
Using Multiple Code Representations to Prioritize

Static Analysis Warnings

Thanh Trong Vu

Faculty of Electronics and Telecommunications

VNU University of Engineering and Technology

Hanoi, Vietnam

19020626@vnu.edu.vn

Hieu Dinh Vo

Faculty of Information Technology

VNU University of Engineering and Technology

Hanoi, Vietnam

hieuvd@vnu.edu.vn

Abstract—In order to ensure the quality of software and
prevent attacks from hackers on critical systems, static analysis
tools are frequently utilized to detect vulnerabilities in the
early development phase. However, these tools often report
a large number of warnings with a high false-positive rate,
which causes many difficulties for developers. In this paper, we
introduce VULRG, a novel approach to address this problem.
Specifically, VULRG predicts and ranks the warnings based on
their likelihoods to be true positives. To predict these likelihoods,
VULRG combines two deep learning models CNN and BiGRU to
capture the context of each warning in terms of program syntax,
control flow, and program dependence. Our experimental results
on a real-world dataset of 6,620 warnings show that VULRG’s
Recall at Top-50% is 90%. This means that using VULRG, 90%
of the vulnerabilities can be found by examining only 50% of
the warnings. Moreover, at Top-5%, VULRG can improve the
state-of-the-art approach by +30% in both Precision and Recall.

Index Terms—Vulnerability, static analysis warnings, program
dependence graph, control flow, abstract syntax tree

I. INTRODUCTION

Nowadays, software is applied in almost all of the essential

fields in our life. Therefore, issues related to security and

software quality are increasingly concerning. To ensure the

quality and prevent potential attacks, static analysis (SA)

tools are often utilized to detect software vulnerabilities in

the early development phase [1, 2]. However, a well-known

limitation of these tools is that they report too many false-

positive warnings. Contradict to true positive warnings or true

positives (TPs), which are actual vulnerabilities, false positive

warnings or false positives (FPs) are the positions which are

non-vulnerable, yet incorrectly reported by SA tools.

A severe consequence of the high number of FPs is reducing

the productivity of developers [3, 4]. They have to waste

time and effort investigating many safe code segments to find

vulnerabilities, yet do not obtain any benefit. Realizing that

issue, in recent years, not only the accuracy of the SA tools are

significantly improved to reduce FP warnings but also many

approaches about post-handling SA warnings are proposed to

address this problem [5, 6, 7, 8].

There are multiple studies [5, 6] represent warnings by the

fixed sets of the hand-engineered features which are designed

based on warning information and/or code metrics. Then,

statistical machine learning models are applied to predict

whether an SA warning is TP or FP. However, these features

are often manually designed by experts and they are specific

for several types of warnings. Therefore, it is difficult to extend

these approaches to address warnings of different SA tools or

to classify other types of warnings.

In addition, with the development and success of deep

learning, several recent approaches proposed deep learning

models to better learn and capture the patterns associated with

TP and FP warnings. This direction has obtained promising

results. For instance, Lee et al. [7] built a Convolutional

Neural Network (CNN) which exploits the lexical surrounding

context of a warning to classify whether this warning is

TP or FP. Meanwhile, instead of classifying the warnings

into “true” or “false” explicitly, Ngo et al. [8] ranked the

warnings according to their probabilities to be TPs. Their

approach applied slicing techniques to extract the dependent

contexts of the reported statements and train two different

Bidirectional Long Short-Term Memory (BiLSTM) models to

extract meaningful indications to rank input warnings.

In this paper, we present a novel approach to prioritize warn-

ings produced by SA tools. Specifically, for a set of warnings,

VULRG predicts their likelihoods to be TPs based on their

contexts about program dependence, syntax, and execution

order. After that, these warnings are ranked according to their

predicted scores. To represent the warning’s context, VULRG

not only analyzes its dependencies but also takes into account

the syntax and execution order of the program. The reason is

that to determine whether the reported statement is vulnerable

or not, we need to examine not only that statement but also

the statements impact/be impacted by it, to understand its

behaviors. Also, the execution order of the statements and their

syntax are essential for models to understand the warnings and

more accurately capture the patterns associated with TP and

FP warnings. In this work, to obtain such information, VULRG

uses program dependence graph (PDG) [9] and control flow

abstract syntax tree (CF-AST).

Our experimental results on 6,620 warnings of 10 real-world

projects show that VULRG ranks 68.2% of vulnerabilities in

Top-20%. In addition, for Buffer Overflow (BO) vulnerabil-

ities, VULRG’s Recall at Top-50% is 90.9% and this figure

for Null Pointer Deference (NPD) vulnerabilities is 99%. This

means that, with VULRG, by investigating only 50% of the

warnings, developers can find about 91% and 98% of actual

BO and NPD vulnerabilities, respectively. These figures for the

state-of-the-art approach, DEFP [8], are 81.68% and 89.74%.

Interestingly, at Top-5%, VULRG can improve DEFP by more

than 30% in both Precision and Recall.

The rest of the paper is organized as follows: Sec. II

represents our approach to prioritize the SA warnings by

multiple context representations: PDG and CF-AST. Next, our

evaluation setup and experimental results are shown in Sec. III

and Sec. IV, respectively. Sec. V discusses the related studies.

Finally, our conclusion is summarized in Sec. VI.

II. RANKING STATIC ANALYSIS WARNINGS

Fig. 1 shows the overview of our approach. In order to

precisely capture the patterns associated with TP and FP warn-

ings, VULRG takes into account both semantic and syntactic

information of the warnings. First, the context of warnings

is represented by program dependence, syntax, and execution

order. For program dependence, we apply slicing techniques

on PDG to extract statements which impact/be impacted by the

reported statement via control/data dependence. The program

syntax and execution order of the statements are obtained

by analyzing CF-AST. Second, the contexts of the warnings

are converted into numeric vectors. Third, these vectors are

continuously fed to CNN and BiGRU models. According to

the predicted scores to be TPs of the warnings, VULRG

outputs a ranked list of the SA warnings.

A. Context Extraction

1) Program slice: To understand the behaviors of the

reported statement s, we analyze not only s but also the

context of s. The context of s is represented by program

slice which is a set of statements impacting/being impacted

by s via control/data dependence. Indeed, in a program, a

statement cannot execute solely, it often interacts with the

other statements in the program to construct the program’s

behaviors. To capture such important information, we employ

PDG [9] and apply slicing techniques [10] to extract all the

statements in the program which impact and are impacted

by the corresponding reported statement. Specially, we use

Joern [11] and conduct both backward and forward inter-

procedural slicing in the program.

2) Code gadget: Besides semantic information (i.e., pro-

gram slice) of the reported statement s, the syntactic in-

formation and execution order of s, as well as the other

statements in the program are also important to reason about

vulnerability/non-vulnerability of s. In this work, we analyze

CF-AST to capture both program syntax and execution order

information. Such information is represented in a code gadget

which is a set of statements with the information about the

execution order and the functionality of code elements are

encoded. To construct CF-AST, we use PyCParser [12] to build

AST and Joern [11] to extract control flow information.

B. Context Vectorization

Before feeding the extracted contexts into neural network

models, these inputs needs to be represent in a format com-

patible with respective networks. Thus, the goal of this phase

is to convert input context from a sequence of lexical code

tokens into uniform length vector representations while still

preserving the syntactic and semantic information of the orig-

inal form. The process of vectorizing a code snippet includes

3 steps: (1) Preprocessing (2) Tokenizing (3) Embedding.

1) Preprocessing: After extracting relevant context, re-

maining code statements might still contain comments and

special characters (e.g., tab, backslash, end-of-line characters)

which might bring noises to the model in the learning stage.

To keep only code content that is essential for analyzing the

warnings, all comments are removed and special characters are

altered by space tokens. In addition, we observe that program-

mers have variances in coding styles, especially in naming

convention for identifiers such as variables and functions. This

may cause the neural network models, which are directly

trained on raw sources, misled by encoding specific naming

characteristics and simply imply them to specific warning

labels. To mitigate this issue and enable the models to be able

to explore the general vulnerability patterns, VULRG abstracts

all the identifiers and constants in the context. For example, a

specific function name, variable name, or constant value are

replaced by token FUNC, VAR, or LITERAL, respectively.

2) Tokenizing: VULRG employs lexical analysis to break

down each code statement into a sequence of tokens, including

identifiers, constants, keywords, operators, and punctuation

marks. For instance, a function-call statement:

copy_data(u_in, u_out);

is abstracted into

FUNC1(VAR1, VAR2);

and tokenized into 7 code tokens:

“FUNC1”, “(”, “VAR1”, “,”, “VAR2”, “)” and “;”

In fact, the number of code tokens in each sequence after

being tokenized could be significantly different. Thus, VULRG

defines a fixed length, l, and pad/truncate all the input se-

quences to fit this length. Particularly, for sequences having

lengths smaller than l, VULRG pads one or more special

tokens (<pad>) at the end of these sequences. Meanwhile,

for the sequences whose lengths are greater than l, they will

be truncated gradually from both sides to reach the length

l. Note that, the value of l is carefully selected via multiple

experiments.

3) Embedding: To make the program syntactically cor-

rect and precisely convey semantic information of source

code [13], code tokens have to appear together in a certain or-

der. For this purpose, in the embedding step, VULRG employs

unsupervised Word2vec model [14], which has demonstrated

its effectiveness in multiple code mining tasks [15], to encode

relationships between neighboring code tokens. In particular,

after being trained on the whole code corpus, Word2vec is

able to transform a code token into a k-dimensional vector.

Hence, the embedding of a code context, which corresponds

to a sequence of l code tokens, is a l × k matrix.

TABLE II: Performance of VULRG and DEFP [8] in ranking SA warnings

WN Project Method

TP warnings found in top-k% warnings

Top-5% Top-10% Top-20% Top-50% Top-60%

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

BO

Qemu
DEFP 82.50% 8.74% 62.5% 13.26% 56.38% 24.62% 50.74% 55.04% 50.20% 65.08%

VULRG 93.34% 10.62% 89.98% 20.46% 75.42% 33.34% 57.5% 63.88% 53.78% 71.96%

FFmpeg
DEFP 82.50% 8.74% 62.50% 13.26% 56.38% 24.62% 50.74% 55.04% 50.20% 65.08%

VULRG 82.50% 8.74% 85.00% 17.98% 78.76% 34.40% 60.72% 65.90% 57.34% 74.36%

Asterisk
DEFP 31.00% 48.98% 17.06% 55.36% 10.00% 64.98% 4.90% 79.34% 4.50% 87.04%

VULRG 51.00% 81.00% 25.86% 84.22% 13.40% 87.30% 5.68% 92.04% 4.82% 93.72%

COMBINED
DEFP 69.00% 20.50% 53.48% 31.78% 41.60% 49.40% 26.98% 80.12% 24.32% 86.62%

VULRG 89.02% 26.40% 77.34% 45.92% 57.42% 68.20% 30.60% 90.90% 26.38% 93.96%

NPD COMBINED
DEFP 73.34% 24.62% 66.66% 44.90% 46.40% 65.24% 26.44% 92.14% 22.58% 94.36%

VULRG 100% 33.70% 98.34% 66.30% 68.00% 95.42% 28.36% 98.82% 23.64% 98.82%

TABLE III: Impact of code gadget length on VULRG’s performance

Length of
code gadget

300 400 500 600 900 1200

Precision 52.26% 53.72% 54.56% 55.42% 57.42% 56.24%

Recall 62.10% 63.86% 64.86% 65.86% 68.20% 66.82%

TABLE IV: Impact of program slice length on VULRG’s perfor-
mance

Length of
program slice

300 400 500 600 700 800

Precision 56.26% 55.58% 55.32% 57.42% 57.90% 56.52%

Recall 66.82% 66.02% 65.74% 68.20% 68.80% 67.14%

These figures prove that the combination of CNN and BiGRU

not only helps capture longer contextual dependencies but

also guides the models to focus on meaningful features that

contribute to the TP/FP prediction.

C. Impact of context lengths (RQ3)

Table III and Table IV shows Top-20% Precision and Recall

of VULRG with different limit lengths of code gadget and

program slice. As seen, the performance of VULRG is slightly

affected by the length of code gadgets and program slices. In

general, with a longer context, VULRG has more information

to understand the warning and obtained better performance.

Specifically, VULRG obtains the best performance when the

code gadget is limited to 900 tokens and the program slice

is limited to 700 tokens. However, if the contexts are too

long, they may include noises and negatively impact VULRG’s

accuracy. When the code gadget length is set to 1200 tokens

and the program slice is set to 800 tokens, the performance of

VULRG declines about 2%.

V. RELATED WORK

To eliminate FPs, there are various studies [22, 23, 24,

25] used sophisticated verification techniques such as model

checking, symbolic execution, deductive verification, etc. In

general, these studies handle the problem by proving the

violation and/or non-violation of the source code associated

with the warnings. However, these approaches are complicated

and non-scalable, so it is very difficult to apply in practice.

In recent decades, machine learning models are widely

applied to address SA warnings by explicitly classifying them

into FPs or TPs groups, or ranking them according to a specific

order. There are two main directions in applying machine

learning models in this field. Firstly, a warning is represented

by manually defined features and then classified by statistical

machine learning models [5, 6, 26]. Secondly, deep learning

models are built to capture the patterns associated with the

warnings, and then these features are used to classify/rank the

warnings [7, 8].

Similar to the approach of DEFP [8], we also address the

problem of FP warnings by leveraging deep learning models to

rank the warnings based on their likelihoods to be vulnerabili-

ties. However, the main differences in our approach compared

to DEFP are the analyzing contexts and the employed models.

Specifically, to capture the warning patterns, DEFP analyzing

the reported statements and their dependencies. In VULRG,

not only such information but also the syntax and the execution

order of the statements (CF-AST) are considered, which helps

VULRG have more comprehensive information to understand

the warning. Furthermore, instead of employing only BiLSTM

models to represent a code sequence like DEFP, we combine

CNN and BiGRU models. By this combination, CNN can help

to reduce noise by producing intermediate representative fea-

ture maps and BiGRU can represent the contextual information

and the order of tokens. This helps VULRG better capture the

TP and FP patterns.

VI. CONCLUSION

In practice, static analysis tools are frequently used to

detect potential vulnerabilities in the early development phase.

However, these tools often report a large number of warnings

with a high false-positive rate which reduces the productivity

of developers. To address this problem, we introduce VULRG,

a novel approach which combines two deep learning models

CNN and BiGRU to rank the warning based on their predicted

likelihoods to be true positive. In VULRG, to comprehensively

understand the warning and precisely rank it, the context of

each warning is examined in three aspects: program syntax,

control flow, and program dependence. Our experimental

results on a real-world dataset of 6,620 warnings show that

VULRG’s Recall at Top-50% is 90.9%. This means that

using VULRG, 90% of the vulnerabilities can be found by

examining only 50% warnings. Moreover, at Top-5%, VULRG

can improve the state-of-the-art approach by more than 30%

in both Precision and Recall.

REFERENCES

[1] “CppCheck,” June 09, 2022. [Online]. Available:

http://cppcheck.sourceforge.net

[2] “Jlint,” June 09, 2022. [Online]. Available: http:

//jlint.sourceforge.net/

[3] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,

“Why don’t software developers use static analysis tools

to find bugs?” in 2013 35th International Conference on

Software Engineering (ICSE). IEEE, 2013, pp. 672–681.

[4] U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A.

Porter, “An empirical assessment of machine learning

approaches for triaging reports of a java static analysis

tool,” in 2019 12th IEEE Conference on Software Testing,

Validation and Verification. IEEE, 2019, pp. 288–299.

[5] L. Flynn, W. Snavely, D. Svoboda, N. VanHoudnos,

R. Qin, J. Burns, D. Zubrow, R. Stoddard, and G. Marce-

Santurio, “Prioritizing alerts from multiple static analysis

tools, using classification models,” in 2018 IEEE/ACM

1st International Workshop on Software Qualities and

their Dependencies. IEEE, 2018, pp. 13–20.

[6] M. Berman, S. Adams, T. Sherburne, C. Fleming, and

P. Beling, “Active learning to improve static analysis,” in

2019 18th IEEE International Conference On Machine

Learning And Applications (ICMLA). IEEE, 2019, pp.

1322–1327.

[7] S. Lee, S. Hong, J. Yi, T. Kim, C.-J. Kim, and S. Yoo,

“Classifying false positive static checker alarms in con-

tinuous integration using convolutional neural networks,”

in 2019 12th IEEE Conference on Software Testing,

Validation and Verification (ICST). IEEE, 2019, pp.

391–401.

[8] K.-T. Ngo, D.-T. Do, T.-T. Nguyen, and H. D. Vo,

“Ranking warnings of static analysis tools using repre-

sentation learning,” in 2021 28th Asia-Pacific Software

Engineering Conference (APSEC). IEEE, 2021, pp.

327–337.

[9] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The

program dependence graph and its use in optimization,”

ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[10] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural

slicing using dependence graphs,” ACM Transactions

on Programming Languages and Systems (TOPLAS),

vol. 12, no. 1, pp. 26–60, 1990.

[11] “Joern,” June 09, 2022. [Online]. Available: https:

//docs.joern.io/home

[12] “PyCParser,” June 09, 2022. [Online]. Available:

https://github.com/eliben/pycparser

[13] G. Lin, J. Zhang, W. Luo, L. Pan, O. De Vel, P. Mon-

tague, and Y. Xiang, “Software vulnerability discov-

ery via learning multi-domain knowledge bases,” IEEE

Transactions on Dependable and Secure Computing,

2019.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient

estimation of word representations in vector space,” in

ICLR, 2013.

[15] V. Efstathiou and D. Spinellis, “Semantic source code

models using identifier embeddings,” in 2019 IEEE/ACM

16th International Conference on Mining Software

Repositories (MSR). IEEE, 2019, pp. 29–33.

[16] V. Okun, A. Delaitre, P. E. Black et al., “Report on the

static analysis tool exposition (sate) iv,” NIST Special

Publication, vol. 500, p. 297, 2013.

[17] N. I. of Standards and Technology, “Software assurance

reference dataset.” [Online]. Available: https://samate.

nist.gov/SRD/index.php

[18] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep

learning based vulnerability detection: Are we there yet,”

IEEE Transactions on Software Engineering, 2021.

[19] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy,

A. Ghose, T. Kim, and C.-J. Kim, “Lessons learned

from using a deep tree-based model for software defect

prediction in practice,” in 2019 IEEE/ACM 16th Inter-

national Conference on Mining Software Repositories

(MSR). IEEE, 2019, pp. 46–57.

[20] G. Lin, W. Xiao, J. Zhang, and Y. Xiang, “Deep learning-

based vulnerable function detection: A benchmark,” in

International Conference on Information and Communi-

cations Security. Springer, 2019, pp. 219–232.

[21] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “De-

vign: Effective vulnerability identification by learning

comprehensive program semantics via graph neural net-

works,” Advances in neural information processing sys-

tems, vol. 32, 2019.

[22] T. Muske, A. Datar, M. Khanzode, and K. Madhukar,

“Efficient elimination of false positives using bounded

model checking,” in ISSRE, vol. 15, 2013, pp. 2–5.

[23] T. Muske and U. P. Khedker, “Efficient elimination

of false positives using static analysis,” in 2015 IEEE

26th International Symposium on Software Reliability

Engineering (ISSRE). IEEE, 2015, pp. 270–280.

[24] T. T. Nguyen, P. Maleehuan, T. Aoki, T. Tomita, and

I. Yamada, “Reducing false positives of static analysis for

sei cert c coding standard,” in 2019 IEEE/ACM Joint 7th

International Workshop on Conducting Empirical Studies

in Industry (CESI) and 6th International Workshop on

Software Engineering Research and Industrial Practice

(SER&IP). IEEE, 2019, pp. 41–48.

[25] H. Post, C. Sinz, A. Kaiser, and T. Gorges, “Reducing

false positives by combining abstract interpretation and

bounded model checking,” in 2008 23rd IEEE/ACM

International Conference on Automated Software Engi-

neering. IEEE, 2008, pp. 188–197.

[26] U. Yüksel, H. Sözer, and M. Şensoy, “Trust-based fusion

of classifiers for static code analysis,” in 17th Inter-

national Conference on Information Fusion (FUSION).

IEEE, 2014, pp. 1–6.

