
Minimize Web Applications vulnerabilities through
the early Detection of CRLF Injection

MD Asibul Hasan
Dept. of Computer Science and Engineering

Southeast University
asifhasan12355@gmail.com

Md. Mijanur Rahman
Dept. of Computer Science and Engineering

Southeast University
mijanur.rahman@seu.edu.bd

Abstract—Carriage return (CR) and line feed (LF), also known
as CRLF injection is a type of vulnerability that allows a hacker
to enter special characters into a web application, altering its
operation or confusing the administrator. Log poisoning and
HTTP response splitting are two prominent harmful uses of
this technique. Additionally, CRLF injection can be used by
an attacker to exploit other vulnerabilities, such as cross-site
scripting (XSS). Email injection, also known as email header
injection, is another way that can be used to modify the behavior
of emails. The Open Web Application Security Project (OWASP)
is an organization that studies vulnerabilities and ranks them
based on their level of risk. According to OWASP, CRLF
vulnerabilities are among the top 10 vulnerabilities and are
a type of injection attack. However, CRLF vulnerabilities can
also lead to the discovery of other high-risk vulnerabilities, and
it fosters a better approach to mitigate CRLF vulnerabilities
in the early stage and help secure applications against known
vulnerabilities. Although there has been a significant amount of
research on other types of injection attacks, such as Structure
Query Language Injection (SQL Injection). There has been less
research on CRLF vulnerabilities and how to detect them with
automated testing. There is room for further research to be done
on this subject matter in order to develop creative solutions
to problems. It will also help to reduce false positive alerts by
checking the header response of each request. Automated alerts
from security systems can provide a quicker and more accurate
understanding of potential vulnerabilities and can help to reduce
false positive alerts. Despite the extensive research on various
types of vulnerabilities in web applications, CRLF vulnerabilities
have only recently been included in the research. Utilizing
automated testing as a recurring task can assist companies in
receiving consistent updates about their systems and enhance
their security.

Keywords—Cyber Security, OWASP vulnerabilities, Secu-
rity Detection, CRLF Injection, Injection Attack

I. INTRODUCTION

Cyber security is primarily concerned with the protection
of anything that is connected to the internet. This can be an
application/software, network, device, etc. There are numerous
types of vulnerabilities in applications, such as SQL injection,
cross-site scripting (XSS), and local file inclusion (LFI),
while network vulnerabilities may include denial of service
(DoS) attacks, sniffing, and spoofing[3] [4]. To ensure cyber
security, engineers must prioritize confidentiality, integrity,
and availability, which are the three letters upon which the
CIA triad stands. The goal of this research is to identify a

Identify applicable funding agency here. If none, delete this.

specific application vulnerability. The cyber security industry
is massive and consists primarily of two teams: one works
for the company while the other works against the company,
typically the intruder. It is crucial that everyone in the Software
Development Life Cycle (SDLC) maintains the process, but
due to a lack of understanding or high value, some organi-
zations skip security testing. However, security testing checks
whether the software is vulnerable to cyber attacks, test the
impact of malicious activities, and determine the long-term
success of the software.
The majority of researchers covered different types of vul-
nerability which is also dangerous for web applications as
well as other software. But there is less research on CRLF
injection vulnerability and has been one of the most dangerous
vulnerabilities in recent years. Because this vulnerability was
discovered newly that is why there is no details research about
this vulnerability so there is a scope to improve CRLF detec-
tion. Researchers have only investigated the other types of vul-
nerabilities where attacks are mainly based on HTTP attacks
[1]. This research only covers web application vulnerability
which is a very big issue in developing a secure application[5].
CRLF vulnerability is not a common vulnerability like Cross
site scripting or SQL injection [5][6] but this can lead to other
vulnerabilities and expose the system to critical information.
If there is any vulnerability that discloses the company’s inside
information or exposes users’/customers’ information that will
be a huge disaster for the company. The most widespread
flaw in web applications is the injection, which includes
SQL, HTML, CRLF, and other types of injection. Other flaws
include XSS, broken access control, security misconfiguration,
exposed sensitive data, inadequate attack protection, using
components with known vulnerabilities, using unprotected
APIs, local file inclusion, and broken authentication and
session management [1][7]. To solve this problem, many
researchers have tried several methods but less research has
been carried out in the area of CRLF vulnerability detection
or discovery, and this still remains one of the most critical
vulnerabilities. This can expose system information and hack-
ers can steal confidential data from applications. CRLF is not
only a single vulnerability but this can also lead to some other
vulnerabilities mainly injection type of vulnerabilities.
The majority of organization who is concerned about their
security hire a security specialist to prevent security breaches,

ar
X

iv
:2

30
3.

02
56

7v
1 

 [
cs

.C
R

] 
 5

 M
ar

 2
02

3

mailto:asifhasan12355@gmail.com
mailto:mijanur.rahman@seu.edu.bd


and a security engineer to check for vulnerabilities manually
but this process takes so much time and reduce productivity.
As cyber threats evolve, security engineers are increasingly
tasked with threat modeling, penetration testing, and automa-
tion to proactively determine the level of vulnerability. This is
focused on a critical injection of vulnerability CRLF. CRLF
refers to Carriage Return and Line Feed. It’s an injection attack
that could lead to XSS attack by doing that attacker can grab
the user session and in some cases can accelerate privilege[8]
[9]. XSS attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted websites.
XSS attacks occur when an attacker uses a web application
to send malicious code, generally in the form of a browser
side script, to a different end user through such an online
application. The code for a web browser often takes the form
of a JavaScript segment, but it can also be HTML, Flash, or
any other type of code that the browser is capable of executing.
[10][11]. XSS vulnerabilities normally allow an attacker to
masquerade as a victim user, to carry out any actions that the
user is able to perform and to access any of the user’s data[6].
There are so many researches that have been done based on
web application vulnerability as well as network vulnerability
and threats. The majority of these are dangerous attacks that
can take over the full system. But though CRLF vulnerability
is a new kind of vulnerability that has not been explored by
researchers, most especially the specific vulnerability. Some
software works impeccably with CRLF vulnerability but they
are paid applications. To solve this problem with CRLF vulner-
ability, this research will provide insight and a logical approach
for those who want to work in this area of interest. The first
sectionof this study described its abstract. The second section
described the introduction of the study. The third section
conveyed the literature review, followed by themethodology,
and finally the conclusion of the research.

II. LITERATURE REVIEW

According to our studies, there has been a fair amount
of research done on vulnerability management. Some of the
research has been focused on injection-based attacks including
SQL injection, HTML injection, and also code injection. A
study on three major SQLi techniques was implemented on the
educational and financial websites of Bangladesh and executes
analysis web applications for figuring out the security condi-
tion [1]. But there was no mention of any CRLF vulnerability.
Some case studies have been conducted on various types of
vulnerabilities in some websites in Bangladesh. Additionally,
some papers have explored automated and manual penetration
testing in a range of domains. An example of the online
application called Tunestore is used in a case study to carry
out security testing. It provides an example of tool- and
manually-assisted web application security testing. Testing on
Tunestore is done using Paros, WebScarab, JBroFuzz, Fortify,
and Acunetix. [5].
This paper aims to eliminate CRLF vulnerability on web
applications and helps the security tester to detect the vulner-
ability before releasing the product. Solving this vulnerability

will also secure the application against XSS attacks because
CRLF can also lead to XSS. These are major vulnerabilities
according to OWASP.

III. METHODOLOGY

CRLF vulnerability in web applications is a major security
concern that can have serious consequences. This vulnerability
allows attackers to insert malicious code into a web page or
application, which can then be executed by the web browser
or program. This can result in the exposure of sensitive
information, the execution of arbitrary code, or the launch of
a denial of service attack.
CRLF vulnerabilities are often exploited through CRLF
injection attacks, in which malicious code is injected into a
web page or application. To prevent CRLF injection attacks,
it is essential to properly validate and sanitize all input. Any
user input that will be used in a Structured Query Language
(SQL) should be properly encoded and checked for incorrect
characters. It is also critical to keep all web servers and
applications up to date with the latest security fixes.

Figure 01: How CRLF attacks occurred

As a result of this CRLF attack, more harmful attacks
including XSS, page injection, web cache poisoning, and
many others are launched. Log poisoning and HTTP response
splitting are the popular use of these attacks. By adding a line
end and an extra line, the attacker adds false log file entries.
This could be done to deceive system administrators or cover
up other attacks [10]. LF, CR, #, and ! are common ASCII
characters used in creating server-side attacks. By including
them in the feature set, these assaults can be detected.[2]
One way to exploit a CRLF vulnerability is to inject a
CRLF character into a web application in order to exploit
a buffer overflow vulnerability. Another way to exploit a
CRLF vulnerability is to inject a CRLF character into a web
application in order to exploit an XSS vulnerability. Proposed
framework to find CRLF vulnerability:



Figure 02: Proposed Framework

In this figure, the user will give a list of website links or a
single link when running CRLF. After that, the application
will check for header responses if there is CR or LF signs
based on that application and will make sure whether it is
vulnerable or not vulnerable. This framework will give fewer
false positive alerts than other applications. An extract of the
complete HTTP GET request is shown below:[1]

Figure 03: CRLF in the header

In this figure, it is a header request where CRLF means the
CR and LF tag can be found.
CR and LF are special characters (ASCII 13 and 10 respec-
tively, also referred to as \r and \n) that are used to signify
the End of Line (EOL). They’re used to note the termination
of a line, however, dealt with differently in today’s popular
Operating Systems.

IV. RESULT AND DISCUSSIONS

Our study concentrated on determining the presence and
consequences of CRLF vulnerabilities in the wild as well
as investigating potential remedies and the most effective
methods for avoiding and overcoming these problems. Our
research shows that CRLF vulnerabilities affect a large number
of websites and online apps and that they are rather widespread
in web applications. These flaws might have detrimental
effects, such as allowing hackers to insert malicious code into
a website or application, which could result in data breaches,
identity theft, and other security breaches. We advise using a
number of quality standards, such as input validation, saniti-
zation, and encoding of user input, as well as routine testing
and monitoring of web applications to discover and resolve
any vulnerabilities, in order to mitigate these issues. Overall,
our research emphasizes how critical it is to handle online
security in a proactive manner, including routinely identifying
and patching possible vulnerabilities like CRLF issues. By

doing this, businesses can defend themselves against security
flaws, guarantee the security of their users, and safeguard their
websites and apps.

Figure 04: Vulnerability chart

The findings of this investigation showed that a total of 40
websites were examined using the suggested framework for
locating CRLF vulnerabilities, which are shown in Figure
4. Three out of the forty websites were determined to be
vulnerable to CRLF injection attacks, according to the data
graph. For some legal issues, it’s not possible to disclose the
target website’s name or website address.

Figure 05: Comparison chart

The findings of the research showed that 40 websites were
examined for CRLF vulnerabilities using three distinct frame-
works which are depicted in Figure 5. According to the
statistics in the figure, the suggested framework was able to
find more susceptible websites than Acunetix and Metasploit
Pro combined.

V. CONCLUSION

This study’s objective was to better our knowledge about
CRLF vulnerabilities in web applications. This study exam-
ined the characteristics and potential repercussions of CRLF
vulnerabilities as well as techniques for spotting and reducing
these dangers. The suggested framework was more effective
than the already available tools and had fewer false positives.
Our research has shown the significance of taking CRLF
vulnerabilities into account during the software development
lifecycle and highlighted how they could affect the security
of online applications. By offering practical knowledge that



may assist people and organizations in defending against the
continuously changing threats in the digital world, this study
has also contributed to the larger area of cyber security.

REFERENCES

[1] Hassan, M.M., Bhuyian, T., Sohel, M.K., Sharif, M.H. and Biswas,
S., 2018. SAISAN: An automated Local File Inclusion vulnerability
detection model. International Journal of Engineering & Technology,
7(2-3), p.4.

[2] Agarwal, V., Hubballi, N., Chitrakar, A.S. and Franke, K., 2019,
December. Identifying Anomalous HTTP Traffic with Association Rule
Mining. In 2019 IEEE International Conference on Advanced Networks
and Telecommunications Systems (ANTS) (pp. 1-6). IEEE.

[3] Suroto, S., 2017. A review of defense against slow HTTP attack. JOIV:
International Journal on Informatics Visualization, 1(4), pp.127-134.

[4] Kshirsagar, D. and Kumar, S., 2016, August. HTTP flood attack de-
tection using ontology. In Proceedings of the International Conference
on Advances in Information Communication Technology & Computing
(pp. 1-4).

[5] Dukes, L., Yuan, X. and Akowuah, F., 2013, April. A case study on
web application security testing with tools and manual testing. In 2013
Proceedings of IEEE Southeastcon (pp. 1-6). IEEE.

[6] Mohammadi, M., Chu, B. and Lipford, H.R., 2017, July. Detecting
cross-site scripting vulnerabilities through automated unit testing. In
2017 IEEE International Conference on Software Quality, Reliability
and Security (QRS) (pp. 364-373). IEEE.

[7] Buja, G., Abd Jalil, K.B., Ali, F.B.H.M. and Rahman, T.F.A., 2014,
April. Detection model for SQL injection attack: An approach for
preventing a web application from the SQL injection attack. In 2014
IEEE Symposium on Computer Applications and Industrial Electronics
(ISCAIE) (pp. 60-64). IEEE.

[8] Ami, P.V. and Malav, S.C., 2013. Top five dangerous security risks
over web application. International Journal of Emerging Trends &
Technology in Computer Science, 2(1), pp.41-43.

[9] Al-Khurafi, O.B. and Al-Ahmad, M.A., 2015, December. Survey of web
application vulnerability attacks. In 2015 4th International Conference
on Advanced Computer Science Applications and Technologies (AC-
SAT) (pp. 154-158). IEEE.

[10] Gupta, S. and Gupta, B.B., 2015, May. PHP-sensor: a prototype method
to discover workflow violation and XSS vulnerabilities in PHP web
applications. In Proceedings of the 12th ACM international conference
on computing frontiers (pp. 1-8).

[11] Shar, L.K. and Tan, H.B.K., 2012. Automated removal of cross site
scripting vulnerabilities in web applications. Information and Software
Technology, 54(5), pp.467-478.


	I Introduction
	II Literature Review
	III Methodology
	IV Result and Discussions
	V Conclusion
	References

