
CAN-BERT do it? Controller Area Network
Intrusion Detection System based on BERT

Language Model
Natasha Alkhatib, Maria Mushtaq, Hadi Ghauch, Jean-Luc Danger

Télécom Paris, IP Paris, Palaiseau, France
{natasha.alkhatib, maria.mushtaq, hadi.ghauch, jean-luc.danger}@telecom-paris.fr

Abstract—Due to the rising number of sophisticated customer
functionalities, electronic control units (ECUs) are increasingly
integrated into modern automotive systems. However, the high
connectivity between the in-vehicle and the external networks
paves the way for hackers who could exploit in-vehicle network
protocols’ vulnerabilities. Among these protocols, the Controller
Area Network (CAN), known as the most widely used in-
vehicle networking technology, lacks encryption and authenti-
cation mechanisms, making the communications delivered by
distributed ECUs insecure. Inspired by the outstanding perfor-
mance of bidirectional encoder representations from transform-
ers (BERT) for improving many natural language processing
tasks, we propose in this paper “CAN-BERT”, a deep learning
based network intrusion detection system, to detect cyber attacks
on CAN bus protocol. We show that the BERT model can
learn the sequence of arbitration identifiers (IDs) in the CAN
bus for anomaly detection using the “masked language model”
unsupervised training objective. The experimental results on the
“Car Hacking: Attack & Defense Challenge 2020” dataset show
that “CAN-BERT” outperforms state-of-the-art approaches. In
addition to being able to identify in-vehicle intrusions in real-
time within 0.8 ms to 3 ms w.r.t CAN ID sequence length, it can
also detect a wide variety of cyberattacks with an F1-score of
between 0.81 and 0.99.

Index Terms—controller area network, CAN, Intrusion De-
tection, bidirectional encoder representations from transformers,
BERT, in-vehicle network, cyberattacks.

I. INTRODUCTION

To fulfill automotive features, the Controller Area Net-
work (CAN) bus is widely used as the de-facto standard for
message communication between different electronic control
units (ECUs) in today’s vehicles. It is sometimes referred
to as a ”message-based” system, since it focuses on the
transmission of diagnostic, informative and controlling data
through messages, also known as CAN data frames. In fact,
while developing a vehicle, all conceivable CAN bus messages
and their respective priority, encoded into an identifier called
“CAN ID”, must be determined beforehand. Due to the lack of
authentication, any device can connect physically or wirelessly
to the CAN bus, broadcast CAN data frames, and all the
participants on the CAN bus can receive it without verifying
its source. Consequently, since CAN security was not a design
priority, many message injection attacks have become widely
implemented. These attacks can interfere with the desired
function of the system, shut down some connected nodes,

Fig. 1. A CAN bus network exploited by attackers through different physical
and wireless interfaces.

and make the vehicle behave abnormally, putting at risk the
safety of the driver and the passengers. To address these
security flaws, researchers have proposed intrusion detection
as a supplementary layer of protection to specialized security
solutions. By monitoring the communication between different
ECUs within a CAN bus system, a network intrusion detection
system (N-IDS) can detect deviations from the normal message
exchange behavior and, thereby, identify both anticipated and
novel cyberattacks. The adoption of deep neural networks for
in-vehicle intrusion detection have lately proliferated, with
impressive results. Since a message injection attack can alter
the normal order of occurence of several CAN IDs, researchers
have deployed deep learning based sequential models, to
model the CAN ID sequences. Some studies have proposed
the use of autoregressive models that are trained to capture
the patterns of regular CAN ID sequences by predicting the
future CAN ID sequence based on the preceding one, such
as recurrent neural network (RNN) models and its variants
and the generative pretrained transformer (GPT). However,
these models identify malicious network intrusions on CAN
ID traffic by focusing primarily on the exchange of CAN ID
messages from earlier steps rather than integrating the left
and right context of a CAN ID sequence, limiting the model’s
capacity to grasp the whole context information representation.
Additionally, these algorithms focus largely on the correlation

ar
X

iv
:2

21
0.

09
43

9v
1

 [
cs

.L
G

]
 1

7
O

ct
 2

02
2

Fig. 2. CAN packet structure.

between CAN ID messages in normal sequences, which would
result in false alarms for intrusion detection whenever the
correlation is breached. Hence, due to these limitations, the
autoregressive models do not adequately depict the natural
communication behavior between the various ECUs.

To address these challenges, we propose CAN-BERT, an
intrusion detection system based on a language represen-
tation model called Bidirectional Encoder Representations
from Transformers (BERT). CAN-BERT, in contrast to au-
toregressive models, is a self-supervised model which can
successfully depict deep bidirectional representations from
CAN ID sequences by conditioning on both left and right
context in its various layers. By using the “masked language
model” unsupervised training objective, CAN-BERT model
masks some of the CAN IDs in the input at random, with the
goal of predicting the conventional ID of the masked word
based on its left and right context.

We evaluate our approach using the recently published “Car
Hacking: Attack & Defense Challenge 2020” collected from
three different cars, Chevrolet Spark, Hyundai Sonata and Kia
Soul and which contains diverse types of message injection
attacks.

Our contributions are summarized below:

• Inspired by the outstanding performance of BERT model
for improving many natural language processing tasks,
we propose “CAN-BERT”, a novel BERT-based intrusion
detection system architecture which can detect known and
unprecedented cyberattacks in CAN ID sequences.

• We evaluate the performance of our approach with the
recently published “Car Hacking: Attack & Defense
Challenge 2020” collected from three different cars,
Chevrolet Spark, Hyundai Sonata and KIA Soul and
which contains diverse types of message injection attacks.
We also compare our model with other baseline models.

Towards this end, our paper is organized into six sections.
In Section III, we present an overview of the Controller
Area Network (CAN) and the Bidirectional Encoder Repre-
sentations from Transformers model (BERT). In Section IV,
we present an overview of our proposed framework “CAN-
BERT”. Section V discusses the launched experiments with
the corresponding dataset and the proposed metrics for IDS’
evaluation. In Section VI, we discuss the obtained results
showing the proposed model accuracy and complexity. Finally,
we conclude our paper with future work direction.

II. RELATED WORK

Intrusion Detection systems (IDSs) have been widely used
to detect intrusions on the Controller Area Network (CAN).
Intrusions can be detected either by inspecting the content
or the signals transmitted by CAN data frames [19], or by
examining the order by which different CAN data frames’
identifiers are exchanged between the ECUs [20].

III. PRELIMINARIES

A. Controller Area Network

The Controller Area Network (CAN), created by BOSCH
in 1983, is a potent networking technology essential for
the development of useful automotive features. Due to its
robustness represented by its ability to allow various ECUs
to be connected in almost all areas of a car, it still prevails
in vehicles today. As seen in Figure, it is a bus system,
meaning that all Electronic Control Units (ECUs) share the
same wiring.

It is a ”message-based” system in which messages, also
known as CAN data frames, are transmitted between various
ECUs. As depicted in Figure. 2, each CAN data frame is
composed of the following elements: Start of frame (SOF),
identifier (ID), Remote frame transmission field (RTR), control
field, data, cyclic redundancy check (CRC), delimiters (DEL)
and acknowledgment fields (ACK), and end of frame fields.
Each CAN bus message has a priority that is represented by
the arbitration identifier field (ID) that can either be composed
of 11 or 29 bits, depending on the car manufacturer and
which will be mainly used in our work for detecting in-vehicle
intrusions.

To avoid contention between multiple ECUs willing to
transmit CAN messages in the medium, CAN employs a
priority-based mechanism which allows the ECU with the
highest priority/lowest value identifier to transmit before oth-
ers. The procedure is termed “arbitration” because the message
with the highest priority wins out over competing messages
with a lower priority at the time of transmission.

1) Security Weaknesses: CAN does not prohibit several
ECUs from sharing the same IDs. Moreover, CAN messages
are broadcast and do not contain any sender’s address. Con-
sequently, any device linked to the CAN bus can use any pre-
defined ID, communicate its message without authentication
or encryption, and all associated ECUs can receive it. The
receiver defines whether or not a message identification causes
the receiving ECU to retain and process the given data.
Consequently, an attacker is able to broadcast spoofed CAN
messages, eavesdrop on all the CAN traffic and collect detailed

Fig. 3. ECU devices connected through CAN bus, source [1].

information about it, resulting in Fuzzing and Malfunction
attacks.

Additionally, as previously mentionned, the CAN bus lever-
ages the arbitration method which discerns between ”domi-
nant” (0) and ”recessive” (1) bits in the message identifiers.
Therefore, if several ECUs begin transmitting simultaneously,
the ECU whose message begins with a greater number of
dominant ”0” bits will take over the CAN bus. As soon as
a unit detects that the message on the bus is no longer the
message it is transmitting, it halts its transmission, waits for
the real transmission to conclude, then waits for the interframe
gap to expire and retransmits its message. This phenomenon
carries the risk that a message with a lower priority will
never be delivered if the network is very congested and can
be exploited by attackers to launch denial of service (DoS)/
flooding attacks.

B. BERT

Bidirectional Encoder Representations from Transformers
(BERT), proposed by Devlin et al. [2], is a state-of-the-art
language representation model which is designed to pretrain
bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers.
Regarding its architecture, it is a multi-layer bidirectional
Transformer encoder based on the original implementation
proposed by Vaswani et al. [3].

Inspired by its outstanding performance in modeling se-
quential data, BERT is recently employed for sequence
anomaly detection [6] [7] [8] [9] [10]. To the best of our
knowledge, none of the previous works have evaluated the
performance of the BERT model for in-vehicle intrusion
detection on CAN protocol.

In order to detect anomalies in sequences, it’s crucial to
incorporate context from both left and right directions of
the sequence. Sequential anomalies may be misdetected by
traditional unidirectional models, such as OpenAI GPT and
RNNs, where every token can only attend to context to its
left. To solve this significant constraint, some researchers
have proposed a shallow concatenation of both left-to-right
and right-to-left architecture of the autoregressive models ,
such as Bi-RNN and Bi-GPT [5]. However, these approaches
aren’t as powerful as BERT which adopts a ”masked language
model” (MLM) training objective, in which input sequence
tokens are randomly masked and the goal is to predict the

original vocabulary id of the masked word based on its context.
In contrast to denoising auto-encoders, BERT predicts the
masked words instead of reconstructing the whole sequence
[12].

IV. PROPOSED FRAMEWORK: CAN-BERT
We propose ”CAN-BERT”, a pattern-based anomaly detec-

tion algorithmn, which leverages a BERT-based architecture to
detect message injection intrusions in the CAN bus. As seen
in Figure. 4, our model is composed of a multi-layer bidirec-
tional Transformer encoder and is trained using the ”masked
language model” self-supervised task to model normal CAN
ID sequences. The following subsections elaborately describe
the suggested framework.

A. Model description

Note that S = [id1, ..., idt, ..., idT] is an observed sequence
of T CAN identifiers, arranged in their order of transmission
in the CAN bus network, where an identifier idt ∈ ID is an M-
dimensional vector which denotes the CAN ID transmitted at
time t by an ECU, ID indicates the set of CAN IDs extracted
from CAN messages, and M is the size of the ID set.

Since anomaly detection is an unsupervised learning-based
technique in which only normal data are used for train-
ing, a collection of N CAN ID sequences, represented as
Dtraining = {S1, ...,Sj , ...,SN}, is solely used as a training
dataset.
Identifier Embeddings To feed the appropriate input to the
BERT model, each identifier idj

t with size (M,1) in a CAN
sequence Sj is firstly projected into a d-dimensional space
using a single linear layer, i.e.:

ejt = Weidj
t + be,∀i ∈ {1..T},∀j ∈ {1..N} (1)

where ejt represents the identifier embedding with size (d,1),
We ∈ Rd×M is the input embedding weight matrix, and be ∈
Rd denotes the bias. Both We and be are trainable parameters.

Subsequently, the identifier’s position is encoded into a
d-dimensional positional embedding pj

t using a sinusoidal
function. To this end, the CAN ID, fed into the CAN-BERT
model, is a summation of both the positional encoding and the
input embedding :

xj
t = ejt + pj

t (2)

where xj
t is the total embedding j-th identifier in the t-th

CAN ID sequence idj
t , thereby the convergence of the input

sequence Sj into Xj = [xj
1, ..x

j
t ..,x

j
T]

T with Xj a matrix
with size T × d.
Transformer Encoder The encoded input Xj is then deliv-
ered into a stack of L transformer encoder layers, each of
which has two sub-layers: a multi-head self-attention mecha-
nism and a position-wise feed-forward network [3]. A residual
connection is employed around each of these two sub-layers,
followed by layer normalization [4], as follows:

E(j,l) = g(X(j,l)) + f(X(j,l) + g(X(j,l)))

H(j,l) = z(E(j,l)) + f(E(j,l) + z(E(j,l)))

X(j,l+1) = H(j,l),∀l < L

(3)

Fig. 4. CAN-BERT model architecture

where E(j,l) represents the output of the first sublayer for the
l-th transformer encoder layer with size T×d, H(j,l) represents
the output of the second sublayer for the l-th transformer
encoder layer with size T × d, g is the multi-head attention
function, z is the position wise feed forward function, and f
is the layer normalization function.

Attention We use the scaled dot-product attention proposed
by [3], requiring query Q(j,l), key K(j,l), and value V(j,l)

representations, and which are projections of the embedded
sequence X(j,l) ∈ RT×d. In fact, we leverage the dot-product
similarity to compare the query representation of a given CAN
identifier to all other keys. Hence, if the query and key are
comparable have a high attention weight, the matching value
is deemed to be relevant. The output is therefore computed as
a weighted sum of the values V:

Attn(Q(j,l),K(j,l),V(j,l)) = σ(
Q(j,l)K(j,l)T

√
d

)V(j,l)

Attn(Q(j,l),K(j,l),V(j,l)) = AV(j,l)

(4)

where σ is the softmax function, A ∈ RT×T denotes the
attention weight matrix containing attention weights, and d is
the dimension of the Q(j,l), K(j,l),V(j,l) vectors.

As described by [3], the multiple heads of attention allows
the model to concurrently capture diverse aspect of data at dis-
tinct CAN IDs. Hence, we adopt a multi-head attention (MHA)
mechanism in which the d-dimensional CAN identifers are
projected into subspaces calculated by different attention heads
n ∈ {1, ..,H}:

Q(j,n,l) = X(j,l)W(Q,n),Q(j,n,l) ∈ RT×F

K(j,n,l) = X(j,l)W(K,n),K(j,n,l) ∈ RT×F

V(j,n,l) = X(j,l)W(V,n),V(j,n,l) ∈ RT×F

(5)

where Q(j,n,l), K(j,n,l) and V(j,n,l) are the query, key and
value vectors, respectively of the j− th CAN ID sequence for

the l-th transformer encoder layer and which are calculated us-
ing the n-th attention head. The W(Q,n), W(K,n) and W(V,n)

are their corresponding trainable weight matrices ∈ Rd×F ,
and F is set to D/H . The results are then concatenated
and projected back into representation space using the weight
matrix Wo ∈ RHF×D as follows:

head(j,l)
n = Attn(Q(j,n,l),K(j,n,l),V(j,n,l)) (6)

X
(j,l)

= [head
(j,l)
1 , ..head(j,l)

n , ..,head
(j,l)
H]WO (7)

where X
(j,l) ∈ R(T,d).

Position-wise feed-forward A position-wise feed-forward
network with a ReLU activation is thereby applied to each
representation in each of the layers of our encoder, in addition
to attention sub-layers, using the following equation:

z(E(j,l)) = [W1E
(j,l)]+ ◦W2 (8)

where E(j,l) is previously defined in (3), W1 and W2 are train-
able projection matrices, where ◦ is the hadarmard product,
and []+ is the element-wise maximum.

After passing through different transformer layers, the L-
th contextual embedding vectors of the CAN IDs, denoted as
h
(j,L)
t with size (d, 1) ∈ H(j,L) = [h

(j,L)
1 , ..,h

(j,L)
T]T , are fed

into a single linear layer which projects them back to the M -
dimensional layer, as follows:

mj
t = Wmh

(j,L)
t + bm,∀i ∈ {1..T},∀j ∈ {1..N} (9)

where mj
t represents the projected output with size (M ,1),

Wm ∈ RM×d is the input embedding weight matrix, and
be ∈ RM denotes the bias. Both Wm and bm are trainable
parameters.

B. Training and Inference

We use the masked language model training method to train
the CAN-BERT model on capturing the patterns of normal
CAN ID sequences. Hence, CAN sequences with random

mask as inputs, where we randomly replace a ratio of CAN
IDs in a sequence with a specific MASK token, are fed into
CAN-BERT. The purpose of training is to reliably anticipate
the CAN IDs that have been randomly masked.

To achieve that, we feed the contextual embedding vector
of the u-th MASK in the j-th CAN ID sequence mj

MASKu
to

a softmax function, which will return a probability distribution
for the whole set of CAN IDs ID:

ŷj
[MASKu]

= σ(Wcmj
[MASKu]

+ bc) (10)

where ŷj
[MASKu]

is an m-dimensional vector, σ is the softmax
function, mj

[MASKu]
and bc are trainable parameters.

CAN-BERT is trained to minimize the cross entropy loss
over a batch of I sequences (with I ≤ N), for masked CAN
ID prediction, which is defined as:

LMASK = − 1

IR

N∑
j=1

R∑
u=1

yj
[MASKu]

logŷj
[MASKu]

(11)

where the ground-truth u-th CAN ID in the j-th sequence is
denoted as yj

[MASKu]
, R is the total number of masked tokens

in the j-th sequence, and N is the number of training samples.
By modeling the normal exchange of messages through

CAN bus using CAN-BERT, our model is expected, after
training, to predict a candidate set with the normal CAN IDs
having the highest likelihood for each masked token. Hence,
for a randomly masked testing sequence, we calculate the
probability distribution represented in (10), for each masked
CAN ID. Therefore, if the actual CAN ID is among the
anticipated candidates, the corresponding CAN ID sequence
is considered as normal. Otherwise, it is deemed abnormal.

V. EXPERIMENTAL SETTINGS

A. Dataset

To assess the proposed CAN-BERT, we leverage the “In-
Vehicle Network Intrusion Detection Challenge” dataset [13]
(presented in Table I), which was used at the “In-vehicle
Network Intrusion Detection track’ of ‘Information Security
R&D Data Challenge 2019. It includes normal and abnormal
in-vehicle network traffic data of HYUNDAI Sonata, KIA
Soul, and CHEVROLET Spark vehicles collected during their
stationary state. We have mainly used its preliminary dataset,
which includes three types of attacks (Flooding, Fuzzy, and
Malfunction). The dataset is labeled and each sample is rep-
resented by the following features: “Timestamp” representing
the logging time, “CAN ID” representing the CAN Identifier,
“DLC” indicating the Data length code, and the Payload
indicating the “CAN data” field.

1) Attacks: The dataset contains the following attacks:
• Flooding Attack The flooding attack was carried out

by injecting many messages with the CAN ID set to
0x000 into the CAN network. Consequently, an ECU that
transmits CAN data frames with such CAN ID dominates
the CAN bus, which could restrict the communications
among the ECU nodes and impair normal in-vehicle
functions.

• Fuzzy Attack To implement fuzzy attacks, the attacker
injected every 0.0003 seconds random CAN packets,
for both the ID field and the Data field. This process
lead to abnormal automotive functionalities behavior such
as short beeping sound repeatedly occurring, the heater
turning on, etc.

• Malfunction Attack The malfunction attack was carried
out by injecting messages with a specified CAN ID from
among the extractable CAN IDs of a particular vehicle
in order to disable relevant automotive functions, such as
IDs 0×316, 0×153 and 0×18E for the HYUNDAI YF
Sonata, KIA Soul, and CHEVROLET Spark vehicles,
respectively.

TABLE I
IN-VEHICLE NETWORK INTRUSION DETECTION DATASET

Vehicle Dataset # Normal # Abnormal Size
packets packets (MB)

Attack Free 136,933 N/A 6.2
CHEVROLET Flooding 70,001 14,999 4.2
Spark Fuzzy 37,957 3,043 2.0

Malfunction 47,005 3,995 2.5
Attack Free 117,172 N/A 5.8

HYUNDAI Flooding 78,907 17,093 4.9
Sonata Fuzzy 78,905 9,095 4.5

Malfunction 78,798 8,202 4.5
Attack Free 192,515 N/A 9.3

KIA Flooding 103,928 16,072 6.2
Soul Fuzzy 122,387 21,613 7.4

Malfunction 108,230 4,770 5.8

As mentioned in Section IV, we aim to detect if a sequence
of ordered CAN ID contains injected messages. Hence, in or-
der to represent CAN ID sequences, we use the Feature-based
Sliding Window (FSW) to group CAN IDs which belong to
the dataset into subsequences with fixed window size T, where
T ∈ {16, 32, 64, 128, 256} and the slide size is 1. Moreover,
each CAN ID sequence S = [id1, ..., idt, ..., idT] has its
corresponding labels represented by Y = [y1, ...,yt, ...,yT]
wherein each identifier idt ∈ S is labeled as yt = 1 if idt is
an injected identifier in S or as yt = 0 otherwise. However, to
identify the state of each sequence, we have used the following
criteria:

z =

{
1 (abnormal) if ∃yt = 1,∀t ∈ {1, .., T}
0 (normal) otherwise

where z is the CAN ID sequence’s label.

B. Benchmark Models

The benchmark models for evaluating the performance of
different CAN ID sequence anomaly detection algorithms with
CAN-BERT on the chosen dataset, are detailed in this section.

• Principal Component Analysis (PCA): PCA [14] is
a feature selection model which can be used to reduce
data features from m dimensions to n. Inverting the
PCA transform does not retrieve the data lost during
the application of the transform. The essence of PCA-
based anomaly identification is that an anomalous sample

1 2 4 8
70

80

90

100

h

F1
-S

co
re

m = 0.15

1 2 4 8
70

80

90

100

h

m = 0.3

1 2 4 8
70

80

90

100

h

m = 0.45

1 2 4 8
70

80

90

100

h

m = 0.6

Flooding Fuzzy Malfunction

Fig. 5. Hyperparameter tuning the mask ratio m and the number of attention heads h on the “CHEVROLET Spark” dataset for T=32. We have obtained
similar behavior pattern for the results w.r.t other sequence length and car types.

should have more loss or reconstruction error than a
normal sample. In other words, the loss sustained when an
anomalous sample is processed by a PCA algorithm and
projected back to its dimension using PCA also should
be greater than when the same procedure is performed
on a normal sample.

• Isolation Forest (iForest): Isolation forest (IF), proposed
by Liu at al. [15], detects anomalies using isolation rather
than modelling the normal points. In fact, this technique
presents a novel approach for isolating anomalies using
binary trees, providing a new prospect for a speedier
anomaly detector that directly targets abnormalities rather
than profiling all regular instances.

• Autoencoder (AE): The autoencoder, introduced by
Rumelhart et al. [16], is a deep learning based algorithm
which seeks to learn a low-dimensional feature represen-
tation space suitable for reconstructing the provided data
instances. During the encoding process, the encoder maps
the original data onto low-dimensional feature space,
while the decoder tries to retrieve the original data from
the projected low-dimensional space. Reconstruction loss
functions are used to learn the parameters of the encoder
and decoder networks. Its reconstruction error value must
be minimized during the training of normal instances and
therefore used during testing as an anomaly score. In
other words, compared to the typical data reconstruction
error, anomalies that differ from the majority of the data
have a large data reconstruction error. In our experiments,
we have tested Long short-term based memory (LSTM)
and Bidirectional LSTM (BiLSTM) models with different
network hyperparameters: BiLSTM-AE-4 (with 4 layers),
LSTM-AE-4 (with 4 layers), and LSTM-AE-8 (with 8
layers).

C. Evaluation metrics

For measuring the performance of different anomaly-based
IDS, we use the F1-score metric, a weighted average result
of both metrics precision and recall and which is specifically

used when the dataset is imbalanced. The model has a large
predictive power if the F1-score is near 1.0.

Precision is the ratio of correctly classified predicted ab-
normal observations of all the observations in the predicted
class.

Precision =
TP

TP + FP
(12)

Recall is the ratio of correctly predicted abnormal observations
of all observations in the actual class.

Recall =
TP

TP + FN
(13)

Hence, the F1-score is calculated using the following equation:

F1− score = 2 · Precision ·Recall
Precision+Recall

(14)

Where: TP= True Positive; FP=False Positive; TN= True
Negative; FN=False Negative.

VI. RESULTS

To evaluate our model, we leverage the Python deep learning
framework Pytorch [17]. We train and evaluate them on
NVIDIA® Tesla® V100S with 32 GB HBM2 memory.

A. Model Configuration & Hyperparameter tuning

As presented in Table II, for CAN-BERT, we have chosen
the total number of transformer encoder layers as 4. In each
transformer layer, the position-wise feed forward network is
composed of two dense layers where the first one projects
d=256 dimensional CAN identifier embedding into dff=512
dimensional space, followed by a ReLU activation. The second
dense layer maps back the 512-dimensional vector into the d-
dimensional space. For training, we use a batch size of 32,
a learning rate of 0.001 and the Adam optimizer [18] with
its default parameters β1 = 0.9 and β2 = 0.999. To avoid
overfitting, we employ the same dropout of Pdrop=0.1 for
all dropout layers in our network. Moreover, we apply early
stopping for a total number of 200 epochs and a patience of
10 epochs as a form of regularization used to avoid overfitting.

16 32 64 128 256

50

100

Fl
oo

di
ng

CHEVROLET Spark

16 32 64 128 256
0

50

100

HYUNDAI Sonata

16 32 64 128 256
0

50

100

KIA Soul

16 32 64 128 256
20

40

60

80

100

Fu
zz

in
g

16 32 64 128 256

40

60

80

100

16 32 64 128 256
40

60

80

100

16 32 64 128 256

20

40

60

80

100

M
al

fu
nc

tio
n

16 32 64 128 256

20

40

60

80

100

T

16 32 64 128 256
20

40

60

80

100

CAN-BERT iForest PCA BiLSTM-AE-4 LSTM-AE-4 LSTM-AE-8

Fig. 6. Comparision of the CAN-BERT model with other anomaly detection baselines using the F1-score percentage metric, for different message injection
attacks applied on different car models w.r.t sequence length T .

TABLE II
CAN-BERT MODEL CONFIGURATION

Parameter Value
N 4

dmodel 256
dff 512

h 1
Pdrop 0.1
m 0.45

Candidates 5
Optimizer Adam
Adam β1 0.9
Adam β2 0.999

Learning rate 0.001
Batch size 32
Epochs 200
Patience 10

The hyperparameters, including the ratio of masked CAN
IDs in a sequence m, and h the number of attention heads are

tuned based on a validation set for the three car types and the
different message injection attacks. As seen in Figure 5, raising
the ratios of masked CAN IDs in the sequences from 0.1 to
0.45 somewhat improves F1 scores, however increasing the
ratios further degrades performance, as is the case for m=0.65.
Furthermore, the model performance is relatively stable by
setting different attention head h ∈ {1, 2, 4, 8} values for each
mask ratio m ∈ {0.15, 0.3, 0.45, 0.6}. Therefore, in our in-
vehicle intrusion detection use case, a single attention head is
sufficiant to detect different types of intrusions. Note that, in
our experiments, we use the same ratio of masked CAN IDS
m=0.45 and h=1 for both training and inference phases.

B. Model Accuracy

As seen in Figure 6, we compare performance of the CAN-
BERT model with other baselines approaches for different
sequence length T using the F1-score metric. In fact, we
varied the sequence length among values of 16, 32, 64, 128

and 256 CAN IDs per sequence in the experiments. If our
approaches could identify a message injection attack in a
shorter sequence length, it would be more advantageous in a
practical situation. The traditional machine learning algorithms
such as Isolation Forest (iForest), and Principal Component
Analysis (PCA) perform poorly and maintain the same F1-
score metric w.r.t sequence length. Because these models
presume small datasets with a limited number of features, they
fail to discover abnormalities in high-dimensional datasets.
Because of this, a significant fraction of irrelevant features may
effectively disguise the underlying abnormalities in the input
data, resulting in poor anomaly identification performance
when dealing with large input dimensions. Meanwhile, both
deep learning based models autoencoder (AE) and CAN-
BERT outperformed the traditional anomaly detection models
over different window sizes. However, when the length of
the CAN ID sequence is increased, both models performed
oppositely. In contrast to the baseline models, our suggested
model, CAN-BERT, significantly outperforms them by huge
margins and obtains respectable F1 scores ∈ [0.85, 0.99],
demonstrating the usefulness of using BERT-based models to
capture the patterns of CAN ID sequences when T ≥ 32.
However, on short sequence length as is the case for T = 16,
the model performs modestly with F1-score ∈ [0.6, 0.9] for
different kind of attacks. These experiments, therefore, reveal
that by using self-supervised training tasks, CAN-BERT can
effectively model medium to long normal CAN ID sequences
and accurately detect anomalous sequences.

C. Model Complexity

From a practical point of view, we must assess not only the
classification performance but also the model complexity to
check if the model’s ability for real-time in-vehicle intrusion
detection in CAN networks. Therefore, we assessed the infer-
ence time per sample as well as the number of parameters for
the CAN-BERT model w.r.t different car types. As depicted in

TABLE III
CAN-BERT MODEL COMPLEXITY

Vehicle Features Values

CHEVROLET Spark
Number of Parameters 2,937,422

Model Size (MB) [20, 70]
Inference Time (ms) [0.8, 3.1]

HYUNDAI Sonata
Number of Parameters 3,149,291

Model Size (MB) [20, 70]
Inference Time (ms) [0.8, 3.5]

KIA Soul
Number of Parameters 3,163,142

Model Size (MB) [20, 70]
Inference Time (ms) [0.8, 3.8]

Table III, the intrusion detection inference time varies between
0.8 and 3.1 ms w.r.t CAN ID sequence length. Hence, when
considering a sequence length of 32 CAN IDs, our model
detects an intrusion in 0.9 to 1 ms, which is suitable for real-
time detection. Furthermore, having a size between 20MB and
70 MB and a number of parameters ranging between 2 to 3
millions, our model can be either deployed in performant ECU
or even on a cloud server wirelessly connected to the vehicle.

VII. CONCLUSION

Identification of intrusions within the vehicle is critical for
defending it against malicious cyberattacks. In this paper, we
suggest CAN-BERT, a self-supervised intrusion detection sys-
tem based on BERT model, for in-vehicle intrusion detection.
Experimental results on benchmark datasets for different CAN
ID sequence length have shown that CAN-BERT surpasses
state-of-the-art techniques for CAN ID sequence anomaly
detection with an F1-score ranging between 0.81 and 0.99
for different type of attacks and is appropriate for real-time
detection with an inference time ranging between 0.8 and 3
ms w.r.t CAN ID sequence length. For future work, we aim to
deploy our model on embedded electronic control units (ECU)
and test the model efficiency in a real vehicle environment.

REFERENCES

[1] Matheus, Kirsten, and Thomas Königseder. Automotive ethernet. Cam-
bridge University Press, 2021.

[2] Devlin, Jacob, et al. ”Bert: Pre-training of deep bidirectional transformers
for language understanding.” arXiv preprint arXiv:1810.04805 (2018).

[3] Vaswani, Ashish, et al. ”Attention is all you need.” Advances in neural
information processing systems 30 (2017).

[4] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. ”Layer
normalization.” arXiv preprint arXiv:1607.06450 (2016).

[5] Nam, Minki, Seungyoung Park, and Duk Soo Kim. ”Intrusion detection
method using bi-directional GPT for in-vehicle controller area networks.”
IEEE Access 9 (2021): 124931-124944.

[6] Li, Bai, et al. ”How is BERT surprised? Layerwise detection of linguistic
anomalies.” arXiv preprint arXiv:2105.07452 (2021).

[7] Guo, Haixuan, Shuhan Yuan, and Xintao Wu. ”Logbert: Log anomaly de-
tection via bert.” 2021 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2021.

[8] Lee, Yukyung, Jina Kim, and Pilsung Kang. ”LAnoBERT: System Log
Anomaly Detection based on BERT Masked Language Model.” arXiv
preprint arXiv:2111.09564 (2021).

[9] Le, Van-Hoang, and Hongyu Zhang. ”Log-based anomaly detection
without log parsing.” 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2021.

[10] Yu, Keping, et al. ”Securing critical infrastructures: Deep-Learning-
Based threat detection in IIoT.” IEEE Communications Magazine 59.10
(2021): 76-82.

[11] Dang, Weixia, et al. ”TS-Bert: Time Series Anomaly Detection via Pre-
training Model Bert.” International Conference on Computational Science.
Springer, Cham, 2021.

[12] Vincent, Pascal, et al. ”Extracting and composing robust features with
denoising autoencoders.” Proceedings of the 25th international conference
on Machine learning. 2008.

[13] Hyunjae Kang, Byung Il Kwak, Young Hun Lee, Haneol Lee, Hwejae
Lee, Huy Kang Kim, February 3, 2021, ”Car Hacking: Attack & Defense
Challenge 2020 Dataset”, IEEE Dataport, doi: https://dx.doi.org/10.21227/
qvr7-n418

[14] Abdi, Hervé, and Lynne J. Williams. ”Principal component analysis.”
Wiley interdisciplinary reviews: computational statistics 2.4 (2010): 433-
459.

[15] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation-based
anomaly detection.” ACM Transactions on Knowledge Discovery from
Data (TKDD) 6.1 (2012): 3.

[16] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams.
”Learning representations by back-propagating errors.” nature 323.6088
(1986): 533-536.

[17] Pytorch framework. https://pytorch.org/.
[18] Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic

optimization.” arXiv preprint arXiv:1412.6980 (2014).
[19] Hanselmann, Markus, et al. ”CANet: An unsupervised intrusion detec-

tion system for high dimensional CAN bus data.” Ieee Access 8 (2020):
58194-58205.

[20] Song, Hyun Min, Jiyoung Woo, and Huy Kang Kim. ”In-vehicle network
intrusion detection using deep convolutional neural network.” Vehicular
Communications 21 (2020): 100198.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2105.07452
http://arxiv.org/abs/2111.09564
https://dx.doi.org/10.21227/qvr7-n418
https://dx.doi.org/10.21227/qvr7-n418
https://pytorch.org/.
http://arxiv.org/abs/1412.6980

	I Introduction
	II Related Work
	III Preliminaries
	III-A Controller Area Network
	III-A1 Security Weaknesses

	III-B BERT

	IV Proposed framework: CAN-BERT
	IV-A Model description
	IV-B Training and Inference

	V Experimental Settings
	V-A Dataset
	V-A1 Attacks

	V-B Benchmark Models
	V-C Evaluation metrics

	VI Results
	VI-A Model Configuration & Hyperparameter tuning
	VI-B Model Accuracy
	VI-C Model Complexity

	VII Conclusion
	References

