
ar
X

iv
:2

30
2.

09
31

7v
1 

 [
cs

.C
R

] 
 1

8 
Fe

b 
20

23

REPRODUCING RANDOM FOREST EFFICACY IN DETECTING

PORT SCANNING

A PREPRINT

Jason M. Pittman
ORCID: 0000-0002-5198-8157

ABSTRACT

Port scanning is the process of attempting to connect to various network ports on a computing end-
point to determine which ports are open and which services are running on them. It is a common
method used by hackers to identify vulnerabilities in a network or system. By determining which
ports are open, an attacker can identify which services and applications are running on a device
and potentially exploit any known vulnerabilities in those services. Consequently, it is important to
detect port scanning because it is often the first step in a cyber attack. By identifying port scanning at-
tempts, cybersecurity professionals can take proactive measures to protect the systems and networks
before an attacker has a chance to exploit any vulnerabilities. Against this background, researchers
have worked for over a decade to develop robust methods to detect port scanning. One such method
revealed by a recent systematic review is the random forest supervised machine learning algorithm.
The review revealed six existing studies using random forest since 2021. Unfortunately, those stud-
ies each exhibit different results, do not all use the same training and testing dataset, and only two
include source code. Accordingly, the goal of this work was to reproduce the six random forest
studies while addressing the apparent shortcomings. The outcomes are significant for researchers
looking to explore random forest to detect port scanning and for practitioners interested in reliable
technology to detect the early stages of cyber attack.

Keywords random forest, machine learning, port scanning, cybersecurity, algorithms, training data

1 Introduction

Cybersecurity breaches are a persistent threat in the dig-
ital world.. Although phishing and malware account for
a considerable number of cybersecurity incidents, 45%
are caused by network-based cyber attacks [1]. Cyber at-
tacks follow a set pattern or sequence of steps, although
the number of steps varies among existing models and
methodologies. Nonetheless, reconnaissance is univer-
sally recognized as the first step in these attacks. Recon-
naissance typically involves performing some form of port
scanning.

Port scanning is a method of identifying active services
on a target system. The technique can be both a legitimate
means to verify one’s configurations [2] or as a precursor
to an intrusion [3, 4]. Thus, a general problem is differen-
tiating between what may be an authorized host enumera-
tion versus a malicious scan. Moreover, if port scanning
is a standard prelude to cyber attack, then we want to have
a way to detect the technique with high certainty. To this
end, there is a literature detailing a variety of port scan de-

tection mechanisms. The literature covers intrusion detec-
tion systems relying on static signatures [5] to advanced,
modern machine learning (ML) techniques [6].

Most recently, a systematic review [7] collected the body
of work using ML to detect port scanning published since
2021. The review found 15 studies exploring five different
algorithms. Those 15 studies demonstrated algorithm effi-
cacy ranging from 37.92% to 100%. Based on the span
of the algorithm efficacy, the review suggested follow-
up replication of those studies be performed to determine
why algorithm performance results varied so much across
the literature. However, replication of all five algorithms
is infeasible when accounting for the variations in hyper-
parameters, model training mechanisms, lack of available
code, and so forth. Accounting for such is necessary be-
cause the majority (13 of 15) studies do not include or
link to source code containing these implementation de-
tails. Therefore, we choose to focus on the random forest
algorithm in this work because of its simple architecture
but robust set of options.

http://arxiv.org/abs/2302.09317v1


Reproducing Random Forest Efficacy in Detecting Port Scanning A PREPRINT

The remainder of this work is organized in a way which
(a) situates the reproduction of random forest research in
existing knowledge and (b) maximizes understanding of
the cutting edge. The first is achieved by discussing port
scanning, the random forest algorithm, and port scan de-
tection using random forest implementations. Thereafter,
we discuss the research method and protocol used to gen-
erate and analyze data. Finally, we present the results of
the analysis.

2 Related Work

The work most proximal to this study exists in two cate-
gories: scanning TCP/IP ports, random forest in ML, and
the use of random forest to detect port scans. The follow-
ing background discussion is not meant to be comprehen-
sive, however. Rather, we present notable and relevant
research. The intention is to construct a suitable concep-
tual framework for understanding how and why this work
has significance to the field.

2.1 Port Scanning

The origin of the term port scanning in the academic liter-
ature can be traced back to the late 1980s and early 1990s
as the Internet was growing and becoming more widely
used. Port scanning involves using features of TCP/IP
to gather information about computing systems on a net-
work by identifying open or closed ports. The first ref-
erence to port scanning in the literature is found in the
work of Fyodor [8] which described a method for deter-
mining the operating system of a remote host by sending
probes to specific ports and analyzing the responses. This
paper also introduced the first version of the open-source
tool nmap. Later, De Vivo et al. [9] provided a classi-
fication of port scanning techniques and procedures into
different types such as TCP connect scans, SYN scans,
indirect scans, stealth scans, and others. Later, Barnett
et al. [10] presented a classification system for network
scanning techniques based on the level of interaction with
the target system, the type of information gathered, and
the purpose of the scan. Bou et al. [11] demonstrated a
comprehensive overview of different types of cyber scan-
ning techniques that are used to identify various features
of networks, which can be divided into passive and active
scanning techniques.

2.2 Random Forest

Random forest is a supervised ensemble ML algorithm
that leverages a set (i.e., forest) of decision trees to make a
prediction [12]. The name random forest refers to the fact
that the each tree in the forest is trained on a random sub-
set of the data and a random subset of the features. A final
prediction is made by combining the predictions of all the
trees in the forest, either by majority vote (for classifica-
tion problems) or by averaging (for regression problems).
While random forest can act as a regression tool and a

classifier, the algorithm is particularly robust for classifi-
cation problems [12, 13, 14, 15]. This is true particularly
in cases where there are many features and interactions
among features.

While the literature exhibits a variety of differing random
forest algorithm implementations, all consist of four gen-
eral steps:

• Select random samples from a given dataset.

• Construct a decision tree for each sample and get a pre-
diction result from each decision tree.

• Perform a vote for each predicted result.

• Select the prediction result with the most votes as the
final prediction.

2.2.1 Hyperparameters and Parameters

Hyperparameters and parameters are not synonymous.
Most classification algorithms use hyperparameters. Hy-
perparameters are set before training a model and cannot
be estimated from the data during training [12, 13]. The
hyperparameters control the behavior and performance of
the model as well as optimization. Conversely, parameters
are estimated from the data during training of a machine
learning model. These values are learned by the model
during optimization and are input to generate predictions.

To that end, the set of common hyperparameters one can
manipulate when using random forest includes:

• Estimators as the number of decision trees in the forest.

• Criterion as the measure used to split the tree at each
node.

• The maximum depth of the decision trees.

• A minimum number of samples required to split an in-
ternal node.

• The minimum number of samples required to construct
a leaf node.

• The number of features to consider when looking for
the best split.

• Whether or not to sample with replacement.

A crucial hyperparameter to adjust is the number of ran-
dom features to be taken into account at each split point.
Another important aspect to adjust is the depth of the de-
cision trees [13]. Although deeper trees tend to overfit the
training data, they also exhibit lower correlation, which
can potentially enhance the performance of the ensemble.
Nonetheless, node size, tree quantity, and number of sam-
pled features are generally accepted as mandatory to set
[16, 17].

Still, even with perfect hyperparameters controlling train-
ing, random forest has advantages and disadvantages.
Awareness of both can lead to more appropriate selection
of the algorithm for a given problem. The same is true
at the level of how the algorithm is configured through
hyperparameters.

2



Reproducing Random Forest Efficacy in Detecting Port Scanning A PREPRINT

2.2.2 Advantages of random forest

The main advantage of Random Forest classifiers is that
they are less likely to overfit than single decision trees,
since the combination of multiple trees helps to average
out the noise in the data [16, 17]. Random forest is also
relatively easy to implement and use. This is because the
algorithm produces trained models requiring little tuning
compared to other machine learning algorithms [12, 13].

Another significant advantage of random forest is it is an
ensemble method [13]. Other classifiers like logistic re-
gression, support vector machine, and naive Bayes are
single models. Random forest also uses the bagging tech-
nique to train each tree in the forest on a random subset of
the data and a random subset of the features [12, 17, 13].
This helps to reduce the risk of overfitting and improve
the stability of the model. As well, this allows random for-
est to compute feature importance, which is a measure of
the contribution of each feature to the prediction [12, 13].
This can be useful for feature selection and interpretabil-
ity.

2.2.3 Disadvantages of random forest

In terms of disadvantages, random forest classifiers may
not perform as well on highly complex and non-linear
problems [16, 17], where other algorithms like neural net-
works may be more suitable. On that note, random forest
classifiers can be computationally expensive and slow to
make predictions, especially for large datasets and many
trees in the forest [13]. Further, random forest classifiers
may not handle unbalanced data well, where one class is
underrepresented [12, 17, 13]. This can lead to biased re-
sults towards the majority class. Finally, while random
forest classifiers can provide feature importance such are
not as interpretable as other models like linear regression
where the coefficients have a clear meaning.

Regardless of advantages and disadvantages, random for-
est features prominently in port scan detection research.
While collective results of the research since 2021 demon-
strated high efficacy, the deviation of accuracy values ap-
peared significant. The following section describes those
values along with other pertinent random forest implemen-
tation details.

2.3 Detecting Port Scanning

Port scanning, as a reconnaissance technique, is de-
tectable. ML is a compelling solution to detecting oth-
erwise undetectable port scans because of its ability to
correlate seemingly unrelated features across enormous
datasets. Yet, not all ML algorithms work in the same
way or have the capability to address the same problem.

Furthermore, there are a variety of ML algorithms types-
classification, regression, deep learning, and so forth- with
a diversity of implementation variations. This work fo-
cused on random forest and therefore we analyzed the fol-

lowing background works only for related details to that
algorithm.

Table 1: Random Forest Algorithm Literature

Authors Accuracy Dataset

Algaolahi et al. 99.75 CICIDS2017
Baah et al. 99.98 CICIDS2017

Sirisha et al. 78.09 NSLKDD
Sirisha et al. 84.14 CICIDS2017

SaiKiran et al. 99.93 CICIDS2017
Mohseni et al. 99.94 CICIDS2017
Bertoli et al. 96.00 MAWILab
Bertoli et al. 100.00 Bonafide

The six studies [18, 19, 20, 21, 22, 23] in Table 1 exper-
imented with port scan detection using different RF al-
gorithm implementations. Overall, random forest perfor-
mance ranged from 78.09% to 100% across those studies.
One paper [19] included a link to source code in a pub-
lic repository (e.g., GitHub). Four different datasets were
used, three of which do not appear in other algorithm cat-
egories.

Two studies discussed the types of port scans present in
training and evaluation data. SaiKiran et al. [23] men-
tioned port sweep but did not specify further. Bertoli et
al. [19] conducted training and evaluating against the full
spectrum of port scan types. Further, Bertoli et al. in-
cluded port scan data from five different port scan tools.

Algaolahi et al. [18] used a 20% test, 80% training data
split. Random forest hyperparameters were not provided.
Baah et al. [22] also used a 20-80% data split. Addition-
ally, the authors specified a 10-fold cross-validation value
for training. Other hyperparameters were absent.

Meanwhile, Bertoli et al. [19] provided perhaps the most
detailed description of their experimental configuration.
Random forest grid-search was performed with estimators
set to 10, 50, 100, and 200. The criteria were gini and en-
tropy. A max depth of 5 and 10. Lastly, the authors set
a class weight of none, balanced, and balanced subsam-
ple. The model evaluation used stratified k-fold (k=10)
cross-validation.

Mohseni et al. [21] also described a set of hyperparam-
eters for their implementation of the random forest algo-
rithm. However, details were unclear. It is possible the
class weight was balanced. Further, it seemed the estima-
tors were set to 15, 25, 50, and 100. Training data split
and cross-validation were not mentioned.

Less revealing, SaiKiran et al. [23] did not indicate
any random forest hyperparameters, training data split, or
cross-validation mechanism. Sirisha et al. [20] provided
some hyperparameters such criterion as gini, estimator of
100, but nothing else. The authors used a data split of 25%
test and 75% training.

3



Reproducing Random Forest Efficacy in Detecting Port Scanning A PREPRINT

3 Method

A recent systematic review [7] suggested follow-up repli-
cation be performed for research using ML to detect port
scanning. Research replication and reproduction is of-
ten mentioned but seldom implemented. For complete-
ness, replication duplicates a research study with the same
methods and setup to verify and increase trust in results
[24]. The feasibility of conducting replication depends
on the degree to which instrumentation and experimental
setups are discussed in the source studies [25, 26, 27]. Re-
production is related but different insofar as it recreates
a study using different instruments or data sets to demon-
strate generalizability in the source studies’ results [24].
Reproduction does not depend on instrument or experi-
mental setup details [25, 26, 27].

However, as noted both in the systematic review and the
related work in this research, the body of random forest
port scan detection literature lacks the necessary details to
establish a replication. Thus, a reproduction is the most
appropriate method [24].

Scientific reproduction is meaningful when such work
follows the source literature as closely as possible, is
fully transparent in its method and materials, and rig-
orously compares reproduction results to the source re-
search. Thus, we pose a single research question to guide
the reproduction process. The question is: to what extent
does reproduction produce similar results to the original
studies, and if not are the differences statistically signif-
icant? To generate an answer we measured the efficacy
of the random forest algorithm under several implementa-
tions.

3.1 Protocol

With the above in mind, we constructed a reproduction
protocol based on (a) extracted details from the source
studies where available and (b) knowledge of how random
forest can be implemented. Having a clear protocol en-
sured we handled important steps in the correct sequence.
Moreover, a clear protocol is a key tenet in reproduction,
especially when source work lacks clarity.

1. Initialize the environment

2. Select a dataset for random forest training and testing

3. Conduct necessary data pre-processing

4. Run a random forest trial for hyperparameter set A

5. Record the score output

6. Re-initialize the environment

7. Run a random forest trial for hyperparameter set B

8. Record the score output

9. Repeat steps 6 - 8 until all hyperparameter sets are tri-
aled

3.2 Environment

We constructed the operational environment in two stages:
hardware and software. The hardware consisted of an
AMD Ryzen 9 5900X CPU, 128 gigabytes of RAM,
and a Nvidia 3090 RTX GPU. The system ran Ubuntu
22.04 for an operating system. The ML stack included
Python 3.11.1, Numpy 1.24.1, Pandas 1.5.3, and
Scikit-Learn 1.2.1.

3.3 Datasets

The source studies used four different datasets. The CI-
CIDS2017 dataset includes eight different files, one being
explicitly labeled as having port scan material (Friday-
WorkingHours-Afternoon-PortScan.pcap_ISCX). None
of the studies using this dataset detail which of the
eight files were used for training and testing. Further,
recent work [28] discovered significant issues with the
CICIDS2017 set including duplicate data and mislabel-
ing. The NSLKDD dataset also includes multiple files.
Sirisha et al. [20] used the KDDTrain+ and KDDTest+
files. However, Bertoli et al. [19] noted limitations of the
data which rendered use of the data in ML-based solutions
impractical.

In turn, Bertoli et al. used two different datasets. One
dataset contained laboratory generated traffic (attack)
while the other the contained traffic captured from an inter-
net network segment (bonafide). We selected the bonafide
dataset because it included both legitimate as well as port
scan traffic and therefore more closely matched the con-
tents of the CICISD2017 and NSLKDD datasets. More-
over, we manually inspected the bonafide dataset to ensure
a variety of port scan tools and techniques were included.
For tools, the dataset captured nmap, masscan, unicorn-
scan, zmap, and hping.

We adhered to the data pre-processing process outlined by
Bertoli et al. [19] with one deviation. We opted to save the
final processed dataset to comma separated value file. Do-
ing so saved time and reduced error surface given we were
going to run multiple random forest trials. The dataset is
available in the companion GitHub repository.

3.4 Hyperparameters

There are five parameters within the set of hyperparam-
eters that can impact random forest accuracy based on
Bertoli et al. [19] study implementation. We gave critical
attention to three as we constructed the sets for reproduc-
tion trials. First, we let the two lists of n_estimators
from source studies be hyperparameter sets A and B.
This parameter defines the number of trees in the model.
Then, we paired value definitions of max_depth also from
source work to those sets. Here, the deeper the tree,
the more splits can occur causing the model to capture
more information about the data. Lastly, we isolated
min_samples_leaf as the number of samples required

4



Reproducing Random Forest Efficacy in Detecting Port Scanning A PREPRINT

to be at a leaf node. No source work set this parameter so
we let the default value hold for sets A and B.

The majority of source studies (4 of 6) did not specify hy-
perparameters. Thus, we took guidance from the literature
to construct additional hyperparameter sets C and D. We
used these sets as internal validity measures and for com-
parison of model efficacy under different random forest
training conditions. Additionally, the sets C and D allow
for comparison to the broader literature not reporting ex-
plicit implementation details.

Table 2: Hyperparameter sets and parameter values

Set Estimators Leaf Depth

A 10, 50, 100, 200 1 5, 10
B 15, 25, 50, 100 1 5, 10
C 200, 500 14 4, 5, 6, 7, 8
D 200, 500 14 4, 5, 6, 7, 8

Set Features Criterion Weight
A sqrt gini balanced
B sqrt gini balanced
C sqrt gini balanced
D log2 entropy None

3.5 Instrumentation

We initially attempted to use the source code provided
through Bertoli et al [19]. However, there were critical
errors during runtime. We surmised these were due to
version drift in core packages (e.g., sklearn). As well,
because none of the other source studies offered code
snippets or entire source, we opted to develop a stan-
dard random forest implementation based on available
Scikit-Learn documentation. Further, in doing so we
establish a base implementation for a known working al-
gorithm and model. Further, doing so allowed us to modu-
larize the code within a Jupyter notebook according to the
protocol rather than modify an existing instrument.

We let the training and testing split be 70% and 30%
across all reproduction trials. This seemed appropriate
given the known configurations in the source studies. Fur-
ther, each hyperparameter set included two tuning config-
uration methods: RandomSearchCV and GridSearchCV.
Considering the majority of source studies did not include
code or indicate which method was used, including both
provides a comparative view for later analyses. Fit and
scoring were achieved using the basic random forest meth-
ods.

We ran an internal pilot test to ensure the instrument func-
tioned as expected. This included loading the data, pre-
processing the data, instantiating the random forest al-
gorithm with a hyperparameter set, and producing out-
put. Lastly, we made the instrumentation and data used
in this reproduction transparent. All related materials can
be found in a public GitHub repository [29].

4 Results

We separate the results into four sections based on the set
of random forest configurations. Each results table con-
tains two rows. The first row demonstrates results asso-
ciated with the RandomSearchCV hyperparameter set and
the second shows results using GridSearchCV.

The first hyperparameter trial demonstrated macro aver-
ages of 99%. These results can be taken as a baseline
because they closely align to the random forest implemen-
tation used in Bertoli et al. [19].

Table 3: Hyperparameter set A efficacy

Accuracy Recall Precision F1

0.9970 0.99 0.99 0.99
0.9976 0.99 0.99 0.99

Changing the n_estimators to [15, 25, 50, 100] pro-
duced the output in Table 4. While the macro averages
remain at 99%, we observed a minor difference in the
GridSearchCV results compared to Set A.

Table 4: Hyperparameter set B efficacy

Accuracy Recall Precision F1

0.9970 0.99 0.99 0.99
0.9974 0.99 0.99 0.99

We changed the n_estimators for Set C as well, to 200
and 500. We also changed max_depth from [5, 10] used
in the prior two trials to [4, 5, 6, 7, 8]. As well, we moved
from the default min_samples_leaf value of 1 to 14.
Collectively, these tunings produced changes to accuracy
but not recall, precision, or F1 (Table 5).

Table 5: Hyperparameter set C efficacy

Accuracy Recall Precision F1

0.9939 0.99 0.99 0.99
0.9937 0.99 0.99 0.99

We modified the last hyperparameter set with
max_features from sqrt to log2 and a criterion value
from gini to entropy. We also let class_weight be None.
We observed changes in efficacy across all four measures.

Table 6: Hyperparameter set D efficacy

Accuracy Recall Precision F1

0.9947 0.98 0.99 0.98
0.9895 0.96 0.99 0.97

As a general reproduction of random forest efficacy in de-
tecting port scans, we were interested in how the above re-
sults compare to the results from the source literature. To
that end, we expanded Table 1 by adding results for Re-
call, Precision, and F1 when available. The NaN value
indicates no data were available in that category from the
source study.

5



Reproducing Random Forest Efficacy in Detecting Port Scanning A PREPRINT

Table 7: Efficacy comparison across source studies

Study Accuracy Recall Precision F1

Algaolahi 0.9975 0.9989 0.9975 0.9982
Baah 0.9998 0.9997 0.9999 0.9998
Sirisha 0.7650 0.6525 0.9721 0.7809
SaiKiran 0.9993 NaN NaN NaN
Mohseni 0.9964 NaN NaN NaN
Bertoli NaN NaN NaN 1.0000

We statistically compared the accuracy results from our
trials to the set of results from the source literature. We
used a paired t-test and found no significant difference
(p = 0.4103, t = 0.9544, df = 3, std = 0.058).

5 Conclusion

Port scanning is used by hackers to identify vulnerabili-
ties in a network or system. Early detection of this step
in the cyber kill chain can lend a sizable time advantage
to network defense teams. Thus, much effort has been in-
vested into developing techniques to do so. In that regard,
researchers have put forth a variety of ML algorithms as
solutions. Results from that work have shown promising
results. However, whether such outcomes are generaliz-
able has been unknown until now.

This study reproduced results from six studies published
since 2021 using a random forest algorithm. We devel-
oped a new random forest instrument and ran it against
one of the datasets detailed in one of the existing works.
Further, to model potential variations in random forest im-
plementation, we ran four trials with four different sets of
hyperparameters.

Given the observable similarity of results, combined with
the statistical comparison, the use of random forest to
detect port scanning appears generalizable. However,
a deeper inspection of the trial data revealed that two
techniques- full connect and SYN scanning- from one of
the tools (unicornscan) were detected with an accuracy
well below 90%.

We assumed the source research implemented the random
forest algorithm within a common, standard range of hy-
perparameters. We also assumed given all studies used
comparable Python interpreters and core packages given
the work occurred within the same timeframe. However, it
is possible major version differences exist across the stud-
ies or abnormal hyperparameters were used. We also as-
sumed the selected dataset from Bertoli et al. [19] did not
contain duplicates, flaws, or mislabeled elements.

Based on the results, we recommend additional repro-
duction research be done with focus on the other ML
algorithms. Doing so would expand the foundation of
knowledge and provide research and practitioners with
confidence in the applicability of using ML to detect port
scans. Furthermore, development of a real-time engine us-
ing confirmed generalizable ML algorithms would allow

for experimentation with dynamic and distributed port
scanning techniques. A component in such an engine
might also give real-time measurements of sustainability
or green compute impact. Lastly, deeper exploration of
why unicornscan deviated from the high watermark pre-
dictions associated with other tools is warranted. Such
investigation may explore novel port scanning techniques
capable of evading ML-based solutions.

References

[1] Statista Research Department. Most common action
varieties in data breaches worldwide in 2019, 2023.

[2] Weijie Wang, Baijian Yang, and Yingjie Victor Chen.
Detecting subtle port scans through characteristics
based on interactive visualization. In Proceedings of
the 3rd annual conference on Research in informa-
tion technology, pages 33–38, 2014.

[3] Habib Ullah Baig and Farrukh Kamran. Detection
of port and network scan using time independent fea-
ture set. In 2007 IEEE Intelligence and Security In-
formatics, pages 180–184. IEEE, 2007.

[4] Tarun Yadav and Arvind Mallari Rao. Technical as-
pects of cyber kill chain. In International symposium
on security in computing and communication, pages
438–452. Springer, 2015.

[5] LT Heberlein, GV Dias, KN Levitt, B Mukherjee,
J Wood, and D Wolber. A network security monitor.
In Proceedings. 1990 IEEE Computer Society Sym-
posium on Research in Security and Privacy, pages
296–304. IEEE, 1990.

[6] Azriel Henry, Sunil Gautam, Samrat Khanna,
Khaled Rabie, Thokozani Shongwe, Pronaya Bhat-
tacharya, Bhisham Sharma, and Subrata Chowdhury.
Composition of hybrid deep learning model and fea-
ture optimization for intrusion detection system. Sen-
sors, 23(2):890, 2023.

[7] Jason M Pittman. Machine learning and port
scans: A systematic review. arXiv preprint
arXiv:2301.13581, 2023.

[8] Gordon Lyon. Remote os detection via tcp/ip stack
fingerprinting, Oct 1998.

[9] Marco De Vivo, Eddy Carrasco, Germinal Isern, and
Gabriela O De Vivo. A review of port scanning tech-
niques. ACM SIGCOMM Computer Communication
Review, 29(2):41–48, 1999.

[10] Richard J Barnett and Barry Irwin. Towards a tax-
onomy of network scanning techniques. In Proceed-
ings of the 2008 annual research conference of the
South African Institute of Computer Scientists and
Information Technologists on IT research in develop-
ing countries: riding the wave of technology, pages
1–7, 2008.

[11] Elias Bou-Harb, Mourad Debbabi, and Chadi Assi.
Cyber scanning: a comprehensive survey. Ieee com-

6



Reproducing Random Forest Efficacy in Detecting Port Scanning A PREPRINT

munications surveys & tutorials, 16(3):1496–1519,
2013.

[12] Leo Breiman. Random forests. Machine learning,
45:5–32, 2001.

[13] Matthias Schonlau and Rosie Yuyan Zou. The ran-
dom forest algorithm for statistical learning. The
Stata Journal, 20(1):3–29, 2020.

[14] Baoxun Xu, Xiufeng Guo, Yunming Ye, and Jiefeng
Cheng. An improved random forest classifier for text
categorization. J. Comput., 7(12):2913–2920, 2012.

[15] Luka Čehovin and Zoran Bosnić. Empirical evalu-
ation of feature selection methods in classification.
Intelligent data analysis, 14(3):265–281, 2010.

[16] Khaled Fawagreh, Mohamed Medhat Gaber, and
Eyad Elyan. Random forests: from early devel-
opments to recent advancements. Systems Science
& Control Engineering: An Open Access Journal,
2(1):602–609, 2014.

[17] Naresh Kumar. Advantages and disadvantages of
random forest algorithm in machine learning. The
Professionals Point, 2019.

[18] Akram QM Algaolahi, Abdullah A Hasan, Amer
Sallam, Abdullah M Sharaf, Aseel A Abdu, and
Anas A Alqadi. Port-scanning attack detection using
supervised machine learning classifiers. In 2021 1st
International Conference on Emerging Smart Tech-
nologies and Applications (eSmarTA), pages 1–5.
IEEE, 2021.

[19] Gustavo De Carvalho Bertoli, Lourenço
Alves Pereira Júnior, Osamu Saotome, Aldri L
Dos Santos, Filipe Alves Neto Verri, Cesar
Augusto Cavalheiro Marcondes, Sidnei Barbi-
eri, Moises S Rodrigues, and José M Parente
De Oliveira. An end-to-end framework for machine
learning-based network intrusion detection system.
IEEE Access, 9:106790–106805, 2021.

[20] Aswadati Sirisha, Kosaraju Chaitanya, KVSSR Kr-
ishna, and Satya Sandeep Kanumalli. Intrusion
detection models using supervised and unsuper-
vised algorithms-a comparative estimation. IJSSE,
11(1):51–58, 2021.

[21] Mahsa Mohseni and Jafar Tanha. A density-based
undersampling approach to intrusion detection. In
2021 5th International Conference on Pattern Recog-
nition and Image Analysis (IPRIA), pages 1–7. IEEE,
2021.

[22] Emmanuel Kwesi Baah, Steven Yirenkyi, Dominic
Asamoah, Stephen Opoku Oppong, Edward Opoku-
Mensah, Benjamin Tei Partey, Anthony Kingsley
Sackey, Oliver Kornyo, and Evans Obu. Enhancing
port scans attack detection using principal compo-
nent analysis and machine learning algorithms. In
International Conference on Frontiers in Cyber Se-
curity, pages 119–133. Springer, 2022.

[23] N SaiKira, Pradeep Naidu PDS, K Harshini,
M Venkateswarlu, et al. Detection of cyber at-
tacks in network using machine learning techniques.
South Asian Journal of Engineering and Technology,
12(3):138–145, 2022.

[24] Hans E Plesser. Reproducibility vs. replicability: a
brief history of a confused terminology. Frontiers in
neuroinformatics, 11:76, 2018.

[25] R Murray Lindsay and Andrew SC Ehrenberg. The
design of replicated studies. The American Statisti-
cian, 47(3):217–228, 1993.

[26] Andrew Brooks, John Daly, James Miller, Marc
Roper, and Murray Wood. Replication of exper-
imental results in software engineering. Interna-
tional Software Engineering Research Network (IS-
ERN) Technical Report ISERN-96-10, University of
Strathclyde, 2, 1996.

[27] Omar S Gómez, Natalia Juristo, and Sira Vegas.
Replications types in experimental disciplines. In
Proceedings of the 2010 ACM-IEEE international
symposium on empirical software engineering and
measurement, pages 1–10, 2010.

[28] Maxime Lanvin, Pierre-François Gimenez, Yufei
Han, Frédéric Majorczyk, Ludovic Mé, and Eric To-
tel. Errors in the cicids2017 dataset and the signifi-
cant differences in detection performances it makes.
2023.

[29] https://github.com/jasonmpittman/rf-port-scans.

7

https://github.com/jasonmpittman/rf-port-scans

	1 Introduction
	2 Related Work
	2.1 Port Scanning
	2.2 Random Forest
	2.2.1 Hyperparameters and Parameters
	2.2.2 Advantages of random forest
	2.2.3 Disadvantages of random forest

	2.3 Detecting Port Scanning

	3 Method
	3.1 Protocol
	3.2 Environment
	3.3 Datasets
	3.4 Hyperparameters
	3.5 Instrumentation

	4 Results
	5 Conclusion

