
x86 CALL PUSH
ARM BL LDR
MIPS JALR LW
PPC BL LI
SPARC CALL MOV

operations, controlling processes and communications, and
maintenance of information, while application program-
ming interfaces (APIs) are system call wrappers written in
high-level languages. For instance, UNIX-based systems use
POSIX APIs. Both system calls and APIs may also occur as
printable strings in a binary.

2) ASSEMBLY LEVEL FEATURES

a: OPCODES AND MNEMONICS

Opcodes (Operation codes) are unique and atomic executable
instructions close to machine code. They accept registers
and/or operands information as parameters to perform their
intended operation. For instance, a move operation in the
PowerPC instruction set is given by “LIR4, 0” comprises the
mnemonic for move operation ‘LI’ (opcode = 38), the regis-
ter R1, and the operand 0. Opcodes have proved to be more
useful in detecting and classifying malwares [32], [38], [39].
Mnemonics are a special form of opcodes with symbolic
names that are self-explanatory and easily understood by
humans. However, both opcodes and mnemonics are gener-
ally dependent on the instruction set architecture. Tables 3
and 4 showcases such an example of architecture dependency
using the Mirai botnet disassembly for its ‘dvrHelper’ func-
tion call - different notations are used for the same operation
by different processor architectures. dvrHelper is a DDoS
attack module equipped with features to bypass anti-DDoS
solutions.

3) MACHINE LEVEL FEATURES

a: STATIC EMULATION

The static emulation is inspired by dynamic analysis on emu-
lated environments using software tools like QEMU. Static
emulation refers to the analysis of loadable parts of the pro-
gram. For instance, in Figure 3, the segments PT_LOADO and
PT _LOAD1 denote sections that will be loaded for execution
during runtime. There may be other sections that will never
be loaded in addition to ‘.symtab,” ‘.strtab.” Excluding such
information and focusing on loadable parts is still a major
gap in the existing studies.

B. GRAPH/TREE-BASED FEATURES

1) GRAPH-BASED FEATURES

They are an extended version of metric-based features dis-
cussed above, where the relationship among the features is
also accounted for and expressed. The nodes in the graph
usually represent the actual metric-based features like APIs,
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Opcodes, and their relationships are expressed by the edges.
Several works have been proposed over Graph-based meth-
ods, such as opcode graphs by [57], control flow graphs
by [41], function call graph by [30], PSI-graph by [30], and
API-call graphs [58]. In general, graph-based methods suffer
from the feature extraction overhead with more time spent
on generating the graphs. There are also other graph-based
methods proposed based on interdependence properties for
analyzing file reputations, such as file-to-machine relation
graphs by Chau et al. [59], Ye et al. [60], and file-to-file
relation graphs with significant performance over the task of
malware detection by Tamersoy et al. in [61]. Graph-based
methods like CFG may provide potential information about
the existence of packing and obfuscation [41].

2) TREE-BASED FEATURES

Abstract Syntax Trees (ASTs) are the tree representations
generated using parsers over the code constructs found in
a source code’s syntactic structure, and tree-based machine
learning approaches are later employed to learn the latent
information they hold. Being a byproduct of the compiler’s
syntax analysis phase, ASTs are useful for analyzing or
transforming programs to a more simplified view for better
understanding.

Phan and Le Nguyen [62] employed deep neural networks
on sequences of assembly instructions instead of Abstract
Syntax Trees (AST) to improve feature-based and tree-based
approaches for software defect prediction. The study dis-
cusses that ASTs only reflect the structures and do not reveal
the behavior of programs, but assembly information does.
The reason behind it is that ASTs tend to provide the structure
of a program rather than internal behaviors [62]. However,
ASTs have been successfully used to detect Powershell-based
malware in [63] and Javascript-based malware in [64].

C. SEQUENCE-BASED FEATURES

1) 1-D SEQUENCE

a: BYTE SEQUENCE

It is a sequential representation of byte-level data present
in binary files, where each byte is converted into an 8-bit
integer (unsigned) and translated to numerical representation
with values ranging from O to 255. The encoding of text
information in the actual binary is often overlooked, and
a default encoding of UTF-8 is assumed. Several models
work well under this assumption for Windows [65]-[67], and
Linux [40] platforms, yet the effect of considering the actual
encoding is largely unexplored.

b: ASSEMBLY INSTRUCTION SEQUENCE

Assembly instructions extracted from a disassembled binary
are concatenated into a one-dimensional sequence. The
operands and registers may be pruned out to reduce sequence
length. Tokenization or embedding of the resulting sequence
may be required.

VOLUME 9, 2021



A. D. Raju et al.: Survey on Cross-Architectural loT Malware Threat Hunting

IEEE Access

TABLE 4. Disassembly showing ‘dvrHelper’ (Mirai) botnet call for different loT processor architectures.

str.dvrHelper
1, eax

ri, [0x00008300]

r2, [exeee08304]
re, [str.dvrHelper]

addiu al, zero, 0x301
a®, -segment.LOADO(gp)

addiu a2, zero, Ox1ff

83cdlc add esp, @xlc
68710l ox1ff
684102 ox241
x86 683d840408
8945e4 mov dword [
e8f5fe
20119fe5
84008de5 re, [
ARM 1c219fe5
1c019fe5
b8 eb fcn.000080d0
EYEVEEIT v, Oxle(sp)
8fbcoole gp, 0x19(sp)
24050301
81848018
MIPS 8998060 t9, -ex7fad(gp)
24840510 addiu a@, a0, ex5fo
240601
03201809
90610010 r3, exie(rl)
3c6010 lis r3, ©x1000
38800241 1i r4, ox241
PPC 382001 1i r5, ex1ff

38630548
4bfrfe6l

9010204d
92102601
de27bfe8
941021

11 40

SPARC

addi r3, r3, ox548
fcn.100000e8

mov ©x4d, 0@

mov 0x601, ol
00, [fp+-0x18]

mov Ox1ff, o2

sethi ©x40, 0@

7f b5

c: ENTROPY SEQUENCE

It is the sequence of rolling entropy obtained by scanning
a series of short windows of byte sequences [28], assembly
instruction sequences, or simply the whole file [8]. Various
entropy measures proposed in the literature had been used
for malware threat hunting scenario, such as Shannon entropy
used in [40].

d: SHORT SEQUENCE

This is a special case of very short byte sequences. They
divide long sequences into several disjoint or overlapping
short sequences, typically comprising sequences of 2 to
11-byte length, generally called n-gram byte sequences,
where ‘n’ denotes the sequence length. Short ‘n’ value leads
to too much granularity and faces a severe curse of dimen-
sionality, while larger ‘n’ value leads to better accounting
of long-range contextual relationships but loses granularity.
N-grams are employed in studies such as [21].

2) 2-D SEQUENCE

a: GRAYSCALE IMAGE

A two-dimensional image-like representation is obtained
by reshaping and then resizing the one-dimensional
byte sequence representation discussed above. Such
2-dimensional representations are usually downscaled to
avoid computational overheads. Nataraj et al. recommended
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TABLE 5. File size vs 2D image width - recommended by [65].

File Size (KB) Image Width
0to 10 32
10 to 30 64
30 to 60 128
60 to 100 256
100 to 200 384
200 to 500 512
500 to 1000 768
>1000 1024

TABLE 6. Pixel file size vs 2D image width - recommended by [68].

Pixel File Size = Image Width
0to 10 32
10 to 30 64
30 to 60 128
60 to 100 256
100 to 200 384
200 to 1000 512
1000 to 1500 1024
> 1500 2048

the dimensions to downscale 2-dimensional representa-
tions according to the size of the original file in [65].
Another approach by Chen et al. in [68] provides a sim-
ilar recommendation but with a linearly scaled relation-
ship between pixel file size (a multiplier of file size) and
the image width. Both recommendations are provided in
Tables 5 and 6.
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b: COLOR IMAGE

It is an extension of the grayscale representation described
above, where conversion to a colored format is done by
extending grayscale values to RGB channel values using tools
like BinVis,! as done by Nguyen er al. in [40].

3) 3-D SEQUENCE

a: LATENT PROJECTION

Unlike dynamic analysis, the use of three-dimensional
projection of latent information is still largely unex-
plored for static analysis. Abdelsalam et al. [69] employed
a 3D-CNN model to tackle a mislabeling problem in a vir-
tual machine (VM) environment, where performance metrics
collected over a specified time interval are treated as model
input.

D. INTERDEPENDENCE
The features for static analysis discussed so far dealt with
the structural properties of an ELF binary, its code-level
properties, and its section and segment-level components.
All of them are obtained from within the binary, hence,
treated as ‘Intra-file’ properties. The ‘interdependence’ deals
with the properties that are external to the binary and
is concerned about its proximities with the surrounding
environment.

File Reputation: The problem of identifying the reputa-
tion score of a file based on different external metrics to
validate its maliciousness is discussed here:

b: FILE TO MACHINE RELATION

It represents the absolute or relative path information of a
binary file which could provide contextual information with
the capacity to reveal benign or malicious intents [70]. For
instance, Dropper malware or Adware would find themselves
in a directory that potentially increases interaction with the
end-user [70].

c: FILE TO FILE RELATION

It deals with the influences that a file inherits directly or
indirectly from co-occurring files in the environment [60],
[71], [72]. The variations in the importance of such relations
to a malware file as opposed to a benign file help isolate
malicious files. Ye et al. [60] explored the combination of
file-to-file relation and file content in their work.

E. DYNAMIC ANALYSIS

Dynamic analysis is not in the scope of this survey paper.
However, we provide a high-level taxonomy of dynamic fea-
tures observed in the literature that can be categorized into
traced-based and usage-based features.

1 github.com/cortesi/scurve/blob/a59e8335c48a7cda7043fbd1b28bcaelab
c9645d/binvis
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1) TRACE-BASED

These features deal with acquiring knowledge about malware
activities and interactions over a period of time, such as
tracing the API calls made by malware, tracing the sequence
of instructions they executed, and their network interactions.

2) USAGE-BASED
These features deal with monitoring the usage of system
resources such as memory, registers, and file access.

3) FILE PLACEMENT

It is a specialized file monitoring technique where decoy files
are placed in suspected locations of malware activity. For
instance, when ransomware tries to access the decoy file to
steal information, its file system activity and access behavior
are recorded for taking remedial actions in reality [73].

IV. DISCUSSION ON SURVEYED PAPERS

In this section, we summarize the research works sur-
veyed, and the significant findings reported in those stud-
ies, the advantages and limitations of their approach. The
methodology used for selecting research works for our sur-
vey includes: i) consideration of the research works on IoT
malware in the past five years, ii) inclusion of the prominent
research works on Linux malware in the past ten years.
Figure 7 provides a timeline of the surveyed works, and
Table 7 provides an overview of the datasets used by them.
A high-level comparison of surveyed works is provided
in Table 8 following the discussion.

Alasmary et al. [41] proposed a control flow graph-based
detection of IoT malware. They compared the complexity of
IoT malware with Android malware and found that the former
possessed higher complexity and rich structural flow. Their
study used 2,999 benign samples and 2,962 malware sam-
ples for IoT collected from GitHub source codes and Cybe-
rIOC, respectively. They analyzed different graph properties,
including closeness, betweenness, degree, shortest path, den-
sity, count of nodes, count of edges, and extracted 23 features
to perform detection. Their study reveals that the CFG with
the analyzed properties can significantly reveal evasion tech-
niques like packing and obfuscation.

Alhanahnah ef al. [21] proposed a cross-arch work
inspired by software defect detection approaches. They used
structural, statistical, and string features of high-level code to
develop lightweight cross-architecture invariant [oT malware
signatures. Their study used 5,150 samples from the [oTPOT
dataset containing samples compiled for eight different CPU
architectures and employed a multi-stage clustering followed
by a YARA-based signature generation scheme to learn IoT
threats. The multi-stage clustering comprises initial K-means
coarse-grained clustering using eight statistical features from
code, fine-grained clustering using high-level graph structural
similarity aided by a tool called ‘BinDiff, and then a final
cluster merging phase based on N-gram similarity. High-level
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FIGURE 7. Timeline of research works on cross-architectural 1oT malware threat hunting (highlighted in blue). Works highlighted in red represent
general/cross-architectural loT related survey works. Other important works are highlighted in black.

string statistic features are generated from merged clusters to
form efficient signatures.

The study claims that the high-level code statistic fea-
tures used by the initial coarse-grained clustering phase are
resilient to cross-architecture variations, as they abstract away
the different code syntax. The features used are: Functions
count, Instruction count, Redirect instructions count, Arith-
metic instructions count, Logical instructions count, Transfer
instructions count, Segments count, count of call instructions.
Their fine-grained clustering phase evaluates pairwise code
structural similarity among samples within a coarse cluster,
using techniques like single-linkage hierarchical clustering
to generate dendrograms, and uses the Bindiff tool to recon-
struct CFG abstracting structural features - ignoring assembly
level features. The limitation of this work is that their study
is based on a minimal number of samples compared to the
magnitude of real-world samples and the proposed approach
relies on NxN similarity score as a feature set that grows
quadratically with dataset size - leading to insufficient time
and resource efficiency.

The study also indicated the existence of cross-architectural
similarity if the samples are from the same malware family.
Like Hwang et al. [75], their study also asserts using Strings
as a better cross-architecture feature as they are easy to
extract. In addition, due to the intent of quick time-to-market,
malware authors more often compile the same malware
code to run on different CPU architectures, leading to easy
identification of malwares as the string information stays
the same even when underlying opcodes and other CPU
specific instructions are different. Obfuscation and encryp-
tion techniques may randomize a human-readable string,
yet the result is still a string that gets propagated across
multiple CPU-specific malware clones, allowing them to be
easily identified as their occurrences overlap across samples.
Such overlapping information could act as robust features
for cases like malware family classification. For instance,
they found many of a malware family’s samples to contain
the same obfuscated sequences “eGAIM aJPMOG qCDCPK
oMXKNNC uKLFMUQ.”

Bai et al. [42] introduced a method that extracts system
call information from the symbol table of ELF files and
applied four machine learning algorithms for Linux mal-
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ware detection. Using a dataset from VXHeavens consisting
of 756 benign and 763 malware samples (from 8 classes),
the experimental results achieved more than 98% accuracy.
They created a custom ELF parser as many parsers, such as
readelf, failed to extract many samples. Frequency of system
calls are used as the feature set characteristics, and they
used the top 100 system calls obtained via ranking using
information gain for training and classification. The authors
claim that their system calls-based method is hard to evade
even with obfuscation, polymorphism, and metamorphism.

Carillo Mondéjar et al. [74] proposed a data-driven
approach for automating the study of IoT malware and
extracting features for characterizing malware relationships
that could aid in the IoT malware attribution/vetting pro-
cess. They used such identified static/dynamic for features to
identify unknown malware in the wild via similarity-based
clustering. Interestingly, there were nearly zero singletons
found in the unknown samples they analyzed for different
processor architectures such as ARM, MIPS, and PowerPC,
and they were able to associate the samples to at least one
known family. They showcased how some malware families
are more prevalent in certain processor architectures. For
example, ARM suffers from more ‘Mirai’ botnets, while
PowerPC suffers more ‘Gafgyt.

Cozzi et al. [28] proposed the first detailed Linux-specific
malware analysis pipeline involving analysis of file meta-
data, static and dynamic features. For their comprehensive
Linux malware study, they used a dataset containing a total
of 10,548 samples from 10 different architectures, with sizes
ranging from 134 bytes Backdoor to 14.8MB botnets.

To improve the understanding of Linux malware, they
analyze and provide insights into various behaviors exhibited
by Linux malware. For instance, they found that DDoS attack
BotNets dominate the Linux malware landscape, spreading
over 25 families. This was attributed to the fact that their
source code is available publicly and attackers often harvest
poorly protected IoT devices to join large remotely controlled
botnets. The study also reveals that ELF samples generally
lack OS compatibility information and that fields such as
OS/ABI (application binary interface) in the ELF header are
rarely used, obscuring the knowledge on the target envi-
ronment. The use of arbitrary linking and loading libraries
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TABLE 7. Comparison of datasets employed in surveyed works.

Benign # Malware # Benign Source Malware Source CPU Arch. Covered

Alasmary et al. [41] 2,999 2,962 GitHub CyberlOC -

Alhanahnah et al 130 4,000 (out of openwrt TIoTPOT ARM, MIPS, Intel 80836,

[21] 5,150) PowerPC, x86-64, Renesas

SH, Motorola 68020, SPARC
Bai et al. [42] 756 763 Linux OS VxHeavens -
Carrillo et al. [74] - 10,548 - Cozzi et al. [28] ARM 32, MIPS 1, Intel 80386,
PowerPC, AMD x86-64

Cozzi et al. [28] - 10,548 - VirusTotal, Self ARM 32-bit, MIPS I, In-
tel 80386, x86-64, PPC, Mo-
torola 68k, SPARC, Hitachi
SH, AArch64 (ARM 64-bit)

Cozzi et al. [35] - 93,000 - VirusTotal, Self ARM 32-bit, MIPS I, PPC

(IoT Genealogy) 32/64-bit, SPARC, Hitachi SH,
Motorola 68k, Tilera, ARC, In-
terim Value tba

Hwang et al. [75] 10,000 10,000 Linux OS VirusShare -

Karanja et al. [76] 143 258 Linux OS TIoTPOT MIPS, x86, SUPERH

Lee et al. [20] - 122,504 - VirusTotal ARM, MIPS, X86, X86-64,

PPC, SPARC

Ngo et al. [22] 4,001 7,199 JoT SOHO Firmwares IoTPOT, No information
(binwalk tool) VirusShare

Nguyen et al. [40] 1,000 1,000 Ubuntu 16.04 IoTPOT x86 (ignored ARM, MIPS)

Nguyen et al. [36] 6,031 4,002 SOHO IoT devices IoTPOT ARM, MIPS, PPC, SPARC

Nguyen et al. [30] 3,845 6,165 Ubuntu 16.04 IoTPOT, ARM, Intel 80386, PPC,

VirusShare MIPS, SPARC, Motorola
m68k, X86-64, SuperH

Pajouh et al. [38] 271 280 Rasberry Pi II compati-  VirusTotal ARM (32-bit)
ble Linux Debian pack-
ages (pkgs.org)

Phu et al. [77] 4,107 19,710 Ubuntu OS - x86-64, IoTPOT, Detux, MIPS, PowerPC, SPARC,
Intel 80386. Firmware  VirusShare ARM, Motorola, RenesasSH
router images Zyxel, TP and PC
Link, Belkin, Openwrt,

Asus, Dlink etc

Shalaginov et al. [8] - 10,574 - VirusShare Intel binaries

Shazad et al. [43] 734 709 Linux OS (no version VXHeavens, No information
specified) Offensive

Computing

Su et al. [78] 365 365 Ubuntu 16.04.3 TIotPOT No information

Tien et al. [32] 2,157 6,251 Ubuntu 16.04 LTS CZ.NIC, IoTPOT x86, x64, ARM

Torabi et al. [1] - 74,429 - VirusTotal, -

VirusShare,
TIoTPOT

Vasan et al. [39] 5,655 15,482 Firmware router images  IoTPOT, Detux, ARM, MIPS, Intel 80386, x86-
- Asus, Belkin, Tenvis, VirusShare 64, PowerPC
Dlink, TP Link, Linksys,

Trendnet, Centurylink,
Zyxel and Openwrt
Wan et al. [79] 111,353 111,610 D-Link, Zyxel, Netgear,  VirusTotal ARM, MIPS, x86, x86/64,

IDIS, Belkin, MikroTik

PowerPC, SPARC, Renesas
SH

like glibc, uclibe, libpcap, libopencl, musl, also complicates
malware analysis.

Hwang et al. [75] attempted to avoid the usage of struc-
tural information from executables. Instead, they used
string information from platform-independent binary data.
They aimed to create a single auto-analysis mechanism
for malwares from different OS platforms such as Win-
dows/Linux/IoT malwares. Their analysis method involved
getting raw binary samples via device endpoints, extracting
around 1800 different strings including API names, DLL
names, library function names of programming languages,
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PE/ELF file formats, converting them to hashed format,
employing count based string vectorization on the obtained
hashes, performing ExtraTreeClassifier based feature selec-
tion to find the most useful string hashes, and finally employ-
ing KNN based detection.

Unlike [32], they closely indicate that the most used Linux
OS for IoT devices is Ubuntu Core. The major limitation
of their work is that their method may not be effective
over packed or encrypted samples because their method
depends only on the strings available explicitly, and such
packed/encrypted samples reveal limited string information
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during static analysis. The authors claim that string-based
techniques are better candidates for cross-architecture mal-
ware detection/classification as they are more resistant to
obfuscation. Interestingly, they were successful in parsing
more malwares than benign samples, but they failed to indi-
cate the type of parser used and the reason for failure in benign
sample parsing other than indicating that there are different
file formats within ELF.

Karanja et al. [76] proposed a classification approach
based on textural features extracted from IoT samples. The
samples were first converted to a grayscale representation.
Then a gray-level co-occurrence matrix, shortly ‘GLCM,
was generated, which are used to calculate five of the Haral-
ick features proposed by Haralick et al. [80], namely: Corre-
lation, Inverse Differential Moment (IDM), Entropy, Angular
Second Moment (ASM), Contrast. The authors claimed that
such textural features possess the capability of processor
architecture and OS platform independence for the classifi-
cation task and are low in computational requirement due to
the use of such image representation that could be generated
and analyzed for samples from any platform. They failed to
provide clear evidence by accounting for the evaluations and
results over different processor architectures.

Lee et al. [20] made use of 122K samples from VirusTotal
covering various architectures like ARM, MIPS, x86, x86-64,
PowerPC, SPARC, and extracted printable string information
such as the plain texts from function names, API names,
codes, and code comments. The distinctive contribution of
this work is that they studied the effect of learning samples
from broadly used architectures and then evaluate the model
performance on lesser-known architectures as an unseen test-
ing set, and their models performed better in such cases.

Nguyen ef al. [40] proposed “BE-PUM” - Binary code
analyzer based on dynamic symbolic execution on x86 —
that overcomes obfuscation for precise malware disassembly.
IoT malwares do not employ obfuscation as frequently as
PC malware. Their dataset contained 1000 IoT malwares
for x86 provided by the IoTPOT team, Yokohoma national
university. The study compared three different models built
based on CNN but employing different types of features.

The feature types compared include assembly instruction
sequences extracted using ObjDump tool as features and
trained with CNNGs, fixed-size byte sequences learned using
Malconv CNN model, and fixed-size color images learned
using AlexNet CNN obtained using Hilbert Curver images
from binary code entropy. The color images were generated
using Shannon Entropy on the entire byte sequence and syn-
thetically extracted information for the RGB channel. The
study discusses findings such as the average size of IoT mal-
wares being around 1MB, while the benign samples’ average
size is around 0.07MB. LSTM models work well for samples
less than 0.5MB. A limitation of this study is that they claim
to allow variable-sized instruction sequences for processing
by CNN models, but no evidences are provided.

Nguyen et al. [36] proposed an approach combining print-
able string information (PSI) graph and deep graph convo-
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lutional neural networks (DGCNN) for the task of detecting
Linux-based malwares. Their dataset comprised 6K benign
samples from small office/home office (SOHO) and 4K mal-
ware samples collected from IoTPOT [81]. Their study deals
with learning IoT malwares from different architectures such
as ARM, MIPS, PowerPC, and SPARC, leveraging the link-
age among printable strings.

Nguyen ef al. [30] proposed a lightweight printable string
information-based graph (PSI-Graph) for the detection of
botnets in IoT, as an extension of their work above [36].
The PSI-Graph is meant for capturing the relationship struc-
ture among the functions consisting of PSI. The PSI-Graph
extraction is done as a simplified version of the function call
graph (FCG) using only the functions that contain PSI char-
acters with lengths more than or equal to three. The dataset
they employed consisted of a total of 11.2K ELF files, among
which there were 6,165 malicious botnets and 3,845 benign
samples. Though their method improves on the drawbacks
of FCG, they still suffer from a very high prediction time
per sample at the rate of 1,140 ms/sample (88 minutes for
4,630 samples).

HaddadPajouh et al. [38] proposed a deep LSTM based
approach for dealing with IoT malwares. Their dataset con-
sisted of 32-bit ARM-based malwares with 280 malwares
and 271 benign samples from VirusTotal. They decompiled
ELF files using the ObjectDump tool, extracted more than
600 Opcodes, performed binary encoding, and then pruned
them based on TF-IDF frequency and the number of occur-
rences, followed by further feature reduction using PCA.
Operands and registers info are also pruned out, and only the
opcodes are considered.

Phuetal [77] used the Valgrind tool’s intermedi-
ate representation called ‘Vex’ and ‘CFD’ - a dynamic
programming-based extraction of control flow-based fea-
tures that combine opcodes and control flow graphs
to build a cross-architecture malware detection system.
While Vex provides architecture-agnostic representation sup-
port, CFD helps in achieving better malware detection
performance.

Interestingly, they found that training the CFDVex model
on Intel 80386 samples performed better on the testing set
with only MIPS samples. However, vice versa was found to
be performing poorly.

Shalginov and @verlier et al. [8] focused only on
Intel-compatible Linux malware (desktops, servers), and IoT
environment-specific malware like ARM binaries are not
considered. The study claims to overcome the limitation of
static features in multinomial Linux classification due to
obfuscation, but no clear pieces of evidence were provided.
The study used a dataset with a total of 15,101 Intel-compiled
ELF samples from VirusShare (one Linux archive and three
ELF archives). They filtered 10,574 malware files belong-
ing to 442 malware families such as Tsunami, Mirai and
19 malware types such as Trojan and Worm. The features they
extracted include Virustotal report, peframe report, readelf,
strings, file size, and file entropy.
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The study indicates that the Intel platform has 1128 file
types differing in 32/64-bit binaries, LSB, static/dynamic
linked, stripped, and processor version. They also indicate
that Linux machines are often infected for distributed attacks
and botnets like Mirai, DDos. Also, the study recommends
using CARO (Computer Antivirus Research Organization)
for malware family labeling, which cybersecurity companies
like TrendMicro are following.

Shahzad and Farooq [43] extracted structural features
from ELF binaries to train malware detection classifiers. The
authors attempted to explore another dimension of malware
research that whether using such structural information to
detect malware, as shown for Windows PE files in [82], could
be generalized to executables of other OS platforms such
as Linux. Their work does not account for different CPU
architectures, and the gathered features are more prone to
evasion techniques such as packing and binary stripping.

They used a dataset collected from VX Heavens and
Offensive Computing, with 734 benign and 197 malware
samples having sizes ranging from 20KB to 4MB. They
extracted a total of 383 structural features, and interest-
ingly much of the features were from Section header than
ELF header and Program header combined. They used mea-
sures such as Resistor-Average (RA) Divergence — based
on KL-Divergence Frequency Histogram (Over Sections)
to evaluate their finding that the structural information of
malware samples differ significantly compared to benign
samples.

Some of the significantly different ELF structural fea-
tures include ELFHEENTRY, ELFHEPHNUM, ELFHESH-
NUM, and ELFHESHSTRINDX fields in the ELF
header, and there are frequently occurring sections such
as.comment,.note,.strtab,.symtab, and.sbss in malware,
and.rel.dyn, got.plt in benign samples. They also discussed
the significance of PC-Relative addressing for relocation:
RELR386PC32. Malware tends to use relative addressing,
while absolute addressing is common in both benign and
malwares. They also discussed that most malware mis-
use.comment,.notes sections (used to hold version control
information and file notes, respectively) to store their mali-
cious information.

Su et al. [78] attempted to perform a lightweight classifi-
cation of IoT DDoS malware. Their dataset comprised only
around 365 samples for benign and malware each. The limi-
tation of this study is that they downscaled malware binaries
to a 64 x 64 grayscale image representation irrespective of
the size of the actual malware. Hence, as the dataset popu-
lation grows, the downscaled images may not hold adequate
information for their model to learn, and their method’s per-
formance may degrade faster on unseen samples.

Tien et al. [32] discussed how IoT malware detection
approaches are different from Windows PE malware detec-
tion. Conventional anti-virus techniques based on the Win-
dows paradigm cannot be applied directly to counter threats
to the IoT devices due to the tight dependency that
architecture-specific feature types induce in the training
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dataset. Such issues call for a universal feature representation
via static analysis to be able to achieve OS platform indepen-
dence and cross CPU architecture applicability.

They proposed two feature groups for such purpose in their
study: feature group 1 - dealing with seven types of static
meta-features of ELF samples - ISA (8 categories), sample
size, external/shared library (Idd command), packer, number
of functions, potential behaviors via YARA (anti-VM detec-
tion, exploit-kit attacks), networking (gauged by IP address
strings and protocol function names — not by execution);
feature group 2 - 12 types of Opcode instruction features
obtained via reverse engineering. They collected 30,146 mal-
wares - 25,000 samples from the IoT HoneyPot project Yoko-
homa National University and 5,146 samples from CZ.NIC.

The major disadvantage of this cross-architectural study is
that they have included only the samples for x86, x64, and
ARM, totaling 6,251 out of 30,146 samples, but ignored sam-
ples from other architecture types. Including other such sam-
ples would introduce data imbalance (due to non-uniformity
in public sample availability) and makes the malware detec-
tion problem more challenging under this scenario - which is
a valuable research direction towards ISA neutrality. Meta-
data for the 6,251 samples have also been released by the
authors.” Another disadvantage is that their dataset is biased.
Their benign samples were collected from Ubuntu 16.04 LTS
Client for PC-like devices, but malware samples are from
IoT devices. Though the authors claim that both have enough
common features, they failed to provide more information on
how similar/different they are in practice.

Since their dataset consisted of samples compiled for
different CPU architectures (x86, x64, ARM), the opcodes
extracted from those samples would have different instruction
names but may perform the same operation. Hence, they
grouped the extracted opcodes into 12 groups based on the
functionality, namely: Logic, Control, and Status, Memory,
Stack, Procedure, Prefixed, Systeml/O, Arithmetic, System,
Branch, Execution Time, and Others. Among these groups,
the Memory, Arithmetic, Branch, and Other opcode groups
are found to be more beneficial for both cross-architectural
malware detection and family classification than the rest.
Another finding that closely resembles [oT malware charac-
teristics is that most malware samples exhibited networking
invocation-related strings and IP addresses than benign sam-
ples in their dataset. However, it may be a biased finding since
their benign samples are collected from PC-based OS.

Torabi et al. [1] proposed a malware classification system
based on multi-modal learning via deep learning approaches.
Their method followed a feature fusion approach with
LSTM and CNN models used over the string and grayscale
information extracted from the samples, respectively. Their
dataset comprised 70K IoT malwares, and they showcased
that unknown malware labeling could be done using DL
approaches and that [oT malware obfuscation is not sophisti-
cated. They were able to de-obfuscate 76% of the strings from

Zdrive. google.com/open?id=1NXNsPYa2Qz0cZEy3u3bn_Kx4SVUrykAz
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samples they examined using FLOSS [83] as the samples
used only standard UPX packers.

Vasan et al. [39] proposed a stacked ensemble learning
employing both RNNs and CNNs, with heterogeneous fea-
ture selection algorithms based on opcode dictionary and
information gain (IG). It was able to detect obfuscated mal-
ware as well as metamorphic and polymorphic malware.
Their dataset consisted of 21,137 samples, including 5.5K
benign and 15K malware samples. They showed that their
approach is robust against junk code and benign opcode
insertions.

Wan et al. [79] proposed a detection and classification
approach utilizing the n-gram byte sequences near the entry
points of the binary samples. They made use of a dataset with
111K samples each for both benign and malware categories
and showed that there are merits in considering CPU-specific
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information to achieve better cross-architecture performance.
However, their method performs poorly in the presence of
code reuse among malware families.

V. CHALLENGES AND RESEARCH OPPORTUNITIES

A. CHALLENGES

Generally, for malware threat hunting, there is no ‘one model
fits all’ type of solution that learns all feature representa-
tions and detects all threats. In the case of Windows threats,
even though there exist several mature approaches, millions
of threats are still left undetected. Adding fuel to the fire,
there are zero-day attacks, and the problem of concept drift -
machine learning models also suffer from continuous decay
of learned matter. On top of these issues, the IoT malware
threat hunting problem spans multiple folds across other
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issues like the need to tackle a wide variety of malware
families, a wide range of OS platforms, and numerous CPU
architectures. Table 9 provides an overview of the challenges
discussed in this section.

1) DATASET AVAILABILITY
There exists a severe lack of representative datasets for ELF
when compared to Windows PE malware datasets at present
since Linux malware gained the attention of cybersecurity
only around 2014, much later than PE malwares. For instance,
there are many public benchmark datasets like the EMBER
PE feature-based dataset [84], and the recent industrial-scale
dataset called SOREL [85], and the temporal PE dataset
BODMAS [86]. Recently, [oTPOT team released an extended
dataset comprising 173K IoT malware binaries [87], which is
the only known large benchmark IoT dataset to date.
Despite massive efforts from providers like VirusTotal,
VirusShare, there exists a severe imbalance in the number of
samples available under each type of CPU architecture and
OS platforms. In such complex environments with various
devices, vendors, architectures, and commands, it is chal-
lenging to construct large-scale datasets [23], [75], leading to
the class imbalance between different malware families and
the class imbalance between malware samples compiled to
different ISAs.

2) BENIGN BINARIES AVAILABILITY

On top of the lack of datasets discussed above, it should be
noted that collecting benchmark benign samples are much
harder. Datasets built on vectorized feature representations
include the data for benign samples, however, datasets shar-
ing raw binaries do not include benign samples, as a con-
sequence of adherence to software license agreements that
prevents the authors from sharing the actual samples. Such
incomplete datasets limit further feature explorations.

3) ENVIRONMENT FOR ANALYSIS

Linux cross-architectural malware analysis environment is
challenging to set up with a compatible set of OS/distros,
processor architectures, and supporting libraries [28], [75].

4) EVASION TECHNIQUES

Static analysis challenges such as Code obfuscation, Code
Encryption, Payload dropping are also applicable for IoT
malware. However, IoT malware in the wild is not yet as
sophisticated as Windows malware as they also need to tackle
various constraints discussed above [1], [21], [30], [79].

5) HARDWARE CONSTRAINTS

Most of the IoT devices are never turned-off during their
lifetime for continued operation, and they are equipped with
limited resources such as memory and storage capacity.
Unlike PCs with AMD/x86 architecture, their computing
power is very minimal due to such constrained hardware
resources [90].

91702

TABLE 9. Overview of challenges.

Reference
[81], [85], [86], [88], [89]

Challenge Description
Dataset availability
Benign binaries availability =

Environment for analysis [28], [75]
Evasion techniques [21], [30]
Hardware constraints [90]
Lack of device standards [75], [91], [23], [28]
Lack of security standards [92]
Lack of softare standards [23], [75]
Lack of studies [28], [75]
Linking and Loading [75], [28]
Malware family diversity [8]
Model complexity -
Multiplicative effect of malware -
Open-source implications [93], [94]
Open-source Tools -

0S diversity [28], [75]
Packing issues [95]
Processor architecture heterogeneity [28], [75]
Real-time evaluation [23], [75]
Role of emulators [90]

6) LACK OF DEVICE STANDARDS

The vulnerability of the IoT devices grows exponentially
as they become more and more interconnected, and the
risk of getting hacked grows with it [91]. Managing IoT
devices and their data is already a challenging big data
problem. If one of the systems in the network gets com-
promised, other devices are at higher chances of risk of
getting hacked/corrupted. There also exist challenges in the
communication between devices manufactured by different
IoT device vendors, as there currently exists no international
IoT compatibility standards [91].

Lack of OS compatibility information makes it is hard to
discern where the binaries are supposed to run. For instance,
the ‘OS/ABI’ field in the ELF header is currently insufficient
and rarely used. It is possible to specify different OS/ABI
values than the compatible OSes for which they are com-
piled [28]. There is also difficulty in reliable extraction of data
and metadata by identifying the correct firmware, which is a
common challenge when dealing with a reverse engineering
analysis of firmware [23], [75].

7) LACK OF SECURITY STANDARDS

Driven by the time-to-market necessities and the need for bet-
ter usability and performance features, appropriate security
and encryption mechanisms are being given low importance
by the IoT device manufacturers. Due to these reasons, they
suffer from being hacked massively, such as the D-Link
routers case where several vulnerable routers were hacked
and installed with backdoors that allow remote Command
and Control for malware authors for use as cyber-attack
weapons [92]. Also, most end-users of IoT device does not
usually change the default credentials leaving them vulnera-
ble to botnet attacks.
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8) LACK OF SOFTWARE STANDARDS

Unpacking and decoding custom formats would be easy to
address for standard software components, as they have stan-
dardized formats for the machine resources, code, and file

organizations, but not for embedded software distribution,
as it lacks standards [23], [75].

9) LACK OF STUDIES

Most of the studies for IoT malware threat hunting adapt
existing Windows-based techniques and may not cover all
types of processor architectures, as they typically focus
either on general IoT malware or focus on prominently
used architectures. It is also unclear how to collect balanced
cross-architectural datasets, design and implement an exten-
sive tailor-made analysis pipeline [28], [75].

10) LINKING AND LOADING

As highlighted by Hwang et al. [75], statically linked bina-
ries may pose some challenges. Static linking is usually
leveraged to achieve portability. However, analysis of such
files is time-consuming. Further, the existence of arbitrary
linking (glibc, uclibe, libpcap, libopencl, musl) and loading
libraries necessitates the maintenance of a rich knowledge
base up-to-date. In the case of dynamic analysis, if there is
no appropriate loader and library in the analysis environment,
malware samples would be prevented from starting execution
and results in failure of analysis [28], [75].

11) MALWARE FAMILY DIVERSITY

A challenge is that there is no universal standard for malware
family naming. Different vendors follow different naming
conventions for storing identified malware samples, result-
ing in different names for the same sample. Cybersecurity
companies like TrendMicro use CARO (Computer Antivirus
Research Organization) naming scheme as their naming
standard.

Another challenge is that there exist too many malware
families, which could complicate the model learning process.
For instance, the study by Shalginov and @verlier [8] used the
DNN model, and they discussed that it was hard to boost the
classification accuracy of their DNN models by increasing
the number of hidden layers when there are 10s to 1000s of
malware classes (family classification scenario).

12) MODEL COMPLEXITY

In terms of cross-architecture IoT malware threat hunting,
the data representations to learn models should be gener-
ated using lightweight cross-architecture signature genera-
tion schemes to improve the compactness and accuracy of
models and to improve resource efficiency and energy effi-
ciency for local deployment.

13) MULTIPLICATE EFFECT OF MALWARE
The infected zombie devices in botnets could allow remote
management of affected devices and allow extortion of con-
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readelf:

ELF Header:
Magic: 7f 45 4c 46 01 ©1 01 00 OO0 00 0O 00 0O 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: Intel 80386

Version: ox1
Entry point address:

Start of program headers:
Start of section headers:

0x9108c
52 (bytes into file)
368416 (bytes into file)
Flags: ox0
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 8
Size of section headers: 0 (bytes)
Number of section headers: 0
Section header string table index: ©
readelf: Warning: possibly corrupt ELF file header
- it has a non-zero section header offset, but no section headers
here are no sections to group in this file.
readelf: Error: Reading 962364 bytes extends past end of file for
dynamic string table

radare2:

$ r2 8d5729acba6@elcf24c9d8e3bf6e6 ..
481d5
Aarning: run r2 with -e bin.cache=true

to fix relocations in disassembly
-- Now with more better English!

[6x0009106c]> aa
[Invalid address from ©x0003cbflith sym. and entrye (aa)
Invalid address from ©x000390d9
Invalid address from ©x00014bfb

Analyze all flags starting with sym. and entrye (aa)
[exeee9100c] >

FIGURE 8. Limitations of feature extraction tools.

fidential and sensitive data, or to recursively add the other
connected devices as part of the botnet.

14) OPEN-SOURCE IMPLICATIONS

Open-source operating systems such as Linux, Android, and
their variants cover most of the IoT market, and as their code
is open-sourced, it makes the life of a hacker easier to analyze
the available code and find vulnerabilities to exploit [90].

15) OPEN-SOURCE TOOLS

Tool level limitations also need to be considered. The rate of
successful extraction of features from all the dataset samples
being studied depends on the capability of tools employed.
For instance, opcode extraction using IDA Pro may be limited
by anti-disassembly techniques.

Figure 8 showcases an example where the readelf tool was
able to successfully find the reason for not being able to
parse a file successfully - due to corrupted ELF header, but
radare? failed to find the same.

16) OS DIVERSITY

Due to the existence of multiple custom OSes for IoT devices,
there could be a number of issues with interoperability [28],
[75], and software package compatibility.

17) PACKING ISSUES
Various works have been published to identify the family of
the packer, such as the consistently executing graph-based
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approach by Li et al. [95]. Entropy also plays an essential role
in identifying packing or encrypted binary blobs. Neverthe-
less, many custom packers need to be effectively studied.

18) PROCESSOR ARCHITECTURE HETEROGENEITY
There is much more number of different processor architec-
tures in the IoT landscape compared to PCs and Laptops [28],
[75]. Moreover, each has its own customized ISA.

19) REAL-TIME EVALUATION

A final activity in the machine learning process for [oT is to
evaluate the model learned by deploying it in real-firmware
devices. Such challenging task needs manual analysis and
consumes more human effort, like the valuable bandwidth of
malware analysts. It gets even more challenging to cover all
the devices/images in the network [23], [75].

20) ROLE OF EMULATORS
Emulators are very much helpful in emulating different pro-
cessor architecture environments, but the emulated systems
may not be complete as running an actual firmware [93], [94].
Several other vulnerabilities are forming the base for the
exponential increase in IoT attacks [21], such as the require-
ment of constant online connection by IoT devices to be
smartly connected, lack of protection and security mecha-
nisms, and their integration into human life makes them an
exciting attack target.

B. GAPS AND RESEARCH OPPORTUNITIES

Often suggested topics in existing surveys as research oppor-
tunities are explainability, adversarial learning, and advanced
persistent threats (APTs) mitigation. We present a few of
the gaps present in the existing literature that we identified
and also other novel possible research directions towards
exploring the unknown.

Most of the existing malware threat hunting approaches on
ELF are adapted from the techniques belonging to areas such
as natural language processing (NLP), image processing,
and graph processing, that are initially proposed for learning
Windows malware. Unique ELF-specific problems such as
platform-independent malware threat hunting invited adapta-
tion of approaches from other research areas like Software
bug/defect detection [62].

The Linux malware study from Cozzi et al. [28] employed
rolling entropy of Code and Data segments in general ELF
files. Similarly, rolling entropy of sequences such as Assem-
bly sequence, Byte sequence for IoT ELF could provide
meaningful performance.

Lee et al. [20] proposed a cross-platform IoT malware
family classification task based on printable string informa-
tion (PSI). Their work suffered from the curse of dimensional-
ity in terms of the vast number of unique PSI found. They lose
valuable data by pruning PSI with frequency measures and
recursive elimination. Approaches to reduce dimensionality
without loss of valuable data could be explored.
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A potential research direction is to leverage standard ELF
features to support cross-architectural IoT malware threat
hunting. For instance, Tien et al. [32] grouped similar opcode
features based on functionality to make opcodes ISA inde-
pendent. Other such valuable features could be identified and
leveraged for better cross-arch performance. For instance,
a grouping of processor-dependent structural information
from the ELF header.

Further, the functionality-based grouping of opcodes
by Tien et al. [32], such as arithmetic opcodes, branching
opcodes, etc., serves a higher level of abstraction, meaning
that twelve groups may not be enough to achieve superior
performance on larger datasets. Instead, a granular grouping
of opcodes based on their individual functionality would be
more helpful. For instance, as in Table 3, opcodes with differ-
ent names under different architectures for operations such as
“Move” should be group together, instead of grouping them
commonly under the high-level “Memory” functionality as
done by Tien et al. However, such granular grouping of
opcodes is highly-challenging, as many of the instruction
set architecture specifications that are available for different
architectures are obsolete or incomplete.

A gap in existing research works for ELF is that File-
to-File relations, File-to-Machine relations, and their corre-
sponding graph-based approaches are previously explored
only for Windows PE binaries. Since the memory capacity
and the software required to run the IoT device are very small
when compared with Windows-based devices (like PCs,
servers), it is interesting to study the effectiveness of such
interdependence-based approaches in resource-constrained
environments.

As a general guideline to affirm and better demonstrate the
malware research works, we highlight the below as gaps in
the literature structure:

a: EXTRACTION RATE

The extraction rate describes the success rate of the fea-
ture extraction technique associated with the proposed
malware detection/classification approach. As described in
Section V-A15, many of the feature extraction tools fail to
achieve a 100% extraction rate, and the failed samples are
ignored in general, which in turn results in incomplete learn-
ing and reduces the practical applicability of machine learn-
ing and deep learning approaches.

b: PREDICTION TIME

It is known that for practical usage of the model learned for
malware threat hunting, they are expected to have a very short
prediction time. This prediction time needs to be treated as
an end-to-end time requirement; as such, it is the sum of
the time taken for loading a sample from disk, performing
feature extraction, pre-processing, and then the actual predic-
tion. The end-to-end prediction time is expected to be on the
scale of few milliseconds, say 10 ms, when carried out on
a single-core CPU (not GPU). Therefore, the benchmarking
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information produced as part of experiments should include
the end-to-end prediction time performance analysis.

¢: MEMORY REQUIREMENT

The machine learning/deep learning models are also expected
to be lightweight, i.e., low memory footprint during execu-
tion, say 1 to 4GB. The memory needs of a model are influ-
enced by factors such as the size of feature representations,
the number of model parameters, and the libraries needed.

d: STRINGENT FPR REQUIREMENT

False positive rate (FPR) is a critical measure for high stake
domains like cybersecurity. It is essential to keep it well below
1% to reduce false alarms [67], which leads to the wastage of
a significant amount of a malware analyst’s valuable time for
a proper investigation.

e: BENIGN SAMPLES

As discussed in Section V-A2, to minimize the impact of
lack of benchmark benign binary samples and improve repro-
ducibility, the authors could release the SHA256 information
of the benign samples used in their research work.

Finally, a helpful research direction is to contribute
curated public benchmark datasets with binary samples and
features for cross-architectural research, similar to pub-
lic datasets being increasingly contributed for Windows
PE recently: Ember [84], Sorel-20M [85], BODMAS [86],
Virus-MNIST [88], MalNet [89].

C. FORECASTS

The sheer scale of malware explosion along with millions of
new IoT devices being produced dictates machine learning
and deep learning approaches will be in the game as long as
they exist.

Crypto-jacking - a form of Crypto-mining will continue to
rise as there are more and more vulnerable devices to exploit.

Recent trends discussed in the introduction section, indi-
cate that Ransomware attacks will continue to grow towards
attacking small to medium scale business that is more vulner-
able, and public organizations.

Malware family classification is anticipated to become
more tedious, based on the studies [35], [96], that showcased
the code reuse among IoT malware families to be having a
rising trend.

The ToT malware is generally believed to be lacking
sophistication compared to the Windows PE/Android mal-
ware counterparts [74], and most of the ML approaches
ignore to tackle them under this assumption. Necessary pre-
cautions must be taken before malware authors bring in such
sophistication as a surprise.

VI. RELATED WORKS

There are notable Linux malware studies such as
Cozzi et al. [28], [35]. In [28], they presented the first generic
Linux-specific malware analysis pipeline, the first com-
prehensive Linux-based malware study covering low-level
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strategies employed by malware in the wild. And in [35], they
showcased code reuse-based reconstruction of genealogy of
IoT malware to aid in tracking their evolution over the years.
Such lineage graphs are useful for learning the intra-family
relationships among variants and aids in better family classi-
fication.

The IoTPOT (honeypot) based analysis work from
Pa et al. [81] focuses on Telnet attacks targeting IoT devices,
and the dataset they released publicly had been used by
various studies such as [21], [22], [36], [40], [30], [78]. Some
studies focus on a specific IoT malware family for dissection
and analysis [28], such as Antonakakis et al. [97], where they
performed analysis on the advent of the Mirai botnet over
seven months period, the evolution of variants of Mirai, and
the DDoS affected victim devices.

Wang et al. [98] studied Mirai to investigate brute-force
attacks on IoT devices, analyze Darlloz and BASH-
LITE to investigate exploitation of zero-day vulnerabili-
ties in IoT devices. Forensic analysis of devices infected
by Mirai botnet is provided by Zhang et al. [99]. Other
botnet studies include analysis on Chuck Norris bot-
net by Celeda et al. [100], [101], Dofloo/Spike botnet by
Bohio [102], PsybOt analysis by Durfina et al. [103], and
Baume [104]. IoT security-specific survey was presented by
HaddadPajouh et al. [105], intrusion detection system spe-
cific IoT review was provided by Khraisat and Alazab [106],
DDoS attack mitigating intrusion detection systems are sur-
veyed by Mishra and Pandya in [107].

We present the existing survey works by discussing gen-
eral Linux surveys and IoT surveys first, followed by
Cross-architecture specific IoT surveys.

A. SURVEYS ON IoT MALWARE THREAT HUNTING

Aslan and Samet [108] provided a detailed analysis of general
malware detection techniques, their uses, and drawbacks. The
accounted malware detection approaches include those that
deal with heuristics, behaviors, signatures, model-checking,
deep learning, cloud, mobile, and IoT-based approaches.

Caviglione et al. [109] aimed at providing a bird’s eye
view of the development trends such as bio-inspired learning,
transfer learning, and federated learning, and issues cov-
ering sophisticated techniques like information hiding and
file-less malware. They also provided a meta-review over the
existing malware detection-based surveys. They stated that
there exists a lack of surveys in the literature over general
detection frameworks that employ independent indicators
for tackling heterogeneous scenarios. Our survey is, in fact,
bridging such a gap for the IoT domain by surveying works
on cross-architectural IoT malware threat hunting.

Costin and Zaddach [23] presented the first comprehensive
analysis and survey on loT malware, where they analyzed and
produced reports about vulnerabilities, exploits, and defen-
sive rules, for around 60 IoT malware families they collected.
However, their work is inclined towards dynamic analysis
of IoT malwares, for which they have also proposed an
open-source analysis framework. At the time of this writing,
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the raw data and the analysis framework they released as part
of their work [23] were not available.

Karanja et al. [110] focused on surveying general IoT mal-
ware characteristics. They elicit the need for IoT bench-
mark datasets and software tools for completeness in feature
extraction attempts. However, their survey does not focus on
cross-architecture IoT malware threat hunting; rather, it was
discussed as research in need.

Milosevic et al. [111] covered software security inci-
dents concerning IoT devices and discussed side-channel
attacks such as differential power and fault analysis.
Vignau et al. [96] discussed the feature-based evolution of
IoT malware via multi-graph representation on feature prop-
agation and also provided a taxonomy based on 16 behavioral
characteristics of prominent IoT malwares. They also exam-
ined and found that reuse of features (malicious functionali-
ties) is a more prevalent phenomenon among IoT malwares.

B. SURVEYS ON CROSS-ARCHITECTURAL IoT MALWARE
THREAT HUNTING

The problem of developing cross-architectural IoT malware
threat hunting approaches is of recent interest to the research
community, and there are only a very few works proposed due
to practical issues as discussed in Section V. These factors
also lead to scarcity of cross-architecture surveys. To the
best of our knowledge, our survey is the first work dedicated
specifically to the problem of cross-architectural IoT malware
threat hunting.

The survey work by Ngo et al. [22] is the closest work,
where the main theme of their survey was to cover static
features-based ML approaches for IoT malware detection,
including only three cross-architectural works, whereas we
cover more than fifteen recent cross-architectural works.
They employed a dataset with 7K malwares and 4K benign
files to compare the approaches studied. Despite their attempt
to evaluate studies, they did not provide architecture-wise
reports such as architecture-wise distribution of samples in
their dataset and corresponding model performances, making
it a general Linux malware survey.

Moreover, the taxonomy they provided over existing static
analysis approaches categorized based on feature types is
too simplistic and failed to cover a wide range of valuable
feature types. Their taxonomy covers only the following fea-
ture types, namely, ELF header [43], grayscale representa-
tions [78], strings [17], [21], opcodes [38], [112] [77], [113],
opcode graphs [57], control flow graphs [41] and printable
string graphs (PSI) [30].

VII. CONCLUSION

An exponentially growing number of IoT devices had become
a big data problem and a real challenge for machine
learning-based threat hunting. We discussed the need for
creating an OS platform-independent and CPU instruction set
architecture-neutral threat hunting approaches and provided
a modern taxonomy adopting the latest developments in the
field of static analysis-based IoT malware threat hunting.
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We then provided a comprehensive analysis of the existing
cross-architectural research works and highlighted the chal-
lenges and opportunities open for future research.

At present, printable string information (PSI) is deemed
to be the most useful cross-architectural feature followed by
System and API calls. Graph-based methods are also showing
strong potential but a long way to go to meet the constrained
resource requirements of the IoT landscape.

With the recent release of the extended IoT malware binary
dataset [87] from the IoTPOT team, a detailed evaluation of
the cross-architectural approaches discussed in our surveyed
research works using their dataset as benchmark is of much
importance, and we plan to carry it out as a future work.
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