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Abstract—A Distributed Denial-of-service (DDoS) attack is a
malicious attempt to disrupt the regular traffic of a targeted
server, service, or network by sending a flood of traffic to
overwhelm the target or its surrounding infrastructure. As tech-
nology improves, new attacks have been developed by hackers.
Traditional statistical and shallow machine learning techniques
can detect superficial anomalies based on shallow data and
feature selection, however, these approaches can not detect unseen
DDoS attacks. In this context, we propose a reconstruction-based
anomaly detection model named LSTM-Autoencoder (LSTM-
AE) which combines two deep learning-based models for de-
tecting DDoS attack anomalies. The proposed structure of long
short-term memory (LSTM) networks provides units that work
with each other to learn the long short-term correlation of
data within a time series sequence. Autoencoders are used to
identify the optimal threshold based on the reconstruction error
rates evaluated on each sample across all time-series sequences.
As such, a combination model LSTM-AE can not only learn
delicate sub-pattern differences in attacks and benign traffic
flows but also minimize reconstructed benign traffic to obtain
a lower range reconstruction error, with attacks presenting a
larger reconstruction error. In this research, we trained and
evaluated our proposed LSTM-AE model on reflection-based
DDoS attacks (DNS, LDAP, and SNMP). The results of our
experiments demonstrate that our method performs better than
other state-of-the-art methods, especially for LDAP attacks, with
an accuracy of over 99%.

Index Terms—LSTM, Autoencoder, anomaly detection, multi-
variate analysis, time-series, DDoS Attack

I. INTRODUCTION

NETWORK traffic is increasing rapidly with the con-
tinued development of information and communication

technology (ICT) due to advanced innovative technologies,
including cloud computing, and big data. However, the rapid
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proliferation of innovative technologies and communication
infrastructure brings the potential for cyberattacks and other
threats to Internet users. In the area of cyber security attacks,
one of the most dangerous threats is a distributed denial-of-
service (DDoS) attack [1]–[3].

A DDoS attack is a form of network attack that attempts
to overwhelm online services, websites, and web applications
with malicious traffic from multiple compromised computer
systems. It can also make simultaneous requests to the target
server in order to exhaust the network resources and thereby
deny normal online service to legitimate users or computer
systems [4]–[6]. DDoS attacks are not only conducted against
online services, web applications, and information infrastruc-
ture to cause downtime, but also to prevent legitimate users
from purchasing products and using online services - such
as emails, websites, and applications - and affecting program
performance [6]. As a result of the COVID-19 lockdown in
2020, there has been an increase in attacks on education, online
shopping, and office work, as a large number of people are now
studying, working, and shopping online, giving hackers greater
opportunities [7]. In [8] Azure Networking found there was a
25% increase in DDoS attacks in the first six months of 2021
when compared with the fourth quarter of 2020. Moreover,
Azure mitigated approximately 35 thousand attacks against its
global infrastructure in the last six months of 2021, which
increased from 43% compared with the first six months of
2021. A white paper from Cisco [9] predicted that nearly 300
billion mobile applications would be downloaded by 2023 and
that DDoS attacks would rise to 15.4 million globally by 2023.

DDoS detection is becoming an urgent need because of
the sophistication and diversification of attacks. For instance,
difficult-to-track attackers and unknown or new attack types
occur continuously, for example, zero-day attacks [10], [11].
Detecting DDoS attacks becomes more and more difficult not
only because a large proportion of attack traffic is similar
to legitimate traffic, but also because of newer hybrid attack
methods [3], [5]. Therefore, the detection and mitigation of
DDoS attacks not only protects the network for legitimate
users but also reduces financial loss for businesses [12]. In
order to detect and mitigate DDoS attacks, statistical tech-
niques have been proposed in [13] to identify DDoS attacks.
Furthermore, some machine learning approaches for signature,
threshold, and statistics-based measurements have been pro-
posed to distinguish DDoS attack traffic [14], [15]. However,
traditional statistical and machine learning can not detect pre-
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viously unseen DDoS attacks [5]. Moreover, most traditional
statistical and machine learning-based detection approaches
require better-selected features or defined thresholds [3], [5].
In contrast to traditional detection techniques, deep learning-
based DDoS attack detection - such as Convolutional Neural
Networks (CNNs) [5], Recurrent Neural Networks (RNNs)
[3], Autoencoders [12], and so forth - can offer better de-
tection rates for DDoS network traffic [3]. However, some
limitations in existing deep learning-based detection need to
be addressed, for example, Autoencoder models are sensitive
to the anomalies in the training stage, and RNNs can better
address historical sequence data, but face the shortcoming of
the vanishing gradient problem. To address these issues, we
propose a reconstruction-based hybrid deep learning model
that combines the capabilities of long short-term memory
(LSTM) and Autoencoders (AE) for detecting DDoS attacks,
using the state-of-the-art CICDDoS2019 datasets.

In this research, the LSTM model aims to solve the time-
series sequence problem of DDoS traffic flow, while the AE is
used to calculate the reconstruction loss in order to define the
threshold and detect DDoS attacks. In order to overcome the
shortcoming caused by sensitivity to anomalies in the training
process, we use only benign traffic from the DDoS dataset to
train our model and minimize the reconstruction error. Further-
more, the LSTM can learn the time series sequence of DDoS
network traffic continuously but learns the delicate difference
between attacks and benign traffics based on the time window
length section. A combination model LSTM-AE can learn
delicate differences in sub-patterns between attacks and benign
traffic while minimizing the reconstructed benign traffic to
obtain a lower range reconstruction error. Our experimental
results showed that the proposed LSTM-AE model achieves
better performance in processing reconstruction-based time-
series data than other comparable proposed models. The main
contributions of our proposed model are as follows:

Summary of Original Contributions
• We propose a novel time-series anomaly detection archi-

tecture that leverages reconstruction-based LSTM-AE for
efficient DDoS attack detection. In our proposed model,
the LSTM networks are comprised of multiple LSTM
units that work with each other to learn the long short-
term correlation of data within a time series sequence.
An autoencoder is used to identify the optimal threshold
based on the reconstruction error rates evaluated across all
time-series sequences. This threshold is used to identify
anomalies.

• We apply our proposed LSTM-AE model against the
reflection-based DDoS attacks - DNS, LDAP and SNMP.
The model is trained on normal time-based traffic flow
features using a subset of traffic flow information over a
fixed-time window length.

• A novel anomaly score technique is proposed to calcu-
late the MAE value of each traffic flow, which can be
calculated flexibly based on different fixed-time window
lengths.

• We performed tests on the state-of-the-art CICDDoS2019
dataset, and compared the performance of our proposed
model with other similar approaches that use different

aspects of LSTM and/or AE. Our experimental results,
based on the comprehensive set of evaluation criteria,
demonstrate that our proposed model can effectively
detect anomalies reaching a detection accuracy exceeding
99%.

The rest of this paper is structured as follows: Section II
introduces related works in the field of DDoS attack detection.
Section III introduces our methodology. Section IV illustrates
the experimental setup and Section V details the analysis of
our results evaluated on the various reflection-based attack
types, including DNS, LDAP, and SNMP datasets. Section VI
concludes the paper with the planned future works.

II. RELATED WORK

In recent years, anomaly detection has attracted extensive
attention in literature exploring machine learning techniques.
In this paper, we review the issues of variable length of DDoS
anomaly detection, areas closely related to our contributions.

Sharafaldin et al. [16] generated a dataset titled CICD-
DoS2019 and classified benign traffic and attacks based on
4 machine learning methods, including ID3, Random Forest,
Naı̈ve Bayes, and Multinomial Logistic Regression. The eval-
uation result shows the highest accuracy from RF and ID3. Jia
et al. [17] proposed an IoT DDoS defense technique named
FlowGuard, and constructed LSTM and CNN techniques for
DDoS identification and classification based on simulated
data and CICDDoS2019 dataset to identify, classify, and
mitigate DDoS attacks. They used a CNN to better classify
all malicious flows, then employed the LSTM technique as
an identification module. This was not only able to capture
significant features of flows to identify benign samples but also
to apply a softmax function on the output layer to distinguish
between benign and malicious traffic. The above researches
used flow-based statistical features, which were extracted from
CICDDoS2019 dataset for DDoS attack detection.

Novaes et al. [18] introduced two scenarios for detect-
ing anomalies and mitigating attacks on Software-Defined
Networks (SDNs) using LSTM-FUZZY techniques. Firstly,
the authors used an LSTM network semi-supervised learning
technique to predict benign univariate time series behaviour
of IP flows, followed by classifying attacks with a Fuzzy
logic technique. There were two datasets used in this re-
search, including the SDN dataset and the CICDDoS2019
dataset. Aydin et al. [19] proposed an LSTM-based system
(LSTM-CLOUD) to detect and prevent DDoS attacks in a
public cloud network environment through experimentation on
CICDDoS2019 dataset. The authors built the LSTM models
with two hidden layers, three dense and dropout layers, and
used the sigmoid function to classify benign and DDoS attacks
(anomalies). The model performed to a high accuracy rate of
99.83%, but this work only classified 3 attack types of attacks
- UDP, MSSQL, SYN - as well as benign traffic samples.

Nezhad et al. [20] normalized two features (packets and
source IP addresses) on a 1-minute time series interval by
using a Box-Cox transformation. They then used a statistical
time series analysis technique called ARIMA to predict the
number of packets.
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Ergan et al. [21] introduced LSTM-based neural networks
to detect anomalies in a time series in an unsupervised manner.
The author employs an LSTM-based network technique to
obtain the fixed-length sequence data. They utilized the OC-
SCM and SVDD algorithms together with a scoring function
to detect anomalies.

Salahuddin et al. [12] proposed a time-based Autoencoder
technique named Chronos to detect DDoS traffic anomalies
with aggregating features. One of the contributions in this
research was the threshold they selected to highlight the
efficiency of their anomaly detection system. They utilised
threshold selection heuristic maximizes the F1 score. To detect
anomalies effectively, they implemented various window sizes
on different DDoS attacks. As a result, the proposed Chronos
system achieves an F1-score of 99% for most attack types and
over 95.86% for all attack type performance measurements
by using two-time windows along with the selected heuristic
threshold.

Fouladi et al. [22] used the CAIDA dataset to train and
evaluate the K-SVD and BMP (Basic Matching Pursuit) al-
gorithms and a SOM (Self-Organizing Map) model, using
sparse coding and frequency domain for DDoS attack anomaly
detection. They extracted normal time series data using a
K-SVD algorithm and applied a BMP method to train and
evaluate the benign data to estimate the sparse coefficients.
They then used the normal data on the SOM model to obtain
a SOM lattice. This enabled them to calculate the minimum
Euclidean Distance between corresponding coefficients and
use the SOM lattice to distinguish between normal and attack
behaviors.

Although many researchers above have introduced statistical
and machine learning techniques to detect anomalies in the
DDoS datasets, it was also a challenging task worthy of
further study, especially for distinguishing subtle differences
in benign and attack traffics. In this research, we propose a
hybrid deep learning reconstruction-based LSTM-Autoencoder
model for anomaly-based DDoS attack detection. Our model
uses a specific selection of features over multivariate time-
series data analysis. Compared to the above statistical and
machine learning-based studies, the differences in this research
can be detailed as follows: 1) Our LSTM-AE neural network
model conducts training and testing in an unsupervised manner
(without labels), this is combined with the reconstruction error
used to detect anomalies with several different time window
lengths; 2) Anomaly detection in our proposed model gave
experimental results for that DDoS attack anomaly detection
with high accuracy on the CICDDoS2019 time-series dataset;
3) This experiment performed better in terms of the perfor-
mance matrix - including precision, recall, and F1-score - than
benchmark studies on the same CICDDoS2019 dataset, such
as [16], which used machine learning techniques (including
Random forest, Naive Bayes, etc.) to detect DDoS attacks.

III. LSTM-AUTOENCODER ANOMALY DETECTION

A. Overview of Our Framework

This section provides an overview of our reconstruction-
based time-series anomaly detection system. One of the

DDoS traffic characteristics is collecting correlated temporal
sequences, and the deep learning technique of LSTM is a
good algorithm to deal with this temporal problem. Thus, we
adopted the LSTM model for the LSTM-Autoencoder neural
network for the Encoder and Decoder stages as its mechanism
better captures DDoS flow information by feeding each flow
at each time step. We propose a hybrid machine learning
model which combines an LSTM neural network and an au-
toencoder. We apply our model to the multivariate time-series
dataset CICDDoS2019. As illustrated in Fig. 1, our LSTM-AE
model builds the LSTM networks on the encoder and decoder
schemes of an Autoencoder. The encoder obtains the sequence
of the high-dimensional input data as a fixed-size vector.
Using the memory cells of LSTM, the data processed by
the encoder scheme retains the dependencies across multiple
data points within a time-series sequence. This stage reduces
the high-dimensional input vector representation into a low-
dimensional representation. The decoder-LSTM reproduces
the fixed-size input sequence from the reduced representation
of the input data in the latent space, while reconstruction error
rates determine the classification threshold. Fig. 1 depicts the
operation of a model for DDoS anomaly detection. Phase 1 is
data pre-processing based on the selected characterization of
each traffic flow fed into the LSTM-AE neural network. Phase
2 is the training and testing process, in which the threshold
is obtained based on minimizing the reconstruction error on
benign traffic. The DDoS anomaly detection is the last phase in
the diagram, which determines anomaly scores by calculating
the reconstruction error of each traffic flow between the time-
series sequence’s original input and the reconstructed output.

B. Feature usage and Input Sequence Data

Fig 1 shows an overview of our proposed LSTM-AE model.
To obtain the DDoS traffic flow data, we used the public
dataset CICDDoS2019 [16] from the Canadian Institute for
Cybersecurity. In [16], the extracted network traffic features
are stored in a CSV file, and each CSV file includes different
DDoS attack types (anomalies) and benign traffic. In this
research, we used three reflection-based DDoS attack types
to detect anomalies, specifically DNS, SNMP and LDAP. As
shown in the first part of the DDoS traffic window in Fig 1,
all DDoS traffic flows are separated into n subsets based on
a selected window length.

As our LSTM-AE model for detecting anomalies depends
on learning the network traffic patterns, it is important to
use high correlation features to obtain high performance in
measurements such as accuracy. Using the research on the
state-of-the-art CICDDoS2019 DDoS attack dataset in [16],
the author specifies the importance of selecting the top-n
features which correspond to the weight and mean value of
different attack types. In this research, we have also used these
top-n features as depicted in [16] from the CICDDoS2019
dataset. As such ’Max Packet Length’, ’Fwd Packet Length
Max’, ’Fwd Packet Length Min’, ’Average Packet Size’, ’Min
Packet Length’ is used as selected features for our multivariate
time-series anomaly detection. After feature selection, the
input data has to be reshaped into a 2-dimensional vectors
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Fig. 1: Overview of our proposed model

before the data is fed into the required LSTM encoder input
layer. The original DDoS dataset is comprised of a series of
time sequence [X1, X2, X3, ..., Xn]. Each sequence X with a
fixed T-length time window data [x1, x2, x3, ..., xt] is created
where xt ∈ Rm represents an m-features input at time-
instance t. They are then reshaped into 2-D (2-dimensional)
arrays, representing samples and time steps. For example, a
sequence of the DDoS attack data is converted into a 2-D
array where each dimension indicates the list of samples at 10
time steps with n features.

C. LSTM-AE Model Architecture

1) Long Short Term Memory: The LSTM network is a
variation of a Recurrent Neural Network (RNN) that addresses
the gradient vanishing and exploding problems of RNNs and
can process long term sequences between data samples at any
given time from many history time steps. The architecture
of the LSTM network is suitable for processing time series
sequence data and provides the capability of forgetting the
historical data from each memory cell before updating the
memory cell with new data. As illustrated in Fig. 2(a), the
LSTM network contains memory cells ct and multiple gate
units, including the forget gate ft, the input gate it and the

output gate ot. These three gate units control the state of
memory cells. For example, at time step t, the forget gate
decides which bits of the cell state are useful given both the
previous hidden state and new input data. The LSTM network
can omit insignificant information (values) from the cell state
of the forget gate and can recognize significant information
(values) to keep and update in the cell state. Using this network
architecture, the LSTM model performs to a high standard
when capturing long-term patterns in time series sequence
data.

(a) LSTM (b) Autoencoder

Fig. 2: Neural Networks architectures: (a) LSTM; (b) Autoen-
codre.
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2) Autoencoder: An Autoencoder (AE) is an unsupervised
neural network model that is not only used for feature se-
lection and dimension reduction but also can be used for
reconstruction-based Encoder-Decoders to detect anomalies.
The typical architecture of an autoencoder is composed three
components: an input layer, one or more hidden layer(s), and
an output layer. The operations of an autoencoder for detect-
ing anomalies can be divided into Encoding, Decoding, and
Reconstruction Loss as illustrated in Fig. 2(b). The encoder
compresses the high dimension input data and maps it to
low dimensional representations h, in the bottleneck layer
while the decoder decompresses the encoded representation
and reconstructs to the output x̂. Typically, the autoencoder is
trained by utilizing the MAE equation as a loss function to
minimize the reconstruction error between the output x̂t and
input xt.

3) LSTM-Autoencoder: We have addressed the issue of
anomaly detection in capturing normal phenomena through
time-based traffic flow from the DDoS attacks dataset. An
LSTM-AE model need not only be applied to address the
problem of feed-forward neural networks but also may be
utilized to learn patterns in time-based sequence data, making
them suitable for time-series anomaly detection [23], [24].
Our proposed LSTM-AE model includes an autoencoder that
utilizes the LSTM network as a hidden layer in both the En-
coder and Decoder schemes. This is followed by an Encoded
Features layer and an output layer respectively, which calculate
the reconstruction error to detect anomalies. The role of the
LSTM network in our proposed scheme is to learn the patterns
of data based on time-series DDoS signals. We combine this
with an autoencoder to learn the best encoder-decoder scheme
to detect anomalies. The output of the LSTM Encoder and
Decoder are then compared with the original input data and the
reconstruction error is backpropagated through the architecture
to update the weights of the neural network.

Our LSTM-AE model employs an autoencoder that utilizes
the LSTM network as a hidden layer in both Encoder and
Decoder schemes followed by an Encoded Features layer and
an output layer respectively. These calculate the reconstruction
error to detect anomalies. The role of the LSTM network in
our proposed scheme is to learn the patterns of data based on
selected time window length sequences. Our proposed LSTM-
AE is composed of six layers - an Input, an LSTM Encoder,
an LSTM Decoder, a RepeatVector, a TimeDistributed and
an Output layer. The LSTM Encoder obtains the sequence
of high-dimensional input data as a fixed-size vector and
compresses the input data into a low-dimensional hidden
representation. Within an LSTM cell, for an input time series
sequence data X1 = [x1, x2, ..., xt] where t represents the time
steps, each xt calculation is performed using the following:

ft = σ(wf [Ht−1, xt] + bf ) (1)

it = σ(wi[Ht−1, xt] + bi) (2)

C̃t = tanh(wc[Ht−1, xt] + bc) (3)

Ct = ft � Ct−1 + it � C̃t (4)

ot = σ(wo[Ht−1, xt] + bo) (5)

Ht = ot � tanh(Ct) (6)

where
• ft represents the forget gate, it, C̃t and Ct represents the

input gate, and ot and Ht represents the output gate.
• w and b are the weights and the bias of the forget gate,

input gate and output gate.
• Ht−1 and xt present the concatenation of the hidden state

and the current input respectively.
• σ is the activation function of each gate, and it outputs

numbers in the range of [0, 1].
• � represents element-wise multiplication.
Next, after compressing input data into low-dimensional

representation until it reaches the latent space (encoded fea-
tures), all data presentation can be repeated t times on the
RepeatVector layer to feed into the LSTM Decoder layer. In
this LSTM Decoder layer, the decoder scheme uses the same
number of features (equal to the encoder features on the LSTM
Encoder layer) to map the latent space representation back to
a high-dimensional representation. We add a TimeDistributed
layer in order to generate the output of the LSTM Decoder in
time sequence.

Encoder: To illustrate the LSTM encoder stage, if the time
step is set to 10 - seen LSTM cells working theory at the
time step t (show in Fig 2a) - the input includes the previous
output of the hidden state (ht1 ) and the cell state (Ct1 ), and
the current input xt while output includes the new hidden
state (ht) and the new cell state (Ct), and an output yt. At
the time step t+ 1, the new input becomes a new input xt+1

for the next set of cells, and the output is obtained from the
last hidden state and cell state of the LSTM cell. This then
becomes the new input of hidden state (ht) and the cell state
(Ct) information. Note that we discard the output (yt) of each
LSTM cell at each time step t in the Encoder and preserve
the initial state which is from the hidden state and cell state.
Finally, the output of the last time step (10) is the hidden
state (h10) and the cell state (c10), which is a summary of
the entire 10 time steps. Therefore, the input vector of LSTM
encoder is 10×5, where 10 is the time steps (or time window
length) and 5 is the number of features. If we set the number
of input features (units) of LSTM to 16, after passing through
the LSTM Encoder layer the size of the output vector is 1×16.

Our LSTM Encoder architecture (see Fig. 1: LSTM-
Autoencoder neural network) is defined as follows:
• Each traffic flow in the Input layer has been reshaped into

a 2D matrix. Note that each traffic flow is represented by
a matrix n× t, where n represents the traffic flows, and
t represents the time steps. This form of a series of input
data is able to capture DDoS traffic patterns based on the
sliding window length.

• Each LSTM Encoder layer consists of 16 LSTM units
with ”tanh” activation functions.

• We added a dropout layer (0.2) to prevent over-fitting in
the Encoder part.

• The encoded features have lower dimensions than the
number of input features.

Decoder: Between the Encoder and Decoder layer, we
added a RepeatVector Layer to create the copies of the 1×16
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vector equal to the number of time steps, which we called
Encoded Features. For example, the size of time steps in our
model is 10, therefore this layer will create 10 copies of
the encoded features as a two-dimensional vector 10 × 16.
The output of this layer becomes the input of the LSTM
Decoder at each time step, which means each copy of the
encoded features at each time step will be the input of the
next set of LSTM cells. As depicted, the difference of LSTM
network between the Encoder and Decoder is that the output
of each LSTM cell at each time step (yt) in the Decoder
cannot be discarded and are outputted as yt. There are two
reasons to get the output of each of the LSTM cells: firstly,
for the added layer, TimeDistributed, the input can be a 3-
dimensional vector, which means the output from the LSTM
cells has to be a 3-dimensional vector; and second, to ensure
the output of each time step is as close as possible to the input.
Therefore, the LSTM Decoder representations obtained in low-
dimensionality encoding are used as input in the decoder and
there are utilised to reproduce the original input data using
the LSTM network. This means the output from the last set
of LSTM cells (copied t times) then becomes the input to the
LSTM Decoder network.

Each 1 × 16 set is fed as an input to the decoder which
creates a 3 Layer network with 10 LSTM cell units. Each
LSTM cell unit processes each 1× 16 encoded feature. These
LSTM units produce an output that represents the result of
the learning from the encoded feature where the output is
multiplied with the 1 × 16 vector created by the additional
TimeDistribution layer. At the same time, each LSTM cell
unit produces a second output containing the state of the data
processed by the current LSTM cell which is passed to the
next LSTM - with the exception of the last LSTM unit. The
matrix multiplication between the output of each LSTM layer
(L) (10 × 16) and the TimeDistributed layer (16 × 1) results
in a vector with of size 10 × 1 - the same as the size of the
input.

The LSTM Decoder (see Fig. 1: LSTM-Autoencoder Neural
Network) architecture is defined as follows:
• The encoded feature in the bottleneck layer will be the

input of the LSTM Decoder.
• An LSTM Decoder layer consists of 16 LSTM units with

”tanh” activation functions.
• We added a dropout layer (0.2) to prevent overfitting in

the Decoder section.
• Typically, the output of LSTM Decoder has two outputs,

including the output data (traffic flows) (Ot) and the new
hidden state (Ht). The output of Ht can be discarded.
Thus, the output from the decoder part is the recon-
structed feature of the same size and dimension as the
input data.

The final aim of LSTM-AE is to reconstruct the input from
the output, i.e. X̂1 ≈ X1 where X1 indicates the input while
X̂1 indicates the output.

LSTM-AE Training: We divide the CICDDoS2019 dataset
into a training set (70%), a validation set (10%), and a testing
set (20%). Note that the training and validation set consists of
benign samples only, in order to train the proposed LSTM-AE
model. The testing set consists of both benign and attack sam-

ples for detecting anomalies. The architecture of the proposed
LSTM-AE is designed to minimize the reconstruction error
between the original input and the reconstructed output based
on time series sequence traffic flows. This LSTM model aims
to learn the patterns in the data. Our motivation for using the
Encoder and Decoder scheme to detect anomalies is the fact
that their working scheme is able to detect anomalies based on
the low distribution of normal data. As such, our training data
set consists of only normal sequence data and this is utilized
for training the proposed LSTM-AE model. The LSTM-AE
is taught normal traffic behavior, using the benign samples.
Our proposed LSTM-AE is an Encoder-Decoder unsupervised
learning model, and no label is provided in the training phase.
The training process is depicted in Fig. 3(a). To address the
problem of overfitting, dropout was added in both the encoder
and decoder stages and set to 0.2. For the other settings in our
model, ”Adam” is the optimization method, ”tanh” is used as
the activation function, and ”MAE” can be chosen as a loss
function.

(a) Training Phase

(b) Testing Phase

Fig. 3: Training and Testing Phase

LSTM-AE Testing

Fig. 3(b) shows the details of how anomalies can be detected
using the reconstruction-based anomaly detection method.
Here, the maximum value of MAE from the training process
can be designated as the threshold. A reconstruction error rate
for each data point from the testing set is compared with this
threshold. If the reconstruction loss value is greater than the
threshold η, this data point is noted as an anomaly, otherwise,
it is designated to be normal. This is shown in the following
Equation 7.

X ′ =

{
X ′i is anomalies, if Score > η
X ′i is normal, otherwise (7)

where X ′ indicates a reconstructed time-series, X ′i is a data
point contained in the time-series, and a score is a result of
a reconstruction loss function using MAE.

D. Reconstruction-based anomaly detection

In order to effectively learn time series DDoS traffic behav-
ior using reconstruction-based anomaly detection, our LSTM-
AE model is trained with a dataset that contains only benign
traffic flows from CICDDoS2019.
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Fig. 4: Computing Reconstruction Error on multivariate Time Series

1) LSTM-AE for anomaly detection: An anomaly can be
defined as an observation diverging from the majority of the
data. A threshold can be set as a decision point to determine
how much an observation deviates. Any observations that
exceed the threshold are defined as anomalies. To better
demonstrate the functionality of reconstruction-based time
series anomaly detection, the LSTM-AE model can be applied
to detect anomalies for each input sequence. This allows us to
obtain the reconstruction error rates associated with the benign
samples of the DDoS dataset. A backpropagation methodology
is applied to adjust the weights and parameters of the model.
We use the Mean Absolute Error (MAE) algorithm, as shown
in Equation 8, as the reconstruction error (loss) function.

Loss(MAE) =

∑n
i=1 |xi − x̂i|

n
(8)

where n indicates the total number of samples, xi is the
representation of the original input being fed to the encoder,
and x̂i is the output produced by the decoder.

Once training is done and the reconstruction error is com-
puted on all samples, the LSTM-AE model learns a low MAE
and sets the maximum reconstruction error as a threshold. By
contrast, if the testing set presents different behavior from the
training process, the resulting MAE will be greater than the
threshold and can be considered an anomaly. To the best of
our knowledge of the CICDDoS2019 dataset, there are a few
benign samples in each provided CSV file. In order to learn
the normal behaviors of traffic flows, we extract all benign
samples from the CICDDoS2019 dataset, and designate 80%
of the benign traffic as the training set, while the remaining
20% of the benign traffic can be combined with different attack
types to be used in the testing set.
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2) Reconstruction Error threshold calculation: Our pro-
posed reconstruction-based LSTM-AE model was trained in
an unsupervised manner and aimed to minimize reconstruction
error between input and output while using unlabeled data. In
[25], the univariate time series LSTM-AE anomaly detection
is performed using reconstruction error, shown in Fig. 4. The
figure illustrates how to calculate reconstruction error for each
sample contained in the different multivariate time series se-
quences. Suppose that there is a dataset containing 5 data sam-
ples with 2 features (shown as Input sequence data) which are
3 time-series sequences of [X1, X2, X3] where each sequence
contains 3 samples with 2 features over 3 different timesteps.
For example, the first sequence X1 ∈ {[x11 , x12 ], [x21 , x22 ],
[x31 , x32 ]}, X2 ∈ {[x21 , x22 ], [x31 , x32 ], [x41 , x42 ]}, and X3

∈ {[x31 , x32 ], [x41 , x42 ], [x51 , x52 ]}. Our model trains these
3 time series of sequences as inputs and constructs the outputs
that map to each sequence X̂1, X̂2, and X̂3.

Using Equation 8, we can obtain the MAE value of each
data sample for each feature. In order to obtain the MAE
value of each data sample over multivariate features, we use
the average MAE of each data sample for each feature. For
example, in 3 time-series sequences of [X1, X2, X3]. As such,
we obtain the reconstruction error of each data sample of each
feature. As can be seen in Fig. 4, with the assumption that
each data sample has two features, we can calculate each
data sample for each feature using time steps. This figure
shows the reconstruction error calculation for each feature
when the time step is 3. As an example of one of the data
samples of feature 1 (x31 ), and the reconstruction error of x31 ,
the calculation is (|x̂31 − x31 |+|x̂31 − x31 |+|x̂31 − x31 |)/3,
and is defined as x′31 . Similarly, the reconstruction error of
feature 2 (x32 ) is (|x̂32 − x32 |+|x̂32 − x32 |+|x̂32 − x32 |)/3,
and is defined as x′32 . Note that the reconstructed data sample
for each feature can be slightly different, which means each
x31 in X1, X2, and X3 are different. The x32 is presented
with the same definition. After we obtain the reconstruction
error of these two features, the total reconstruction error of
x3 is calculated by using the average value of features 1
and 2, illustrated as MAEx3

= (x′31 + x′32)/2 where 2 is
presented two features of x3. When we obtain all the average
reconstruction errors for each data sample on the training
set, the maximum average reconstruction error is set as the
threshold. During testing, any samples whose reconstruction
error goes beyond this maximum average reconstruction error
are therefore labeled as anomalies.

IV. DATA AND METHODOLOGIES

A. CICDDoS2019 Dataset

In this study, we use the CICDDoS2019 [16] dataset which
is widely used for DDoS attack detection and classification.
The dataset contains a large number of up-to-date realistic
DDoS attack samples as well as benign samples. The total
number of records contained in the CICDDoS2019 dataset is
depicted in Table I.

The CICDDoS2019 dataset contains different DDoS attack
types that exploit a wide range of network and application
protocols. In our study, we used DDoS attack types (i.e.,

TABLE I: The number of records in CICDDoS2019

dataset total benign malicious
Training day 50,063,112 56,863 50,006,249
Testing day 20,364,525 56,965 20,307,560

DNS) and benign traffic samples to train and test our proposed
LSTM-AE model. The dataset is broken down as follows:
• Benign: Benign traffic based on HTTP, HTTPS, FTP,

SSH, and email protocols.
• Attacks: These DDoS attacks cover two different cate-

gories, Reflection-based and Exploitation-based. In terms
of our CICDDoS2019 dataset, any traffic included in
MSSQL, SSDP, NTP, TFTP, DNS, LDAP, NetBIOS, and
SNMP is categorised as a reflection-based attack. Traffic
labeled as SYN, UDP, and UDP-lag in CIDDDoS2019
belongs to the exploitation-based category.

All CICDDoS2019 data samples from the training day
set are depicted in Table II. Note that all data samples can
be counted from different ”CSV” files, which are collected
and saved based on their various attack types. Note that the
”WebDDoS” attack was collected and saved together with the
”UDPLag” attack file.

TABLE II: Three Reflection-based Attack Types on Training
Day

Attack Type Malicious Benign Total Flow count Attack times
DNS 5,071,011 3,402 5,074,413 10:52 - 11:05
LDAP 2,179,930 1,612 2,181,542 11:22 - 11:32
SNMP 5,159,870 1,507 5,161,377 12:12 - 12:23

The high-level description of the nature of the DDoS attack
used in our study is summarised in Table III.

In this dataset, there are 88 features in total, and the
best top 5 features of each attack type and benign traffics
have been used based on the RandomForestRegressor class
of scikit-learn which can calculate the importance of each
feature in the dataset [16]. Table IV shows the top 5 important
features which are employed in this research as well as a brief
description.

B. Data Pre-processing

In this section, we discuss the methodologies we used to
process our dataset in order to feed it into our proposed LSTM-
AE model.

1) Data Cleaning: The original dataset contained 88 fea-
tures. As suggested by [16], they depicted the top 5 most
important features of each attack type and benign samples
based on weight and mean value calculated. According to
these top 5 significant features which were selected, we also
use these top-5 features as our features among different attack
types. For example, we used DNS, LDAP, and SNMP as
our analysis attack types, which provide three attack types
(anomalies) as well as benign (normal) samples. We chose
these three attack types because they shared the same top 5
important features based on their weight and the mean value
calculation. There are five important features to be used in this
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TABLE III: Selected Attack Types in CICDDoS2019

Attack Type Attack Description

DNS Attack DNS attacks are a type of amplification DDoS attack that exploits Domain Name
Servers and exhausts the bandwidth of the victims. This attack can overwhelm the victims and make them inaccessible.

LDAP Attack

LDAP attacks are a DDoS attack associated with exploiting Lightweight Directory Access Protocol (LDAP) protocol.
The attacker sends a massive number of LDAP requests to the vulnerable LDAP servers by pretending to be a legitimate
LDAP client using spoofed IP addresses. The LDAP server becomes too busy to create responses for attackers and becomes
unable to respond to real LDAP clients.

SNMP Attack SNMP attacks are a volumetric DDoS attack that stands for Simple Network Management Protocol (SNMP), and these attacks aim
to generate a large number of SNMP attacks utilizing a spoofing IP address that directed to the victims from multiple networks.

TABLE IV: Selected features in CICDDoS2019

Feature Name Description
Max Packet Length The maximum length of a flow

Fwd Packet Length Max The maximum size of packets in the
forward direction

Fwd Packet Length Min The minimum size of packets in the
forward direction

Average Packet Size The average size of packets
Min Packet Length The minimum length of a flow

research: ”Max Packet Length”, ”Fwd Packet Length Max”,
”Fwd Packet Length Min”, ”Average Packet Size”, and ”Min
Packet Length”.

2) Label Encoding: We substituted the categorical labels
for deep models as they only operate on float/numerical values.
One categorical value which was converted was the attack
label (benign or an attack type). For label encoding, ”0”
indicates a benign (normal) sample, while ”1” indicates an
attack type (anomalies).

3) Data Normalization: There are several widely used
methods to perform feature scaling, including Z Score, stan-
dardization, and normalization. As proposed by [26], we utilize
the MinMax-based normalization for our feature scaling. This
method maps the original range of each feature into a new
range using Equation (9), as follows:

Zi =
Zi −min
max−min

(9)

where Zi denotes all the normalized numeric values ranging
between [0-1]; max and min denote the maximum and
minimum values from all data points.

V. EXPERIMENTAL RESULTS

TABLE V: Implementation environment specification

Unit Description
Processor 3.4GHz Inter Core i5
RAM 16GB
OS MacOS Big Sur 11.4
Packages used tensorflow 2.0.0, sklearn 0.24.1

A. Experiment Setup
Our experiments were carried out using the system setup

shown in Table V.
The hyperparameters used in the training phase are de-

scribed (with the values for each parameter) complete with
description in Table VI.

TABLE VI: LSTM-AE Training Parameters

Hyperparameters Values Descriptions

Learning rate 0.001 Learning speed (within range 0.0 and 1.0)
Dropout 0.2 No. of neurons ignored

Batch size 64 No. of samples in one fwd/bwd pass
Epoch 30 No. of one fwd/bwd pass of all samples

B. Performance Matrix

To evaluate the performance of our model, we used the
following metrtics: classification accuracy, precision, recall,
and F1 score. Table VII illustrates the confusion matrix.

TABLE VII: Confusion Matrix

Total Population Predicted Condition
Normal Anomaly

Actual Condition Normal TN FP
Anomaly FN TP

where;
• True Positive (TP) indicates an anomalous data point

correctly classified as anomalous.
• True Negative (TN) indicates a normal data point cor-

rectly classified as normal.
• False Positive (FP) indicates a normal data point incor-

rectly classified as anomalous.
• False Negative (FN) indicates an anomalous data point

incorrectly classified as normal.
Based on the aforementioned terms, the evaluation metrics

are calculated as follows:

TPR(TruePositiveRate/Recall) =
TP

TP + FN
(10)

FPR(FalsePositiveRate) =
FP

FP + TN
(11)

Precision =
TP

TP + FP
(12)

F1− score = 2×
(
Precision×Recall
Precision+Recall

)
(13)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

The Area Under the Curve (AUC) computes the area under
the Receiver Operating Characteristics (ROC) curve which is
plotted using the true positive rate on the y-axis and the false
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(a) DNS Attack (b) SNMP Attack (c) LDAP Attack

Fig. 5: Performance of Anomaly Detection on different DDoS attack types using the Confusion Matrix

positive rate on the x-axis over different thresholds. Mathe-
matically, the AUC is computed as shown in Equation (15).

AUCROC =

∫ 1

0

TP

TP + FN
d

FP

TN + FP
(15)

C. Results and Evaluations

1) Training and testing dataset: The CICDDoS2019 data
collection was based on millisecond intervals. We first select
0.5% of the data based on the original millisecond time
interval. However, after selection, there is a large number
of malicious (anomalies) samples with only a few benign
samples selected. As mentioned previously, our LSTM-AE
model only uses benign samples in the training stage. Thus, to
solve this issue, we first extracted all the benign samples from
the training day collection and separated them into training
(80%) and testing (20%) sets. For the model training, we
only use 80% benign samples to train, while the rest of the
benign samples can be used in the testing set. Moreover, We
used 0.5% of the original CICDDoS2019 dataset for each
attack type from the training day collection for testing as it
was not feasible to use the full dataset due to performance
considerations. Note that each testing set includes benign
samples and different attack types.

We experimented with three attack types in the LSTM-AE
model to get initial anomaly detection results based on the
top 5 most important features for each attack type. Table IX
shows the initial anomaly detection results for the three attack
types: DNS, LDAP, and SNMP. The results show that the
anomaly detection for LDAP attacks performed the best in
terms of accuracy, precision, recall, and F1-score, based on
the mentioned top 5 features.

Figure 5 illustrates the number of records classified for
anomaly detection performance using the three DDoS attack
types.

2) Influence of time window length: Table VIII shows the
performance of all three attack types based on different time
window lengths. The results show that performance was best
for detecting LDAP attacks over diverse time window lengths,

with over 99% in accuracy and precision, recall, and F1-score,
compared with other attack types as shown in Table VIII. As
can be seen in Table VIII, as the time window length increased,
the accuracy decreased for all three attack types. The highest
accuracy was achieved at over 96% for a time window length
of 10. We also compared the results with the baseline of other
machine learning techniques from [16], in which the same
features are used for testing purposes. In the comparison table
(Table IX), the evaluation results show our model performed
impressively in terms of accuracy, precision, recall, and F1-
score.

3) Results of batch size: The testing results were evaluated
based on different batch sizes while dropout, learning rate, and
epoch remained constant.

DNS attack: For DNS attacks, the highest accuracy was
96.08% and required a relatively brief computational time
(approximately 12s per epoch) with the batch size set to 64.
We found that the smallest batch size value tested - size
10 - resulted in the lowest accuracy (88.83%) and required
a relatively high computation time at approximately 42s per
epoch.

SNMP attack: In the case of SNMP attacks as in Table XI,
analyzing the performances for each batch size demonstrated
that the best result was achieved when the batch size was
increased to 64. Comparing this with a smaller batch size of
10, all performance metrics showed significant improvement
at the larger batch size, particularly computational time. As
can be seen in Table XI, a batch size of 10 (38s) takes
approximately three times longer than a batch size of 64 (12s),
per epoch.

LDAP attack: The performance of LDAP attacks for each
hyperparameter of batch size is presented in Table XII. When
analyzing the performance of each batch size, we can see that
the LDAP attacks are detected with impressive performance
across the different batch sizes, achieving over 98%. However,
a batch size of 10 (42s) takes significantly longer (over three
times greater) than a batch size of 10 (12s) per epoch.

4) Results of learning rate: The learning rate of the “Adam”
optimizer is set at three candidate rates: 0.01, 0.001, and
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TABLE VIII: Three Attack Types’ Performance based on different time window lengths

Attack Type w = 10ms w = 50ms w = 100ms
Acc Pre Re F1 Acc Pre Re F1 Acc Pre Re F1

DNS 96.08 99.99 94.30 97.06 95.78 99.99 93.85 96.82 95.83 99.99 93.92 96.86
LDAP 99.96 99.99 99.93 99.96 98.68 99.99 97.28 98.61 99.77 99.99 97.47 98.71
SNMP 96.89 99.99 95.49 97.69 96.86 99.99 95.45 97.67 96.82 99.99 95.40 97.64

TABLE IX: Performance Comparison between the experimen-
tal results and Three Attack Types on the CICDDoS2019
dataset

Algorithms Confusion Matrix
Acc Pre Re F1

ID3 [16] - 0.78 0.65 0.69
RF [16] - 0.77 0.56 0.62

Naive Bayes [16] - 0.41 0.11 0.05
Logistic regression [16] - 0.25 0.02 0.04

Our model
DNS 0.96 0.99 0.94 0.97

LDAP 0.99 0.99 0.99 0.99
SNMP 0.96 0.99 0.95 0.97

TABLE X: Batch Size Performance Metrics for Detecting
DNS Attacks

Batch
size Acc Pre Re F1 AUC-ROC Time (s)

(µ± σ)/epoch

10 88.83 100 83.71 91.13 91.58 42 ± 1.24
32 93.49 100 90.51 95.02 95.26 12 ± 1.03
64 96.08 99.99 94.30 97.06 97.14 12 ± 0.94

0.00001. This was tested over the three different attack types,
while dropout and epoch values remained constant.

DNS attack: The results of the DNS attacks are shown in Ta-
ble XIII, with different learning rates. The highest performance
metrics for accuracy, recall, and F1-score was achieved at
96.08%, 94.30%, and 97.06% respectively. These results were
all using the learning rate value of 0.001. On the other hand,
the smallest learning value at 0.00001 resulted in the lowest
accuracy (95.48%), recall (93.41%), and F1-score (96.70%).
While selecting different learning rates has an impact on the
results, the time taken is not much different per epoch.

SNMP attack: In examining the performance of detection on
the SNMP attack in Table XIV, we can see that the best perfor-
mance for accuracy was achieved at 96.89% using the learning
rate of 0.001. Moreover, the results of all performance metrics
decrease slightly as the learning rate changed from 0.001 to
0.00001. The processing time did not vary significantly due to
the changes in the learning rate.

LDAP attack: As shown in Table XV, the LDAP attack
performed the best over our experiments when compared to
the other attack types. The results of detection overall metrics
- accuracy, precision, recall, F1, and AUC-ROC - provided
the smallest variation over LDAP attacks using the different
learning rates, all scores being over 99%. The processing times
showed there was a slightly greater cost using the smallest
learning rate of 0.00001.

The impact on the different learning rate configurations
presents little variation, but a learning rate of 0.001 gave the
best results for accuracy. Similarly, the lowest value for the

TABLE XI: Batch Size Performance Metrics for Detecting
SNMP Attacks

Batch
size Acc Pre Re F1 AUC-ROC Time (s)

(µ± σ)/epoch
10 88.47 99.99 83.29 90.88 91.64 38 ± 1.85
32 96.84 99.98 95.44 97.66 97.71 14 ± 1.31
64 96.89 99.99 95.49 97.69 97.75 12 ± 0.96

TABLE XII: Batch Size Performance Metrics for Detecting
LDAP Attacks

Batch
size Acc Pre Re F1 AUC-ROC Time (s)

(µ± σ)/epoch
10 98.82 99.99 97.57 98.76 98.78 42 ± 1.93
32 98.55 99.99 97.02 98.48 98.51 14 ± 0.80
64 99.96 99.99 99.93 99.96 99.96 12 ± 0.82

TABLE XIII: Learning Rate Performance Metrics for Detect-
ing DNS Attacks

Learning
Rate Acc Pre Re F1 AUC-ROC Time (s)

(µ± σ)/epoch
0.001 96.08 99.99 94.30 97.06 97.14 10 ± 0.99

0.0001 95.80 99.99 93.88 96.84 96.94 10 ± 0.84
0.00001 95.48 99.99 93.41 96.59 96.70 10 ± 1.05

TABLE XIV: Learning Rate Performance Metrics for Detect-
ing SNMP Attacks

Learning
Rate Acc Pre Re F1 AUC-ROC Time (s)

(µ± σ)/epoch
0.001 96.89 99.99 95.49 97.69 97.75 12 ± 0.96

0.0001 96.82 99.99 95.39 97.63 97.69 12 ± 0.99
0.00001 96.88 99.99 95.48 97.68 97.74 12 ± 1.05

learning rate took a long time to converge, which results in a
significantly longer time for computation per epoch.

TABLE XV: Learning Rate Performance Metrics for Detecting
LDAP Attacks

Learning
Rate Acc Pre Re F1 AUC-ROC Time (s)

(µ± σ)/epoch
0.001 99.96 99.99 99.93 99.96 99.96 11 ± 0.91

0.0001 99.94 99.99 99.89 98.94 99.95 11 ± 0.90
0.00001 99.96 99.99 99.93 99.96 99.96 12 ± 0.94

Figure 6 shows the AUC-ROC for anomaly detection over
our three DDoS attack types using different time window
length selections. Note that all three attack types achieved
over 97% for the AUC, and that the highest value for the
AUC-ROC was achieved for a time window length of 10. Our
experimental evidence shows that the proposed model offers
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(a) time window length: 10
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

AUC
DNS = 96.96

SNMP = 97.70
LDAP = 98.73

(c) time window length: 100

Fig. 6: AUC-ROC Visualization

significant potential to detect DDoS attacks effectively.
Table XVI shows the performance comparison for our

proposed LSTM-AE model with other similar methods from
shallow machine learning and deep learning-based approaches.
As the results demonstrate, our approach offered the best
performance of LDAP in terms of all aspects of evaluation
metrics, reaching an average of 99.96% accuracy while pre-
cision, recall, and F1-score all remain very competitive at
99.99%, 99.93%, and 99.96% respectively.

VI. CONCLUSION

In this study, we demonstrate that DDoS attacks can be
detected with high accuracy using a combination of multiple
deep learning-based techniques. Our proposed reconstruction-
based LSTM-AE anomaly detection model leverages the bene-
fits of an LSTM model and an Autoencoder in order to detect
DDoS traffic anomalies. We use LSTM networks consisting
of multiple LSTM units that work with each other to learn
the long short-term correlation of DDoS traffic within a time
series sequence. An Autoencoder is employed to identify the
optimal threshold based on the reconstruction error rates.
This can be used to identify anomalies in traffic. We have
demonstrated the impact of different window lengths for
classifying anomalies over different DDoS attack types. Our
proposed model offers potential as an effective DDoS defense
tool to assist in detecting a massively growing number of
DDoS anomalies. Our model has been comprehensively and
extensively tested against three different DDoS attack types.
The evaluation results demonstrate high levels of performance
on different time window lengths over many performance
metrics including precision (99%), recall (99%), F1-score
(99%), and accuracy (99%). Our model performed best for
the LDAP attack detection case against all performance met-
rics, exceeding 99% and outperforming other state-of-the-art
methods.
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