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Abstract—Over the past few decades, Industrial Control Sys-
tems (ICSs) have been targeted by cyberattacks and are becoming
increasingly vulnerable as more ICSs are connected to the
internet. Using Machine Learning (ML) for Intrusion Detection
Systems (IDSs) is a promising approach for ICS cyber protection,
but the lack of suitable datasets for evaluating ML algorithms is
a challenge. Although there are a few commonly used datasets,
they may not reflect realistic ICS network data, lack necessary
features for effective anomaly detection, or be outdated. This
paper presents the ’ICS-Flow’ dataset, which offers network
data and process state variables logs for supervised and unsu-
pervised ML-based IDS assessment. The network data includes
normal and anomalous network packets and flows captured
from simulated ICS components and emulated networks. The
anomalies were injected into the system through various attack
techniques commonly used by hackers to modify network traffic
and compromise ICSs. We also proposed open-source tools,
“ICSFlowGenerator" for generating network flow parameters
from Raw network packets. The final dataset comprises over
25,000,000 raw network packets, network flow records, and
process variable logs. The paper describes the methodology used
to collect and label the dataset and provides a detailed data
analysis. Finally, we implement several ML models, including
the decision tree, random forest, and artificial neural network to
detect anomalies and attacks, demonstrating that our dataset can
be used effectively for training intrusion detection ML models.

Keywords: Anomaly Detection, Dataset, Industrial Control
System, Intrusion Detection, Cyberattack, Artificial Intelli-
gence.

I. INTRODUCTION

Industrial Control Systems (ICSs) are used to control vari-
ous industrial processes, such as power plants, power grids,
railways, and factories [1]. However, many of the protocols
used lack encryption or authentication mechanisms, making
them vulnerable to cyberattacks [2]. Recent years have seen
an increase in cyber threats to industrial systems [3], with
notable examples including the Stuxnet malware attack on
Iranian Uranium enrichment facilities [4], hacking Ukrainian
power grid [5], the Irongate malware attack on Siemence’s ICS
[6], and the Triton malware attack on the Saudi Arabian petro-
chemical plant [7]. Furthermore, Kaspersky ICS-CERT report
[8] shows that 33.8% of ICS computers were compromised
in 2021, indicating that cybersecurity is a major concern for
modern ICSs. This is why ICS security has become a major

topic of research in recent years [9], [10].
To protect industrial systems against the increasing risk of

cyberattacks, Intrusion Detection Systems (IDSs) are intro-
duced [11]. These systems monitor networks or hosts to detect
cyberattacks or malicious activities [12], notifying security
administrators or event management systems of any detected
threats. An effective IDS should detect attacks accurately in a
minimum time with the least number of false-positive alerts.
To achieve these goals, using Machine Learning (ML) [13] and
Deep Learning (DL) [14] in IDSs seems promising. However,
due to security concerns and the risk of interrupting industrial
processes, it is not feasible to test intrusion detection meth-
ods on operational industrial systems. Alternately, a dataset
containing a range of cyberattacks could provide a benchmark
to compare and evaluate intrusion detection algorithms [15]
before deploying them in real-world scenarios.

Creating a comprehensive and representative dataset of
intrusions in ICSs would provide an invaluable resource for
the development and testing of new detection methods, as
well as for training and validating ML algorithms. It would
enable researchers to evaluate the effectiveness of different
approaches to intrusion detection, identify areas for improve-
ment, and enhance the overall robustness and effectiveness of
cybersecurity measures for ICSs. However, despite its potential
benefits, using such datasets can be challenging due to various
obstacles. Here, we outline some of these challenges:

• Currently, only a limited number of datasets are available
to evaluate ML-based anomaly detection in ICSs [16].
However, some of these datasets are based on unrealistic
implementations.

• An important consideration for anomaly detection is the
nature of the anomaly. For intrusion detection tasks, only
a small subset of available datasets are relevant because
they inject anomalies through cyberattacks.

• Some ICS testbeds lack crucial details or have imple-
mented them incorrectly, which can impact the accuracy
and effectiveness of anomaly detection methods.

• Some datasets are highly anonymized and cannot be
shared due to confidentiality concerns, while others do
not reflect current market trends [11].

• A significant challenge in training ML models for
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anomaly detection is the lack of labeled data. Some ICS
anomaly datasets are unlabeled, making it challenging to
train effective models.

• Network trace labeling in available datasets is typically
based on the automatic generation of synthetic network
traces, which eliminate necessary details for accurately
distinguishing between legitimate and malicious activity.

• Available datasets for anomaly detection tasks vary in the
type of data logged, with some only recording process
state variables, some only recording controlling com-
mands, and others capturing entire network packets. This
study focuses specifically on the latter type of data, which
can limit the availability of suitable datasets.

• Due to the highly specialized nature of IDSs, transfer-
ring datasets between them is difficult, and customized
datasets for each domain are preferred [16].

Moreover, in network-based intrusion detection for the ICS
domain, the existing datasets are often unsuitable for training
intrusion detection models since they are designed for labeling
individual network traces, and most are based on the automatic
generation of synthetic network traces [17]. Anomaly detection
in ICSs differs from anomalous network packet detection
because anomalies may exist across entire traffic, not just in a
specific network packet. Therefore, there is a need to redefine
the intrusion detection task to include anomaly detection in
the network traffic pattern rather than just a specific network
packet. Therefore, we aim to provide our dataset in both forms
of raw packet files and network flow records, which is suitable
for studying network flow patterns.

This article aims to provide an intrusion detection dataset
that addresses the mentioned issues by providing a realistic
benchmark to compare ML-based IDSs in the ICS domain. To
achieve this goal, we leverage the ICSSIM framework [18], a
tool for simulating customized virtual ICS security testbeds,
to investigate cyber threats and attacks. In particular:

1) We implement four types of cyberattacks: ’Reconnais-
sance’, ’Distributed Denial of Service’ (DDoS), ’false
data injection’ using Man-in-the-Middle (MitM) tech-
nique, and ’Replay’ attacks on an ICS testbed.

2) We develop ICSFlowGenerator, a reusable open-source
tool to extract network flow features from raw network
packets.

3) We propose the publicly available ’ICS-Flow’ dataset1

as a public resource. This dataset is unique in several
ways:

a) To further enhance the dataset’s practicality, we
have implemented multiple labeling strategies.

b) It contains a diverse set of network flow features
that capture different aspects of ICS network be-
havior.

c) The anomalies in the dataset are due to the realistic
implementation of network attack scenarios. This
differs from other datasets that employ the creation

1https://www.kaggle.com/datasets/alirezadehlaghi/icssim

of synthetic network anomalies, making our dataset
more representative of real-world conditions.

d) We offer a complete dataset without any
anonymization to provide comprehensive support
for anomaly detection, including a network flow
dataset, process state snapshots, attack logs, and
ICS components logs.

Moreover, to demonstrate the practicality of our proposed
dataset, we evaluate various ML-based intrusion detection
models on the ’ICS-Flow’ dataset and compare their perfor-
mance.

The remainder of this paper is organized as follows. Section
II presents the current state of the art for available testbeds.
Section III proposes the ICS-Flow intrusion detection dataset
by implementing a scenario using our proposed testbed in
another paper and injecting different types of attacks. Section
IV provides a detailed analysis of the generated dataset.
Section V shows the implementation of anomaly detection
techniques on the proposed dataset. Section VI compares and
discusses the results of the anomaly detection methods. Section
VII identifies the primary threats to the study’s validity and
applied mitigation techniques. Finally, Section VIII concludes
the paper and provides future research directions.

II. RELATED WORK

This section briefly surveys related work on network intrusion
detection datasets to highlight the prerequisites for future
datasets. A comprehensive survey of available datasets and
their strengths and weaknesses for anomaly detection is
beyond the scope of this paper. However, there are several
surveys in this area, such as [19]–[21], to mention a few.

Many datasets are available for anomaly detection in
computer networks, but the KDD Cup ’992 dataset is the
most well-known and widely used. In 1998, a DARPA dataset
[22] was collected using TCPdump of US air force LAN
simulation. A subset of the DARPA dataset used to extract
features by the Massachusetts Institute of Technology (MIT)
Lincoln Laboratory results in KDD Cup ’99 dataset [23].
This dataset contains 41 features per connection, categorized
into three groups: basic features, traffic features, and content
features. These features are computed for normal and attack
records, belonging to four types of attacks: User to Root
(U2R), Remote to Local attack (R2L), Probing, and Denial
of Service attack. However, there is some criticism against
this dataset. Firstly underlying network traffic backs to a few
decades ago. Secondly, the dataset records are not refined
well since there are many redundant records, and record
classes are not balanced across the dataset [24].

In 2009, Mahbod Tavallaee et al. [25] conducted a statistical
analysis on the KDDCUP’99, finding that some issues with the
dataset adversely affected the anomaly detection experiences.
They enhanced the KDD Cup dataset by resolving major

2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

https://www.kaggle.com/datasets/alirezadehlaghi/icssim
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


criticism such as duplicate or irrelevant records and data
asymmetry, which led to a new dataset titled NSL-KDD3.
This dataset collected approximately 150,000 data points and
divided them into training and test subsets with the same
attributes as KDD-CUP 99. This means that this data set does
not represent modern network attack scenarios.

Morris et al. [26] introduced comprehensive datasets encom-
passing network traffic, process control, and process measure-
ment features gathered from two laboratory-scale ICSs - a gas
pipeline and a water storage tank - utilizing the Modbus over
serial lines protocol. Their research involved executing various
attacks on their experimental setups, such as reconnaissance,
response injection, command injection, and Denial-of-Service
(DoS) attacks. Nonetheless, it is important to note that their
network traffic dataset solely comprises the features of Modbus
commands utilized within the ICSs.

To generate a dataset that reflects modern network traffic
scenarios and contains varieties of low-footprint attacks, the
Australian centre for cybersecurity researchers generated the
UNSW-NB 154 dataset [27]. This dataset contains 41 features,
categorized into six groups: flow, basic, content, time, addi-
tional general, and connection features. The first four feature
categories were derived directly from dumped traffic, and the
auxiliary C# program was developed to compute the other two
additional groups of features. They used IXIA PefectStorm
Tool 5 to generate normal and abnormal traffic; therefore,
despite the simulation of 9 different attack types, their attack
implementation restricts to predefined synthetic attack types
in the IXIA tool.

Canadian Institute for cybersecurity proposed the CI-
CIDS20176 dataset based on profiling the human users’ ab-
stract behavior [11]. To generate realistic background traffic,
they profiled the behavior of 25 human users, considering
eight famous attacks, namely brute force, DoS, botnet, and
Heartbleed. Finally, they extracted more than 80 network
parameters and then, using Random Forest Regressor, selected
the best features for each attack. Although the CICIDS2017
dataset has been used in many intrusion detection experiments,
it is not suitable for ICS since it does not reflect the ICS
network traffic patterns.

Mathur and Tippenhauer created a small-scale, but fully
operational water treatment system (SWaT) testbed for cyber-
security research [28]. Since SWaT is large and geographi-
cally dispersed, Programmable Logic Controllers (PLC) use
Wireless and wired Fieldbus communications to control the
sensors and actuators. Several attack scenarios are defined for
this testbed which targets single or multi-points on single or
multi-stages. They released the final dataset containing process
state variables, selected packet features, and logs of performed
attacks [29]7.

3http://www.unb.ca/cic/datasets/nsl.html
4https://research.unsw.edu.au/projects/unsw-nb15-dataset
5http://www.ixiacom.com/products/perfectstorm
6https://www.unb.ca/cic/datasets/ids-2017.html
7https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

Gómez et al. presented Electra8, an anomaly detection
dataset [16] for heterogeneous ICS scenarios. They selected
the railway industry, and the Electra dataset was conducted
using network traffic generated from normal and attack situa-
tions at a traction substation. Although this work has some
highlighted features, such as using realistic devices (PLCs
and SCADA), network protocols (Modbus), and scenarios,
their extracted features are limited to Modbus-related features
such as function code and errors. Therefore, this dataset lacks
general network features to detect intrusion.

TON_IoT dataset, presented by Alsaedi et al. [31]9, com-
prises Telemetry data of IoT/IIoT devices collected in a
controlled environment during both normal operations and in
the presence of different cyber-attacks. In addition, the dataset
also includes operating systems logs (such as disk or memory
usage and process information) and network traffic of an IoT
network, acquired from a realistic representation of a medium-
scale network at the Cyber Range and IoT Labs at the UNSW
Canberra (Australia). This dataset can be employed to create
and assess data-driven intrusion detection systems for IoT
and IIoT environments. While this dataset includes various
attack types, it falls short in terms of comprehensive network
features. It solely consists of fundamental network features
like the network addresses, the amount of transferred traffic,
and a few protocol-specific features such as HTTP, DNS, and
SSH. In order to gain a more holistic understanding of network
behavior during attacks, additional enriched network features
should be incorporated into the dataset. Moreover, although
the TON_IoT Dataset provides telemetry data for IoT/IIoT
devices, it differs considerably from the controlling system’s
domain targeted by our article, where controllers (PLCs) issue
controlling commands in a loop.

A Water Distribution Testbed (WDT) proposed by Fara-
mondi et al. [32] was used to generate an intrusion detection
dataset for ICSs. They emulated water flowing between 8
tanks as Hardware in a Loop (HIL) and used miniCPS [33]
as a simulation tool to simulate the control system and
networking infrastructure. This testbed had real hardwired
subsystems, virtually connected to a simulated one. Multi-
controller implementation is a key component of this study
since it enables attacks that target communication between
controllers. The proposed dataset includes both system state
variables and network data to reveal attack consequences on
physical processes and network traffic. This dataset has some
issues, including the fact that the network dataset only contains
packet-based features, which means network flow parameters
are not included.

Table I summarizes the differences between the available
datasets for intrusion detection experiments in industrial sys-
tems, including variations in logged data, implemented attacks,
and industry domain. Furthermore, the dataset’s quality can
be significantly affected by the specific implementation of
the testbed and attacks. Consequently, the next section offers

8http://perception.inf.um.es/ICS-datasets/
9https://research.unsw.edu.au/projects/toniot-datasets

http://www.unb.ca/cic/datasets/nsl.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://www.ixiacom.com/products/perfectstorm
https://www.unb.ca/cic/datasets/ids-2017.html
 https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
http://perception.inf.um.es/ICS-datasets/
https://research.unsw.edu.au/projects/toniot-datasets


Table I
SUMMARY OF INTRUSION DETECTION DATASETS RELATED TO OUR PROPOSED DATASET

Dataset Year Data Source Records Attacks

DARPA [22] 1998
Network traffic and audit logs
collected using a simulated
network (air force LAN)

Raw Pcap files of simulated network
dump

- U2R
- R2L
- DoS
- Probe

KDD Cup ’99
[23]

1999
A subset of the DARPA
dataset used to extract
features

Connection features (41 Features):
- Basic features
- Traffic features (same host/service)
- content feature

- U2R
- R2L
- DoS
- Probe

NSL-KDD
[25]

2009
Enhanced version of
KDD Cup ’99 dataset using
statistical analysis

Connection features (41 Features):
- Basic features
- Traffic features (same host/service)
- content feature

- U2R
- R2L
- DoS
- Probe

Gas Pipeline
[26], [30]

2014
Two laboratory-scale ICS
- a gas pipeline
- a water storage tank

- Network traffic,
- Process control,
- Process measurement features

- Reconnaissance
- Response Injection
- Command Injection
- Denial-of-Service

UNSW-NB15
[27]

2015
Used IXIA PefectStorm Tool
to generate normal and
malicious traffic

Flow features (47 Features):
- Flow features
- Basic features
- Content features
- Time features
- additional general features
- additional connection features

- Fuzzers
- Backdoors
- DoS
- Exploits
- Generic
- Reconnaissance
- Shellcode
- Worms

SWaT [29] 2016 Small-scale water
treatment system (SWaT)

Packet features (18 Features):
- Packet basic features
- TCP flags
- Modbus (code, value)
Process state Variables (51 features)

Multiple customized
attack scenarios,
with various attacks
per scenario

CICIDS2017
[11]

2017 Profiling the abstract
behaviour human users

Flow features (80 Features):
- Flow features
- Basic features
- Content features
- Time features

- Brute Force FTP, SSH
- DoS, DDoS
- Heartbleed
- Infiltration
- Botnet

Electra [16] 2019

Network traffic generated
from normal and attack
situations at a traction
substation

Modbus features (10 Features):
- Timestamp
- IP and MAC addresses
- Function code and data
- Error, memory address

- False Data Injection
- Replay
- Reconnaissance

TON_IoT
[31]

2020 Telemetry data of IoT/IIoT
Sevices

Telemetry data of Devices
Operating Systems logs
Network traffic
- General features
- HTTP, DNS, SSH features

- MitM - Password
- Scan -Ransomware
- (D)DoS - Injection
- Backdoor - XSS

WDT [32] 2021
Emulated water distribution
testbed, Including HIL and
controlling network

Packet features (14 Features):
- Packet basic features
- TCP flags
- Modbus (code, value)
Process state Variables (21 features)

- MitM
- Scan
- DoS
- Physical attacks

ICS-Flow
[This article]

2022
Emulated bottle filling factory
testbed, Including HIL and
controlling network

Flow features (54 Features):
- Flow features
- General features
- TCP features
- Extended labeling features
Process state variables
Attack logs
Network packets

- MitM (Injection)
- Scan
- DoS
- Replay Attack



more information on the development of the ICS-Flow dataset
to illustrate its potential value as a resource for evaluating
industrial IDSs.

III. ICS-FLOW DATASET

In this section, we introduce the ICS-Flow dataset, which is
designed as an evaluation dataset for ML-based IDSs intended
for industrial systems. We first present our industrial testbed
environment. Then, we describe selected attack types and
explain how the attacks are implemented. Next, we detail
the creation of the intrusion detection dataset, including the
network features derived and the network packet processing
techniques used to generate network flow features. Finally,
we introduce the labeling process and our different strategies
for labeling.

A. Testbed Environment

We used the bottle filling factory simulation provided by
ICSSIM [18] as a virtual testbed to investigate cyber threats
and attacks. The simulation, which is illustrated in Figure 1,
includes an ICS that controls the equipment within the factory
- such as pipes, valves, a conveyor belt, and a water tank
- to fill empty bottles with water from the tank. The input
valve regulates the water level in the tank to ensure that it
remains within the permissible range, while the output valve
controls the flow of water for filling bottles. The conveyor belt
engine ensures empty bottles are positioned correctly beneath
the filler. PLC-1 reads the tank water level and pipe water
flow sensors and sends control commands to turn input and
output valves ‘On’ and ‘Off’. PLC-2 monitors the water level
in filling bottles and the distance between the filler and the next
bottle using sensors. It also issues control commands for the
conveyor belt based on sensor readings and communications
with PLC-1.

Figure 1. The Sample bottle filling factory presented in ICSSIM framework
[18]

We enhanced the virtual testbed from [18] by introducing
new types of Human Machine Interfaces (HMI), control logic,
and attacks. The final architecture of the testbed, depicted in
Figure 2, consists of two PLCs that manage a bottle filling
factory and three HMIs that supervise the system and send
manual operational commands. All the components of the
ICS are connected through a network, and Table II provides
detailed network configurations of the ICS nodes. In this

Table II
ICS NODES NETWORK CONFIGURATIONS IN OUR TESTBED

Name Mac IP
PLC1 02:42:c0:a8:00:0b 192.168.0.11
PLC1 02:42:c0:a8:00:0c 192.168.0.12
HMI1 02:42:c0:a8:00:15 192.168.0.21
HMI2 02:42:c0:a8:00:16 192.168.0.22
HMI3 02:42:c0:a8:00:17 192.168.0.23
Attacker 02:42:c0:a8:00:29 192.168.0.41

testbed, all ICS components operate on Docker containers10

in automatic mode since the simulation is conducted using
ICSSIM. However, the use of automated HMIs in this testbed
may create uniform network traffic during regular operation,
which could decrease the difficulty of anomaly detection in the
dataset. To address this concern, we added random parameters
to the HMIs’ behavior.

• HMI1: constantly reads all controlling signals.
• HMI2: sends write commands based on a predefined

scenario to simulate HMIs’ user commands.
• HMI3: sends eligible write commands with uniform ran-

dom values.

Figure 2. The testbed architecture

In order to simulate network communication realistically,
the Modbus protocol has been employed for all communi-
cations. Modbus is a communication protocol widely used
in operational ICSs [34], originally designed for PLCs and
later adopted as the de facto standard for connecting industrial
electronic devices [35]. We use Modbus TCP to ensure com-
patibility with a variety of industrial devices. PLCs function
as Modbus-TCP servers, while ICS components establish
communication by creating Modbus-TCP client instances that
communicate with Modbus-Servers.

10https://www.docker.com/

https://www.docker.com/


To launch cyberattacks against the testbed, we connect an
attacker node to the ICS network. It is assumed that the at-
tacker has access to internal network traffic because many ICS
systems now offer remote monitoring for industrial equipment,
allowing attackers to access the ICS internal network through
infected remote HMIs. However, the attacker does not have
prior knowledge of the control system or controlling variables.
Therefore, the attacker must sniff the network and gather the
necessary information for complex attacks.

After setting up the testbeds, we captured network data
to create the ICS-Flow dataset, which includes the com-
munication between ICS components. We captured network
packets by running TCPdump on the switch, and this data
can be employed to train IDSs on the switch or as a stan-
dalone component within the control network. Implementing
the intrusion detection module within the control network
facilitates the detection of any dubious control activities and
allows for the monitoring of traffic among ICS components.
This is particularly useful in identifying attacks that launched
internally or attacks that have already penetrated the network
perimeter.

B. Attacks

Protocols used in ICSs are vulnerable due to their lack
of authentication, communication encryption, and integrity
checks [16]. These weaknesses allow attackers to eavesdrop
on or alter network transmissions, potentially disrupting ICS
operations. To exploit these vulnerabilities, we considered
four attack types to discover the network, sniff or modify
packets and disrupt ICS operation. We selected the attacks
regarded as common attack types in previous studies [16], [26],
[32]. Moreover, the ’MITRE ATT&CK’11, which is a globally-
accessible knowledge base of adversary techniques based on
real-world observations, and European Union Agency for
Cybersecurity (ENISA) reports12 [36] consider these attacks
to be common cyberattacks on ICSs.

Our team has developed a Python script that automates
the execution of attacks on the control system. Using this
script, the attacker node can quickly launch attacks based on
a predefined scenario. We have also designed the script to
allow the control system sufficient time to recover from any
destabilization caused by the attacks, ensuring that the system
remains stable and secure. The details of implemented attacks
are listed below.

1) Reconnaissance Attack: Intruders often begin with a re-
connaissance attack, which involves gathering valuable system
information as a preliminary step towards launching further
attacks [37]. A reconnaissance attack is passive since the
attacker merely captures information rather than disrupting the
victim’s functionalities. This attack does not impact industrial
operations, although its trace on the network traffic can still
reveal it. In our implementation, the intruder discovers the

11https://attack.mitre.org/techniques/ics/
12https://www.enisa.europa.eu/publications/

good-practices-for-security-of-iot

network by collecting information such as IP addresses, media
access control addresses (MAC), or open ports.

We have implemented the Reconnaissance attack with two
different scenarios: IP-Scanning and Port-Scanning. In the first
scenario, we utilize Ettercap13, a free and open-source network
security tool, and a Python script using the Scapy14, a packet
manipulation tool for networks, to broadcast Address Resolu-
tion Messages (ARP) to discover the alive network nodes. In
the second scenario, we use NMap15, a free and open-source
utility for network discovery, to gather information about the
hosts and ports on them in the network. NMap uses a port
scanning technique to find vulnerabilities on victim hosts. Each
scenario could reveal information about the target network
with different traces on the dataset.

2) Replay Attack: A commonly used attack in control
systems is the replay attack, which involves exploiting valid
network packets captured during normal system operation by
maliciously retransmitting them [16]. In this type of attack, the
attacker sniffs the network passively to collect valid packets
and then actively sends the recorded packets frequently to
other nodes, disrupting the system’s normal behavior. Since
replaying valid packets at inappropriate times can lead to unex-
pected results, this attack does not require in-depth knowledge
of network traffic packets. It is essential to note that this type of
attack can be highly damaging, even with minimal information
about the system.

We have implemented the replay attack using Scapy by
developing a Python script that executes the attack in two
phases. In the first phase, the attacker uses ARP poisoning
and the MitM technique to sniff network packets for 15
seconds. These packets are later replayed three times (45
Seconds) by the attacker to disrupt the control system’s regular
operation. However, replaying the exact same messages is not
possible since every TCP connection depends on two 32-bit
random sequence numbers generated by the client/server, and
packets with duplicate sequence numbers will be rejected. As a
solution, a replay attack on a TCP connection reuses only TCP
payloads. Therefore, the attacker uses intercepted IP addresses,
ports, Modbus commands, and arguments to create a new TCP-
Connection to perform a replay attack.

3) Distributed Denial of Service (DDoS) Attack: In order
to disrupt the industrial operation, attackers can flood the
network or service with a large number of packets or ser-
vice requests, resulting in a denial of service on the victim
component [38]. Meanwhile, using multiple attackers makes
the attack more effective. The DDoS target can be limited
bandwidth, storage, or computing power.

We leverage the network addresses collected during the
reconnaissance attack and the Modbus addresses gathered by
sniffing the network to conduct a DDoS attack. In this attack,
we use the ’DDoSAgent’ class from ICSSIM to generate a
massive flood of reading requests to the PLCs. Our imple-
mentation involves a script that spawns 800 instances of the

13https://www.ettercap-project.org/
14https://scapy.net/
15https://nmap.org/

https://attack.mitre.org/techniques/ics/
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot
https://www.ettercap-project.org/
https://scapy.net/
https://nmap.org/


’DDoSAgent’ class, which relentlessly bombards the PLCs
with read requests for 60 seconds. This results in significant
delays in the ICS network communication during the attack.

4) MitM Attack: We use a MitM attack to inject false data
into the controlling system. The false data injection attack
is one of the most critical malicious cyberattack [39] that
involves injecting incorrect data into the controlling system,
compromising the communication in ICSs. Using the MitM
technique, an attacker intercepts or manipulates communica-
tions between two ICS components while they believe they
are interacting directly with each other [40]. As part of our
testbed, we employ MitM techniques to inject false data into
the ICS system. Therefore, we refer to this attack as the false
data injection attack and the MitM attack.

To execute this attack, the attacker first performs ARP
poisoning on the ICS component, redirecting network packets
to their node. Next, the attacker intercepts the packets and
modifies the Modbus write requests and read responses by
multiplying their values with a specific factor. The attacker
then sends the manipulated packets to the intended destination.
Finally, ARP messages are sent to the ICS component to clear
routing tables and erase any evidence of the attack. A custom
Python script based on the Scapy library was used to carry
out the attack. The attack was repeated several times for a
duration of 30 seconds each time, resulting in a 10% error in
the Modbus read response data.

C. Feature extraction

Existing literature in the network security domain captures
the network either in packet-based or flow-based format [21].
Although packet-based datasets provide detailed information
regarding network anomalies, AI analysis of these voluminous
datasets is time-consuming, making it challenging to develop
an IDS. An alternative is using the network flows format,
which aggregates packets in a time interval with certain
properties. The typical shared properties are network protocol,
Source IP, Destination IP, Source Port, and Destination Port
[41]. The flow definition varies depending on the testbed
configuration. We also use a customized definition of flow
since our testbed uses the Modbus protocol, which always
uses port number 502 as the default port. Therefore, we define
a flow as an aggregated record of network packets within
a time interval with a similar source address, a destination
address, and network protocol. Based on the time setting of
our testbed, we considered 500 ms as an interval for flows in
this experiment.

To generate a network flow dataset, we developed the ICS-
FlowGenerator tool using the Scapy library, which is available
in our public GitHub repository16. The ICSFlowGenerator tool
follows the procedure presented in Algorithm 1. It iterates
through network packets in a dumped PCAP file and generates
flow features based on the interval option. The output is
a flow file in CSV format, containing flow-based features.
For network flows that are not TCP-based, the TCP payload

16https://github.com/AlirezaDehlaghi/ICSFlow

Table III
FLOW FEATURES

# Feature Description Type
1, 2 (s/r)Address Sender/Receiver IP address or

MAC address of flow
str

3 protocol Packet type and Network Protocol
(ARP, IPV4-TCP, IPV4-UDP, ...)

str

features columns are empty. In addition to TCP traffic, our
dataset includes ARP messages to detect MitM attacks. To
account for the lack of IP addresses in ARP messages, we
generate ARP flows based on their MAC addresses.

Algorithm 1 - ICSFlowGenerator
Inputs: PcapFile, Interval
Output: FlowFile

1: procedure GENERATEFLOWS
2: flows← ∅
3: foreach packet, time in PcapFile

// discard LCC frames without protocol
4: if ‘type‘ not in packet.fields then
5: Conitnue
6: src← Min(packet.src, packet.dst)
7: dst←Max(packet.src, packet.dst)
8: protocol← packet.protocol
9: if flows[src, dst, protocol] then

10: flow ← flows[src, dst, protocol]
11: else

// a flow is a collection of packets
12: flow ← new flow(src, dst, protocol)

// flush flows that was open for windows lenght
13: if time− flow[0].time > Interval then
14: Print(flow) in FlowFile
15: flow ← ∅
16: flow.add(packet, time)
17: flow.UpdateFeatures()
18: foreach flow in flows

// flush rest of flows
19: Print(flow) in FlowFile

The flow dataset contains 54 columns, including 50 features
and 4 label columns. Feature columns are categorized into
three categories: flow features, general features, and TCP
features. Table III presents the flow features, including the
source address, destination address, and network protocol.
Table IV introduces the general features category with 16
features that are shared for all network flows regardless of
the protocol type. This dataset also contains 20 TCP header
features outlined in Table V. These features are extracted from
TCP headers and contain statistics about Flags, time to live,
TCP window, and delays.

D. Labelling

The goal of labeling is to provide information about the
context of data. Although the quality of labelling data is not
precisely defined, several articles have stressed the importance

https://github.com/AlirezaDehlaghi/ICSFlow


Table IV
GENERAL FEATURES

# Feature Description Type
4 start Time stamp of the first packet in

the flow
float

5 end Time stamp of the last packet in
the flow

float

6 startOffset Time offset of first packet in the
flow relative to first packet in the
dataset

float

7 endOffset Time offset of last packet in the
flow relative to first packet in the
dataset

float

8 duration Flow interval, the difference be-
tween end and start time stamps

float

9, 10 (s/r)Packets Sent or received packets count
within the flow

int

11, 12 (s/r)BytesMax Maximum bytes sent or received
in one packet within the flow

int

13, 14 (s/r)BytesMin Minimum bytes sent or received in
one packet within the flow

int

15, 16 (s/r)BytesAvg Average sent or received bytes per
packet within the flow

float

17, 18 (s/r)Load Sent or received bits per second float
19, 20 (s/r)PayloadMax Maximum bytes sent or received

as a payload in one packet within
the flow

int

21, 22 (s/r)PayloadMin Minimum bytes sent or received
as a payload in one packet within
the flow

int

23, 24 (s/r)PayloadAvg Average payload bytes of sent or
received packets

float

25, 26 (s/r)InterPacket Average send or receive inter-
packet arrival time

float

Table V
TCP FEATURES

# Feature Description Type
27, 28 (s/r)ttl Average sending or receiving

time-to-live
float

29, 30 (s/r)AckDelayMax Maximum interval between pack-
ets and their acknowledge in
sender or receiver node

float

31, 32 (s/r)AckDelayMin Minimum interval between pack-
ets and their acknowledge in
sender or receiver node

float

33, 34 (s/r)AckDelayAvg Average interval between packets
and their acknowledge in sender
or receiver node

float

35, 36 (s/r)AckRate Rate of sent or received packets
contains ácknowledgef́lag

float

37, 38 (s/r)FinRate Rate of sent or received packets
contains ’Finish’ flag

float

39, 40 (s/r)PshRate Rate of sent or received packets
contains ’Push’ flag

float

41, 42 (s/r)RstRate Rate of sent or received packets
contains ’Reset’ flag

float

43, 44 (s/r)UrgRate Rate of sent or received packets
contains ’Urgent’ flag

float

45, 46 (s/r)AckRate Rate of sent or received packets
contains ’Synchronisation’ flag

float

47, 48 (s/r)WinTCP sender or receiver average TCP
window advertisement

float

49, 50 (s/r)FragmentRate sender or receiver Fragmentation
rate of TCP packets

float

of accurate labeling as a crucial component of producing
high-quality network traffic datasets [42]. Human-guided or
automatic labeling are two possible strategies to label datasets.
In this study, automatic labeling was employed since it is
fast, requires little expertise, and is easy to adapt for all
types of attacks [17]. The data required for training ML
models are different depending on how we define ML-based
intrusion detection. In this article, we aim to support two
types of definitions, anomalous record detection, and intrusion
detection.

In anomalous record detection, the network trace dataset
is labeled as normal or malicious, and the ultimate goal is
to classify dataset records into different categories. Several
approaches exist to do this classification, including binary
classifications for attack detection or multi-class classifications
for attack identification. However, the labeled dataset is always
required as a training set in supervised approaches or an
evaluation set for unsupervised ML methods, as record labels
are available in some datasets such as [11], [16], [25], [27].
Automatically recognizing anomalous network traces from
normal traffic is challenging [17]. To overcome this, we use
two different strategies for labeling; namely, Injection Timing
(IT) [43] and Network Security Tools (NST) [17]. In the
former strategy, we consider all network traffic during an
attack anomalous, while in the latter strategy, we only consider
network traffic coming from or going toward the attacker node
as an anomaly.

In intrusion detection, the ultimate objective is to find attack
occurrences by analyzing unlabeled datasets and system logs.
In other words, we do not look for anomalous flows but rather
for anomalous system behavior in a time period. A log data of
attack occurrence, along with unlabeled network and system
data, is required for this task to verify the intrusion detection
results. As pointed out in [29], a combination of unlabeled
network traces and the attack log file forms an unsupervised
or semi-supervised dataset for attack detection.

By providing attack occurrence log files and labeled network
traces using IT and NST strategies, we provide a dataset with
the flexibility to perform all described anomaly detections.
The labelling features are listed in table VI. However, we
believe that unlabeled datasets are more realistic for industrial
implementation since the final mission of IDSs is attack
detection, and labeled flows are not available in operational
ICSs.

Finally, as a complement to the class labels using the IT
and NST labeling strategy in binary and multi-class values,
we present the attack log file in Table VII to provide a ground
for further analysis.

IV. DATASET ANALYSIS

This section will provide a detailed account of how we
implemented our experiment and conduct a thorough analysis
of the ICS-Flow dataset. The analysis will include statistical
information about the dataset records, an explanation of the
final format of the dataset files, and using 2D representations
to visualize the dataset.



Table VI
LABEL FEATURES

# Feature Description Type
51 IT-B-Label 0 if record is normal, 1 if record

is malicious (using IT labeling
methodology)

int

52 IT-M-Label ’normal’ if record is normal,
’attack-name’ if record is mali-
cious (using IT labeling method-
ology)

str

53 NST-B-Label 0 if record is normal, 1 if record
is malious (using NST labeling
methodology)

int

54 NST-M-Label ’normal’ if record is normal,
’attack-name’ if record is
malicious (using NST labeling
methodology)

str

Table VII
ATTACK LOG FILE

Field Name Description
Attack Shows the attack that applied in the dataset
Start time Attack start time stamp in Unix time format
End time Attack end time stamp in Unix time format
Attacker IP IP address of the attacker
Attacker MAC IP address of the attacker
Extra Info Contains extra information about the applied attack

The network configuration was optimized to accommodate
the burst of network packets caused by a DDoS attack.
To capture all packets, we increased the buffer size of the
Switch to 400MB and utilized TCPdump to capture traffic.
The testbed was operational for three hours, with the first
hour being attack-free. This period without attacks provided
normal samples for anomaly detection techniques that use
semi-supervised AI. Over the following two hours, attacks
were conducted randomly and intermittently. We included gaps
between attacks to prevent attack overlaps, considering the
time required for system recovery after each attack.

We captured a total of 2GB of raw network traffic, compris-
ing over 25 million packets. Subsequently, we analyzed this
traffic using ICSFlowGenerator and generated a final dataset
of 45719 network flows. The detailed statistics on the labeled
flows using IT and NST labeling strategies are presented in
Table VIII and Figure 3. These statistics reveal that the number
of attack flows identified using the NST approach is lower than
that of the IT approach, as the NST method has stricter criteria
for classifying a flow as an attack. Furthermore, as part of
the experiment, we logged process variables using the PLCs’
logger. These log files are available in CSV format and can aid
researchers in identifying anomalies based on process variable
analysis. Lastly, the dataset comprises four files, namely, the
raw Pcap file, the labeled network flow dataset, the attack
log file, and process state variables, all of which are publicly
accessible in our repository17.

Visualizing dataset records help us identify data patterns.
However, a large number of normal network flows in this

17https://www.kaggle.com/datasets/alirezadehlaghi/icssim

Table VIII
FLOW STATISTICS USING IT AND NST LABELING STRATEGIES IN

ICS-FLOW DATASET

Attack type # of IT Flows # of NST Flows
Normal 30236 36706
IP-Scan 712 192
Port-Scan 3235 1944
Replay 4300 2358
DDoS 4221 1934
MitM 3014 2584
Total 45719 45719

unbalanced dataset obscure the attack network flows. To
alleviate this problem, we chose to visualize only the second
half of the dataset, which contains a mix of normal and attack
records. We applied two techniques to show multi-dimensional
data in the 2D diagrams. Firstly, we applied Principal Compo-
nent Analysis (PCA) [44], a popular technique for analyzing
large datasets with many features. Although PCA is primarily
used for reducing data dimensions, extracting the first two
or three features enables us to demonstrate data in 2D or
3D presentation. Figure 4-A demonstrates that while PCA
is helpful for visualizing data, it does not clearly show data
clusters. Secondly, to visualize the high-dimensional data, we
employed t-Distributed Stochastic Neighbor Embedding (t-
SNE) [45], a statistical method known for its effectiveness
in dimensionality reduction. We conducted a grid search over
a range of perplexity values [30, 50, 100, 250, 500, 1000], and
chose a perplexity of 250 based on its optimal performance.
Figure 4-B illustrates the 2D presentation of the ICS-Flow
dataset using t-SNE with perplexity 250. Our analysis revealed
that DDoS, Port-Scanning, and MitM attacks form distinct
clusters. However, distinguishing between replay attacks and
normal attacks is challenging since replay attacks are designed
to mimic the behavior of a normal system. Furthermore, IP-
Scan attack records are merged with other groups, which we
will analyze and explain in the results and discussion section.

V. ML-BASED ANOMALY DETECTION MODELS

This section illustrates how ML techniques can be applied to
detect and identify intrusions using our dataset. We conducted
two separate experiments with the dataset: intrusion detection
and identification. The objective of the intrusion detection
experiment was to identify attack flows irrespective of their
attack type. To achieve this, we classified records into normal
or attack flows. In the intrusion identification experiment,

Figure 3. IT and NST Class labels distribution over ICS-Flow dataset.

https://www.kaggle.com/datasets/alirezadehlaghi/icssim


Figure 4. 2D presentation of ICS-Flow dataset records using PCA and t-SNE techniques

we aimed to identify the specific attack type, which could
help devise an effective mitigation strategy. The performance
evaluation of the ML methods on the ’ICS-Flow’ dataset
was conducted using a four-phased methodology, depicted in
Figure 5. In the rest of this section, we will talk about actions
performed in these phases in detail.

Figure 5. Methodology to assess ML-methods

A. Data Preparation

During the dataset preprocessing phase, the following steps
were conducted:

1) In the dataset, certain rows have missing column values
due to the inability to compute TCP features for non-
TCP protocol flows like UDP flows. To address this,
we have replaced the missing values with a placeholder
value of ’0’.

2) For the attack detection and identification experiments,
the ‘NST-B-Label’ and ‘NST-B-Label’ columns were
chosen as output variables, respectively.

Table IX
MRMR SCORE OF SELECTED FEATURE

Rank Feature MRMR Score
1 & 2 rBytesAvg & sBytesAvg 0.4309 - 0.0559
3 & 4 sFinRate & rFinRate 0.4058 - 0.1479
5 & 6 sSynRate & rSynRate 0.3886 - 0.1731
7 & 8 sRstRate & rRstRate 0.2323 - 0.2072
9 & 10 rttl & sttl 0.1738 - 0.1075
11 & 12 sAckRate & rAckRate 0.1366 - 0.0690
13 & 14 sMaxAckDelay & rMaxAckDelay 0.1241 - 0.0831
15 & 16 sPackets & rPackets 0.0825 - 0.0587
17 Protocol 0.821
18 & 19 sWinTCP & rWinTCP 0.0718 - 0.0688
20 & 21 rPayloadAvg & sPayloadAvg 0.0716 - 0.0671
22 & 23 rInterpacket & sInterpacket 0.0701 - 0.0553

3) The sender address (‘sAddress’) and receiver address
(’rAddress’) columns were excluded from the experi-
ment to prevent the attack detection task from becoming
trivial due to the use of a fixed IP for the attacker.

4) The start time (‘start’ and ‘startOffset’) and end time
(‘end’ and ‘endOffset’) columns were eliminated, as they
solely entail temporal data and do not offer any valuable
understanding of the cyberattacks.

5) The dataset was partitioned into three subsets: training,
validation, and test sets, which comprised 50%, 20%,
and 30% of the data, respectively.

6) We utilized the ‘Min-Max’ normalization method de-
scribed in Eq. 1 to normalize the numerical features.
Here, Min and Max represent the minimum and maxi-
mum values of a feature in the training set, respectively.

VNorm =
V −Min

Max−Min
(1)

B. Feature Selection

During the feature selection phase, we utilize the Maximum
Relevance, and Minimum Redundancy (MRMR) technique
[46] to reduce the dimensionality of our data. MRMR assigns



Table X
HYPER-PARAMETERS SEARCH SPACE OF ML ALGORITHMS

Method Search space parameters
DT Split criterion: [Gini’s diversity index, Twoing rule, and

Maximum deviance reduction]
RF Number of learners: [10:500], Number of predictors to sam-

ple: [1:40]
ANN Layers: [1, 2, 3] Layer size: [1 : 300] Activation: [ReLU,

Tanh, None, and Sigmoid]

a score to each feature based on its relevance and redundancy
with other feature columns. To constrain the size of our feature
set, we only select features with scores above 0.07. This
threshold was determined by iteratively testing various thresh-
olds and measuring the model’s accuracy on the validation
set. Note that many of our parameters, such as ‘sBytesAvg’
and ‘rByteAvg’, are dual counterparts; Therefore, selecting
one requires selecting its corresponding dual parameter. Table
IX presents the 23 features that have been selected for our
experiment, along with their corresponding MRMR scores.

C. Model Construction

In the third phase, we apply supervised ML models to perform
the flow classification. During this phase, we use three off-
the-shelf classification techniques, which have shown better
performance in previous studies [47], [48]: Decision Tree
(DT), Random Forest (RF), and Artificial Neural Networks
(ANN). We also optimize the accuracy of these algorithms by
giving effective values to their hyper-parameter settings and
measuring their performance on the validation set. Table X
summarizes the examined hyper-parameters for each approach.

D. Model Validation

We chose not to balance the classes in the dataset that we
generated, as we were unable to identify a realistic distri-
bution of attacks in operating ICSs. Nevertheless, to handle
the unbalanced data, we employed performance metrics that
could effectively measure the model’s precision on such data.
Hence, in addition to accuracy, we employed metrics such as
accuracy(Eq. 2) , recall (Eq. 3), precision (Eq. 4), and F1-
score (Eq. 5), and confusion matrix to showcase how well the
ML methods performed on unbalanced data.

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F1− Score =
2

1
Precision + 1

Recall

(5)

Where FP=False Positive, FN=False Negative, TP=True
Positive, and TN=True Negative.

Table XI
HYPER-PARAMETERS OF ML ALGORITHMS

Model Mode Hyper Parameters

DT Binary Split criterion: Maximum deviance reduc-
tion, Maximum number of Splits: 314

Multi-class Split criterion: Twoing rule, Maximum
number of Splits: 1000

RF Binary Number of learners: 10, Maximum num-
ber of splits 850, Number of predictors to
sample: 17

Multi-class Number of learners: 54, Maximum number
of splits:1680, Number of predictors to
sample: 8

ANN Binary Fully connected layers: 1, Activation: Sig-
moid, First layer size: 79

Multi-class Fully connected layers:1, Activation: Sig-
moid, First layer size 257

Table XII
TEST RESULTS OF THREE ML-METHODS FOR ATTACK DETECTION

Accuracy Precision Recall F1-score

DT Normal 99.4% 99.8 99.5 0.9965
Attack 97.9 99.1 0.9850

RF Normal 99.5% 99.9 99.6 0.9965
Attack 98.2 99.5 0.9885

ANN Normal 99.5% 99.5 99.8 0.9965
Attack 99.2 98.0 0.9860

VI. RESULTS AND DISCUSSION

The results for ML-based intrusion detection using the optimal
hyper-parameter setup (Table XI) are shown in Table XII.
While all algorithms identify attack flows with greater than
99.4% accuracy, the RF technique outperforms the others with
99.5% accuracy and a higher F1-score. Despite the 98.2%
precision of the RF algorithm in detecting attacks, even a low
number of false alarms can impose high disruption costs in
system operation.

In another experiment, we assessed the performance of ML
methods for attack identification, and the results are presented
in Table XIII. The RF method outperformed the others with
an accuracy of 98.4%. However, the ML methods exhibited a
decrease in accuracy due to their inability to recognize certain
attack types. Although all three methods remained above
98.1% accuracy, there was a significant decline in F1-score,
which is a more reliable assessment metric when dealing with
imbalanced classes. Despite this, the ML methods effectively
identified normal flows, as evidenced by their F1-score exceed-
ing 0.99. The high F1-score for DDoS attack identification was
expected since DDoS flows are easily detectable by monitoring
massive packets and connections during the attack. Conversely,
the F1-scores for IP-scan, Port-Scan, MitM, and Replay attack
indicate that accurately classifying flows into the correct attack
types is a non-trivial task, especially for IP-Scan with an F1-
score of only 0.52.

Figure 6 depicts the RF classifier’s confusion matrix to
analyze misclassification samples. The majority of mistakes
are caused by either: 1) attack records that were mistakenly
classified as IP-Scan attacks, and 2) confusion between records
of replay and MitM attacks. After conducting an in-depth



Table XIII
TEST RESULTS OF THREE ML-METHODS FOR ATTACK IDENTIFICATION

Accuracy Precision Recall F1-score

DT

Normal

98.1%

99.8 99.5 0.9965
DDoS 100 99.9 0.9995
IP-Scan 35.9 94.8 0.5208
MitM 90.9 88.2 0.8953
Port-Scan 94.9 93.2 0.9404
Replay 93.6 90.5 0.9240

RF

Normal

98.4%

99.9 99.5 0.9970
DDoS 100 99.9 0.9995
IP-Scan 36.8 98.4 0.5357
MitM 91.1 90.4 0.9075
Port-Scan 94.9 93.3 0.9419
Replay 95.4 89.9 0.9257

ANN

Normal

98.2%

99.5 99.8 0.9964
DDoS 99.9 99.7 0.9980
IP-Scan 36.5 65.6 0.4690
MitM 90.7 92.3 0.9149
Port-Scan 93.3 89.6 0.9141
Replay 98.9 88.6 0.9347

technical analysis of the Port-Scan, Replay, and MitM attacks,
it was discovered that they employ the ARP poisoning tech-
nique as part of their process, which is remarkably similar to
the IP-Scan process. This similarity in process results in the
misclassification of some flows. Additionally, both the Replay
and MitM attacks follow a same strategy for directing packets
to the attacker node. Although the MitM attacker node alters
routed packets, while the replay attacker node simply records
packets temporarily, both attacks have the same routine for
route redirection, causing similar impacts on network traffic.

Finally, the findings in this section show that ML methods
can detect cyberattacks with high accuracy. However, deter-
mining attack types is not always straightforward. Individual
flow analysis cannot differentiate between flows of identical
processes used in different attack procedures. Although the
impacts of various cyberattacks on network parameters are
sometimes extremely similar, assessing the network status
before and after individual records can provide a more accurate
approximation of the type of prospective attack on the system.
To tackle the mentioned problem, analyzing the predecessor
and successor is a promising technique, which is the primary
goal of sequence anomaly detection techniques.

Figure 6. Confusion matrix of RF model for attack identification

VII. THREATS TO VALIDITY

To enhance the validity of our research against potential
challenges, we have adopted the well-established guidelines
outlined in [49]. As part of this process, we have identified
potential validity threats and implemented appropriate mitiga-
tion strategies to address them.

A. Threats to construct validity

In order to simulate cyber threats, we had to select a limited
number of attacks. We chose to focus on attacks commonly
referenced in previous studies, such as those cited in [16], [26],
[32]. These attacks are also recognized as common cyberat-
tacks on ICSs by globally-accessible knowledge bases, such
as the ’MITRE ATT&CK’18 and reports from the European
Union Agency for Cybersecurity (ENISA) [36]. Moreover,
while there is no standard approach or tool for implementing
cyber attacks, we simulate attacks using common and open-
source tools like Scapy and NMap. This decision was made to
reduce the possibility of attack simulation errors, which could
compromise the construct validity of our results.

Attack implementation in our analysis assumes that the
attacker has already gained access to the control zone network.
This type of access can be obtained using various methods,
including physical access to network equipment, hijacking
ICS wireless communications, or exploiting infected ICS
components with malware, as described in [18]. For example,
malicious software, such as trojans and viruses, can enable
unauthorized operations on the ICS. In addition, attackers may
establish backdoors or use remote access software to access
the control zone network remotely.

B. Threats to internal validity

To mitigate any potential bias towards fake results, we took
measures to ensure the integrity of our findings. Expressly, we
set aside 30% of the data as a test dataset and allocated 50%
of the data for training the model and 20% for validation.
This rigorous approach allowed us to avoid any potential
bias introduced by hyper-parameter tuning, and the results
presented in Section VI can be considered reliable.

Given the lack of a realistic distribution of carried attacks
in operating ICSs, we deliberately decided not to balance
the classes in our generated dataset between normal and
under-attack samples. Instead, we utilized various performance
metrics such as F1-score, precision, recall, and confusion
matrix to assess the efficacy of our ML methods on unbalanced
data. This approach allowed us to accurately evaluate the
performance of our model without artificially manipulating the
data distribution.

C. Threats to internal validity

We have made significant contributions to the ICSSIM Frame-
work [18] by enhancing it to create a network dataset that
other researchers can utilize to develop IDSs. Our ICS-Flow
dataset was created by identifying relevant network properties

18https://attack.mitre.org/techniques/ics/
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that could be employed in other ICSs to detect intrusions. To
facilitate the creation of this dataset, we developed an open-
source ICSFlowGenerator tool that can calculate network flow
features from raw network traffic data. These features can be
extended or utilized in similar research to convert network
traffic into a network flow dataset. Furthermore, the intrusion
detection ML models we have described can be retrained with
new environment network data for different ICSs. This opens
up opportunities for other researchers to build upon our work
and adapt it to their use cases.

VIII. CONCLUSION

The ICS-Flow dataset is introduced in this paper as a bench-
mark for validating ML-based network intrusion detection
techniques in ICSs. The dataset was created using ICSSIM
Tools to set up a virtual ICS testbed for a sample bottle filling
factory. To simulate realistic attacks on ICSs, we employed
various common attack types, drawing from observations in
‘ENISA’ and ‘MITRE ATT&CK’. During both normal and
attack scenarios, we recorded the ICS’s network packets and
physical process state variables. To handle the computational
complexity of analyzing individual network packets, we de-
veloped the ICSFlowGenerator tools as a free and open-
source solution for processing captured raw network data
into a network flow dataset. This tool can analyze network
packets and produce network flows that include 50 different
network features, such as flow features, general features, and
TCP features. We also labeled the network flow records using
various strategies to facilitate supervised learning studies and
provide a foundation for testing unsupervised approaches. We
have made the raw network traffic, the flow dataset, and log
attack files publicly available for research in this field. Finally,
we evaluated the dataset’s applicability for intrusion detection
validation using several supervised ML techniques, including
ANN, DT, and RF.

Implementing IDS in industrial systems poses a number
of challenges, with false alarms being the most significant
obstacle. These false alarms can lead to costly interruptions in
regular system operations. To mitigate this issue, a promising
direction for future research is to explore the use of extended
monitoring periods or sequence anomaly detection techniques,
which have the potential to reduce the incidence of false
alarms. Another challenge associated with IDS implementation
is the unpredictability of attacker techniques. Attackers may
use novel techniques that cause different effects on network
packets, making it impossible to detect them using supervised
ML. For this reason, investigating unsupervised binary and
multiclass classification is another direction for future work.

Moreover, it is worth noting that network attacks not
only impact network traffic but can also modify physical
processes. As the ICS-Flow dataset includes both types of
data, a potential direction for future research would be to
integrate network monitoring with physical process monitoring
to identify cyberattacks.
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