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Abstract. We report on a novel phase-locking technique for fiber-based Mach-Zehnder
interferometers based on discrete single-photon detections, and demonstrate this in a setup. Our
interferometer decodes relative-phase-encoded optical pulse pairs for quantum key distribution
applications and requires no locking laser in addition to the weak received signal. Our new simple
locking scheme is shown to produce an Ornstein-Uhlenbeck dynamic and achieve optimal phase
noise for a given count rate. In case of wavelength drifts that arise during the reception of
Doppler-shifted satellite signals, the arm-length difference gets continuously readjusted to keep
the interferometer phase stable.
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1. Introduction

Quantum communication and specifically Quantum Key Distribution (QKD) requires the encoding,
transmission and reception of high-bandwidth signals with high fidelity. Encoding is possible in
various degrees of freedom, typically polarization, time bin or phase [1]. The decoding of time
bin and phase-encoded signals requires the interference of pulses from different time slots before
measurement at chosen relative phases [2]. This is achieved with a phase-locked Mach-Zehnder
interferometer (MZI). Decoding of satellite QKD signals poses additional challenges of a low signal
level due to high propagation losses as well as a significantly varying Doppler shift [3]. Nevertheless,
QKD at loss levels above 50 dB is feasible [4] with the detection of single photons on modern
superconducting nanowire single photon detectors (SNSPDs) that are available with high detection
efficiency and timing precision down to few ps [5].

Driven from these applications we pose the following question: How to optimize phase locking
in the few-photon regime under realistic boundary conditions? In this work we investigate this
question with an experimental setup and discuss the choice of optimal working points.

MZIs consist of two subsequent beam splitters with two independent interferometer arms in
between (figure 1a). This configuration can decode phase information when two subsequent pulses
of the incident signal get split into two different arms at the first beam splitter, then get delayed
individually and finally interfere on the second beam splitter at a chosen relative phase. This directs
light to an output port that depends on the incident relative pulse phase and thereby measures the
phase.

The relative interferometer phase depends on the precise length of each two arms on a nanometer
scale, and therefore requires active stabilization against random drifts [6, 7]. Conventionally optical
interferometers are phase-locked with intensities in a range of nanowatts to watts, where the
achievable accuracy is limited by the finite feedback-loop response time or mechanical actuator
bandwidth, and not by photon shot-noise [8]. In contrast, QKD applications require signals on
the level of single resolvable photons (femtowatts to picowatts), where an intense locking beam in
the signal path is a huge disturbance. The issue is sometimes circumvented by using different
wavelengths for the signal and locking [9, 10, 11, 12], which can be separated after the MZI.
Suppression of leakage from locking light into the signal path is however limited, and the signal
phase becomes ambiguous after phase slips of the locking light.

To resolve this, the MZIs may be locked directly with the weak signal that is detected on single-
photon detectors at count rates of kHz to MHz [13, 14]. Due to the gain-bandwidth product limit
(connected to the fundamental Heisenberg number-phase uncertainty) [15, 16], low count rates allow
only for slow feedback. At count rates of few kHz in [13, 14], the resulting feedback bandwidth is in
the Hz range. Thus, such a locking system cannot cancel acoustic noise in the kHz-range, where only
few photons are received during one oscillation. Passive stability at those frequencies is therefore
crucial [17]. Low count rates call for an optimal use of the available information to reach the
best achievable residual phase noise [18]. This work introduces such an optimal locking scheme,
demonstrates the experimental implementation, and derives the achievable accuracy for any given
system parameters.
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Figure 1. (a) Schematic of the dual-fiber-MZI setup with two independent locking phases. 50:50: beam
splitter; Pol: In-fiber polarizer to counteract finite PER; VODL: variable optical delay line; phase shift:
electrically controlled phase shifter; SNSPD: superconducting nanowire single-photon detector; TDC: time-to-
digital converter; FPGA: field-programmable gate array. (b) Fiber-setup on breadboard in 19” rack drawer.
Beam-splitters and stretchers are visible on the board.
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Figure 2. (a) Optical pulse pattern used for locking in our experiment. We receive alternating pulse pairs of
0◦ and 90◦ relative phase, where half of the power interferes at the second beam splitter. Output intensities
represent the case ϕ = 0◦. (b) Count ratio r vs. relative MZI phase ϕ in our setup. The total signal (purple)
with visibility v = 1/

√
8 is the mean value of pulse-pairs with 0◦ relative phase (blue) and 90◦ (red), each with

a visibility of 50% due to non-interfering pulses. We use two different locking points (purple dots) for the two
MZIs with r0 = 5/8 and slopes of r′0 = ±1/8 at ϕ0 = 0◦ and ϕ0 = 90◦, respectively.

2. Setup

Our fully fiber-based setup (figure 1b), sketched in figure 1a, consists of two identical MZIs behind
a 50/50 non-polarizing beam splitter. Each MZI decodes optical (λ = 1550 nm) pulses in one
independent basis, so that we can simultaneously realize two orthogonal measurement bases for
QKD. The optical input signal consists of rectangular pulse pairs with temporal separation matched
by the interferometer arm length difference, with much less than one photon per pulse. The pulse
pairs alternate between two different relative phases (figure 2a), which enable the locking of our two
MZIs to the two different phases with only one input signal. Each interferometer has its individual
relative phase between its two arms, that defines its measurement basis. For QKD operation, these
pulses act as phase reference, where much weaker quantum signals are interleaved. The received
pattern with partially interfering pulses results in a reduced visibility v = 1/

√
8 of the mean signal

(figure 2b). In each MZI, one arm contains a variable optical delay line with a range of 600 ps for
coarse adjustment of the interferometer delay T . The other arm contains a stretcher (FPS-002-L-
15-PP) with a 10 kHz bandwidth and a voltage-controlled phase delay range of 3.4 wavelengths at
a 0− 10V input. Figure 3 demonstrates the output click ratio for various stretcher voltages.
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Figure 3. Measured count rates after one MZI, and stretcher voltage U . 0–200 s: Linear phase sweep of 2π/100 s;
200–400 s: Free drift at U = 5V; 400–600 s: Count ratio locked to 5 : 3.
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Figure 4. Allan deviation of the passive phase drift of one MZI arm with respect to the other across time
intervals from 1ms to 105 s. On timescales from 1ms to 3 s the drift follows approximately a Wiener process
with slope 1/2 (dashed). Due to recording limitations, the progression was measured in two sections: With
sampling of fs = 2kHz up to ∆t = 1 s, and above with fs = 2Hz.

To ensure polarization-mode-matching at the end of each MZI, we use Polarization-Maintaining
(PM) fibers like in [14, 12], where alternative solutions are active stabilization [19] or the use
of Faraday mirrors [9]. In the PM setup, each component has a finite Polarization Extinction
Ratio (PER) on the order of −20 dB that may allow power to swap from the desired polarization
mode to the orthogonal one, and back. This can decrease the interferometer visibility in a time-
dependent fashion and due to amplitude interference, the worst-case effect increases quadratically
with the number of subsequent imperfect components. We mitigated this effectively by the addition
of two in-line clean-up polarizers in each arm, which remove wrong polarization components before
they can interfere.

The arm-length in each interferometer is 7.08m, mainly determined by the un-shortened fiber
leads of each component. All four output channels lead to SNSPDs, that are electrically connected to
a time-to-digital converter. The individual timestamps of each detected photon are then processed
by an FPGA (Kintex-7 160T), which performs the locking algorithm at a clock rate of 500 kHz
and feeds back an analog signal to the fiber stretcher of each MZI with 16-bit digital-to-analog
conversion.

The setup is passively stabilized through close contact of the fibers to a heavy metallic
breadboard, mounted on four spring dampers inside of a rack drawer, lined with porous open-
cell foam. The temperature is stabilized by the laboratory air conditioning. Nevertheless, the
phase difference between each two MZI arms changes naturally over time, due to mechanical
stress, temperature changes and acoustic vibrations. We measured the phase drift characteristic
by transmitting macroscopic (mW) light through one MZI and observing the intensity evolution on
phototiodes after the MZI (replacing the SNSPDs in figure 1a). The average amount of change over
various timescales is shown in figure 4 (time domain) and in figure 5 (frequency domain). The drift
characteristic follows roughly the ‘red noise’ of a Wiener process, which is the continuous version of
a random walk (dashed line in figure 4 and slope −2 in figure 5). The noise amplitude at 1 kHz is
about an order of magnitude above the expected fundamental thermal fluctuations in the fiber [20].
To compensate the drifts and keep the MZI phase-difference at a constant value, we apply active
feed-back through the fiber stretchers [6, 7].

3. Phase locking

3.1. Locking algorithm

Our locking algorithm detects single-photon-detector clicks on two channels, which are the two
outputs of the balanced MZI. Let

P (0) = r and P (1) = 1− r (1)
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Figure 5. Power spectral density (PSD) of total phase noise S, both free-drifting (Sdrift, blue line, measured)
and locked with various locking parameters ϵ at constant count rate fc = 200 kHz, r0 = 5/8 and r′0 = 1/8,
calculated via (13). At lower ϵ, low-frequency drift-noise dominates, and at higher ϵ, high-frequency locking-
noise dominates.

be the relative fractions of photons received in the first and second of two channels, respectively.
The ratio r depends on the interferometer phase ϕ (figure 2), and r0 := r(ϕ0) is the ratio for the
desired phase ϕ0. Let r′0 := d r

dϕ |r=r0 be the slope that links phase and click ratio at the locking

point, which takes the magnitude |r′0| =
√
v2 − (2r0 − 1)2/2 at visibility v.

Our regulator works in the simple manner that it changes the phase of one MZI arm by a
constant step size at each registered photon (with a negligible time delay of the FPGA clock time).
The step sizes ϵ0 and ϵ1 for detections in each channel differ depending on r0 and are adjusted by
a step-size parameter ϵ:

• Photon in channel 0: ∆ϕ = ϵ0 = ϵ · 2(1− r0)

• Photon in channel 1: ∆ϕ = ϵ1 = −ϵ · 2r0
Such feedback creates an average phase change at each detected photon of

⟨∆ϕ⟩ = P (0) · ϵ0 + P (1) · ϵ1 = 2 ϵ · (r − r0) . (2)

Thus, in sufficient proximity to the locking point, the average phase adjustment is

⟨∆ϕ⟩ = 2 ϵ · (r − r0) = 2 ϵ · r′0 · (ϕ− ϕ0) , (3)

proportional to the error of ϕ. Therefore, we effectively integrate up the phase proportionally to its
error, which constitutes an integral (I)-regulator.

As the step-size is small, we can express the differential progression in time at total photon
count rate fc as

⟨dϕ⟩
dt

= ⟨∆ϕ⟩ · fc = 2 ϵ · r′0 · (ϕ− ϕ0) · fc , (4)

which causes exponential damping of phase errors in time

ϕ(t) = ϕ0 + ϕ(t=0) · e−θ·t , (5)

with regulator stiffness (exponential decay rate)

θ = −2 ϵ r′0fc , (6)

time constant

τ =
1

θ
=

1

−2 ϵ r′0 fc
, (7)

and locking bandwidth

flock =
θ

2π
=

−ϵ r′0 fc
π

. (8)
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Figure 6. Sample traces of the phase error during locking for step sizes of |ϵ| = 10−6, |ϵ| = 10−5 and |ϵ| = 10−4,
with locking time constants of τ = 20 s, τ = 2 s and τ = 0.2 s, respectively.

3.2. Discrete locking noise

In addition to the linear feedback, there is stochastic noise from the random nature of the photon
statistics (Poissonian in time and binomial per detection). Each detection is a Bernoulli trial, and
the phase variance increases by the variance V of a binomial distribution with probability r, which
is

V =
∑

i∈{0,1}

P (i) · (ϵi − ⟨∆ϕ⟩)2 = 4ϵ2r(1− r) . (9)

The successive phase adjustments create a phase random-walk with mean step ⟨∆ϕ⟩ and an
added variance per step V . For sufficiently small phase errors (|ϕ−ϕ0| ≪ π/2) which we find in the
experiment, and thus r close to r0 and a near-constant slope r′0, the variance can be approximated by
the constant value V = 4ϵ2r0(1− r0). At small step sizes, the phase evolution follows the stochastic
differential equation

dϕ = −θ · (ϕ− ϕ0) dt+ σ dWt (10)

where Wt is a Wiener process, σ =
√
V fc, and the diffusion constant is D = V fc/2. Such a random-

walk with linear feedback is called an Ornstein-Uhlenbeck (OU) process with stiffness θ and
diffusion σ [21, 22]. This has not been previously identified in the context of phase-locking, and
provides the basis for a deep understanding of the locking dynamic. It follows that the probability
distribution of phases around the desired phase ϕ0 is Gaussian with a standard deviation of

σϕ,lock =

√
D

θ
=

√
ϵ r0(1− r0)

−r′0
. (11)

Here, in order for ϕ0 to be a stable locking point, ϵ and r′0 need to have opposite signs. It is evident
from equation (11) that in absence of external noise, the locking error scales with the square root
of the chosen step size |ϵ|.

The (two-sided) power-spectral-density of the phase progression is that of low-pass filtered white
noise with a cutoff frequency of flock [21, 23]

Slock(f) =
r0(1− r0)

r′20 fc(1 + (f/flock)2)
, (12)

where
∫∞
−∞ Slock(f) df = σ2

ϕ,lock.

3.3. Total phase error

The total phase error is a combination of the locking error and the residual phase drift. Due to
independence (locking noise is random), both variances add up, and so do their power spectra.
Like every I-regulator, the lock is basically a first-order high-pass filter on the free phase drift (of
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Figure 7. Phase error vs. locking step-size parameter |ϵ| without external drift at fc = 200 kHz, r0 = 5/8 and
r′0 = 1/8. Solid lines are computed from (14) with the measured drift spectrum of figure 5, and dashed lines
from the analytic model of (21).

spectrum Sdrift, figure 5) with cutoff-frequency flock (8). In addition, the locking noise (11, 12)
is added. This is most simply expressed in the spectral domain, where the total noise spectrum
becomes

S(f) = Slock(f) +
Sdrift(f)

1 + (flock/f)2
, (13)

and the total phase error

σϕ =

√∫ ∞

−∞
S(f) df =

√
σ2
ϕ,lock +

∫ ∞

−∞

Sdrift(f)

1 + (flock/f)2
df . (14)

At larger step-sizes |ϵ|, the free phase drift gets suppressed more and with a higher cutoff-frequency,
but the locking-noise increases in bandwidth and magnitude (figure 5). Therefore we can find an
optimum magnitude of ϵ, for which the total noise is minimal.

Figure 7 shows this dependence for a fixed count-rate. The experimental phase noise for this
(figure 6) was measured with macroscopic optical power on photodiodes and artificially sampled
Poissonian photon counts for locking. Measured error values σϕ follow the predictions with a slight
variation, due to the fiber phase drift behaviour changing gradually over the measurement time of
the spectrum of several weeks (for µHz frequency components), as the setup relaxed.

3.3.1. Linear phase drift approximation Let us now analyze the behaviour for linear phase drifts.
Such drifts occur for instance when the fiber temperature changes continuously. In figure 4, they
appear on timescales between 50 s and 2000 s, where the phase changes proportional to ∆t. Linear
drifts are also induced from changing Doppler shifts in satellite QKD, where the maximum frequency
chirp from low Earth orbits at altitude h and speed vo is γ = df/dt = v2o/(hλ) ≈ c/λ · 4 · 10−7 s−1.
In a MZI of path difference T , this induces a phase drift of d = dϕ/dt = 2πγT on the order of
0.08 rad/s.

At a mean photon count rate fc per MZI, a phase step size ϵ and a locking ratio r0 at phase
ϕ0, the average phase drift during each count is ∆ϕdrift = d/fc. The equilibrium is reached when
the drift becomes opposite equal to the mean locking correction ⟨∆ϕ⟩, thus

∆ϕdrift = −⟨∆ϕ⟩ , d

fc
= −2 ϵ r′0 · (ϕ− ϕ0) , (15)

therefore

ϕdrift = ϕ− ϕ0 = − d

2fc ϵ r′0
. (16)
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This drift error is proportional to 1/ϵ. Together with the locking error (11), it leads to a total phase
error of

σϕ,drift =
√
ϕ2
drift + σ2

ϕ,lock =

√
d2

(2fc ϵ r′0)
2
+

ϵ r0(1− r0)

−r′0
, (17)

which takes a minimum value

min(σϕ,drift) =
√
3 3

√
|d| r0(1− r0)

4fcr′20
(18)

at an optimum stepsize

ϵopt,drift =
3

√
d2

2f2
c r0(1− r0)|r′0|

sign(−r′0) . (19)

3.3.2. Wiener phase drift approximation On timescales below 3 s, at which the locking typically
operates, the free phase drift (figure 4) is roughly proportional to ∆t1/2, a Wiener process of random
phase drifts. For this simplified case, we can again estimate the locking behaviour analytically. The
diffusion constant in our case is Dfiber = (4mrad)2/s. This type of phase-noise can be easily included
in the variance of the locking OU process from equation (9) as

V = 4ϵ2r(1− r) +Dfiber/fc (20)

to yield a total phase error (analogous to equation (11)) of

σϕ,Wiener =

√
4ϵ2 r0(1− r0) +Dfiber/fc

−4ϵr′0
, (21)

which takes a minimum value

min(σϕ,Wiener) =
4

√
Dfiber r0(1− r0)

fcr′20
(22)

at an optimum stepsize

ϵopt,Wiener =

√
Dfiber

4fcr0(1− r0)
sign(−r′0) . (23)

3.4. Count rate dependence

Figure 8 shows the achievable root-mean-squared phase error σϕ versus received photon count rates
fc. The locking generally improves with larger fc, as the available information increases. Larger
locking step sizes |ϵ| lead to better noise suppression at smaller count rates, because the lock will
act stronger against phase deviations. However, a larger |ϵ| also leads to more locking noise, that
dominates at higher count rates. Therefore, as in (19) and (23), the optimum ϵ depends on fc.

In absence of external phase drifts, |ϵ| = 10−5 rad is a near-optimum choice in our setup for a
wide range of count rates from around 3 · 104 Hz to 106 Hz. For the default count rate fc = 200 kHz,
this yields σϕ,min = 6.5mrad with a locking bandwidth of flock = 0.08Hz.

At presence of external phase drifts (dotted lines in figure 8), the required count rate to suppress
drift errors generally increases. This can be mitigated by a larger |ϵ| at the cost of increased minimum
achievable phase accuracy. For instance, a desired phase accuracy ∆ϕ = π/100 allows for a maximum
|ϵ| = 5 · 10−4 rad (11). The desired accuracy can then be maintained down to fc = 1kHz, where
the locking bandwidth reduces to flock = 0.02Hz. For a minimal phase error over a wider range of
count rates, it can make sense to choose ϵ adaptively to the count rate, following the green lines in
figure 8).

3.5. Darkcounts

The effect of darkcounts (or random-phase quantum signals) is most simply included by a reduced
visibility v of r(ϕ), because darkcounts are constant with regard to the MZI phase. Therefore,
darkcounts may shift the locking point r0 (towards 1/2 if the darkcounts are equal in both channels)
and they flatten the slope r′0 by a factor of fdark/ftotal. In practice, with dark count rates of few Hz
and signal count rates of hundreds of kHz, the effect is often negligible.
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Figure 8. Phase error versus count rate fc for various fixed values of the locking parameter |ϵ|. Curves are
computed with (14) using the measured free drift spectrum, r0 = 5/8 and r′0 = 1/8. Solid lines are without
external phase drift, dotted lines with linear external drift of d = 0.08 rad/s.

3.6. Optimality of the direct-counting I-controller

Our locking scheme of applying immediate constant phase changes at each registered photon is not
just simple, but also optimal with regard to some often-used modifications:

First, applying immediate feedback is better than additional averaging over several counts n
(as for example applied in [13, 14]). When averaging over subsequent counts, the mean stepsize
from equation (2) becomes ⟨∆ϕn⟩ = n · 2 ϵ r′0 · (ϕ − ϕ0), and θn = −2n ϵr′0(fc/n) = −2 ϵr′0fc = θ
for any chosen ϵ. The added variance at each phase adjustment from equation (9) becomes
Vn = n · 4ϵ2r(1 − r), because independent variances add up, and thus Dn = Vn(fc/n)/2 = D.
Together this yields σϕ,lock,n =

√
Dn/θn = σϕ,lock, the same locking noise as without averaging.

The only difference is an additional mean time delay of n/(2fc) in the feedback, which will slow
down the locking response and degrade the suppression of external phase-noise. Therefore, it is best
to adjust the phase immediately on each detection of a single photon.

Second, instead of pure integral (I)-regulation, a PID-controller with nonzero proportional (P)
or differential (D) parts might be employed (for example, PI-control in [13]). The I-part is required
in order to accumulate long-term phase drifts. The advantage of a PI-controller over a pure I-
controller is that it is normally faster, because the P-part can react immediately, while the I-part
needs to integrate for a time that is longer than the actuator and sensor loop delay (few 100µs here)
to avoid oscillation. In the low-count-rate regime, however, immediate P-response is impossible,
because low-noise statistics on the discrete count ratios is only acquired on timescales much longer
than the loop delay. Then, however, the I-part has already utilized the corresponding clicks and
the P-response comes too late to add anything useful. Things are even worse for a D-part, as the
differentiation makes it even more prone to noise, and the required integration time would be even
longer.

4. Conclusion

We have laid out and implemented a novel phase-locking scheme for MZIs, that utilizes discrete
detections of single photons. As demonstrated, immediate feedback on each detected photon is
optimal in the low count-rate regime. Despite the limitation of a relatively low locking frequency in
the Hz-range, inherently restricted by the available information, we were able to achieve a very low
phase error of 6mrad (0.35◦) in our 7m-long interferometer.

Our method is very hardware efficient. In contrast to systems with separate locking light, it
requires no additional lasers, modulators, filters or detectors in addition to the signal laser and
detectors. The interferometer can be locked to any phase value where the slope of click ratios r′0 is
nonzero. In case of an initially vanishing slope, the desired phase value can be made accessible by
the injection of pulse pairs with carefully chosen relative phases, as we have demonstrated.
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The simplicity of our scheme, to move a fixed phase step on arrival of every photon, allows it to
be implemented straightforwardly on basic hardware, that does not necessarily include an FPGA.
It can function with any type of single-photon detector, such that instead of the SNSPD, more
affordable devices like photomultipliers or avalanche diodes can be equally employed. The locking
scheme may find applications in various optical interferometers at low intensities, such as quantum
key distribution setups [19, 24], quantum repeaters [25], precision measurements [8] and receivers
for deep-space probes [26, 27].
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