
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Evaluating security vulnerabilities in web-based

Applications using Static Analysis

Chinwuba Christian Nnaemeka

Department of Computing & informatics

Bournemouth University

Poole, United Kingdom

S5433891@bournemouth.ac.uk

Osejobe Ehichoya

Department of Computing & informatics

Bournemouth University

Poole, United Kingdom
S5433891@bournemouth.ac.uk

Abstract—Web services are becoming business-critical

components, often deployed with critical software bugs that

can be maliciously explored. Web vulnerability scanners allow

the detection of security vulnerabilities in web services by

stressing the service from the point of view of an attacker.

However, research and practice show that different scanners

perform differently in vulnerability detection. This paper

presents a qualitative evaluation of security vulnerabilities

found in web applications. Some well-known vulnerability

scanners have been used to identify security flaws in web

service implementations. Many vulnerabilities have been

observed, which confirms that many services are deployed

without proper security testing. Additionally, having reviewed

and considered several articles, the differences in the

vulnerabilities detected and the high number of false positives

(35% and 40% in two cases) and low coverage (less than 20%

for two scanners) observed highlight the limitations of web

vulnerability scanners in detecting security vulnerabilities in

web services.

Furthermore, this work will discuss the static analysis

approach for discovering security vulnerabilities in web

applications and complimenting it with proven research

findings or solutions. These vulnerabilities include broken

access control, cross-site scripting, SQL injections, buffer

overflow, unrestricted file upload, broken authentications, etc.

Web applications are becoming mission-essential components

for businesses, potentially risking having several software

vulnerabilities that hackers can exploit maliciously. A few

Vulnerability scanners have been used to detect security

weaknesses in web service applications, and many

vulnerabilities have been discovered, thus confirming that

many online apps are launched without sufficient security

testing. The static analysis technique considered in this work

helps detect security flaws. However, it has an important

limitation of indicating high false positives.

Keywords—Web-based, static Analysis, SQLi - SQL

Injection, XSS - Cross-site Scripting, Buffer Overflow,

Unrestricted file Upload, Broken Authentication, Attack vector,

PHPi – Hypertext Pre-processor injection, RFI -Remote file

inclusion, CMDi – Command injection, SDLC – Software

development lifecycle

I. INTRODUCTION

The importance of web-based application security has
increased since it handles sensitive data that, if hacked, may
cost the company millions of dollars [19]. Vulnerabilities in

web applications significantly impact application security
and users’ risk of being attacked by hackers exploiting flaws
in the source code of web applications. How to detect
security bugs efficiently in software systems is a growing
concern, and it is vital to secure these applications against
hackers [19]. In 2002, the computer security institute and the
FBI performed a computer crime and security assessment,
which indicated that more than half of all databases
experienced at least one security breach, with an average loss
of about $4 million [10]. In a survey by Alqaradaghi et al.,
2021 about 75% of all attacks on web servers target web-
based applications, and firewalls cannot defend against them
because they rely solely on HTTP traffic, which is typically
allowed to pass through them unimpeded. Attention has been
focused on network-level attacks like port scanning. As a
result, hackers frequently gain access to Web apps directly.

Developers' lack of proper understanding of secure
coding is a primary cause of web application insecurity,
resulting in flaws. Many ways of detecting source code
vulnerabilities have been investigated, with some extant
approaches falling into two categories: dynamic and static
analysis. Dynamic analysis approaches, such as software
testing, examine how an application program runs but only
guarantee 100% coverage. In contrast, the static analysis
examines the application's source code with many false
positives but achieves 100% testing coverage [22].

According to a recent web security analysis and research,
cross-site scripting (XSS) is the most susceptible web
application vulnerability [23]. They are inserted into the web
applications’ source code without encrypting or verifying
XSS scripts. Hackers exploit them to steal sensitive data,
cookies, and web sessions. XSS vulnerabilities are produced
when malicious scripts are hosted on a website or when a
malicious URL lures a user. This vulnerability affects web
applications and is a known concern [20].

This paper examines a technique for discovering security
vulnerabilities in web-based applications using static
analysis. The methods entail studying the web application
source code for input validation defects and putting solutions
into the same principle to repair these flaws. This technique
immediately adds to web application security by reducing
vulnerabilities and indirectly allowing developers to identify
the problems.

The paper is organised into five main sections, with
section one having four sub-sections. The main sections
include the introduction, methodology, research findings,
conclusion, and recommendation. Main section one has four
sub-sections: background, literature review, problem
statement and research questions.

A. Background

• Static Analysis

Static analysis of web applications is indispensable to any
software tool, integrated development environment, or
system that requires compile-time information about the
semantics of programs. With the emergence of modern
programming languages, static analysis of applications
consisting of both recursive data and dynamic storage has
become a field of active research. Programming mistakes
introduce vulnerabilities in program source code that needs
to be fixed. The longer a vulnerability lies dormant, the more
expensive it can be to fix. Static analysis tools aim to identify
common coding mistakes before an application is deployed
automatically. Static analysis extracts semantic information
about a program at compile time [31]. It verifies the program
source code statically without attempting to execute the code.
Manual code auditing is a form of static analysis which is
time-consuming and requires the code auditors first to
understand what security flaws appear like to check the code
thoroughly. Static analysis tools are quicker than manual
code audits, as they regularly analyse programs.
Additionally, because they are designed to capture security
knowledge, they do not need the tool operator to have the
exact level of security experience as a human auditor [32].
Static analysis will only solve some of your security issues.
For instance, it scans the code for a predefined collection of
patterns or criteria. To eliminate vulnerabilities, experienced
developers must still design a program correctly. Static
analysis techniques can detect bugs in the essential details,
but they cannot evaluate the design. The result of a static
analysis tool still needs human assessment [33].

• Vulnerability

Web applications are accepted in today’s business

environment and are used in the business’s day-to-day

activities. Several companies have launched Web

applications, and their use has recently surged. As web-

based applications become more critical business elements,

they are frequently deployed with significant software

vulnerabilities that can be exploited illegally. Vulnerabilities

are defects or weaknesses in a system's architecture,

development, and operation that might be manipulated to

break the system's security procedures or functionality [36].

Any vulnerability or hole in a web application can be used

to obtain unauthorised access to, harm, or corrupt the

information system. Web application vulnerabilities are

embedded in web application codes. They are unaffected by

the technology used to develop the application, the safety of

the Web application, or the back-end system. Developers

should follow proper coding practices, thoroughly evaluate

the code for security vulnerabilities, run penetration testing,

and employ code vulnerability checkers to prevent

vulnerabilities. Technically, the cost to fix security flaws

discovered later in the software development cycle is higher

than security flaws found earlier [24]; developers must make

every effort to identify problems as soon as feasible. Code

audits (code reviews), static analysis, dynamic analysis, and

security testing are methods for identifying vulnerabilities in

online applications [35]. White-box and black-box testing

are the two primary techniques for vulnerability testing in

web applications. Black-box testing does not directly

examine the source code of the program, unlike white-box

testing, which does so to find defects or vulnerable lines of

code. Static analysis is an example of white-box testing

[34].

B. Literature Review

Web application vulnerability predicting frameworks were
built using historical data that showed the proposed known
vulnerability data along with static properties to anticipate
the XSS and SQLI flaws [6]. A set of static code attributes
was intended to represent these code patterns. They enhanced
their work process by developing a strategy for building
construction predictors using machine learning language [7].
A prototype program called PhpMinerl was created to collect
data and evaluate its methodology on different open-source
web applications. The results showed 11% false positives in
detecting SQLI vulnerability and 6% in detecting XSS in
web applications. The developers were trained using the
available vulnerability exposure dynamic and static analysis
data. The static analysis primarily evaluates the program
source code without executing the regulations, whereas
dynamic analysis examines how this application works by
code execution and validating its functionalities. Pixy was
the first static analysis tool to discover the XSS
vulnerabilities in PHP source code in 2006; the report from
this research suggests that using the right static analysis tool
achieves a successful outcome of approximately 72%
predicting XSS vulnerability in web applications and the
result of static code analysis used reported a false positive
rate of around 9%. Nevertheless, XSS vulnerability in web
applications persists due to analytical limitations, such as the
false positive rate on the analysis’s findings [25].

The reliability of security scanners in discovering
vulnerabilities vary, and it is an excellent tool for finding
web application flaws introduced in the source code during
development. Web security scanners are one method that
frequently characterises the effectiveness of various scanners
in identifying vulnerabilities in online applications [27]. Web
security scanning tools are tested to determine their strengths
and limitations regarding vulnerability assessment coverage
and false positives. The objective was to investigate the
reliability of security scanners and identify effective forms of
web application vulnerabilities. Three commercial scanning
technologies were assessed, and the results revealed that
overall coverage is inadequate, with many false positives
[13].
Nonetheless, the analysis was limited to a particular family
of software, mainly web-based apps developed in PHP. The
findings cannot be generalised because many services
examined were launched without sufficient security testing
[4]. The web scanner tools are divided into enterprise-level
and free, open-source tools; the enterprise-level device has
been evaluated as more accurate and precise due to the
implementation of extra innovations. Furthermore, in the
context of describing techniques for mitigating SQL injection
attacks, enterprise tools provided a transparent, solidly
automated SQL injection analysis tool based on a syntax
algorithm [26]. A significant finding was that different

scanners discover different vulnerabilities, indicating that
one scanner's coverage is far from flawless. Web scanners
have a high false-positive rate and low range, exposing their
limits in finding vulnerabilities in web applications [13].

Numerous studies have examined techniques for
comprehensively evaluating various web threats, including
SQL injection, XSS, and other vulnerability mitigation and
detection techniques, to understand better the general
engineering fields connected to web security threats [18].
Static analysis tools can provide a reliable warning to some
extent, according to Walden and Doyle's research [16],
which found a strong link between Fortify SCA tool alerts
and NVD vulnerabilities. Zheng et al. [17] showed how
static analysis is a crucial technique for identifying flaws that
have the potential to lead to security vulnerabilities based on
an enterprise-scale investigation. In comparing the value of
manual code review with static analysis (black-box testing)
for online applications, Finifter and Wagner [15] found that
the two are complementary and that manual analysis
revealed more errors but consumed a lot more effort and
needed experts to examine the application code base. They
argued that no single technique could find every
vulnerability in a web application. Their research revealed
that relatively rare vulnerabilities are discovered using a
variety of methodologies, with automated penetration testing
being the most efficient in terms of time and static analysis
coming in second. Research, parameter fiddling, SQL
injection, and cross-site scripting attacks contribute to more
than a quarter of all identified Web application
vulnerabilities [45]; the attacks listed above are made
possible by user input that has not been adequately validated.
Coding auditing can detect these attacks, and code reviews
discover issues before launching a program. Code reviews
are one of the most effective defence measures [17], but they
are time-consuming and expensive. Thus, they are only used
sparingly. Many programmers lack the security expertise
required for security audits, which drives up the cost of
security assessments. Since security issues are regularly
introduced as they are being fixed, double audits (examining
the code twice) are strongly encouraged.

C. Problem Statement

As web technologies advance and users shift away from
traditional desktop applications, the adoption of web-based
applications has surged. Among the professional developers
who design web applications are a few amateurs with limited
knowledge of web application security who create vulnerable
applications. These security vulnerabilities allow attacks to
gain unauthorised access to the web application. The most
prevalent cause of web applications is unchecked input
parameters in the source code, which is a typical
development error [28]. Hackers employ two approaches to
attack uncontrolled input parameters: they inject malicious
code into web applications and then use the code to
manipulate the application. In 2013, the (OWASP) Open
Web Application Security Project identified the most severe
web application security vulnerabilities [20].

1. SQL Injection Attacks

2. XSS-Cross Site Scripting

3. Broken Authentications and Session Management

4. Sensitive Data Exposure

5. Security Misconfigurations

D. Research Question

• How often does vulnerability appear in a web-based
application?

• What level of breach or impact do these
vulnerabilities cause?

• What are the existing static analysis techniques, and
how best can they be improved to optimise
performance?

II. METHODOLOGY

This study used a qualitative research technique to critically
analyse existing web application static analysis approaches
or strategies. The investigators conducted a systematic
review of academic papers in current peer-reviewed journals
to assess the secondary literature on the research. Systematic
reviews summarise what has been written and discovered
about a research topic objectively. This is especially useful
when several articles on an extensive study topic each focus
on a different aspect of the field. The investigators will
conduct their research using the databases MySearch, Google
Scholar, IEEE, Scopus, ScienceDirect, and Web of Science.
These databases are multidisciplinary, well-established
research platforms regularly updated and feature a wide
range of peer-reviewed publications. These databases were
chosen to include all relevant papers. The researcher's
evaluation will be restricted to peer-reviewed literature. Peer-
reviewed journal articles are expected to contain high-impact
research on Web-based application static analysis. The
researchers established a cut-off year for the review to ensure
that the data gathered was relevant, and they investigated its
impact on the field.

In this research, we have considered a wide range of
literature from 2010 - 2022. This range of literature will
present comprehensive state-of-the-art research conducted in
this field

A. Exclusion and Inclusion Metric

The systematic search strategy included phrases such as

"static analysis," "SQL Injection," and "cross-site scripting."

The systematic review concentrated on how much research

had been conducted on web-based application static

analysis. Other keyword phrases, such as "web-based

application vulnerability" or "web applications attack," were

used in the search, but the results were limited to "Static

Analysis" only. As a result, searches such as "web

application static analysis" were carried out. The search

terms were intended to draw attention to the subject under

investigation so that relevant evidence could be discovered

[3]. Below, in Fig 1, is the Prisma flowchart describes how

our research was conducted and the databases where

relevant research articles were found.

Fig 1. Prisma flow diagram

III. RESEARCH FINDINGS

The research questions addressed in the study were as
follows: (1) How frequently does vulnerability appear in a
web-based application? (2) How serious is the breach or
impact caused by these vulnerabilities? (3) What are the
current static analysis techniques, and how can they be
enhanced to improve performance? The data was compiled
through a thorough review of peer-reviewed articles. Below
are some of the prominent findings discovered in our
research.

A. Impact of Web-based Application Attacks

According to the annual global security report 2018, which

analysed billions of security events, all tested applications

have at least one vulnerability and an average of 11 failures.

Web attacks appear to be becoming more specific, frequent,

and sophisticated [39]. A successful web-based attack can

significantly impact websites, web applications, reputation,

and customer relationships. It defaces the websites,

compromises user accounts, runs malicious code on web

pages, etc., potentially compromising the user's device. It

stems from poorly developed web applications’ source

codes which are not adequately checked. According to a

TechJury report, 30,000 websites are hacked daily [37].

Frequently, hackers target financial, healthcare, and retail

organisations, and if cybercriminals cannot breach an

organisation’s security infrastructure, they may attempt to

gain access to the corporate website. Similarly, software

vulnerability and third-party integrations such as extension

usage are also ways attackers can accomplish this. Some

plugins are responsible for 98% of the vulnerabilities in

content management systems, such as WordPress, which

hosts over 35% of all websites on the internet. As a result,

numerous security plugins are available to protect the

vulnerable.

B. Attack Vectors and Enablers

Web applications can be attacked for various reasons,

including system flaws caused by incorrect coding,

misconfigured web servers, application design flaws, or

failure to validate forms. SQL injection (SQLI), cross-site

scripting (XSS), remote code execution (RCE), and file

inclusion (FI) are among the most common and severe web

application vulnerabilities threatening the privacy and

security of both clients and applications today, according to

OWASP's Top 10 Project [7]. These flaws and

vulnerabilities enable attackers to access databases

containing sensitive information. Web applications are an

easy target for attackers because they must always be

available to customers. According to ENISA [4] threat

report, there is a general perception that web application

attacks are diverse. However, other data from security

research suggests that most web application attacks are

limited to SQL injection or Local file inclusion. Another

report indicates that SQL injection, directory traversal, XSS,

broken authentication and session management are at the top

of the attack vectors used in Web application type of attack.

SONICWALL also reported a similar trend for the top web

application attacks for 2019. On the list, SQLi, directory

traversal, XSS, broken authentication and session

management were on the top.

Fig 2. Threat landscape [4]

The findings also indicate that the Cross-Site Scripting

(XSS) vulnerability is most common in web applications.

This vulnerability can result in violations for the user or the

site. Many tools and methods focus on finding this

vulnerability in PHP source code. Nonetheless, identifying

XSS vulnerabilities in PHP web applications remains a

challenge for the time being. Most previous tools and

approaches relied on static analysis to detect XSS

vulnerabilities. This is due to its ability to achieve nearly

100% code coverage and observe all programme paths.

Furthermore, recent research has found that static analysis is

superior to other approaches for detecting this vulnerability.

Combining static analysis with other algorithms (genetic

algorithms, pattern matching, and machine learning)

improved detection results and reduced static analysis run

time [6].

C. Prevention Mechanism

Various research articles have investigated practical and

comprehensive approaches to vulnerability in Web-based

applications. According to [5,] existing mechanisms for

dealing with Web application threats can be divided into

client-side and server-side solutions. An application-level

firewall protects against cross-site scripting (XSS) attacks

that try to steal a user's credentials. Server-side solutions

have the advantage of discovering a broader range of

vulnerabilities.

Pixel, [5] according to one of the peer-reviewed articles,

was the first open-source tool for statically detecting XSS

vulnerabilities in PHP 4 code using data flow analysis. PHP

was chosen as the target language because it is widely used

for developing Web applications, and many security

advisories mention PHP programs. Although the peer-

reviewed article considered a prototype designed to detect

XSS flaws, it can also be used to detect other taint-style

vulnerabilities such as SQL injection or command injection.

Any significant type of vulnerability (for example, cross-site

scripting or SQL injection) can be considered an example of

this general class of taint-style vulnerabilities [5].

Pixy was tested in this manner using six popular open-

source PHP programs, and the test result returned accurate

results [5].

The extensive research conducted in [2], as shown in Fig 3

below, presents an approach for discovering and correcting

vulnerabilities in web applications and a tool that

implements the policy for PHP programmes and input

validation vulnerabilities. The method and device look for

vulnerabilities by combining two techniques: static source

code analysis and data mining. The top three machine

learning classifiers are used to identify false positives, and

an induction rule classifier is used to justify their presence.

Static analysis tools assist lowers the price of application

maintenance via early detection and avoidance of problems

in web applications, making static analysis tools an essential

framework in defending against web application attacks.

Adjustments to source code can be quickly checked to

increase code security with the introduction of static

analysis tools into the CI/CD pipelines [24]. These

technologies can help web-based applications by detecting

problems in the model, minimising security failure

mechanisms, and highlighting areas for development. Code

analysis tools are mainly used to detect programming

language problems and code syntax incompatibilities [29].

These tools are promising for improving the robustness of

web-based application security. Nevertheless, it suffers a

significant setback from a high false positive rate when

examining source codes. The adverse effects of this high

false positive rate have led to a lacklustre uptake of these

tools. False positives in code analysis are thought to be a

complex problem [30]. Validation must balance false

positives and negatives (missing defects) (no defect

present). To reduce false positives, contextualised error

reporting, conflicting terminology and issue prioritizations

must all be considered by static analysis tools running on

web-based applications.

Fig 3. Main modules and data structures. [2]

D. Widespread Awareness Campaign

Even though much research is being done to mitigate

vulnerabilities in web applications, raising awareness about

this issue is still critical. Both web application developers

and users must be aware of the gravity of web

vulnerabilities and what they can do to mitigate their impact

on web application security. Security requirements should

be integrated into web application development at all stages

of the software development lifecycle.

Many web applications are created quickly, and security is

an afterthought. It is critical for web application developers

to understand not only the negative impact of XSS and other

vulnerabilities but also to be able to mitigate them; by so

doing, it would assist developers in addressing web

vulnerabilities when developing web applications. Similarly,

web application users should be warned and given best

practice guidelines when visiting web applications online,

especially when sensitive information is shared. Some

banking applications, for example, warn visitors about

security risks. Furthermore, users must exercise caution

when clicking links that may direct them to an insecure site

where they may become victims of hackers [38].

IV. CONCLUSION

The principal objective of this qualitative study was to

investigate static analysis as it relates to web-based

applications and its relative impact on a wide scale. A

comprehensive literature study and peer-reviewed journal

article was conducted during the data-gathering phase.

Three themes emerged from the data study: the impact of

Web-based Application attacks, attack Vectors and

Enablers, and Prevention Mechanisms. This study’s findings

were used to address the research questions. Relevant

stakeholders can use these findings to improve web

application security. Web applications have become a

popular and widely used medium of interaction in our daily

lives. Simultaneously, vulnerabilities that endanger users'

data are discovered regularly. Manual security audits aimed

at these vulnerabilities are time-consuming, expensive, and

prone to error. Therefore, SDLC stakeholders need to be

aware that hacking techniques are constantly changing with

the advancement of technology, and there are always new

ways to steal information from businesses. Thus, protecting

web systems may reduce security risks, increase customer

confidence, and improve the economy’s health.

V. RECOMMENDATION

This study uses various strategies to show how SMEs

protect sensitive firm data from cyber threats. The offered

approaches are action plans for industry small business

entrepreneurs or MSMEs. As the first guideline, small

business owners should establish a company strategy that

engages in active cybersecurity actions. Such a strategy

should include policies and methods to safeguard corporate

and consumer data from cyber threats. The second advice is

for small business owners to gradually link their business

operations to cybersecurity rules to develop a unified

security strategy across their organisation. The final

recommendation is for small business owners to build an

adequate plan addressing preparation, data privacy, and data

breach response in case of a breach, which can help lessen

the impacts of data breaches while preserving personal

company data.

However, as considered in this work, static analysis of

detecting web application vulnerability was thoroughly

expanded. The main disadvantage of static analysis is the

high rate of false positives in the results. False positives are

results seen as vulnerable paths but not weak. Another

disadvantage of static analysis approaches is their

dependence on a particular framework or language. For

example, a static analysis tool designed for PHP cannot be

used for Ruby on Rails without extensive engineering work.

These tools are known to be inextricably linked to both

language and framework features. Considering this

shortcoming, it would be ideally suitable to combine static,

dynamic and hybrid analysis [24].

REFERENCES

[1] R. K. Yin, Case study research and applications: Design and methods,

6th ed. Thousand Oaks, California: Sage Publications, Inc, 2018.

[2] Medeiros, N. Neves, and M. Correia, “Detecting and Removing Web
Application Vulnerabilities with Static Analysis and Data Mining,”
IEEE Transactions on Reliability, vol. 65, no. 1, pp. 54–69, Mar.
2016, doi: 10.1109/tr.2015.2457411.

[3] Boiko and V. Shendryk, “System Integration and Security of
Information Systems,” Procedia Computer Science, vol. 104, pp. 35–
42, 2017, doi: 10.1016/j.procs.2017.01.053.

[4] ENISA, “ENISA Threat Landscape 2020 - Web application attacks,”
Europa.eu, 2020. https://www.enisa.europa.eu/publications/web-
application-attacks

[5] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool
for detecting Web application vulnerabilities,” 2006 IEEE
Symposium on Security and Privacy (S&P’06), 2006, doi:
10.1109/sp.2006.29.

[6] A. W. Marashdih, Z. F. Zaaba, K. Suwais, and N. A. Mohd, “Web
Application Security: An Investigation on Static Analysis with other
Algorithms to Detect Cross Site Scripting,” Procedia Computer
Science, vol. 161, pp. 1173–1181, 2019, doi:
10.1016/j.procs.2019.11.230.

[7] L. K. Shar and H. B. K. Tan, “Predicting SQL injection and cross-site
scripting vulnerabilities through mining input sanitisation patterns,”
Information and Software Technology, vol. 55, no. 10, pp. 1767–
1780, Oct. 2013, doi: 10.1016/j.infsof.2013.04.002.

[8] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web Application
Vulnerability Prediction Using Hybrid Program Analysis and
Machine Learning,” IEEE Transactions on Dependable and Secure
Computing, vol. 12, no. 6, pp. 688–707, Nov. 2015, doi:
10.1109/tdsc.2014.2373377.

[9] J. Fonseca, M. Vieira, and H. Madeira, “Testing and Comparing Web
Vulnerability Scanning Tools for SQL Injection and XSS Attacks,”
IEEE Xplore, Dec. 01, 2007.
https://ieeexplore.ieee.org/abstract/document/4459684/

[10] D. Stuttard and M. Pinto, The Web Application Hacker’s Handbook:
Finding and Exploiting Security Flaws. John Wiley & Sons, 2011.
Accessed: Nov. 08, 2022. [Online]. Available:
https://books.google.co.uk/books?hl=en&lr=&id=NSBHAAAAQBAJ
&oi=fnd&pg=PT13&dq=The+Web+Application+Hacker%27s+Hand
book:+Discovering+and+Exploiting+Security+Flaws&ots=5tpR2CK
1GO&sig=A68J3az78O_DIfdaN0GcXTKe9fI&redir_esc=y#v=onepa
ge&q=The%20Web%20Application%20Hacker

[11] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Title,”
www.usenix.org.
https://www.usenix.org/legacy/events/sec01/full_papers/shankar/shan
kar_html/

[12] C. Anley and C. Com, “Advanced SQL Injection In SQL Server
Applications.” [Online]. Available: https://priv.gg/e/Hacking%20-
%20Advanced%20SQL%20Injection.pdf

[13] IBM, “Cost of a data breach 2022,” www.ibm.com, 2022.
https://www.ibm.com/reports/data-breach

[14] Carbon Black, “Threat Research,” VMware, Nov. 06, 2022.
https://www.carbonblack.com/resources/threat-research/global-threat-
report-series/ (accessed Nov. 08, 2022).

[15] M. Finifter and D. Wagner, “Exploring the Relationship Between
Web Application Development Tools and Security.” [Online].
Available:
https://www.usenix.org/legacy/events/webapps11/tech/final_files/Fini
fter.pdf

[16] J. Walden and M. Doyle, “SAVI: Static-Analysis Vulnerability
Indicator,” IEEE Security & Privacy, vol. 10, no. 3, pp. 32–39, May
2012, doi: 10.1109/msp.2012.1.

[17] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” IEEE Transactions on Software Engineering, vol. 32, no.
4, pp. 240–253, Apr. 2006, doi: 10.1109/tse.2006.38.

[18] R. Johari and P. Sharma, “A Survey on Web Application
Vulnerabilities (SQLIA, XSS) Exploitation and Security Engine for
SQL Injection,” IEEE Xplore, May 01, 2012.
https://ieeexplore.ieee.org/document/6200667

https://www.enisa.europa.eu/publications/web-application-attacks
https://www.enisa.europa.eu/publications/web-application-attacks

[19] UNCTAD, “Digital Economy Report 2019 | UNCTAD,” unctad.org,
2019. https://unctad.org/webflyer/digital-economy-report-2019

[20] Sunardi, U. Dahlan, Y. Indonesia, I. Riadi, and P. Raharja,
“Vulnerability Analysis of E-voting Application using Open Web
Application Security Project (OWASP) Framework,” IJACSA)
International Journal of Advanced Computer Science and
Applications, vol. 10, no. 11, 2019, [Online]. Available:
http://eprints.uad.ac.id/22085/2/Paper-C.1.1-
Vulnerability%20Analysis%20of%20E-
voting%20Application%20using%20Open%20Web%20Application
%20Security%20Project%20%28OWASP%29%20Framework.pdf

[21] M. Alqaradaghi, G. Morse, and T. Kozsik, “Detecting security
vulnerabilities with static analysis – A case study,” Pollack Periodica,
Dec. 2021, doi: 10.1556/606.2021.00454.

[22] A. Gosain and G. Sharma, “A Survey of Dynamic Program Analysis
Techniques and Tools,” Advances in Intelligent Systems and
Computing, pp. 113–122, 2015, doi: 10.1007/978-3-319-11933-5_13.

[23] A. W. Marashdih and Z. F. Zaaba, “Detection and Removing Cross
Site Scripting Vulnerability in PHP Web Application,” IEEE Xplore,
Oct. 01, 2017. https://ieeexplore.ieee.org/document/8109033
(accessed Jul. 12, 2021).

[24] A. W. Marashdih, Z. F. Zaaba, and K. Suwais, “Cross Site Scripting:
Investigations in PHP Web Application,” IEEE Xplore, Oct. 01, 2018.
https://ieeexplore.ieee.org/abstract/document/8531224 (accessed Dec.
07, 2022).

[25] I. Medeiros, N. Neves, and M. Correia, “DEKANT: a static analysis
tool that learns to detect web application vulnerabilities,” Proceedings
of the 25th International Symposium on Software Testing and
Analysis, Jul. 2016, doi: 10.1145/2931037.2931041.

[26] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and
implementation - PLDI ’07, 2007, doi: 10.1145/1250734.1250739.

[27] M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners
to detect vulnerabilities in web services,” IEEE Xplore, Jun. 01, 2009.
https://ieeexplore.ieee.org/abstract/document/5270294 (accessed Jan.
23, 2021).

[28] V. Livshits and M. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis.” [Online]. Available:
https://www.usenix.org/legacy/publications/library/proceedings/sec05
/tech/full_papers/livshits/livshits.pdf

[29] A. J. Simmons, S. Barnett, J. Rivera-Villicana, A. Bajaj, and R. Vasa,
“A large-scale comparative analysis of Coding Standard conformance
in Open-Source Data Science projects,” Proceedings of the 14th ACM
/ IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM), Oct. 2020, doi:
10.1145/3382494.3410680.

[30] K. F. Tomasdottir, M. Aniche, and A. van Deursen, “The Adoption of
JavaScript Linters in Practice: A Case Study on ESLint,” IEEE
Transactions on Software Engineering, vol. 46, no. 8, pp. 863–891,
Aug. 2020, doi: 10.1109/tse.2018.2871058.

[31] V. M. Santos, S. Misra, and M. S. Soares, “Architecture
Conceptualization for Health Information Systems Using
ISO/IEC/IEEE 42020,” Computational Science and Its Applications –
ICCSA 2020, pp. 398–411, 2020, doi: 10.1007/978-3-030-58817-
5_30.

[32] M. Nachtigall, M. Schlichtig, and E. Bodden, “A large-scale study of
usability criteria addressed by static analysis tools,” Proceedings of
the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, Jul. 2022, doi: 10.1145/3533767.3534374.

[33] A. Groce et al., “Evaluating and Improving Static Analysis Tools Via
Differential Mutation Analysis,” IEEE Xplore, Dec. 01, 2021.
https://ieeexplore.ieee.org/abstract/document/9724764/ (accessed
Dec. 07, 2022).

[34] A. Martin-Lopez, A. Arcuri, S. Segura, and A. Ruiz-Cortés, “Black-
Box and White-Box Test Case Generation for RESTful APIs:
Enemies or Allies?,” IEEE Xplore, Oct. 01, 2021.
https://ieeexplore.ieee.org/abstract/document/9700203 (accessed Nov.
07, 2022).

[35] T. Lee, G. Won, S. Cho, N. Park, and D. Won, “Detection and
Mitigation of Web Application Vulnerabilities Based on Security
Testing,” Lecture Notes in Computer Science, pp. 138–144, 2012,
doi: 10.1007/978-3-642-35606-3_16.

[36] A. Dessiatnikoff, R. Akrout, E. Alata, M. Kaaniche, and V.
Nicomette, “A Clustering Approach for Web Vulnerabilities
Detection,” IEEE Xplore, Dec. 01, 2011.
https://ieeexplore.ieee.org/abstract/document/6133081/ (accessed
Dec. 07, 2022).

[37] J. Bulao, “How Many Cyber Attacks Happen Per Day? [2021 Stats
and Facts],” TechJury, Jul. 15, 2020. https://techjury.net/blog/how-
many-cyber-attacks-per-day/#gref

[38] I. Hydara, A. B. Md Sultan, H. Zulzalil, and N. Admodisastro,
“Removing Cross-Site Scripting Vulnerabilities from Web
Applications using the OWASP ESAPI Security Guidelines,” Indian
Journal of Science and Technology, vol. 8, no. 30, Nov. 2015, doi:
10.17485/ijst/2015/v8i30/87182.

[39] G. E. Rodríguez, J. G. Torres, P. Flores, and D. E. Benavides, “Cross-
site scripting (XSS) attacks and mitigation: A survey,” Computer
Networks, vol. 166, p. 106960, Jan. 2020, doi:
10.1016/j.comnet.2019.106960

