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Abstract. Additive manufacturing (AM) offers numerous benefits, such
as manufacturing complex and customised designs quickly and cost-
effectively, reducing material waste, and enabling on-demand production.
However, several security challenges are associated with AM, making it
increasingly attractive to attackers ranging from individual hackers to
organised criminal gangs and nation-state actors. This paper addresses
the cyber risk in AM to attackers by proposing a novel semantic-based
threat prioritisation system for identifying, extracting and ranking in-
dicators of compromise (IOC). The system leverages the heterogeneous
information networks (HINs) that automatically extract high-level IOCs
from multi-source threat text and identifies semantic relations among
the IOCs. It models IOCs with a HIN comprising different meta-paths
and meta-graphs to depict semantic relations among diverse IOCs. We
introduce a domain-specific recogniser that identifies IOCs in three do-
mains: organisation_specific, regional_source-specific, and regional_target-
specific. A threat assessment uses similarity measures based on meta-
paths and meta-graphs to assess semantic relations among IOCs. It pri-
oritises IOCs by measuring their severity based on the frequency of at-
tacks, IOC lifetime, and exploited vulnerabilities in each domain.

Keywords: Indicators of Compromise - Cyber-Physical Systems - Threat
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1 Introduction

Industry 4.0, the fourth industrial revolution, refers to integrating advanced digi-
tal technologies and manufacturing systems to automate and optimize industrial
processes. Additive manufacturing (AM) is a key enabler of Industry 4.0, as it
allows for the rapid and flexible production of customized parts and products
[1]. AM is a process that enables the production of complex devices by applying
successive layers of materials. AM offers many advantages, such as on-demand
customisation, enhanced logistics, reduced labour and production lead times,
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streamlined production, reduced waste, reduced inventory, and reduced trans-
portation costs. However, cyber and physical attacks in AM pose severe concerns
and formidable challenges [2], making AM supply chains susceptible to various
attack vectors. As a result, protecting the security of AM has become increas-
ingly important, and developing robust security mechanisms that protect against
a range of potential attacks has become a significant challenge for researchers
and industry practitioners alike.

Modern attacks on AM are often sophisticated and can exploit hidden vulner-
abilities that go undetected for long periods [3-7]. A prime example is Advanced
Persistent Threats (APTs), which have been used to target AM industries for
espionage, economic gain, and intellectual property theft. APTs are commonly
described as an extended attack campaign in which one or more intruders exe-
cute a long-term plan to take control of a network or system. In 2020, more than
1000 data breaches were reported in the United States alone, affecting more than
155.8 million individuals through data exposure [3]. Perhaps the most famous
kinetic cyber attack of all time was aimed at Iran’s nuclear program, considered
unprecedented in the industry [4]. The Stuxnet attack involved a complexly tar-
geted worm that executed zero-day exploits on operating systems and software
for managing programmable logic controllers (PLCs). The attack resulted in
tens of billions of dollars in damage. Another famous example of a cyberattack
is the sewage attack in Maroochy Shire, which caused a system failure and mil-
lions of litres of untreated sewage to leak into the water supply [5]. Belikovetsky
et al. [6] conducted a study on the vulnerability of additive manufacturing to
cyber attacks. He demonstrated the sabotage attack on a propeller blueprint
that can be 3D printed at home. The findings of their study emphasized the
vulnerability of additive constructs to cyber attacks, which was also confirmed
by another recent paper [7]. The authors of the latter paper identified AM as
the second most vulnerable industry to cyberattacks, second only to the finan-
cial sector. With AM’s growing national and industrial importance, cyberattacks
have become more attractive and induced threat actors are increasingly involved
in cybercrime-as-a-service, commoditising cyberattacks. As a result, APTs are
now employing common attack patterns to compromise targets. Therefore, early
identification of threat exposure and breaches is critical to preventing significant
damage to an organization and providing reliable evidence during prosecution
trials.

Cyber Threat Intelligence (CTI) can be a valuable tool for assessing the
threat landscape in AM and developing effective strategies for mitigating cy-
ber risks. Threat intelligence feeds can help organizations stay informed about
emerging threats and new attack techniques. This can be especially useful in the
fast-paced world of AM, where new technologies and processes are constantly
being developed. CTI involves the extraction of threat intelligence from threat-
related information from multiple sources, utilising several attributes, including
Indicators of Compromise (IOCs), Tactic, Technique, and Procedure (TTP) and
the skills and motive of the threat actor [8]. Some example of CTI feeds are
Structured Threat Information Expression (STIX), OpenDef, Cybox, and Ope-
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nlOC, but a massive amount of information remain unstructured. IBM X-force
[9], Facebook ThreatExchange [10], OpenCTI [11] and MISP [12] are a few ven-
dors who provide threat intelligence feeds by extracting threat intelligence from
multiple open sources using IOC extraction methods such as PhishTank, and
IOCFinder.

These structured threat information feeds have several disadvantages, in-
cluding a limited scope, delayed information, high cost, inflexibility and false
positives, making it very challenging for AM industry to rely on them. On the
other hand, unstructured threat feeds can provide a more comprehensive and
flexible approach to threat intelligence that can be more effective for many orga-
nizations. However, unstructured reports may not be well-organized, making it
hard to identify the relationships between different pieces of information. Other
challenges include errors, inaccuracies, and missing information. As a result, it
requires advanced natural language processing (NLP) techniques and machine
learning algorithms to extract meaningful and relevant threat information from
unstructured reports.

Android

M Exploit CVE-2019-
Xing 0114

Affects Associated

Winl0

Winl0

Fig. 1. An annotated example of CTI includes IOCs such as attack actor, vulnerability,
time, region, file, attack type, device and platform, and their relationship.

Consider the following instance of a security-related post: ” In October 2019,
Mr Xing from China exploited the CVE-2019-0114 vulnerability, which affected
multiple Android and Winl0 devices in the United States. CVE-2019-0114 is
a remote code execution vulnerability that contains the malicious file abc.bat”.
Figure 1 displays a graphical representation of CTI, including eight IOCs such
as attack actor, vulnerability, time, region, file, attack type, device and plat-
form, and the relationship between them. Existing methods only consider I0Cs
but avoid the relationship between them, and as a result, they cannot grasp a
comprehensive picture of the threat landscape. To overcome the limitations of
existing structured threat feed tools, this paper aims to automate IOC extraction
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by exploiting Heterogeneous Information Network (HIN) that provides insight
into the interdependencies between heterogeneous IOCs.

This paper presents a novel semantic-based threat prioritisation framework
for identifying, extracting and ranking IOCs. The summary of the paper is as
follows:

— Recogniser. We propose a recogniser that automatically extracts threat-
related information from multi-source threat text. It also identifies the do-
mains to which IOCs belong and integrates IOCs with their domain, forming

three domain-specific IOCs such as organisation_domain-specific, regional_source-

specific, and regional_target-specific threat intelligence.

— Threat modelling. We model the range of IOCs with a Heterogeneous In-
formation Network (HIN), which comprises different meta-paths and meta-
graphs that depicts the semantic relations among diverse IOCs to capture a
more comprehensive landscape of threat events.

— Threat assessment. We present a CTI assessment framework that uses sim-
ilarity measures based on meta-paths and meta-graphs and assesses the in-
terdependent relations among diverse I0Cs.

— Prioritisation. We then measure the severity of IOCs by considering the fre-
quency of attacks, IOC lifetime, and the number of exploited vulnerabilities
in each domain. As a result, they evaluate the ranking mechanism for each

10C.

The rest of the paper is organized as follows: Section 2 discusses the related
work, and Section 3 provides the conceptual background. The proposed frame-
work is presented in Section 4. Finally, Section 5 summarizes the paper and
provides directions for future research.

2 Related Work

Extracting threat intelligence from the unstructured text of threat-related in-
formation has become an exciting research topic in cyber security. This section
briefly describes key methodologies for identifying cyber threats by extracting
IOCs from multiple sources.

Noor et al. [13] have proposed a model to automate cyber threat attribu-
tion by considering high-level IOCs to determine threat actors. Their technique
extracts high-level IOCs from unstructured CTT reports and then semantically
profiles threat actors with the high-level IOCs taken from MITRE’s ATT&CK.
Zhao et al. [14] present TIMiner, a method to extract and assess domain-specific
CTIs that automatically classify the domains associated with related CTIs. Gao
et al. [15] proposed a cyber threat intelligence method based on the Hierarchi-
cal Information Network (HINCTI) system to identify threat types. HINCTI
provides a threat intelligence-based meta-schema to capture the semantic re-
lationship between threat nodes leveraging a meta-path and meta-graph-based
similarity method. Zhao et al. [16] proposed a CTI framework, HINTI, based
on HIN that proposed a multi-granular-based I0C recogniser to enhance the
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accuracy of the IOC extraction method. HINTI defines different types of IOCs
using meta-paths to identify the relationship between IOCs, profile the threat
events and rank the significance of IOCs to understand the threat landscape.

Liao et al. [17] proposed a novel automated threat-related information collec-
tion and extraction (1IACE) technique from unstructured text that uses a natural
language processing method to extract IOC data from text documents and then
analyse the IOC data using graph mining methods. iACE aims to identify the
grammatical semantic relationships between token threat patterns associated
with IOC in text documents. The method integrates name entity recognition
and relation extraction methods. Gao et al. [18] proposed a threat-hunting sys-
tem (THREATRAPTOR) that extracts threat behavioural information from
unstructured CTT reports to facilitate threat hunting. THREATRAPTOR pro-
vides an accurate NLP-based auditing framework to extract structured threat
information from unstructured CTI text and defines a domain-specific query lan-
guage to detect malicious system activities. Wang et al. [19] develop an efficient
automated process that recognises and extracts entities and their relationship
from text reports.

3 Conceptual Background

3.1 Cyber Threat Intelligence

Modern cybercriminals have developed sophisticated tactics, techniques, and
procedures (TTP) to realise their aim of compromising their targets quickly and
efficiently. Thus, traditional defence mechanisms, such as anti-virus software,
firewalls and intrusion detection methods, struggle to effectively detect cyber
attacks such as advance persistent threats (APTs) and zero-day attacks. Cy-
ber attacks have successfully compromised systems in a wide range of sectors.
For example, the WannaCry ransomware attack extorted money to unlock sen-
sitive information and designs across various industries [20]. Security experts
have increasingly turned to sharing cyber threat intelligence (CTI) to combat
such emerging cyber threats. CTI is any relevant information that helps detect,
monitor, assess, and respond to cyber threats. CTI facilitates a comprehensive
and significant threat warning and includes information such as IOCs [21].
Nowadays, a rich source of commercial and free CT1 feeds are available, mak-
ing it difficult for network defenders to evaluate the quality of information and
select the optimal set of data feeds to pay attention to. Acting on results from
low-quality feeds can give rise to many false alerts while concentrating on only
a few data feeds increases the risk of missing relevant threats. However, it is
challenging to extract IOCs from unstructured form sources. Several automated
methods for extracting IOCs (such as malicious IP addresses, malware, and file
hashes of malicious payloads) are based on the OpenlOC standard, including
PhishTank, IOCFinder, and CleanMX [14]. To facilitate efficient threat intelli-
gence sharing among organisations, CybOX [22], STIX [23], and TAXII [24] have
emerged as de-facto standards for describing threat intelligence and are widely
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consumed by the threat intelligence sharing platforms, including MISP [12] and
AT&T Open Threat eXchange (OTX).

3.2 Indicators of Compromise

Cyber Threat Intelligence (CTI) includes IOCs, which organisations can use to
identify possible threats and protect themselves and their customers. Specifi-
cally, IOCs are artefacts observed about an attacker or their behaviour, such as
tactics, techniques and procedures [25]. IOCs can be kept at a network or host
level and help network defenders block malicious traffic and identity actions or
determine if a cyber intrusion has occurred. Security and forensic analysts pre-
pare reports of in-depth analysis of cyber attacks, including the IOCs, to be
shared with communities, often through public data sources. Examples of IOC
found in reports from data sources include actor identity behind cyber attacks,
the malware used in threat attacks and their typical behaviour, communication
and control server list, and other types of information. The information used in
creating these reports is gathered from multiple sources, such as host logs, proxy
logs and alerts. The reports may be widely distributed through various channels,
including blogs, forums and social media.

The pyramid of pain (PoP) classifies the common types of IOCs. The PoP
identifies the types of indicators that a system defender might use to detect an
adversary’s activities. The pyramid organises the pain an adversary will cause
when the defender can deny those indicators. At the bottom end, if a defender
identifies hash values of malicious files and then blocks these, it causes the at-
tacker little pain since making an insignificant change to the file to produce the
same outcome with a different hash is trivial. TTP sit at the top of the pyramid.
When a defender detects and responds at this level, this disrupts behaviours
much more complicated for an adversary to change; defining new behaviours is
a significant challenge for adversaries.

3.3 Heterogeneous Information Network

Heterogeneous Information Network (HIN) is a simple way of modelling a prob-
lem as a graph compromising different types of nodes and one or more corre-
lations between nodes (edges) [26]. The set of node and edge types correspond
to the network scheme. HIN delivers a high conceptualisation of modelling for
a complex collection of data. From the graphical representation of the dataset,
feature vectors can be extracted by defining meta-paths and meta-graphs cor-
responding to the graph and implementing a guided random walk over defined
meta-paths and meta-graphs. A meta-path is a path defined within the graph
of network schema, covering a specific sequence of relation types. A meta-graph
[27] can handle the in-depth relationship between nodes by employing a direct
acyclic graph of nodes defined over the HIN from a single source node to a single
target node. The guided random walk generates a sequence of nodes processed in
an embedding model such as word2vec, skip-gram or Continuous Bag-of-Words
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(CBOW). Once the nodes are represented numerically, it is possible to deter-
mine a set of nodes and resolve many problems (classification, clustering, and
similarity search).

3.4 Overview

We introduce a novel system designed to automatically extract and prioritise
high-level IOCs (Indicators of Compromise) from multiple sources of threat
text. Our system addresses the limitations of existing IOC extraction methods
by considering the semantic relationships among different IOCs. We present a
novel approach to extracting threat-related information and identifying the do-
mains IOCs belong to. This information is then integrated with their respective
domains to form three domain-specific threat intelligence categories: the organ-
isational domain, regional-source domain, and regional-target domain. We also
present a threat modelling that utilizes a Heterogeneous Information Network
(HIN) comprising different meta-paths and meta-graphs. The proposed system
captures the interdependent relationships among diverse IOCs and provides a
more comprehensive view of the landscape of threat events. Our system then uti-
lizes similarity measures based on these meta-paths and meta-graphs to assess
the interdependent relationships among different 10Cs.

To prioritize IOCs, we measure their severity by considering various factors,
including the frequency of attacks, the lifetime of the IOC, and the number of
exploited vulnerabilities in each domain. Our system then evaluates the ranking
mechanism for each IOC, providing a more comprehensive and accurate view
of the threat landscape. Our system significantly contributes to cybersecurity,
providing a more effective and efficient method for automatically extracting,
assessing, and prioritizing high-level IOCs. With the increasing frequency and
complexity of cyber threats, the need for such a system has become more critical.

4 Methodology

The architecture of the proposed method, as shown in Fig 2, comprises of follow-
ing phases: Data collection and Preprocessing, Relation Extraction and Threat
Modelling, Domain Recognition and Tag Generation, Domain-specific threat
identification and Tagging, and Severity measure and Threat Prioritisation. Ta-
ble 1 summarises the list of notations and abbreviations used throughout the

paper.

4.1 Data Collection and Preprocessing

The system automatically collects threat information identifying IOCs from mul-
tiple resources, including forums, blogs, security news, and bulletins. We use a
breadth-first search to capture the HTML course code and Xpath for data ex-
traction. We then reduce the dimension of each text report and remove noisy
features by pre-processing. This pre-processing includes the removal of stop-
words, punctuations, and markup characters.
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Table 1. List of Abbreviations and Notations

Notations Description
10C Indicators of Compromise
AM Additive manufacturing
HIN Heterogeneous Information Network
APT Advanced Persistent Threats
CTI Cyber Threat Intelligence
TTP Tactic, technique and procedure
PoP Pyramid of pain
STIX Structured threat information exchange

TAXIT Trusted Automated eXchange of Indicator Information

Data Acquisition ,
Data collection from
multiple sources :

; HIN-based TI Modelling

Node & Relation Node & Relation
| Extraction Features

Meta-path (graph) based | __ | Meta-path and meta-
E embeddings graph design :

TI Assessment l

‘ Similarity evaluation | i ‘ Tag generation I
, l ¥ - !
t ‘ Threat identification | it | -omamn ‘ :
' identifjcation :

10IC Ranking !

‘ Domain Tagging ‘ |

' | Severity measure & IOC ranking |

Fig. 2. Process flow of the Proposed system
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4.2 Relation extraction and threat intelligence modelling

Using a heterogeneous information network (HIN) for threat intelligence, we first
build a graph that shows the interdependent (semantic) relationships between
the different IOCs involved in the attack. By denoting nodes (IOCs) and rela-
tionships, we can identify patterns and anomalies that may indicate the presence
of a threat. For example, we can use HINs to identify groups of attackers that
share common attack vectors or targets or to track the evolution of an attack over
time as new entities become involved. To better understand, we can characterise
the nodes and relations as follows.

Node Features. In the context of risk in Additive Manufacturing, it is essen-
tial to consider the domain-specific threat information. For instance, a threat
post discussing the Stuxnet virus and its impact on industrial control systems
is more relevant to manufacturing organisations than those in the finance or
healthcare sectors. This highlights the need for threat intelligence tailored to an
organisation’s domain.

Additionally, geographical location plays a significant role in cyber attacks.
Over 500 geopolitical cyber attacks have been reported worldwide in the past
decade, with 30% originating from China or Russia and 26.3% targeting the
USA. In 2018 alone, 27% of attacks occurred in the USA [28]. Therefore, when
developing threat models for Additive Manufacturing, it is crucial to consider
the regional source and target source of cyber attacks.

To account for these domain-specific and regional factors in our threat in-
telligence model for Additive Manufacturing, we define nodes as organisation-
specific, regional_source-specific, and regional_target-specific. This enables us to
capture the complex relationships between entities involved in cyber attacks,
such as attackers, attack vectors, and targets. Moreover, we consider time-related
node features such as attack frequency and IOC lifecycle, which can provide valu-
able insight into the TTPs of attackers and help defenders calculate the level of
risk posed by a particular threat.

Semantic relation features. The node features in the HIN represent a specific
action, but actions can be employed multiple times in conjunction with other
activities in a campaign. These complex relationships among nodes can pro-
vide more valuable intelligence for threat identification; therefore, we consider
relation-based and node features. This allows us to analyse highly sophisticated
malicious cyber attacks. To model the interdependent relationship between eight
IOCs, we define the following semantic relationships:

— R1: The relation actor-exploit-vulnerability matrix A represents the link
between the threat actor and vulnerability. For each element, A4, ; € {0,1},
where A; ; = 1 means actor i exploits vulnerability j.

— R2: The relation actor-invade-device matrix B represents the link be-
tween the threat actor and device. For each element, B; ; € {0,1}, where
B;; = 1 means actor ¢ invades device j.
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— R3: The link between two actors is represented by the relation actor-assist-
actor matrix C. For each element, C; ; € {0, 1}, where C; ; = 1 means actor
¢ assists actor j.

— R4: The relation attack_type-originate_from-region matrix D repre-
sents the link between the attack type and location. For each element,
D;; € {0,1}, where D; ; = 1 means attack type ¢ originate from region
J.

— R5: The relation attack_type-target-region matrix E represents the link
between the attack type and location. For each element, E; ; € {0,1}, where
F; ; = 1 means attack type ¢ target to region j.

— RG6: The relation vulnerability-affect-device matrix F' represents the link
between the vulnerability and the device. For each element, F; ; € {0,1},
where F; ; = 1 means vulnerability ¢ affects device j.

— RT7: The relation attack_type-associate-vulnerability matrix G repre-
sents the link between the attack type and vulnerability. For each element,
Gi,j € {0,1}, where G; ; = 1 means attack type i carry vulnerability j.

— R8: The relation vulnerability-held-time matrix H represents the link
between the vulnerability and time. For each element, H, ; € {0,1}, where
H; ; = 1 means vulnerability 4 held in time j.

— R9: The relation vulnerability-include -file matrix B represents the link
between the vulnerability and malicious file. For each element, I; ; € {0,1},
where I; ; = 1 means vulnerability ¢ include malicious file j.

R10: The relation vulnerability-evolve-vulnerability matrix B repre-
sents the link between the vulnerabilities. For each element, J; ; € {0,1},
where J; ; = 1 means vulnerability 4 evolve to vulnerability j.

We initiate dependency parsing to leverage the semantic relationships among
the eight IOCs and extract them in a structured format. Using this approach,
we can represent the IOCs as triplets, each consisting of two IOCs and a relation
between them. For instance, if IOC1 is dependent on IOC2, we would define the
relationship as (IOC1-relation-IOC2), where 'relation’ denotes the nature of the
relationship between the two IOCs.

Meta-path and Meta-graph. Figure 3 presents 12 distinct types of meta-
paths and meta-graphs denoted by x; that capture interdependent relationships
among seven different IOCs. While the meta-path illustrates the connections
between the 10Cs, it falls short in capturing intricate relationships. To address
this limitation, the proposed HIN-based Threat Intelligence (TT) model utilizes
a directed acyclic graph of nodes to handle more complex structures in the HIN
architecture. By learning and analyzing these 12 different meta-paths and meta-
graphs, the model can convey the context of a threat event and offer threat
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insights across heterogeneous IOCs. For instance, the x; meta-path is a length-2

meta-path that represents the relatedness of ”threat actors (A) exploiting the
same vulnerability (V).”

R1 RIT
n (A)—()—(»)
R2 R2T
R3 R3T
w ()—(n)—(»)
R4 R4T
e (= R)——(Ar)
: RS RS RI R6 ,~ R6T ~—~ RI
e GO R0 e (W) Ho)—()—*)
RI10 R10T
R9 o R9T
ok oL
R7 R8 R8T R7T
w (D ()—O— VD)

Fig. 3. Proposed meta-path and meta-graph for threat type identification, where A
denotes threat actor, V denotes vulnerability, D denotes device, R denotes a region,
AT denotes attack type, F denotes file, and T denotes time.

e

Similarly, xs is a meta-path that describes the relationships between 10Cs
that “two attack types who leverage the same vulnerability held at the same
time”. Likewise, x1¢ is a meta-graph that portrays the relationship over threat
infrastructure with more comprehensive insight that integrates both external
and intrinsic relationships. Meta-graph 1o depicts the relationship among IOCs:
”two attack types originated from the same region, and their associated vulner-
abilities affect the same device occur at the same time”.

4.3 Domain recognition and tag generation

To extract domain-specific IOCs, it is essential first to identify the domain of
threat information. This initial step helps to ensure that IOCs are tailored to the
specific context of the threat landscape, enabling more effective threat detection
and response. Here, we consider three domains, organisation_domain-specific, re-
gional_source-specific, and regional_target-specific. Organisational_domain-specific
threat information includes financial, health, manufacturing, government, and
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IoT information. Regional_source-specific and Regional_target-specific threat in-
formation originated and targeted the geographic region, such as China, Rus-
sia, India, Korea, USA, UK, and Europe. We first trained the word2vec model
specific to a threat description embedding that inputs a large corpus (threat de-
scription) and generates a low-dimension vector. Each unique word in the corpus
is allocated an assigned vector in latent space. The convolution function sets a
filter for each word vector to generate a feature called local_feature. Our model
captures the most significant features by leveraging the max-pooling operation
that takes the maximum values of local-feature and runs over a local feature set.
This will generate tags for three domains, i.e., OD;, SD;, and T D; denotes the
tags corresponding to organisation_domain-specific, regional_source-specific, and
regional_target-specific threat, respectively.

4.4 Domain-Specific Threat Identification and Tagging

After successfully extracting the features of IOCs and their relationships and
identifying the relevant meta-paths and meta-graphs, a meta-path and meta-
graph-based heterogeneous classifier is developed to classify the threat type of
infrastructure nodes in Cyber Threat Intelligence (CTI). The proposed classifi-
cation approach integrates node features and explores the semantic similarities
between meta-paths and meta-graphs to represent the nodes comprehensively.
These advanced techniques enable a more comprehensive depiction of the nodes,
enhancing the accuracy of the threat classification.

Given the threat intelligence graph G = (N, R), and meta-path and meta-
graph set P = {x1,X2,--Xn}, the assessment of threat intelligence includes the
following steps:

— Adjacency matrix. The relationships between threat nodes can be ex-
plored using different meta-paths and meta-graphs, which capture the be-
haviour of threats in various aspects. To represent these relationships, we pro-
pose using an adjacent weighted matrix, denoted by Adj; € RN >, which can
be generated using similarity algorithms such as Euclidean distance, Manhat-
tan distance, Cosine similarity, word mover distance, and Jaccard similarity.
To assess the similarity between IOCs, we generate a corresponding weighted
adjacency matrix, Adj;, based on the meta-path and meta-graph path set,
P. The use of weighted adjacency matrices Adj; enables the identification of
the most significant relationships between the different nodes, which can be
used to prioritise threat mitigation efforts.

— Feature matrix. By incorporating attributed information of nodes, we can
construct an attributed feature matrix F; of size IV x d, where N denotes the
number of IOCs in Adj;, and d is the dimension of the node feature. This
allows us to integrate the attribute information of IOCs and create a node
feature matrix F; € RN >4, To recognize previously unnoticed IOCs, we em-
ploy the word2vec method to develop a threat intelligence embedding, which
transforms words into a latent vector space. To achieve this, threat-related
texts are pre-processed, accumulated into a word set, and converted into a
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latent vector space using word2vec. This approach enables us to represent
threat-related information in a low-dimensional vector space, facilitating the
detection and analysis of potential threats.

— Quantify threat intelligence. After designing an adjacent weighted and
attributed feature matrix, we assess the threat intelligence. Different types of
assessment methods to quantify the proposed HIN-based threat intelligence.
For example, graph convolution network (GCN) and Bidirectional Encoder
Representations from Transformers (BERT). Given the adjacency matrix
Adj;, and its corresponding feature matrix F; (low-dimensional space), we
utilise the graph convolution network (GCN) method to quantify the rela-
tionship between I0Cs. This will fuse the adjacency matrix Adj;, and feature
matrix F; as Z = (F, Adj) and output the predicted labels of IOCs. Then,
the model integrates the domain-specific tags OD;, SD; and TD; to the
predicted IOC, representing that the IOCi belongs to the organisation ODy,
originates from the country SD; and is targeted to the country T'D; and are
considered as the domain-specific IOCs.

4.5 Severity Measure and Threat Prioritisation

Utilizing the learned domain-specific IOCs, we can evaluate the severity of po-
tential threats of various attack vectors within each domain. This motivates us
to develop a quantitative measure to assess threat risks corresponding to each
domain. The proposed severity measure is based on several key assumptions.

1. Firstly, we assume that the frequency of attacks may significantly influence
the severity and scope of the threats manifested.

2. Secondly, we postulate that chain exploits, where multiple vulnerabilities use
an attack, can cause considerably more damage.

3. Finally, we recognize that the severity of a threat may decrease over time,
particularly during the zero-day risk period.

Consequently, the severity of a threat can be measured by examining the
frequency of attacks, the lifetime of the IOC, and the number of exploited vul-
nerabilities in each domain. This approach allows us to develop a more nuanced
and comprehensive understanding of the potential threats facing a domain, en-
abling us to take appropriate measures to mitigate risk and enhance security.

5 Conclusion and Future scope

This paper presented a novel semantic-based threat prioritisation system for
AM that intends to expose the comprehensive behaviour of threat events in
the relationships among different I0Cs with high accuracy. We proposed an
intelligent IOC acquisition and ranking system based on a Heterogeneous Infor-
mation Network (HIN). The proposed system collects threat-related from mul-
tiple sources that automatically extract threat-related information, measure the
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severity of IOCs, and quantify them based on the severity. We considered in-
dividual IOCs and one or more relationships among semantically similar IOCs.
We proposed an efficient recogniser to identify domain-specific IOCs focusing
on three domains: organisational_domain-specific, regional_source-specific, and
regional_target-specific threat intelligence. Further, we evaluated the severity of
IOC by exploring the frequency of attacks, IOC lifetime, and the number of
exploited vulnerabilities in each domain.

The proposed semantic-based threat prioritisation system for AM has poten-
tial future scopes that can be explored, such as:

— Integrating with existing security tools: The proposed system can be com-
bined with existing security tools to provide real-time threat intelligence
and prioritisation of threats. The integration can help security teams to au-
tomate the detection, investigation, and response to threats and reduce the
time to mitigate them.

— FExploring additional domains: The proposed system focuses on three do-
mains: organisational_domain-specific, regional_source-specific, and regional_target-
specific. However, other domains, such as industry-specific or technology-
specific, can be explored to provide a more comprehensive view of the threat
landscape.

— Improving the ranking system: The proposed system ranks the IOCs based
on severity. However, the ranking system can be improved to consider the
evolving threat landscape and real-time threat intelligence data to enhance
the accuracy of the prioritisation system.
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