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Abstract—Only when understanding hackers’ tactics, can we 

thwart their attacks. With this spirit, this paper studies how 
hackers can effectively launch the so-called ‘targeted node 
attacks’, in which iterative attacks are staged on a network, and in 
each iteration the most important node is removed. In the existing 
attacks for weighted networks, the node importance is typically 
measured by the centralities related to shortest-path lengths, and 
the attack effectiveness is also measured mostly by length-related 
metrics. However, this paper argues that flows can better reflect 
network functioning than shortest-path lengths for those networks 
with carrying traffic as the main functionality. Thus, this paper 
proposes metrics based on flows for measuring the node 
importance and the attack effectiveness, respectively. Our node 
importance metrics include three flow-based centralities (flow 
betweenness, current-flow betweenness and current-flow 
closeness), which have not been proposed for use in the attacks on 
weighted networks yet. Our attack effectiveness metric is a new 
one proposed by us based on average network flow. Extensive 
experiments on both artificial and real-world networks show that 
the attack methods with our three suggested centralities are more 
effective than the existing attack methods when evaluated under 
our proposed attack effectiveness metric.  

Keywords—Cyber-attacks, Centrality, Attack Effectiveness, 
Weighted Networks. 

I. INTRODUCTION 
Infrastructure networks such as the Internet Backbone, 

power grids and wireless mesh networks are critical for our 
society and economy. Due to their high importance and wide 
presence, they have been the hot targets of cyber-attacks [1]. 
Infamous incidents of such attacks include the ‘WannaCry’ 
attack on the UK’s National Health Service network in 2017 [2], 
the ransomware attack on USA Colonial Pipeline’s oil pipelines 
in 2021 [3], etc. 

With the prevalence of cyber-attacks, the best strategy to 
resist them is to study how hackers think. Following this 
strategy, this paper investigates how hackers can effectively 
launch a type of attacks called the ‘targeted node attacks’, in 
which rounds of attacks are carried out on a network, and in each 
round the most important node and its incident links are 
removed from the network, until no nodes are left [4-6]. Here 
the node importance can be measured by any metric the hackers 
choose, e.g., node degree, various kinds of centralities, node 
clustering coefficient, etc.  

In calculating those node importance metrics, there are two 
approaches [7]:  initial and adaptive. In the initial approach, the 

metric values of all nodes are calculated based on the initial 
network only, and in each round of attack, the initial values are 
used to select the node to remove. In the adaptive approach, the 
metric values of remaining nodes are recalculated after each 
round of attack. It was shown in [7] that the attacks with the 
adaptive approach are more effective than those attacks with the 
initial approach. Therefore, most research works propose the 
attack methods with the adaptive approach, and so will this 
paper.      

 Besides being initial or adaptive, another aspect of attacks is 
whether to consider the link weights in the networks. This aspect 
affects the measurements of both node importance and attack 
effectiveness.  

On one hand, most of the existing attack methods (e.g., [5, 6, 
8-11]) consider the links unweighted, thus achieving low 
computation complexity. In these methods, the node importance 
is measured by those unweighted metrics such as node degree, 
unweighted betweenness centrality [12], unweighted closeness 
centrality [12], etc. The attack effectiveness is measured by a 
metric called R [4] or its variants. R was inspired by the 
Percolation Theory [13], in which the size of the Largest 
Connected Component (LCC) in a network is the key indicator 
on network connectivity. We give the formula for R in Section 
II. Note that R is originally proposed as a metric for measuring 
network robustness, not for attack effectiveness. However, since 
higher network robustness means less attack effectiveness, R is 
used to measure attack effectiveness as well, with a less value of 
R indicating a more effective attack.  

On the other hand, since the links in most infrastructure 
networks have some kinds of weights (e.g., capacity, length, 
etc.), an attack method considering link weights can be more 
destructive. Consequently, several weighted attack methods [14-
17] have appeared in recent years. In these methods, the node 
importance is measured by node strength (the total weight of the 
links incident to a node) (e.g., in [14]), weighted betweenness 
centrality (in [15, 17]), weighted closeness centrality (in [15, 
17]), etc. Note that weighted betweenness and closeness are 
based on shortest-path lengths and hence called shortest-path 
betweenness and closeness as well [12]. They will be detailed in 
Section II. In terms of attack effectiveness, these methods 
measure it by R (e.g., in [14]), Network Efficiency (EFF) (in [14, 
15]), Total Flow (in [15]), Average Shortest Path Length 



(ASPL) (in [17]), etc. Note that EFF and ASPL are based on 
shortest-path lengths and will be detailed in Section II.  

 It can be seen from the above that most existing weighted 
attack methods reference shortest-path lengths for measuring 
node importance and attack effectiveness. However, shortest-
path lengths suffer from two weaknesses: (1) not all paths are 
considered in a network, and (2) the capacity for carrying 
network traffic is not considered. To overcome these two 
weaknesses, this paper proposes new attack methods with 
metrics based on flows (including both network flows [18] and 
electrical currents [19]) for measuring node importance and 
attack effectiveness. Specifically, this paper makes the 
following contributions: 

• Flow betweenness centrality [20], current-flow 
betweenness centrality [21] and current-flow closeness 
centrality [19] are proposed as the node importance metrics 
for use in the weighted attacks. All of them consider flows 
instead of shortest-path lengths in calculating the centrality 
values. 

• A new metric for measuring attack effectiveness called 
RANF is proposed. RANF is a variation to R by replacing the 
LCC size with the Average Network Flow (ANF) proposed 
in our previous work [22]. Since ANF considers the flows 
among all node pairs in a network, RANF is a fine-grained 
metric for measuring attack effectiveness.  

• Extensive experiments on both artificial and real-world 
networks are conducted, showing that the three centralities 
suggested above lead to more effective attack methods than 
the existing ones when using RANF as the attack 
effectiveness metric. Among these three centralities, the 
current-flow betweenness results in the most effective 
attack method.   

The rest of this paper is arranged as follows. Section II 
introduces the preliminaries for this paper. Section III discusses 
related works and points out their weaknesses. Section IV 
details our attack methods with the metrics for measuring node 
importance and for measuring attack effectiveness. Section V 
and Section VI describe the experimental setup and results. 
Finally, Section VII concludes this paper. 

II. PRELIMINARIES 
This section introduces the graph notations used in this paper 

and discusses the metrics for node importance and attack 
effectiveness.  

This paper models a network by an undirected graph G = (V, 
E), where V is the set of vertices (or nodes) and E is the set of 
links (or edges). For convenience, we let n = |V| and m = |E|, 
and label the nodes in V from 1 to n. An edge connecting nodes 
i and j is denoted by (i, j). The weight associated with edge (i, 
j) is denoted by c(i, j). The assumption of undirected graphs in 
this paper is because most of the infrastructure networks 
support bidirectional communications on their links. 

A. Metrics for Node Importance   
The first three metrics in this subsection are the main ones 

used in the existing works, and the last three are proposed for 
use in the attacks by this paper. 

1) Node Strength (NS):  

     The NS of a node i, denoted by NS(i), is the total weight of 
all edges incident to node i [14]. The formula for calculating 
NS(i) is as follows:  

NS(i) = � 𝑐𝑐(𝑖𝑖,𝑣𝑣)
𝑣𝑣∈𝑁𝑁(𝑖𝑖)

                                     (1) 

Here 𝑁𝑁(𝑖𝑖) denotes the set of neighbor nodes to node i.          

2) Weighted Betweenness Centrality: 
     The weighted (shortest-path) betweenness centrality for a 
node i, denoted by CSPB (i), reflects the chance that node i is on 
the shortest paths among node pairs in a network [17]. The 
formula for calculating CSPB (i) is as follows: 

CSPB(𝑖𝑖) =
2

(𝑛𝑛 − 1)(𝑛𝑛 − 2) �
𝜏𝜏(𝑠𝑠, 𝑡𝑡 | 𝑖𝑖)
𝜏𝜏(𝑠𝑠, 𝑡𝑡)

𝑠𝑠.𝑡𝑡∈𝑉𝑉−{𝑖𝑖},𝑠𝑠<𝑡𝑡

         (2) 

Here s and t are two distinct nodes in the network other than 
node i. The ‘s < t’ is used to indicate that a node pair (𝑠𝑠, 𝑡𝑡) is 
only counted once. The 𝜏𝜏(𝑠𝑠, 𝑡𝑡) represents the total number of 
shortest paths between s and t, and the 𝜏𝜏(𝑠𝑠, 𝑡𝑡 | 𝑖𝑖) represents the 
number of shortest paths between s and t that pass through i. 
Since we have totally (𝑛𝑛 − 1)(𝑛𝑛 − 2)/2 node pairs in 𝑉𝑉 − {𝑖𝑖}, 
dividing it gives the average over all node pairs. 

Note that, for the unweighted betweenness centrality, the 
formula remains unchanged, but the lengths of all links are 
simply deemed as ‘1’. The same way is applied to the weighted 
closeness centrality below to get its unweighted version.  

3) Weighted Closeness Centrality 
The weighted (shortest-path) closeness centrality for a node 

i, denoted by CSPC (i), is the reciprocal of the average distance 
from node i to all other 𝑛𝑛 − 1 nodes in a network [17]. The 
formula for calculating CSPC (i) is as follows: 

   CSPC(𝑖𝑖) =
𝑛𝑛 − 1

∑ 𝑑𝑑(𝑖𝑖, 𝑣𝑣)𝑖𝑖∈𝑉𝑉
    (i ≠ v)                          (3) 

Here 𝑑𝑑(𝑖𝑖,𝑣𝑣) gives the shortest path distance between node i 
and node v. Basically, the weighted closeness centrality reflects 
the average distance between a node and all the other nodes in a 
network. Thus, the closer the node i is to all other nodes, the 
more central the node i is. 

4) Flow Betweenness Centrality 
The flow betweenness [20] is based on the maximum flows 

among node pairs in a flow network [18]. The flow 
betweenness for a node i, denoted by CFB (i), is calculated as 
follows:  

CFB (𝑖𝑖) =
2

(𝑛𝑛 − 1)(𝑛𝑛 − 2) �
𝐹𝐹(𝑠𝑠, 𝑡𝑡 | 𝑖𝑖)
𝐹𝐹(𝑠𝑠, 𝑡𝑡)

𝑠𝑠.𝑡𝑡∈𝑉𝑉−{𝑖𝑖},𝑠𝑠<𝑡𝑡

         (4) 



Here s and t are two distinct nodes in the network other than 
node i; F(s, t) represents the maximum flow between s and t; 
and 𝐹𝐹(𝑠𝑠, 𝑡𝑡 | 𝑖𝑖) represents the maximum flow between s and t 
that pass through i; and dividing (𝑛𝑛 − 1)(𝑛𝑛 − 2)/2 gives the 
average over all node pairs in 𝑉𝑉 − {𝑖𝑖}. 

5) Current-Flow Betweenness Centrality 
The current-flow betweenness [21] is based on the electrical 

currents among node pairs in an electrical circuit. The 
difference between a network flow and an electrical current for 
a node pair is that a network flow (even when achieving the 
maximum) may abandon some paths between this node pair, 
while an electrical current always uses all the possible paths 
[21]. Specifically, the Current-Flow Betweenness Centrality for 
node i, denoted by CCFB (i), is calculated as follows:  

CCFB (𝑖𝑖) =
2

(𝑛𝑛 − 1)(𝑛𝑛 − 2) � Is,t(i)
𝑠𝑠.𝑡𝑡∈𝑉𝑉−{𝑖𝑖},𝑠𝑠<𝑡𝑡

          (5) 

Here Is,t(i) gives the electrical current passing through node i 
when a unit current is applied between s and t.  

6) Current-Flow Closeness Centrality 
The current-flow closeness [19] also views a network as an 

electrical circuit and uses the potential difference (i.e., voltage) 
between two nodes as the closeness measure. Specifically, the 
Current-Flow Closeness Centrality for a node i, denoted by 
CCFC (i), is calculated as follows:  

   CCFC(𝑖𝑖) =
𝑛𝑛 − 1

∑ PD(𝑖𝑖, 𝑣𝑣)𝑖𝑖∈𝑉𝑉
    (i ≠ v)                     (6) 

Here PD(i, v) is the potential difference between node i and 
node v when a unit current is applied between them. 

Note that, unlike ‘flow betweenness centrality’, ‘flow 
closeness centrality’ does not exist in the literature, since a flow 
network has no concepts similar to the potential difference. 

B. Metrics for Attack Effectiveness 
This subsection covers four main metrics used for measuring 

attack effectiveness in the existing weighted attack methods.  
1) R 

    R is the average of the ratios of the LCC size and the network 
size after all rounds of attacks [4]. Here ‘size’ means the 
number of nodes. Specifically, given a network G, the formula 
for calculating R is as follows:  

𝑅𝑅(G) =
1
𝑛𝑛
�

LCC(Gi)
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

                                  (7)  

Here Gi denotes the network after the i-th round of attack, and 
LCC(Gi) denotes the LCC size in Gi, and the 1/n at the 
beginning averages the results of all rounds.  
    Note that although R has been used in some weighted attacks 
(e.g., [14, 15]) to measure attack effectiveness, this is not 
suitable since the LCC size does not reflect link weight. 
However, R provides a template formula for the remaining three 
metrics discussed in this subsection. These three metrics are 
used to replace the LCC size in the formula (7) to obtain the 

final metric. That is, the average result of a metric of all attack 
rounds serves as the final metric.    

2) Total Flow (TF) 
TF is the sum of the capacities of all links in a graph G [15]. 

Given a graph G, the formula for calculating TF is as follows:  

TF(G) = �  𝑐𝑐(𝑖𝑖, 𝑗𝑗)
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

                              (8) 

Note that, albeit the name of TF has ‘flow’ in it, it does not 
consider the flows [18] among node pairs, but simply the link 
capacities. Thus, it is much less fine-grained than ANF, which 
considers the flows among all node pairs in a network.  

3) Average Shortest Path Length (ASPL) 
ASPL is the average of the shortest path lengths of all node 

pairs in a graph G [17]. It can be used to measure attack 
effectiveness because a network with a smaller ASPL is 
deemed to have better connectivity. Given a network G, the 
formula for calculating ASPL is as follows:  

ASPL(G) =
2

𝑛𝑛(𝑛𝑛 − 1)�  𝑑𝑑(𝑠𝑠, 𝑡𝑡)
𝑠𝑠,𝑡𝑡∈𝑉𝑉,   𝑠𝑠<𝑡𝑡

                 (9) 

Here 𝑑𝑑(𝑠𝑠, 𝑡𝑡) denotes the shortest path length between node s 
and node t. Since there are totally 𝑛𝑛(𝑛𝑛 − 1)/2 node pairs in a 
graph, dividing it gives the average over all node pairs. 

4) Network Efficiency (EFF) 
    EFF is the average of the reciprocals of shortest path lengths 
of all node pairs in a graph G [15]. It can be used to measure 
attack effectiveness because a network with a smaller EFF is 
deemed to have less delay (i.e., better efficiency). Given a 
network G, the formula for calculating EFF is as follows:  

EFF(G) =
2

𝑛𝑛(𝑛𝑛 − 1)�  
1

𝑑𝑑(𝑠𝑠, 𝑡𝑡)𝑠𝑠,𝑡𝑡∈𝑉𝑉,   𝑠𝑠<𝑡𝑡
                   (10) 

III. RELATED WORK 
This section surveys the existing weighted attack methods 

and points out their weaknesses by discussing the following two 
aspects: how to measure node importance and how to measure 
attack effectiveness. 

A. How to Measure Node Importance 
In [14, 15], Node Strength (NS) and weighted betweenness 

centrality were proposed as the node importance metrics for the 
targeted node attacks. Since NS is a local metric only 
considering the incident links of a node, the attack method with 
NS is shown to be less effective than the attack method with 
weighted betweenness, which is a global metric considering all 
other nodes in a network. In [17], both weighted betweenness 
and closeness were proposed to measure node importance. It 
was found that the attack methods with both of them are more 
effective than the attack method with NS, and the attack method 
with weighted betweenness is slightly better than the attack 
method with weighted closeness. However, since both weighted 



betweenness and weighted closeness are based on shortest-path 
length, we show later in this paper that our suggested metrics 
based on flows give more effective attack methods. 

Moreover, the recent [16] proposed to use the conditional 
weighted betweenness centrality to measure node importance. 
Its basic idea is to only calculate the weighted betweenness for 
those nodes in the LCC and then select the node with the highest 
betweenness value. A similar idea was independently proposed 
in [9], but it was called the ‘the largest component strategy’ there 
and was applied to all node importance metrics for unweighted 
networks. Later, it was proved in [6] that the largest component 
strategy is a necessary condition for minimizing the R value (i.e., 
the best attack) for unweighted networks. However, since the 
largest component strategy resorts to the LCC that does not 
depend on link weight, its application to weighted networks does 
not always give the most effective attack [16]. Thus, our 
experiments did not compare with [16].  

B. How to Measure Attack Effectiveness 
In [14], the LCC size and the EFF are integrated into the R’s 

template formula (7) to get the attack effectiveness metrics. 
However, the LCC size is not related to link weight, so it is not 
very suitable in the weighted attack scenario. As discussed in the 
previous section, the EFF is based on shortest-path length and 
reflects the delays in a network, so it is not closely related to the 
traffic-carrying capability of the network. In addressing the 
shortcoming of EFF, the TF metric (which is based on link 
capacity) was proposed [15]. However, TF only calculates the 
sum of the capacities of all the links and does not consider the 
flows among the node pairs in the network, so it is less fine-
grained than the ANF proposed by us. In the quite recent [17], 
the ASPL (also called the ‘average geodesic distance’ in that 
paper) was proposed for measuring attack effectiveness. 
Unfortunately, it suffers from the same weakness as EFF since 
it is based on shortest-path length. 

IV. OUR PROPOSED ATTACK METHODS 
This section first discusses the three node importance metrics 

proposed for use in weighted attacks, and then details the steps 
of the attack methods, and finally presents our new metric RANF 
for measuring attack effectiveness. 

A. Our Metrics for Measuring Node Importance 
We propose to use the following three centralities to select 

the node for removal in the targeted node attacks.   
• Flow Betweenness Centrality (CFB): As suggested by its 

definition in Section II, the flow betweenness is better 
than the shortest-path betweenness for weighted networks 
because the flows consider not only multiple paths 
between a node pair but also the link capacities on these 
paths. The number of paths contributing to the maximum 
flows is much more than that of the shortest paths. 

• Current-Flow Betweenness Centrality (CCFB): As 
discussed in Section II, the current-flow betweenness 
improves over the flow betweenness by considering all 
the possible paths between a node pair, while the flow 
betweenness may oddly ignore some paths between a 

node pair even when achieving the maximum flow [21]. 
Thus, we propose current-flow betweenness for use in the 
attacks as well.  

• Current-Flow Closeness Centrality (CCFC): Besides 
current-flow betweenness, current-flow closeness is 
another metric considering electrical currents in a 
network. Thus, it is interesting to see how it performs as 
a node importance metric in the attacks.  

   As noted in Section II, since the concept of flow closeness 
centrality is not feasible and does not exist, it is absent in this 
paper. 

B. The Steps of Attack Methods 
Most infrastructure networks have the concept of link 

capacity. For example, the Internet backbone has bandwidth, 
and the power grid has the voltage (usually very high voltage 
above 50 KV to reduce power loss), etc. In calculating  CFB, we 
directly use the link capacities stated in the dataset for a 
network. In calculating CCFB and CCFC, a critical question is 
how to translate the capacity of a link to the resistance of this 
link, while maintaining the definitions of  CCFB and CCFC where 
a unit electrical current is applied between a node pair. Here our 
solution is: given a link capacity (whatever it is — bandwidth, 
voltage, etc.), we deem it as the conductance of this link, and 
then calculate the resistance of this link, which equals the 
reciprocal of conductance. With this interpretation, we can use 
the existing algorithm proposed in [19] to calculate both CCFB 
and CCFC.    
    As a note, in our previous work [9], CCFB and CCFC have been 
proposed to measure node importance for unweighted 
networks. However, their use there does not involve the above 
solution, since the resistance of each link is simply deemed as 
‘1’ for unweighted networks. 

Now we are ready to describe the steps of the targeted attacks 
with the proposed centralities in the Algorithm 1 and provide 
the following explanations.  
• If a node importance metric (e.g., Node Strength) can be 

calculated on a disconnected network, then Step 1 is not 
needed. However, for our proposed CFB, CCFB and CCFC, 
and the existing CSPB and CSPC to be compared with, their 
values for a node need to be calculated within the 
connected component where the node resides. 

• In Step 2, the centrality measure can be any of CFB, CCFB, 
CCFC, CSPB, and CSPC. There are existing polynomial-time 
algorithms for calculating them [12, 19]. 

Algorithm 1: Targeted Attacks with Proposed Centralities 

1. Calculate the connected components of the current 
network.  

2. Calculate the centrality value for each node in the 
connected component where it belongs.  

3. Remove the node with the highest centrality value among 
the entire network. Ties are broken randomly. 

4. Go to Step 1 if there are still nodes in the network. 



 

C. Our Metric for Measuring Attack Effectiveness 
 The basic idea of our metric RANF  is to leverage the ANF 

proposed in our previous work [22] to measure the flow-
carrying capability of the networks after attacks, thus reflecting 
the attack effectiveness. Below we first recall the definition of 
ANF, and then present the formula for calculating RANF. 
     Given a network G=(V, E) with each edge having a non-
negative capacity, the ANF on G, denoted by ANF(G), is the 
average of the maximum flows among all node pairs in G. The 
calculation formula is as follows:  

𝐴𝐴𝑁𝑁𝐹𝐹(G) =
2

𝑛𝑛(𝑛𝑛 − 1) �  𝐹𝐹(𝑠𝑠, 𝑡𝑡)
𝑠𝑠,𝑡𝑡∈𝑉𝑉,   𝑠𝑠<𝑡𝑡

            (11) 

Here F(s, t) denotes the maximum flow between two nodes s 
and t. Since there are altogether 𝑛𝑛(𝑛𝑛−1)

2
 node pairs in G, the 

averaging factor is 2
𝑛𝑛(𝑛𝑛−1) . Note that efficient algorithms [22] 

exist such that there is no need to calculate each individual F(s, 
t) to get their average. 
     Our metric RANF calculates the average of ANFs over all 
attack rounds. Its formula is given as follows: 

RANF(G) =
1
𝑛𝑛
�

ANF(Gi)
ANF(G)

𝑛𝑛

𝑖𝑖=1

                              (12)  

Here Gi denotes the network after the i-th round of attack and 
G denotes the initial network. The ratio ANF(Gi)/ANF(G) is 
calculated in each round. The 1/𝑛𝑛 is the averaging factor.  
   Since the ratio of ANF(Gi)/ANF(G) is always less than 1, it 
enables RANF to have the following two nice properties: (1) it 
will not be unfairly affected by the network size and the scale of 
link capacity; (2) its value ranges between 0 and 1.  
    Based on formula (12), RANF can be computed by obtaining 
ANF(Gi)/ANF(G) after the Step 3 in Algorithm 1, and then 
averaging this ratio over all attack rounds. 

V. EXPERIMENTAL SETUP 
Our experiments use both artificial networks and real-world 

networks as attack targets. This section describes the generation 
of artificial networks and the datasets of real-world networks.  

A. Artificial Networks 
The following three well-known models for Complex 

Networks [12] are used to generate artificial networks. 
• The Erdos-Renyi (ER) model [23] for random networks. 
• The Barabasi-Albert (BA) model [24] for scale-free 

networks.  
• The Watts-Strogatz (WS) model [25] for small-world 

networks.   
Fig. 1 depicts the exemplar networks from these three models. 
We used Python’s NetworkX package [26], which include the 
network generators for these three models, for the network 
generation. In addition, the link capacities are generated as 
random integers between 1 and 10.  

B. Real-world Networks  
The real-world networks used in our experiments include the 

following two power grids. The datasets of both of them contain 
the data about network topologies and link capacities.  

• Australian Electricity Power Grid [27]: it comprises 
1529 nodes and 2377 links. The nodes represent the 
power stations, and the links represent the power lines 
between the stations. The link capacities are given in the 
form of voltage which ranges from 66KV to 500KV. 
Note that the voltages in the power lines are typically 
very high to reduce energy loss.  

•  European Electrical Transmission Network [28]: it 
comprises 1479 nodes and 2289 links. The link capacities 
are given by two fields: voltage (ranging from 220KV to 
500KV) and the number of cables (ranging from 1 to 9). 
Here we use the voltage times the number of cables as 
link capacity. 

VI. EXPERIMENTAL RESULTS 
Using the metric RANF, we measured the attack effectiveness 

of our proposed methods (with CFB, CCFB and CCFC as node 
importance metrics) and the existing methods (with NS, CSPB 
and CSPC as node importance metrics). These attack methods 
are implemented by Python’s NetworkX package [26]. 

 
 

 

 Fig. 1. Exemplar networks from the three well-known models for Complex Networks 



A. Attack Effectiveness on Artificial Networks  
Two groups of experiments are conducted on all three 

models of artificial networks.  

• In the first group, we fix n=200 and vary m to be 400, 500, 
…, 1000 respectively. This is for examining the impact of 
edge density on the RANF values. 

• In the second group, we vary both n and m, but maintain 
the 𝑚𝑚/𝑛𝑛 ratio as 2: n=200, 400, …, 1000, and m=400, 
800, …, 2000 respectively. This is for examining the 
impact of network scale. 

For each (n, m) setting under a network model, a set of 50 
networks is generated randomly. In the coming figures, a data 
point represents an average RANF value from a set of 50 
networks. 

Figs.2-4 present the results from the first group of 
experiments. From these figures we can observe that: 

• The three metrics suggested by us give more effective 
attacks than the existing ones. This is demonstrated by the 
RANF values of CFB, CCFB and CCFC being smaller than 
those of NS, CSPB and CSPC. In particular, our suggested 
CCFB sees the smallest RANF values, leading to the most 
effective attack; and the existing CSPC sees the largest 
RANF values, leading to the least effective attack. 

• For all six attack methods, the RANF values increase with 
edge density. Thus, even though the definition of RANF 
includes normalization to confine the impact of network 

scale by making RANF ∈ [0, 1], the network scale still 
shows some impact on RANF. This is because when the 
network scale is larger, the early attack rounds will see the 
ANF(Gi)/ANF(G) ratios closer to 1, which enlarges the 
final value of RANF.  

     Figs.5-7 present the results from the second group of 
experiments. These results are consistent with those in the first 
group. Basically, they also show that: 

• The three metrics suggested by us result in more effective 
attack methods than the existing ones. In particular, our 
suggested CCFB leads to the most effective attack, and the 
existing CSPC leads to the least effective attack. 

• For all six attack methods, the RANF values increase with 
network scale.  

   Overall, these two groups of experiments confirm our idea 
that flow-based centralities can lead to more effective attacks 
than those metrics based on shortest paths. Moreover, with 
CCFB considering all the possible paths between a node pair, it 
gives us the best attack.  

B. Attack Effectiveness on Real-World Networks 
This subsection presents the experimental results on real-

world networks. Fig. 8 and Fig. 9 plot the RANF values of the six 
attack methods on the Australian Power Grid and the European 
Electrical Network, respectively. The results from both figures 
are consistent with Figs. 2-7. That is, the three metrics 
suggested by us give rise to more effective attacks than the 
existing ones. In particular, our suggested CCFB gives the most 

   
Fig. 2. Attack effectiveness on BA networks 
with different m’s and n=200 

Fig. 3. Attack effectiveness on ER networks 
with different m’s and n=200 

Fig. 4. Attack effectiveness on WS networks with 
different m’s and n=200 

   
Fig. 5. Attack effectiveness on BA networks 
with different (n,m)’s 

Fig. 6. Attack effectiveness on ER networks 
with different (n,m)’s 

Fig. 7. Attack effectiveness on WS networks 
with different (n,m)’s 



effective attack, and the existing CSPC gives the least effective 
attack. 

The RANF values in the Australian Power Grid are generally 
higher than those in the European Electrical Network. This is 
because the link capacities in the Australian Power Grid vary 
less than the link capacities in the European Electrical Network, 
where the number of cables differentiate the link capacities 
significantly.  

VII. CONCLUSION 
    This paper is motivated by the observation that the existing 
weighted attacks mostly use the metrics related to shortest-path 
lengths to remove nodes. These metrics consider neither the 
link capacities nor the paths other than the shortest paths when 
measuring node importance. To overcome these two 
limitations, this paper proposed to use three flow-based 
centralities (flow betweenness, current-flow betweenness, and 
current-flow closeness) as node importance metrics during the 
attacks. Moreover, this paper proposed a new metric called  
RANF, which is based on average network flow, for measuring 
attack effectiveness. Extensive experiments on both artificial 
and real-world networks showed that, evaluated under RANF, the 
attack methods with the three centralities suggested by us 
outperform the existing attack methods, and the attack method 
with the current-flow betweenness performs the best. 
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Fig. 8. Attack effectiveness on Australian Power Grid 

 

 
Fig. 9. Attack effectiveness on European Electrical Network 
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