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Abstract

The popularity of Windows attracts the attention of hackers/cyber-attackers, making Windows devices the primary target of malware
attacks in recent years. Several sophisticated malware variants and anti-detection methods have been significantly enhanced and as a
result, traditional malware detection techniques have become less effective. This work presents MalBehavD-V1, a new behavioural
dataset of Windows Application Programming Interface (API) calls extracted from benign and malware executable files using the
dynamic analysis approach. In addition, we present MalDetConV, a new automated behaviour-based framework for detecting
both existing and zero-day malware attacks. MalDetConv uses a text processing-based encoder to transform features of API
calls into a suitable format supported by deep learning models. It then uses a hybrid of convolutional neural network (CNN)
and bidirectional gated recurrent unit (CNN-BiGRU) automatic feature extractor to select high-level features of the API Calls
which are then fed to a fully connected neural network module for malware classification. MalDetConv also uses an explainable
component that reveals features that contributed to the final classification outcome, helping the decision-making process for security
analysts. The performance of the proposed framework is evaluated using our MalBehavD-V1 dataset and other benchmark datasets.
The detection results demonstrate the effectiveness of MalDetConv over the state-of-the-art techniques with detection accuracy of
96.10%, 95.73%, 98.18%, and 99.93% achieved while detecting unseen malware from MalBehavD-V1, Allan and John, Brazilian,
and Ki-D datasets, respectively. The experimental results show that MalDetConv is highly accurate in detecting both known and
zero-day malware attacks on Windows devices.

Keywords: Malware, dynamic analysis, malware detection, Convolutional neural network, API Calls, word embedding, machine
learning, deep learning

1. Introduction

As Internet-based applications continue to shape various
businesses around the globe, malware threats have become a
severe problem for computing devices such as desktop com-
puters, smartphones, local servers, remote servers, and IoT de-
vices. It is expected that by 2023 [1] the total number of devices
connected to IP networks will be around 29.3 billion, while pre-
dictions show that internet of things (IoT) devices in use will be
more than 29 billion in 2030 [2], resulting in a massive inter-
connection of various networked devices. As the number of
connected devices continues to rise exponentially, this has also
become a motivating factor for cyber-criminals to develop new
advanced malware programs that disrupt, steal sensitive data,
damage, and exploit various vulnerabilities. The widespread
use of different malware variants makes the existing security
systems ineffective whereby, millions of devices are infected by
various forms of malware such as worms, ransomware, back-
doors, computer viruses, and Trojans[3] [4]. Accordingly, there
has been a significant increase of new malware targeting Win-
dows devices, i.e., the number of malware samples increased by
23% (9.5 million) [5] from 2020 to 2021. About 107.27 million
new malware samples were created to compromise windows
devices in 2021, showing an increase of 16.53 million samples

over 2020 with an average of 328,073 malware samples pro-
duced daily [5].

The application of signature-based malware detection sys-
tems such as anti-virus programs that rely on a database of sig-
natures extracted from the previously identified malware sam-
ples is prevalent. In static malware analysis, signatures are
malware’s unique identities which are extracted from malware
without executing the suspicious program [6] [7].

Some of the static-based malware analysis techniques were
implemented using printable strings, opcode sequences, and
static API calls[8], [9] [10]. As signature-based systems rely
on previously seen signatures to detect malware threats, they
have become ineffective due to a huge number of new malware
variants coming out every day [11]. Moreover, static-based
techniques are unable to detect obfuscated malware (malware
with evasion behaviours) [12] [13]. Such obfuscated malware
includes Agent Tesla, BitPaymer, Zeus Panda, and Ursnif, to
name a few [14].

Dynamic or behaviour-based malware detection technique
has addresses the above shortcoming observed in the signature-
based techniques. In contrast to signature-based techniques,
dynamic-based techniques can detect both obfuscated and zero-
day malware attacks. They are implemented based on the dy-
namic malware analysis approach which allows monitoring the
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suspicious program’s behaviours and vulnerability exploits by
executing it in a virtual environment [15]. Dynamic analysis
can reveal behavioural features such as running processes, reg-
istry key changes, web browsing history (such as DNS queries),
malicious IP addresses, loaded DLLs, API calls, and changes in
the file system [16] [3]. Hence, the dynamic analysis produces
the best representation of malware behaviour since in many
cases the behaviour of malware remain the same despite many
variants it may have. As malware can use API calls to perform
different malicious activities in a compromised system, tracing
API calls reveals how a particular executable file behaves [17]
[8]. Accordingly, Vemparala et al.’s work [17] demonstrated
that the dynamic-based malware detection model outperforms
the static model in many cases, after comparing their perfor-
mance using extracted dynamic API calls and static sequence of
opcodes features. This work is focused on analyzing dynamic-
based API call sequences to identify malware.

Existing techniques for dynamic-based malware detection
have used machine learning (ML) algorithms to successfully
identify malware attacks. These algorithms learn from given
data and make predictions on new data. over the last decade, the
use of ML-based models has become more prevalent in the field
of cybersecurity such as malware detection [18] [19]. Decision
Trees (DT), Support Vector Machine (SVM), J48, K-nearest
neighbour (KNN), Random Forest (RF), and Naı̈ve Bayes are
the most popular ML algorithms which are used to build mal-
ware detection [8] [3] [19]. However, conventional machine
learning techniques rely on manual feature extraction and selec-
tion process, which requires human expert domain knowledge
to derive relevant or high-level patterns/features to be used to
represent a set of malware and benign files. This process is
known as manual feature engineering and is time-consuming
and error-prone as it depends on a manual process, consider-
ing the current plethora of malware production. Deep learn-
ing (DL) algorithms have also emerged for malware detection
[20] [21]. Deep neural networks (DNNs) [22], recurrent neural
networks (RNNs) [23], autoencoders [24], convolutional neural
networks (CNNs) [25] [26], and Deep Belief Networks (DBNs)
[27] are examples of DL algorithms that have been used in dy-
namic malware analysis [28] [29]. Different from conventional
ML techniques, DL algorithms can perform automatic feature
extraction [24].

On the other hand, the majority of existing ML and DL-
based techniques operate as black boxes [30] [31] [3]. These
models receive input X which is processed through a series
of complex operations to produce Y as the predicted out-
come/output. Nevertheless, these operations cannot be in-
terpreted by humans, as they fail to provide human-friendly
insights and explanations, for example, which features con-
tributed to the final predicted outcome [30] [31]. Therefore,
by using explainable modules researchers and security analysts
can derive more insight from the detection models and under-
stand the logic behind the predictions [32]. The interpretation
of the model’s outcome can help to assess the quality of the
detection model in order to make the correct decision.

Motivation and Contributions
Extracting behavioural features from malware executable

files is a very critical task as malware can damage organiza-
tional resources such as corporate networks, confidential infor-
mation, and other resources when they escape the analysis envi-
ronment. Hence, obtaining a good and up-to-date behavioural
representation of malware is a challenging task [33]. In the case
of API calls, having a good representation of API call features
from benign and malware programs also remains a challenge as
the number of API calls made by malware executable files is
relatively long which makes their analysis and processing dif-
ficult [28]. In addition, some of the previous techniques have
used API calls to detect malicious executable files. Such API
call-based malware detection techniques include the ones pre-
sented in [28] [34] [35] [36] and [29]. Unfortunately, none of
the previous work has attempted to reveal API call features that
contributed to the final prediction/classification outcome. Prac-
tically, it is ideal to have a machine learning or deep learning
model that can detect the presence of malicious files with high
detection accuracy. However, the prediction of such a model
should not be blindly trusted, but instead, it is important to have
confidence about the features or attributes that contributed to
the prediction.

In order to improve the performance of existing malware
detection techniques, this work proposes MalDetConv, a new
automated framework for detecting both known and zero-day
malware attacks based on natural language processing (NLP)
and deep learning techniques. The motivation for using deep
learning is to automatically identify unique and high relevant
patterns from raw and long sequences of API calls which dis-
tinguishes malware attacks from benign activities, while NLP
techniques allow producing numerical encoding of API call
sequences and capturing semantic relationships among them.
More specifically, MalDetConv uses an encoder based on NLP
techniques to construct numerical representations and embed-
ding vectors (dense vectors) of each API call based on their se-
mantic relationships. All generated embedding vectors are then
fed to a CNN module to automatically learn and extract high-
level features of the API calls. The final features generated by
CNN are then passed to a bidirectional gated recurrent unit (Bi-
GRU) feature learning module to capture more dependencies
between features of API calls and produce more relevant fea-
tures. We believe that combining CNN and BiGRU creates a
hybrid automatic feature extractor that can effectively capture
relevant features that can be used in detecting malicious exe-
cutable files. Finally, features generated by the BiGRU module
are fed to a fully connected neural network (FCNN) module
for malware classification. We have also integrated LIME into
our framework to make it explainable [37]. LIME is a frame-
work for interpreting machine learning and deep learning black
box models proposed by Ribeiro et al. [32]. It allows Maldet-
Conv to produce explainable predictions, which reveal feature
importance, i.e., LIME produces features of API calls that con-
tributed to the final prediction of a particular benign or malware
executable file. Explainable results produced by LIME can help
cybersecurity analysts or security practitioners to better under-
stand MalDetConv’s predictions and to make decisions based
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on these predictions. The experimental evaluations conducted
using different datasets show better performance of the MalDet-
Conv framework over other state-of-the-art techniques based on
API call sequences. Specifically, the following are the contri-
butions of this work.

1. This work contributes ”MalBehavD-V1”, a new be-
havioural dataset of API call sequences extracted from
benign and malware executable files. We have used the
MalBehavD-V1 dataset to evaluate the proposed frame-
work and our dataset is made publicly available for use by
the research community. Our dataset contains behaviours
of 1285 new malware samples that appeared in the sec-
ond quarter of 2021 and were not analyzed by the previ-
ous works.

2. We designed and implemented the MalDetConv frame-
work using an NLP-based encoder for API calls and a
hybrid automatic feature extractor based on deep learn-
ing techniques.

3. MalDetConv uses LIME to provide explainable predic-
tions which are essential for security analysts to identify
interesting API call features which contributed to the pre-
diction.

4. Detailed experimental evaluations confirm the superior-
ity of the proposed framework over existing when detect-
ing unseen malware attacks with an average of 97.48% in
the detection accuracy obtained using different datasets
of API calls. Our framework outperforms existing tech-
niques such as the ones proposed in [34] [38] [29].

Structure: The remainder of this paper is structured as fol-
lows. Section 2 presents the background and Section 3 dis-
cusses the related works. Section 4 presents the proposed
method while Section 5 discusses the experimental results. Sec-
tion 6 presents limitations and future work. The conclusion of
this work is provided in Section 7.

2. Background

This section discusses the prevalence of malware attacks
in the Windows operating system (OS), Windows application
programming interface (Win API), and malware detection us-
ing API calls. Moreover, it provides brief background on deep
learning techniques, such as convolutional neural networks and
recurrent neural networks.

2.1. High Prevalence of Malware Attacks on Windows plat-
forms

Malware production is increasing enormously with millions
of threats targeting Windows OS. Developed by Microsoft,
Windows is the most widely used and distributed desktop OS
with the highest global market share [39]. The distribution of
this OS market share can also be viewed in Figure 1. Conse-
quently, its popularity and widespread usage give many oppor-
tunities to cybercriminals to create various malware applica-
tions (malicious software) against Windows-based systems or
devices [40] [41].

2.2. Windows API

The Windows application programming interface (API),
also known as Win32 API, is a collection of all API func-
tions that allow windows-based applications/programs to inter-
act with the Microsoft Windows OS (Kernel) and hardware [42]
[43] [44]. Apart from some console programs, all windows-
based applications must employ Windows APIs to request the
operating system to perform certain tasks such as opening and
closing a file, displaying a message on the screen, creating,
writing content to files, and making changes in the registry.
This implies that both system resources and hardware cannot
be directly accessed by a program, but instead, programs need
to accomplish their tasks via the Win32 API. All available API
functions are defined in the dynamic link libraries (DLLs), i.e.,
in .dll files included in C:\Windows\System32\*.For example,
many commonly used libraries include Kernel32.dl, User32.dll,
Advapi32.dll, Gdi32.dll, Hal.dll, and Bootvid.dll [45].

2.3. API calls Monitoring

Generally, any windows-based program performs its task by
calling some API functions. This functionality makes Win32
API one of the important and core components of the Windows
OS as well as an entry point for malware programs targeting the
windows platform, since the API also allows malware programs
to execute their malicious activities. Therefore, monitoring and
analyzing Windows API call sequences gives the behavioural
characteristics that can be used to represent benign and mal-
ware programs [46] [47]. API calls analysis reveals a consider-
able representation of how a given malware program behaves.
Therefore, monitoring the program’s API call sequences is by
far one of the most effective ways to observe if a particular ex-
ecutable program file has malicious or normal behaviours [48]
[49] [50] [51] [34].

2.4. Deep Learning Algorithms

Deep learning (DL) techniques are subsets of machine
learning techniques that use artificial neural network architec-
tures to learn and discover interesting patterns and features from
data. DL network architectures can handle big datasets with
high dimensions and perform automatic extraction of high-level
abstract features without requiring human expertise in contrast
to ML techniques [52] [53]. DL algorithms are designed to
learn from both labeled and unlabeled datasets and produce
highly accurate results with low false-positive rates [54]. By
using a hierarchical learning process, deep learning algorithms
can generate high-level complex patterns from raw input data
and learn from them to produce intelligent classification model
which performs classification tasks, making deep models valu-
able and effective for big data manipulation. The multi-layered
structure adopted by deep learning algorithms gives them the
ability to learn relevant data representations through which low-
level features are captured by lower layers and high-level ab-
stract features are extracted by higher layers [55] [56]. The next
section introduces CNN and recurrent neural networks, which
are some of the popular categories of DL algorithms.

3



Figure 1: Distribution of global market share per each desktop operating system, source [39].

2.4.1. Convolutional Neural Network
Convolutional neural network (CNN) is a category of deep

learning techniques that gained popularity over the last decades.
Inspired by how the animal visual cortex is organized [57] [58],
CNN was mainly designed for processing data represented in
grid patterns such as images. CNN has been successfully used
to solve computer vision problems [59] and has attracted sig-
nificant interest across various image processing domains such
as radiology [60]. Convolutional neural networks (CNNs) are
developed to automatically learn and extract high-level feature
representation from low patterns of raw datasets. The archi-
tecture of the CNN technique has three main components or
layers that are considered its main building blocks (see Figure
2). These components include the convolutional layer, pooling
layer, and fully connected layer (also known as the dense layer).
The convolution layer and pooling layers are responsible for
feature extraction and selection/reduction while the dense layer
receives the extracted features as input, learns from them, and
then performs classification which gives the output, e.g., a class
of a given instance.

CNN differs from the existing conventional machine learn-
ing techniques as follows.

• Most of the current traditional machine learning tech-
niques are based on manual or hand-crafted feature ex-
traction and selection techniques which are followed by
the learning and classification stages performed by the
machine learning classier [36].

• In contrast, CNN network architectures do not use man-
ual crafted-feature extraction and selection as they can
automatically perform both operations and produce high-
level feature representations through convolution and
pooling operations [60].

• CNN uses several learnable parameters to effectively
learn and select relevant features from input data [60]
[59].

CNN can have single or multiple convolution and pooling
layers, with the convolution layer being its core component.
The goal of the convolutional layer is to learn different high-
level feature representations from the input data using several

learnable parameters called filters or kernels which generate
different feature maps through convolution operations. During
convolution, the defined filters are convolved to a window of
the same size from input data which extracts features from dif-
ferent positions of the input. The element-wise multiplication
is performed between the filter and each input window size.
Strides and padding are also important parameters of the convo-
lutional layer [61]. Stride is the defined step to which the filter
should be moved over the input (horizontally or vertically) for
2-D data. In the case of 1-D input data, the filter moves in one
direction (horizontally) with stride. Padding allows producing
feature maps with a size similar to the input data and helps to
protect the boundary information from being lost as the filter
moves over the input data, with zero-padding being the most
used method. The convolved results are passed to a non-linear
activation function before being fed to the next layer.

The pooling layer (also known as the sub/down-sampling
layer) selects a small region of each output feature map from the
convolution and sub-samples them to generate a single reduced
output feature map. Max-overtime pooling, average/mean pool-
ing, and min pooling are different examples of pooling tech-
niques. Note that the pooling operation reduces the dimension
of input data and results in a few parameters to be computed in
the upper layers, making the network less complex while keep-
ing relevant feature representation at the same time [62].

The next layer (considered the last layer of CNN) is a
fully connected neural network (FCNN) layer that receives
the pooling layer’s output as input and performs classifica-
tion/predictions. It is an artificial neural network with hidden
layers and an output layer that learn and perform classification
through forward propagation and backpropagation operations.
Hence, a typical CNN model can be viewed as an integration
of two main blocks, namely, feature extraction and selection
block, and classification block. One dimensional CNN (1-D
CNN) is a version of 2-D CNNs and has been recently pre-
sented in various studies [63] [64] [65] [66]. All these studies
have proven that 1-D CNNs are preferable for certain applica-
tions and are advantageous over their 2-D counterparts when
handling 1-D signals. One dimensional (1D) represents data
with one dimension such as times series data and sequential
data. Another recent study has mentioned that 1-D CNNs are
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Figure 2: General architecture depicting how CNNs work.

less computationally expensive compared to 2-D CNNs and
do not require graphics processing units (GPUs) as they can
be implemented on a standard computer with a CPU and are
much faster than 2-D CNNs [67]. 1-D CNN architectures have
been also successful in modeling various tasks such as solv-
ing natural language processing (NLP) problems. For exam-
ple, in the previous work, CNNs were successfully applied to
perform text/documents classification [64] [68] [69] and senti-
ments classification [70].

2.4.2. Recurrent neural networks
A Recurrent neural network (RNN) is a type of DL network

architecture which is suitable for modeling sequential data.
RNN uses a memory function that allows them to discover im-
portant patterns from data. However, traditional/classic RNNs
suffer from vanishing gradients (also known as gradient explo-
sion) and are unable to process long sequences [71]. To address
this problem, Hochreiter et al. [72] proposed Long short-term
memory (LSTM), an improved RNN algorithm that performs
well on long sequences. The Gated Recurrent Unit (GRU) was
later implemented by Chao et al. [73] based on the LSTM. As
depicted in Figure 3, a GRU network uses a reset gate and up-
date gate to decide which information needs to be passed to the
output. A reset gate is used to determine which information
to forget in the hidden state of the previous time step/moment,
where the information in the previous time step will be forgot-
ten when the value of the reset gate is close to 0, otherwise it
will be retained if the value is close to 1. The update gate de-
cides how much information needs to be passed to the current
hidden state. GRU operations are computed using mathemati-
cal equations in (1), (2),(3), and (4).

zt = σ(wzxxt + uzhht−1 + bz) (1)

rt = σ(wrxxt + urhht−1 + br) (2)

h̃t = tanh(whxxt + rt � uhhht−1 + bh) (3)

ht = (1 − zt) � h̃t + zt � ht−1) (4)

In Figure 3, zt, rt, h̃t and ht denote the update gate, reset
gate, candidate hidden state of the currently hidden node and
current hidden state, respectively. The symbol σ denotes the
Sigmoid activation, xt is the current input, tanh is the hyper-
bolic tangent activation function, w and u are weights matrices

to be learned, � is the Hadamard product of the matrix, while
bz, br, and bh denotes the bias. The values of zt and rt are be-
tween 0 and 1 and when modeling sequences the reset gate op-
erates on ht−1 to record all necessary information in the memory
content. The information to be forgotten in the current mem-
ory content is determined by the reset gate after obtaining the
Hadamard product [74]. All important information is recorded
by h̃t through the input information and reset gate. The update
gate acts on ht−1 and h̃t and forwards it to the next unit. As it can
be seen from equation 4, the expression (1 − zt) decides which
information needs to be forgotten and then the associated infor-
mation in the memory content is updated. Hence, the required
information to be retained is decided by ht at h̃t and ht−1 via
the update gate. Every hidden layer of the GRU network has
a reset and update gate which are separated, and based on the
current input information and the information from the previ-
ous time-step, layers produce different dependent relationships
among features. GRU uses a simple network architecture and
has shown better performance over regular LSTMs [75]. Bidi-
rectional GRU (BiGRU) is a variant of GRU that models infor-
mation in two directions (right and left direction) [76]. Accord-
ingly, studies have shown better performance with reversed se-
quences, making it ideal to model sequences in both directions
in some cases [76].

3. Related Works

This section presents related works on static and behaviour-
based malware detection. However, all works that use images
of binary files and hybrid malware detection techniques that use
a combination of static and behavioural features are beyond the
scope of this literature. In addition, works that do not use win-
dows executable files for experimental analysis are also not in-
cluded in this section.

3.1. Static and Dynamic-based malware detection techniques

There have been significant efforts in the recent works on
malware detection through static and behaviour-based analy-
sis. Static API calls extracted after disassembling benign and
malware executables with IDA Pro Disassembler were mined
using a hybrid of SVM wrapper and filter methods [10]. Dif-
ferent subsets of features selected by the SVM wrapper were
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Figure 3: The typical network architecture of the gated recurrent unit algorithm.

combined with feature subsets generated by the filter method
to construct a good representation of API call features and the
final feature set was then employed to build different hybrid
SVM-based malware detection models. While the model per-
forms well when classifying malware based on API call fea-
tures, there is no clear approach for selecting filters, which
can affect the overall performance, especially for the hybrid
methods. The work presented by Naik [7] has implemented a
fuzzy-import hashing approach to measure similarity between
malware and benign files and their results were further com-
pared with YARA rules. The dataset with four ransomware
families namely, WannaCry, Locky, Cerber Ransomware, and
CryptoWall was used to evaluate the performance of their pro-
posed approach. YARA rules were generated from strings ex-
tracted from these ransomware samples and different Fuzzy-
Import Hashing approaches (SDHASH, IMPHASH, SSDEEP,
etc.,) were tested. The results reveal that there is a high sim-
ilarity between ransomware from the same family and a high
dissimilarity between ransomware from different families. API
calls and API calls’ statistics extracted from binary files through
the static malware analysis were used in the detection model
proposed in Huda et al.’s work [77]. The step-wise binary lo-
gistic regression (SBLR) model was applied to select a subset of
specific features and thereafter, the Decision Tree and SVM al-
gorithms were trained and tested to detect malicious activities.
While the focus of their work was to reduce the computation
complexity, this technique depends on a linear approach which
can affect the overall detection accuracy of the proposed model.
An instruction sequence-based malware detection framework
was proposed in Fan et al.’s work [78] where sequences were
extracted from executable samples and malicious sequential
patterns were discovered using a sequence mining approach
that works in combination with All-Nearest Neighbour (ANN)
classifier. Based on the experimental results, this method can
identify malicious patterns from given suspicious executable
programs with improved detection accuracy.

A signature-based malware detection approach was imple-
mented using deep autoencoders in [24]. An opcode sequence

analysis method was used to construct a static-based method
that effectively detects malware attacks [9]. Opcode sequences
were statically extracted from 32-bit and 64-bit Windows EXE
files and the occurrence of each opcode was computed using
the term frequency-inverse document frequency (TF–IDF) to
obtain a feature set that was used to train KNN, Decision Tree,
Adaboost, RF, Bagging and backpropagation neural networks
detection models. A total of 20,000 files (malware and be-
nign) was used in the experiment and k-fold cross-validation
was used to evaluate the performance of the proposed meth-
ods. The results reveal that their malware detection systems
can identify and classify different malware attacks with the bet-
ter performance achieved by the Adaboost model. Logistic re-
gression was used to learn relevant features (to perform domain
knowledge operation) from raw bytes to reveal the best byte n-
grams features which were further employed to train the Ran-
dom Forest and Extra Random Trees using the JSAT library
[79]. Furthermore, they have also built a long short-term mem-
ory (LSTM) and fully connected neural networks detection ap-
proach using raw bytes and Keras library [80]. Their perfor-
mance evaluation shows that neural network models trained on
raw bytes features without performing explicit feature gener-
ation can outperform the performance of domain knowledge
methods that fully depends on constructing explicit features
from raw bytes extracted from PE headers [79]. D’Onghia et
al. [81] proposed Apı́cula, a static analysis-based tool that uses
the Jaccard index to identify malicious API calls presented in
bytes streams such as network traffic, object code files, and
memory dumps. The work presented by Kundu et al. [82]
has improved the performance of a Light Gradient Boosted
Machine (LightGBM) approach for detecting and classifying
malicious software using two datasets, the Microsoft EMBER
dataset and another private dataset collected from an anti-virus
company. The optimization (hyper-parameter tuning) was per-
formed using Microsoft Neural Network Intelligence (NNI) and
AutoGluon-Tabular (AutoGluon) automated machine learning
frameworks. The AutoGluon was released by Amazon and has
been implemented with various ML algorithms including KNN,
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LightGBM, and Multi-Layer Perceptron (MLP). The results
obtained after performing different empirical analyses demon-
strate that there is an improvement in tuned models compared
to the baseline models. Kale et al.’s [83] used opcode sequences
from EXE files to build malware detection approaches based on
RF, SVM, KNN, and CNN where feature extraction and rep-
resentation were performed using different techniques such as
Word2Vec, BERT, HMM2Vec, and ELMo. Yeboah et al.[84]
proposed a CNN-based approach that detects malicious files us-
ing operational code (opcode).

Nevertheless, cybercriminals can easily modify the exe-
cutable binary file’s code and disguise a small piece of en-
crypted malicious code, which can be decrypted during its ex-
ecution/runtime [85]. Such malicious code can even be down-
loaded remotely and get inserted into the program while run-
ning. Accordingly, the work presented by [86] has also revealed
that it is possible for encrypted and compressed code to be de-
crypted and unpacked when loaded into memory during run-
time. Additionally, some sophisticated malware uses more than
two stages to attack the victim’s systems. For instance, mal-
ware designed to target specific platforms such as Windows OS
will first check if it is running in the targeted OS. Once de-
tected, a malicious payload can automatically be downloaded
from the cybercriminal’s server and get loaded into memory
to perform malicious tasks. Malware with the ability to evade
antivirus and utilizes it to transfer users’ stolen confidential in-
formation from the comprised users without any notice was re-
ported in [85]. Recently advanced malware variants use vari-
eties of sophisticated evasion techniques including obfuscation,
dead code insertion, and packing [87] [88] to evade static-based
malware detection, making them more vulnerable and unable to
detect new sophisticated malware attacks. Fortunately, the dy-
namic malware analysis approach can handle obfuscated mal-
ware and consequently, many of the recent works were focused
on dynamics-based approaches/techniques. The work proposed
by Vemparala et al. [17] extracted API call sequences through
dynamic analysis and employed them to train and test both hid-
den Markov Models and Profile Hidden Markov Models to ob-
serve the efficiency of the dynamic analysis approach while
detecting malware. Their study has used a dataset of seven
malware types with some malware programs such as Zbot and
Harebot that have the capability of stealing confidential infor-
mation. The results from their experiment show that the HMM-
based malware detection approach using behavioural/dynamic
sequences of API calls outdoes both static and hybrid-based de-
tection techniques. Nevertheless, the authors have used an out-
dated dataset, which can prevent the model from identifying
new sophisticated malware attacks, considering the rapid scale
of different malware variants.

The work in [47] has adopted the DNA sequence alignment
approach to design a dynamic analysis-based method for mal-
ware detection. Common API call features were dynamically
extracted from different categories of malware. Their experi-
mental outcome has revealed that some of the malicious files
possess common behaviours/functions despite their categories,
which may be different. In addition, their study has also indi-
cated that unknown or new malware can be detected by identi-

fying and matching the presence of certain API calls or function
calls as malware programs perform malicious activities using
almost similar API calls. However, the limitation of DNA se-
quence approaches is that they are prone to consuming many re-
sources and require high execution time, making them compu-
tationally expensive, considering the high volume of the emerg-
ing malware datasets. Seven dynamic features, namely, API
calls, mutexes, file manipulations/operations, changes in the
registry, network operations/activities, dropped files, and print-
able string information (PSI) were extracted from 8422 benign
and 16489 malware using the Cuckoo sandbox [8]. PSI features
were processed using a count-based vector model (count vec-
torization approach) to generate a feature matrix representing
each file and thereafter, truncated singular value decomposition
was utilized to reduce the dimension of each generated matrix.
Furthermore, they have computed Shannon entropy over PSI
and API call features to determine their randomness. Using
PSI features, their model has achieved the detection accuracy
of 99.54% with the Adaboost ensemble model while the accu-
racy of 97.46% was yielded with the Random Forest machine
learning classifier. However, while their method shows an im-
provement in the accuracy of the detection model using PSI fea-
tures, it is worth mentioning that the count vectorization model
applied while processing features does not preserve semantic
relationship/linguistic similarity between features or word pat-
terns [89] [90]. The count vectorization model is unable to iden-
tify the most relevant or less relevant features for the analysis,
i.e., only words/features with a high frequency of occurrence in
a given corpus are considered as the most statistically relevant
words.

Cuckoo sandbox was used to generate behavioural features
of benign and malware files during their execution time in the
work carried out in [91]. They have used Windows API calls
to implement a Random Forest-based malware detection and
classification approach that achieved the detection accuracy of
98%. Malicious features were extracted from about 80000 mal-
ware files including four malware categories, namely, Trojans,
rootkit, adware, and potentially unwanted programs (PUPs)
downloaded from VirusTotal and VirusShare malware reposi-
tory. The detection model was tested on 42000 samples and
the results show an improvement in the detection of malware
attacks. However, looking at the detection outcome, this ap-
proach only performs well when detecting Trojans. For in-
stance, it achieved the true positive rate (TPR) of 0.959 when
detecting and classifying Trojans while the TPR of 0.777,
0.858, and 0.791 were achieved while detecting rootkit, adware,
and PUPs, respectively. In the work presented by Suaboot et al.
[28] a subset of relevant features was extracted from API call
sequences using a sub-curve Hidden Markov Model (HMM)
feature extractor. Benign and malware samples were executed
in the Cuckoo sandbox to monitor their activities while exe-
cuting in a clean isolated environment residing in Windows
7-32 bits machine. The API call features selected from the
behavioural reports of each executable program file (benign
and malware) were then used to train and test a behaviour-
based malware detection model. Only six malware families
(Keyloggers, Zeus, Rammit, Lokibot, Ransom, and Hivecoin)
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with data exfiltration behaviours were used for the experimen-
tal evaluation. Different machine learning algorithms such as
Random Forest (RF), J48, and SVM were evaluated, and the
RF classifier achieved better prediction with an accuracy av-
erage of 96.86% compared to other algorithms. Nevertheless,
their method was only limited to evaluating executable program
files, which exfiltrates confidential information from the com-
promised systems. In addition, with 42 benign and 756 malware
executable programs which were used in the experimental anal-
ysis, there is a significant class imbalance in their dataset which
could lead to the model failing to predict and identify samples
from minority classes despite its good performance.

A backpropagation neural networks (BPNNs) approach
for malware detection was proposed in [92]. The proposed
BPNNs–based approach learns from features extracted from be-
nign and malware behavioural reports to classify malware at-
tacks. A dataset of 13600 malware executable files was col-
lected from Kafan Forum and the dataset has ten malware fam-
ilies which were labeled using Virscan. They also have used
the HABO online behaviour-based system, which captures the
behaviours of each file and generates a behavioural report hav-
ing all activities performed by the executable file. Behavioural
features such as mutexes, modified registry keys, and created
processes, to name a few, were used to train and test the pro-
posed BPNNs approach to perform binary classification, which
led to the accuracy of 99%. Note the BPNN was built using
a sub-behavioural feature generated based on a count-based
method which is limited to using an occurrence matrix that
does not provide any relationship between the selected sub-
behavioural feature set. Malware attacks can be detected us-
ing the detection techniques implemented based on the longest
common substring and longest common subsequence methods
suggested in [93]. Both methods were trained on behavioural
API calls, which were captured from 1500 benign and 4256
malware files during dynamic analysis. A Malware detection
approach based on API calls monitored by the Cuckoo sand-
box was designed in the work proposed by Kyeom et al. [94].
The analysis was carried out using 150 malware belonging to
ten malware variants and the detection was achieved by com-
puting similarity between files based on the extracted sequence
of API calls features using the proposed sequence alignment
approach. Their results also show that similar behaviours of
malware families can be found by identifying a common list of
invoked API call sequences generated during the execution of
executable program. Unfortunately, this method cannot suitable
for high-speed malware attacks detection as it fully relies on the
pairwise sequence alignment approach, which introduces over-
heads. The work in [95] has proposed multiple instance-based
learning (MIL) approach that exploits the performance of sev-
eral machine learning classifiers (SVM, KNN, RF, etc.) to de-
tect malicious binary files. The MIL was trained using different
dynamic features such as network communication (operations),
the structure of file paths, registry, mutexes, keys, and error
messages triggered by the operating system. Behaviours of be-
nign and malicious files were monitored in the sandbox and a
similarity-based method was used in combination with cluster-
ing which allows similar systems resources to be grouped to-

gether. MIL has achieved a detection accuracy of 95.6% while
detecting unknown malware files.

Several graph-based techniques for malware detection were
proposed in the previous studies [96] [97] [98] [99] [100] and
[101], to mention a few. All of these approaches have used
graphs to represent behaviours of executable files and the detec-
tion models learned from the generated graphs. Nevertheless,
the complexity of graph matching is one of the major issues
with graph-based techniques, i.e., as the graph’s size increases
the matching complexity, the detection accuracy of a given de-
tection model decreases [8]. Grouping a common sequence
of API calls in a single node is often applied to decrease the
matching complexity of graphs. Although this approach does
not yield better detection accuracy, it is harder for a cyber at-
tacker to modify the behaviours of a malware detection model
based on the graph method [99]. NLP techniques were applied
to analyze/mine the sequence of API calls in the malware detec-
tion approach implemented in [102]. The API calls were pro-
cessed using the n-gram method and the weights were assigned
to each API call feature using the term frequency-inverse docu-
ment frequency (TF-IDF) model. The main goal of the TF-IDF
is to map n-grams of API calls into numerical features that are
used as input to machine learning or deep learning algorithms.
Given an input of behavioural report extracted from malware
and benign files in a dynamic isolated environment, the TF-ID,
processes the report to generate feature vectors by taking into
account the relative frequency of available n-grams in the in-
dividual behavarioural report compared to the total number of
the report in the dataset. The work in [38] has also relied on
TF-IDF to compute input features for machine learning algo-
rithms (CART, ETrees KNN, RF, SVM, XGBoost, and Ensem-
ble). Another previous work in [23] has used LSTM and TF-
IDF model to build a behaviour-based malware detection using
API call sequences extracted with cuckoo sandbox in a dynamic
analysis environment.

The work in [33] has used the term frequency-inverse doc-
ument frequency to process printable strings extracted from
malware executable files after dynamic analysis. TF-IDF and
Anti-colony optimization (Swarm algorithm) were used to im-
plement a behavioural graph-based malware detection method
based on dynamic features of API calls extracted from exe-
cutable [29]. Unfortunately, like the count vectorization model,
the TF-IDF text processing model does not reveal or preserve
the semantic relationship/similarity that exists between words.
In the case of malware detection, this would be the similarity
between API calls or another text-based feature such as file
name, dropped messages, network operations such as contacted
hostnames, web browsing history, and error message generated
while executing the executable program file. Liu and Wang
have [103] used Bidirectional LSTM (BLSTM) to Build an
API call-based approach that classifies malware attacks with
an accuracy of 97.85%. ALL sequences of API calls were ex-
tracted from 21,378 and were processed using the word2vec
model. In Li et al. [104] a graph convolutional network (GCN)
model for malware classification was built using sequences of
API calls. Features were extracted using principal component
analysis (PCA) and Markov Chain. A fuzzy similarity algo-
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rithm was employed by Lajevardi [105] to develop dynamic-
based malware detection techniques based on API calls. Ma-
niath et al. [106] proposed an LSTM-based model that identi-
fies ransomware attacks based on Behavioural API calls from
Windows EXE files generated through dynamic analysis in the
Cuckoo sandbox. Chen et al.’s work [107] proposed different
malware detection techniques based on CNN, LSTM, and bidi-
rectional LSTM models. These models were trained on raw
API sequences and parameters traced during the execution of
malware and benign executable files. An ensemble of ML algo-
rithms for malware classification based on API call sequences
was recently implemented in the work presented in [108]. Con-
volutional neural networks and BiLSTM were used to develop
a malware classification framework based on sequences of API
calls extracted from executables files [21]. Two detests were
used by Dhanya et al. [109] to evaluate the performance of
various machine learning-based ensemble models (AdaBoost,
Random Forest, Gradient descent boosting, XGBoost, Stack-
ing, and Light GBM) for malware detection. Their study has
also evaluated DL algorithms such as GRU, Graph Attention
Network, Graph Convolutional Network, and LSTM. The work
proposed in [110] has employed a dataset of API invocations,
Registry keys, files/directory operations, dropped files, and em-
bedded strings features extracted using the Cuckoo sandbox to
implement a particle swarm-based approach that classifies ran-
somware attacks. Jing et al. [111] proposed Ensila, an ensem-
ble of RNN, LSTM, and GRU for malware detection which was
trained and evaluated on dynamic features of API calls.

3.2. API calls Datasets
Some of the previous studies presented above have gener-

ated datasets of API calls and have made them public for the
research community focusing on malware detection. Examples
of such datasets include the ones presented in [112], [113], [47]
and [114]. Nevertheless, many existing studies did not share
their datasets and as result, a few datasets are publicly avail-
able for the research community. The existing datasets are also
outdated as they are not regularly updated to include new be-
havioural characteristics of malware. This situation hinders the
development and evaluation of new malware detection models
as building these models requires updated datasets having the
necessary behavioural characteristics of new malware variants.
Therefore, to contribute to the existing challenge related to the
availability of benchmark datasets [33], this work generates a
new behavioural dataset of API calls based on Windows exe-
cutable files of malware and benign using the Cuckoo sandbox.

More specifically, we generate MalbehavD-V1, a new
dataset that has the behavioural characteristics of current
emerging malware such as ransomware, worms, Viruses, Spy-
ware, backdoor, adware, keyloggers, and Trojans which ap-
peared in the second quarter of 2021. The dataset has been
processed to remove all inconsistencies/noise, making it ready
to be used for evaluating the performance of deep learning mod-
els. The dataset is labeled and the hash value for each file
has been included to avoid duplication of files while extending
the dataset in the future, which makes it easier to include be-
havioural characteristics of newly discovered malware variants

in the dataset or combine the dataset with any of the existing
datasets of API calls extracted from Windows PE files through
dynamic analysis. More details on the dataset generation are
presented in Section 4 and the dataset can be accessed from the
GitHub repository in [115].

4. Proposed MalDetConv Framework

The development of the proposed framework is mainly
based on the dynamic malware analysis using natural lan-
guage processing, convolutional neural networks, and the bidi-
rectional gated recurrent unit. The benign and malware pro-
gram’s dynamic/behavioural reports are created by analysing
sequences of API calls in the Cuckoo sandbox. Given a pro-
gram’s API call sequences represented in form of text, the
proposed method uses an encoder based on the word embed-
ding model to build dense vector representations of each API
call which are further fed to a CNN-BiGRU automatic hy-
brid feature extractor. The architecture of the proposed frame-
work is depicted in Figure 4 and consists of six main com-
ponents/modules, namely, executable files collection module,
behaviour monitoring module, pre-processing module, embed-
ding module, hybrid automatic feature extraction module, and
classification module. In the next section, we present the func-
tion of each module and how all modules inter-operate to detect
malicious EXE files.

4.1. Executable File Collection Module

It is often challenging to find an up-to-date dataset of API
calls of Windows executable files. For this reason, we have gen-
erated a new dataset of API calls which is used for the exper-
imental evaluations. Different sources of malware executable
files such as Malheur [116], Kafan Forum [92], Danny Quist
[117], Vxheaven [10], MEDUSA [118], and Malicia [119] were
used in the previous studies. Unfortunately, these reposito-
ries are not regularly updated to include new malware samples.
Hence, we have collected malware executable samples from
VirusTotal [120], the most updated and the world’s largest mal-
ware samples repository. Nevertheless, considering millions of
malware samples available in the repository, processing all mal-
ware samples is beyond the scope of this study. Thus, only
malware samples submitted in the second quarter of 2021 were
collected. We were given access to a Google drive folder having
the malicious EXE files which are shared by VirusTotal. Benign
samples were collected from CNET site[121]. The VirusTotal
online engine was used to scan each benign EXE file to en-
sure that all benign samples are clean. A total number of 2800
EXE files were collected to be analyzed in an isolated analy-
sis environment using the dynamic analysis approach. How-
ever, we experienced issues while executing some files, result-
ing in a dataset of 2570 files (1285 benign and 1285 malware)
that were successfully executed and analyzed to generate our
MalbehavD-V1 benchmark dataset. Some benign files were ex-
cluded as they were detected as malicious by some of the anti-
malware programs in the VirusTotal online engine [122] while
some malware files did not run due to compatibility issues. The
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Figure 4: The proposed MalDetConv framework for behaviour-based malware detection.

next sub-Sections (4.2 and 4.3) present the steps followed to
generate the dataset.

4.2. Behaviour Monitoring Module
Monitoring and capturing sequences of API calls from be-

nign and malware executable files through dynamic analysis
mostly rely on the use of a sandbox environment as an analysis
testbed. This is because automated sandboxes can monitor be-
haviours of malware executable programs during runtime while
preventing them from damaging the host system or production
environment. As shown in Figure 5, our isolated environment
consists of the main host, host machine, Cuckoo sandbox, virtu-
alization software, and virtual machines (VMs). The main host
is a Windows 10 Enterprise edition (64bit) with direct access to
the Internet. Considering that some very advanced malware can
escape the sandbox analysis environment which could lead to
serious damage and a disastrous situation when malware infects
the production systems, we have used Oracle VirtualBox, one of
the leading virtualization software to isolate the main host and
the analysis environment which fully resides in Ubuntu 20.04.3
LTS (Focal Fossa) host machine. More specifically, Oracle Vir-
tualBox 6.1 was installed on Windows 10 main host machine,
and then Ubuntu host machine was installed inside the Virtual-
Box environment.

The Cuckoo sandbox [123] and its dependency software in-
cluding required analysis modules were installed on the Ubuntu
machine. We have installed another VirtualBox that manages
all Windows 7 Professional 64-bit SP1 analysis VMs on the
Ubuntu machine. A set of software was installed on each virtual
machine and some security settings were disabled to make them
more vulnerable to malware attacks. Examples of such software
include Adobe reader 9.0, Java runtime environment (JRE 7),
.NET Framework 4.0, Python 2.7 (32 bit), Pillow 2.5.3 (Python
Imaging Library, 32 bit), Microsoft Office, and Cuckoo sand-
box guest agent (32 bit). Python allows the Cuckoo guest agent
to run while the pillow provides imaging functions such as tak-
ing screenshots. The cuckoo agent resides in each Windows
VM under the Startup sub-directory. This allows the agent to
automatically start whenever the VM boots up. A shared folder

was configured in the Windows virtual machine to get all the
above files, however, it was disabled after installing each file as
some advanced malware looks for the shared folder to discover
if they are running in a virtual environment or sandbox. As the
Cuckoo guest agent must monitor each file’s behaviours while
running and send all captured data back to the host, an Internet
connection is needed between the Windows analysis VMs and
Ubuntu host machine. Thus, we have set the network adaptor
to ”host-only Adaptor” in the VirtualBox to allow the network
traffic to only be routed between the Windows virtual machines
and Ubuntu host machine without reaching the main host (Win-
dows 10 Enterprise host machine).

The architecture of the analysis environment is mainly
based on nested virtualization technology which allows deploy-
ing nested virtual machines in the same host. It is also important
to note the hardware virtualization on each VirtualBox was set
to “enable nested paging” while the paravirtualization interface
was set to default. After installing all required software in the
Windows 7 VMs, a clean snapshot of each virtual machine was
taken and saved. This snapshot is used to restore the virtual
machine to its clean state after the analysis of each executable
program file. Cuckoo sandbox was configured to generate a
behavioural report of each EXE file in JSON format, and each
report was further processed to extract relevant features of API
calls. A typical structure of JSON report from our dynamic
analysis is presented in Figure 7 while details on a complete
analysis workflow are given in Figure 6 which describes how
each file is monitored by the Cuckoo sandbox at runtime. .

Accordingly, the behavioural reports generated during our
dynamic malware analysis reveal that some sophisticated mal-
ware can use different API calls that potentially lead to ma-
licious activities. For instance, Table 1 presents some of the
API calls used by ae03e1079ae2a3b3ac45e1e360eaa973.virus,
which is a ransomware variant. This ransomware ends up lock-
ing the comprised device (Windows VM in our analysis) and
demands for a ransom to be paid in BitCoins in order to get ac-
cess back to the system. This variant encrypts the hard drive’s
contents and makes them inaccessible. We have also observed
that recent malware variants possess multiple behaviours and
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Figure 5: The architecture of our isolated dynamic malware analysis environment.

can perform multiple malicious activities after compromising
the target, making detection difficult.

4.3. API Calls Pre-processing Module
The pre-processing of the behavioural report for each ana-

lyzed EXE file is performed at this stage. The pre-processing
involves organizing and cleaning the raw features from the be-
havioural reports to make them suitable for training and test-
ing the classification algorithm. After generating all JSON be-
havioural reports, they are stored in a local directory in the host
machine. A typical JSON report contains various objects stor-
ing different data and all behavioural features are located under
the “Behaviours” object in each JSON report. However, we are
only interested in extracting sequences of API calls of benign
and malware executable program files. As JSON stores raw
features of API calls, they are not supported by deep learning
algorithms. Hence, they must be processed to obtain a numer-
ical representation of each PE file’s API call features that is
supported by deep learning models.

The processing involves two main stages. The first stage
involves processing all JSON reports to generate a comma sep-
arate value (CSV) file. Figure 8 presents various steps that are
performed to accomplish the first processing stage. The second
stage deals with processing the CSV file to generate a numerical
representation of each feature and construct the embedding ma-
trix which is fed to the proposed CNN-BiGRU hybrid automatic
feature extractor. When a CSV file containing sequences of API
calls that represent benign or malware program files is fed to
the proposed framework, the pre-processing module transforms
this CSV file into a pandas data frame which is much easier to
process. A list of labels that are encoded in binary (1,0), with
1 representing each row of malware and 0 representing each
row of benign is loaded and then appended to the data frame to
obtain a new data frame with labeled features.

In the next step, the data are shuffled and passed to a split-
ting function which splits the dataset into training and test sets.
All sequences of API calls (in both training and test set) are to-
kenized using the Tokenizer API from the Keras framework to
generate a unique integer encoding of each API call. Thereafter,
all encoded sequences are given the same length and padded
where necessary (zero padding is used). This is very important
for CNN as it requires all inputs to be numeric and all sequences
to have the same length. The encoded sequences are fed to the
embedding layer which builds a dense vector representation of
each API call and then all vectors are combined to generate an
embedding matrix which is used for CNNs. More specifically,
all steps performed in the second pre-processing stage are pre-
sented in Figure 9 and further details are provided in subSec-
tion 4.6. Additionally, details on the API call embedding are
presented in Section 4.4.

4.4. Embedding Module

This section first introduces word embedding and then pro-
vides details on the Keras embedding layer which is used to
construct embedding vectors of API calls in this work.

4.4.1. Word Embedding
In NLP, word embedding is a group of techniques used to

map sequences of words/sentences in a given vocabulary into
numerical dense vectors supported by most of the deep learn-
ing models[124] [125] and [126]. Word embedding techniques
reduce the dimensionality of text and can produce features that
are more relevant or informative compared to the original raw
dataset from which they are generated [127]. Count-based mod-
els and predictive models (often referred to as neural probabilis-
tic language models) are two main categories of word embed-
ding [90]. Counted-based models such as Count vectorization
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Figure 6: The workflow for submitting and executing each EXE file in the Cuckoo sandbox.

Figure 7: Example of API calls from JSON report of ae03e1079ae2a3b3ac45e1e360eaa973.virus malware captured during dynamic analysis.
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Table 1: Example of potentially malicious API calls observed in ae03e1079ae2a3b3ac45e1e360eaa973.virus while running in a Windows VM during our analysis.
Malicious API call Description of API Call
WriteConsoleW Malware uses this API call to establish a command line console.
NtProtectVirtualMemory This API call was used by the malware to allocate read-write memory usually

to unpack itself.
CreateProcessInternalW A process created a hidden Windows to hide the running process from the task

manager. This API call allows the malicious program to spawn a new process
from itself which is usually observed in packers that use this method to inject
actual malicious code in memory and execute them using CreateProcessInter-
nalW.

Process32FirstW The malware used this API to search running processes potentially to identify
processes for sandbox evasion, code injection, or memory dumping/live image
capturing.

FindWindowA The malware used this API to check for the presence of known Windows foren-
sics tools and debuggers that might be running in the background.

Figure 8: Pre-processing JSON behavioural reports (part 1) with (a) Showing necessary steps and (b) Python code snippet to process JSON file.

and term frequency-inverse document frequency (TF-IDF) rep-
resent word features into vectors with extremely high dimen-
sions (which creates sparse vectors and time complexity) while
in predictive models, word features are represented in small
learned and dense embedding vectors. Word2Vec is one of the
best predictive word embedding models for word representa-
tion [126] [127]. Word embeddings have gained popularity due
to their frequent use as the first processing layer that processes

word encoded features in deep learning models [128]. This suc-
cess was mainly achieved based on continuous bag-of-words
(CBOW) and skip-gram models, which are two Word2Vec em-
bedding models that produce efficient high-quality distributed
word feature vector representations where words with similar
meanings are grouped based on their semantic/contextual re-
lationships [126]. Categorizing word vectors based on their
meaning produce an initial correlation of word features for deep
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Figure 9: Pre-processing part 2-steps for generating numerical representations of API calls (encoding each API call).

learning models.
Word embedding models are often used when dealing with

NLP classification problems. For instance, some recent works
have applied Word2Vec in modeling text and documents, clas-
sifying sentiments and learning semantic information in DNS
[129] [130] [131] [132] [133] [134]. Hence, our API calls fea-
ture vector representation approach is linked to these studies,
however, in this work, we do not use existing pre-trained NLP-
based word embedding models citemikolov2013efficient [135]
because word similarities in API call sequences are dissimilar
with ordinary English. Thereby, we use the direct embedding
layer provided by the Keras DL framework to automatically
learn and generate API calls embedding vectors. The direct
embedding allows the knowledge to be incorporated inside the
detection model, i.e., the whole knowledge of MalDeConv is
incorporated in one component, which is different from the pre-
vious techniques).

4.4.2. Keras Embedding Layer
As the Keras embedding layer can be used to train em-

beddings while building the classification model [136] [137],

we have used it to generate embedding vectors of API Calls.
The word embedding layer in Keras provides an efficient way
to generate word embeddings with dense representation where
similar words have similar encoding (i.e., this layer can be used
to represent both words and sequences of words using dense
vector representations). Therefore, the embedding layer learns
the embedding of API calls during model training. We treat
each API call sequence extracted from each benign and mal-
ware EXE file as a sentence. The embedding layer requires
all input of API calls to be integer encoded, the reason why
each API call was represented by a unique integer using the
Keras API Tokenizer during the pre-processing steps (see Sec-
tion 4.3). Therefore, the embedding layer is first initialized with
random weights, and thereafter, it learns the embedding of all
API calls in the dataset. To achieve this, the Keras embedding
layer uses the continuous bag-of-words model to build embed-
ding vectors of each API call and requires three parameters to
be specified. These parameters include Inputdim which speci-
fies the vocabulary size in the API calls data. For instance, if
the API calls data has integer encoded values between 0-1000,
then the vocabulary size would be 1001 API calls. The second
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parameter is the outputdim which denotes the size of the vector
space in which words/tokens of API calls are embedded (i.e.,
it specifies/defines the size of each word’s output vector from
the embedding layer). For example, it can be of dimensions 10,
20, 100, or even larger. In this work, different values of outdim
are tested to obtain the suitable dimension of the output. Hence,
this value is empirically chosen after testing different values and
in our case, we have set the outputdimvalue to 100. Finally, the
last parameter is the inputlength, which is the length of the in-
put of each API call sequence. For instance, if a sequence of
API calls extracted from a malware file has 60 API calls, its
input length would be 60. As there are many sequences with
different lengths in the dataset, all sequences are processed to
have the same inputlength, value. The embedding layer con-
catenates all generated embedding vectors of API calls to form
an embedding matrix which is used as input to the hybrid fea-
ture extractor.

4.5. Hybrid Automatic Feature Extraction Module
The next component of the proposed framework is the

CNN-BiGRU hybrid automatic feature extractor, and its archi-
tecture is presented in Figure4 and 10. More formally, our bi-
nary classification problem of benign and malware’s API call
sequences with MalDetConv can be addressed as follows.

4.5.1. CNN feature extractor
The CNN API feature extractor is designed based on the

CNN text classification model presented in Kim’s work [64].
As it can be viewed from Figure 4, the architecture of CNN is
made up of two main components, namely, the convolutional
layer and the pooling layer. Below we discuss how the CNN
feature extractor is designed, the function of each component,
and how they interact to perform the extraction of high-level
features of API calls. Given a sequence s of API calls extracted
from the behavioural report of benign or malware, let’s Xi∈Rd

denotes a d-dimensional API call vector representing the i − th
API call in s where d is the dimension of the embedding vec-
tor. Therefore, a sequence S consisting of n API calls from a
single JSON report can be constructed by concatenating indi-
vidual API calls using the expression in (5) where the symbol
⊕ denotes the concatenation operator and n is the length of the
sequence.

Xi:n = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ ....... ⊕ xn (5)

We have padded sequences (where necessary) using zero
padding values to generate API calls matrix of kn dimensions
having k number of tokens of API call with embedding vectors
of length n. Padding allows sequences to have a fixed num-
ber of k tokens (the same fixed length is kept for all sequences)
which is very important as CNN cannot work with input vectors
of different lengths. We have set k to a fixed length. To identify
and select high relevant/discriminative features from raw-level
features of API calls word embedding vectors, the CNN feature
extractor performs a set of transformations to the input sequen-
tial vector Xi:n through convolution operations, non-linear acti-
vation, and pooling operations in different layers. These layers
interact as follows.

The convolutional layer relies on defined filters to perform
convolutional operations to the input vectors of API calls. This
allows the convolutional layer to extract discriminative/unique
features of API call vectors that correspond to every filter and
feature map from the embedding matrix. As the CNN convolu-
tional filters extract features from different locations/positions
in the embedding vectors (embedding matrix), the extracted
features have a lower dimension compared to the original se-
quences/features. Hence, mapping high dimensional features to
lower-dimensional features while keeping highly relevant fea-
tures (i.e, it reduces the dimension of features). Positions con-
sidered by filters while convolving to the input are independent
for each API call and semantic associations between API calls
that are far apart in the sequences are captured at higher lay-
ers. We have applied a filter W ∈ Rm×n to generate a high-level
feature representation, with m moving/shifting over the embed-
ding matrix based on a stride t to construct a feature map ci

which is computed using the expression in (8). It is important
to mention that the multiplication operator (*) which is in the
equation (6) denotes the convolutional operation (achieved by
performing element wise multiplication) which represents API
call vectors from Xi to Xi+m−1 (which means m rows at a time)
from X which is covered by the defined filter W using the stride.
To make the operation faster, we have kept stride to a value of
1, however, various strides can be adapted as well. Moreover,
in the equation (6), the bias value is denoted by bi.

Ci = f (W ∗ Xi:i+m−1+bi) (6)

CNN supports several activation functions such as hyper-
bolic tangent, Sigmoid, and rectified linear unit (ReLU). In this
work, we have used ReLU, which is represented by f in (6).
Once applied to each input x, the ReLu activation function in-
troduces non-linearity by caping/turning all negative values to
zero. This operation is achieved using the expression in (7).
This activation operation speeds up the training of the CNN
model, however, it does not produce significant difference in
the model’s classification accuracy.

f (x) = max(0, 1) (7)

After convolving filters to the entire input embedding ma-
trix, the out is a feature map corresponding to each convolu-
tional operation and is obtained using the expression in (8).

C( f ) = [C1,C2,C3, ...,Cn−m+1] (8)

The convolutional layer passes its output to the pooling
layer which performs further operations to generate a new fea-
ture representation by aggregating the received values. This
operation is carried out using some well-known statistical tech-
niques such as computing the mean or average, finding the max-
imum value, and applying the L-norm. One of the advantages
of the pooling layer is that, it has the potential to prevent the
model’s overfitting, reducing the dimensionality of features and
producing sequences of API call features with the same fixed
lengths. In this work, we have used max pooling [64] [138]
which performs the pooling operation over each generated fea-
ture map and then selects the maximum value associated with

15



a particular filter output feature map. For instance, having a
feature map ci , the max-pooling operation is performed by the
expression in (9) and the same operation is applied to each ci

feature map.
ĉi = max(ci) (9)

The goal is to capture the most high-level features of API
calls (the ones with the maximum/highest value for every fea-
ture map). Note that the selected value from each feature map
corresponds to a particular API call feature captured by the filter
while convolving over the input embedding matrix. All values
from the pooling operations are aggregated together to produce
a new reduced feature matrix which is passed to the next feature
extractor (BiGRU).

4.5.2. BiGRU feature extractor
Features generated by CNN have a low-level semantic com-

pared to the original ones. Fortunately, gated recurrent units
can be applied to the intermediate feature maps generated by
CNN. Hence, we use the BiGRU module to capture more rel-
evant features of API calls, i.e., the final features maps ĉi of
API calls generated by the CNN feature extractor are fed to the
BiGRU feature which models sequences in both directions, al-
lowing the model to capture high dependencies across the API
features maps produced by CNN. The out consists of relevant
information/features which are passed to a flatten layer.

4.5.3. Flatten layer
The flatten layer is used to convert/flatten the multi-

dimensional input tensors t̂i produced by the BiGRU automatic
feature extractor into a single dimension (a one-dimensional ar-
ray/vector) which is used as input to the next layer. That is, the
output of the BiGRU is flattened to create a single feature vec-
tor that is fed to the fully connected neural network module for
malware classification.

4.5.4. Classification Module
In our case, the classification module consists of a fully con-

nected neural network (FCNN)/an artificial neural network’s
component with hidden layers and a ReLU activation function,
and finally the output layer with a sigmoid activation func-
tion. The hidden layer neurons/units receive the input fea-
tures t̂i from the flattening layer and then compute their acti-
vations li using the expression in (10) with W being the matrix
of weights between the connections of the input neurons and
hidden layer neurons while bi represents the biases. We have
used the dropout regularization technique to prevent the FC-
NNs from overfitting the training data, i.e., a dropout rate of
0.2 was used after each hidden layer, which means that at each
training iteration, 20% of the connection weights are randomly
selected and set to zero. Dropout works by randomly dropping
out/disabling neurons and their associated connections to the
next layer, preventing the network’s neurons from highly rely-
ing on some neurons and forcing each neuron to learn and to
better generalize on the training data [139].

li = ReLU(
∑

i

Wi ∗ t̂i + bi) (10)

In addition, we have used the binary-cross entropy [140] to
computer the classification error/loss and the learning weights
are optimized by Adaptive Moment Estimation (Adam) opti-
mizer [141] [142]. Cross-entropy is a measure of the difference
between two probability distributions for a given set of events
or random variables and it has been widely used in neural net-
works for classification tasks. On the other hand, Adam works
by searching for the best weights W and bias b parameters
which contribute to minimizing the computed gradient from the
error function (binary-cross entropy in this case). Note that the
network learning weights W are updated through backpropa-
gation operations. For the sigmoid function, we have used the
binary logistic regression (see equation (11).

S igmoid(x) =
1

1 + e−x (11)

Y = S igmoid(Wi × li + b) (12)

After computing the activation, the classification outcome
(the output) is computed by the above expression in (12). In
addition, a simplified architecture of the proposed hybrid auto-
matic feature extractor and classification module is presented
in Figure 10. Our CNN network has 2 convolutional layers and
2 pooling layers which are connected to a BiGRU layer. The
best parameters for the filter size were determined using the
grid search approach. The next component to the BiGRU layer
is the FCNN (with hidden layers and output layer) which clas-
sifies each EXE file as benign or malicious based on extracted
features of API calls (see Figure10(A-1). All network parame-
ters and configurations at each layer are presented in Figure 10
(A-2).

4.6. Malware detection with MalDetConv

Given a JSON report containing features of API call se-
quences representing benign or malware executable programs,
the proposed framework performs classification based on all
steps described in the previous Sections. First, each JSON file
is processed to extract raw sequences of API call features which
are followed by encoding each sequence of API calls to obtain
an encoded integer representation for each API call. There-
after, all encoded features are passed to the embedding layer
which builds embedding vectors and then concatenates them to
generate API calls embedding matrix which is passed to the
CNN-BiGRU hybrid automatic feature extractor. The CNN
module has filters that convolve to the embedding matrix to
select high-level features through convolution operations. The
selected features are aggregated together to generate a feature
map which is passed to the pooling layer to generate high-level
and compact feature representation through max pooling oper-
ations. The output from the last pooling layer is passed to a
BiGRU layer to capture dependencies between features of API
call and constructs more relevant features which are flattened
by the flatten layer and then passed to a fully connected neu-
ral network module which performs classification. A complete
workflow is depicted in Figure 11.
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Figure 10: The architecture of the Proposed (A-1) CNN-BiGRU automatic feature extractors (A-2) Network parameters.

Figure 11: A simplified workflow depicting how MalDetConv works to classify benign and malware executable files’ activities as normal or malicious.

5. Experimental Results and Discussion

Various experimental results are presented and discussed in
this Section. The results presented in this section are based on a
binary classification problem of benign and malware executable
program files in the Windows systems.

5.1. Experimental Setup and Tools

The proposed framework was implemented and tested in a
computer running Windows 10 Enterprise edition (64bit) with

Intel(R) Core (TM) i7-10700 CPU @ 2.90GHz, 16.0 GB RAM,
NVIDIA Quadro P620, and 500 GB for the hard disk drive. The
framework was implemented in Python programming language
version 3.9.1 using TensorFlow 2.3.0 and Keras 2.7.0 frame-
works and other libraries such as Scikit-learn, NumPy, Pan-
das, Matplotlib, Seaborn, LIME, and Natural Language Toolkit
(NLTK) have been also used. All these libraries are freely avail-
able for public use and can be accessed from PiPy [144], the
Python package management website. The proposed frame-
work was trained and tested using sequences of API call fea-
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Table 2: Different datasets of API calls for our experimental analysis.
Dataset of API Calls No. Malware Samples No. Benign Samples Released in
MalBehavD-V1[115] 1285 1285 2022
Allan and John [112] 452 101 2019
Brazilian [113] [143] 16315 5638 2018
Ki-D [47] and [114] 23,080 300 2015

tures extracted from Windows EXE files.

5.2. Training and Testing Dataset

Our generated dataset (MalbehavD-v1) was employed to
evaluate the performance of the MalDetConv framework. As
we wanted the proposed framework to learn and be tested on
a variety of different datasets, we have also collected other ex-
isting datasets of malicious and normal API calls for our ex-
perimental analysis. These datasets include the ones in [47]
[114], API calls datasets presented in [112] and [143]. Us-
ing all these datasets allows us to assess the performance of
the proposed framework while detecting malware attacks.Note
that these datasets are freely available for public use. We have
used 70% of each data for training while the remaining portion
(30%) was used for testing and details on each dataset are pre-
sented in Table 2.

5.3. Performance Evaluation of MalDetConv

Different metrics such as precision (P), recall (R), F1-Score,
and accuracy were measured to evaluate the performance of the
proposed framework. The computations of these metrics are
presented in equations (13), (14), (15), and (16), with TP, TN,
FP, and FN indicating True Positives, True Negatives, False
Positives, and False Negatives, respectively. Additionally, we
have also measured the execution time taken while training and
testing MalDetConv.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

F1 − S core = 2 ×
Precision × Recall
Precision + Recall

(16)

5.3.1. Classification Results
The MalDetConv framework was trained and tested on

different datasets to observe how effective it is while detect-
ing/classifying unknown malicious activities. Hence, various
evaluations were carried out, and the classification results are
presented in this Section. As mentioned in the previous sub-
Section 5.2, we evaluate MalDetConv on API call sequences
extracted from Windows EXE files through the dynamic anal-
ysis approach. We have also compared the performance of
MalDetConv against other state-of-the-art techniques presented

in the previous works, which reveals its effectiveness and abil-
ity to handle both existing and newly emerging malware attacks
over its counterparts. Accordingly, Table 3 shows the training
and testing classification accuracy achieved by MalDetConv on
our dataset (MalbehavD-v1). Different lengths (n) of API call
sequences were considered to evaluate their effects on the per-
formance. From the results, we could see that MalDetConv
successfully classified malicious activities and benign activi-
ties with the accuracy of 96.10% where n = 100. The low-
est accuracy (93.77%) was obtained using the lengths of 20.
Interestingly, the testing accuracy varies in accordance with the
value of n, revealing the effect of the API call sequence’s length
on the performance, i.e., as n increases, the accuracy also in-
creases. This is shown by the accuracy improvement of 2.33%
(96.10 − 93.77) obtained by increasing the value of n from 20
to 100.

Table 4 presents the precision, recall, and F1-score obtained
while testing MalDetConv, which demonstrates better perfor-
mance while detecting both malware and benign on unseen
data. For instance, the precision of 0.9128 and 0.9664 was
obtained using the length of the API call sequence of 20 for
benign and malware detection, respectively. Similarly, using
the same length (n=20) the MalDetConv achieves the recall of
0.9055 and F1-Score of 0.9350 for malware detection. The pre-
cision values obtained using different values of n (20, 40, 60,
80, and 100) demonstrate a better performance of the MalDet-
Conv framework when distinguishing between malware and
benign activities (positive and negative classes). That is, our
framework has a good measure of separability between both
classes (performs well in identifying malware attacks) and can
deal with long sequences. The higher the value of precision
(with 1 being the highest), the better performance of a given
detection model. It is also important to highlight that in many
cases the precision increases as n increases.

Figure 12 presents the execution time taken by the MalDet-
Conv framework which shows that increasing n results in a high
training time (see Figure 12). However, the testing time is low,
and it does not dramatically increase, which again proves the ef-
fectiveness of MalDetConv in terms of malware detection time.

We have also implemented other DL models and compared
their performance with MalDetConv. The detection results on
unseen EXE files (API call sequences) presented in Table 5
and Figure 13 indicate better precision, recall and F1-Score,
and accuracy of the proposed framework, compared to the ex-
isting deep learning models. MalDetConv outperforms multi-
layer perceptron (MLP), LSTM, BiLSTM, GRU, BiGRU, and
CNN using the MalbehavD-v1 dataset. MLP achieves the Ac-
curacy of 93.38%, LSTM (94.03%), BiLSTM (94.16%), and

18



Table 3: Detection accuracy achieved by MalDetConv onMalbehavD-v1 dataset with different length of API call sequence(n).

n Training Accuracy ( %) Testing Accuracy ( %)
20 99.17% 93.77%
40 99.44% 94.03%
60 99.72% 95.19%
80 99.56 % 95.45%
100 99.72% 96.10%

Table 4: MalDetConv peformance on MalbehavD-v1 dataset with different length of API call sequences(n).

n Predicted Class Precision Recall F1-Score

20 Benign 0.9128 0.9692 0.9401
Malware 0.9664 0.9055 0.9350

40 Benign 0.9386 0.9434 0.9410
Malware 0.9420 0.9370 0.9395

60 Benign 0.9467 0.9589 0.9527
Malware 0.9574 0.9449 0.9511

80 Benign 0.9515 0.9589 0.9552
Malware 0.9577 0.9501 0.9539

100 Benign 0.9521 0.9717 0.9618
Malware 0.9705 0.9554 0.9602

Figure 12: Execution time (a) Training time (b) Testing time taken by MalDetConv framework on our dataset.

Table 5: Comparison of MalDetConv framework against other DL-based techniques using MalbehavD-V1 dataset.

Detection Method Precision Recall F1-Score
MLP 0.9459 0.9186 0.9321
LSTM 0.9491 0.9291 0.9390
BiLSTM 0.9375 0.9449 0.9412
CNN 0.9678 0.9475 0.9576
GRU 0.9521 0.9396 0.9458
BiGRU 0.9671 0.9265 0.9464
MalDetConv 0.9705 0.9554 0.9602

CNN (95.84%). The highest improvement gap in detection ac-
curacy of 2.72% (96.1-93.38) is observed between the perfor-
mance of MLP and MalDetConv.

Table 6 shows the classification results of MalDetConv on
existing datasets of API calls (Allan and John, Brazilian, and
Ki-D datasets). Using Allan and John’s dataset, MalDetConv

detects unseen malware with a precision of 0.9504 and detects
benign files’ activities with a precision of 1.0000. A precision
of 0.9884 was obtained by MalDetConv on the Brazilian dataset
while with the Ki-D dataset, MalDetConv performed with a
precision of 0.9993. The detection results presented in Table
obtained by measuring all metrics (precision, recall, and F1-
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Figure 13: Comparison of MalDetConv framework against other DL-based techniques in terms of detection accuracy.

Table 6: Performance of MalDetConv framework on other datasets of API call sequences (n=100).
Dataset Predicted Class Precision Recall F1-Score

Allan and John Benign 1.0000 0.7667 0.8679
Malware 0.9504 1.0000 0.9745

Brazilian Benign 0.9621 0.9656 0.9638
Malware 0.9884 0.9872 0.9878

Ki-D Benign 1.0000 0.9524 0.9756
Malware 0.9993 1.0000 0.9996

Figure 14: Execution time (a)Training and (b) Testing times taken by the proposed framework on the previous datasets of API calls.

score) 6, demonstrate better performance of MalDetConv on
both small and large datasets. Looking at the training time pre-
sented in Figure 14, there is an increase in the training time as
the size of the dataset increases. For instance, the execution
time of 30.4494 seconds was taken while training MalDetConv
on Allan and John’s dataset, and the testing time of 0.1107 sec-
onds was taken while testing the framework on unseen samples.
In addition, the training time of 664.2249 seconds was taken to
train MalDetConv on the Brazilian dataset. Nevertheless, a few
seconds (1.083) were taken to test the model on the test set.
The huge gap in the execution time is mainly due to the size
of the dataset. It is worth mentioning that the detection results
were generated on the test set (30% of each dataset) and the
length of the API call sequence of 100. Despite the training
time which tends to be high for large datasets, it is worth men-

tioning that the MalDetConv framework does not take a huge
amount of time to detect malware attacks, which is a necessity
for any robust and efficient anti-malware detection system.

We have also examined the performance of the MalDet-
Conv framework against other existing NLP-based frame-
works/techniques based on API calls extracted from EXE files
and comparative results are presented in Table 7. First, we
compared MalDetConv against Maldy[38], an existing frame-
work based on NLP and machine learning techniques. Using
our dataset, Maldy achieved the detection accuracy of 95.59%
with XGBoost while MalDetConv achieved 96.10%, creating
an improvement of 0.51% (96.10%-95.59%) detection accu-
racy made by MalDetConv. The detection improvement of
0.55% (95.73% - 95.18%) was achieved by MalDetConv over
the Maldy framework using Allan and John’s dataset. Addi-
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Table 7: Comparing MalDetConv against previous NLP-based techniques/frameworks based on sequences of API calls dataset.
Dataset Techniques/Framework Feature Vectorization Approach ML/DL Algorithm Detection Accuracy

Allan and John MalDy [38] TF-IDF XGBoost 95.18%
MalDetConv Word2Vec-CBOW CNN-BiGRU 95.73%

MalBehavD-V1 MalDy [38] TF-IDF XGBoost 95.59%
MalDetConv Word2Vec-CBOW CNN-BiGRU 96.10%

Brazilian

MalDy [38] TF-IDF KNN 97.60%
Amer et al. [29] TF-IDF+word2vec Swarm intelligence algorithm 95.4%
Ceschin et al. [145] TF-IDF Random Forest 98.00%
MalDetConv Word2Vec-CBOW CNN-BiGRU 98.18%

ki-D

Amer and Zelinka [34] Word embedding and clustering similarity Markov chain model 99.90%
Ki et al. [47] DNA Sequence Alignment API call matching algorithm 99.80%
Tran and Sato [102] TF-IDF Support Vector Machine (SVM) 96.18%
MalDetConv Word2Vec-CBOW CNN-BiGRU 99.93%

Figure 15: Detection accuracy of MalDetConv against other techniques using (a) Allan and David (b) MalbehavD-V1 (c) Brazilian and (d) Ki-datasets 7.

tionally, MalDetConv detection also outperforms the Maldy on
Ki-D and Brazilian datasets. Compared with the malware de-
tection technique presented by Amer and Zelinka [34], MalDet-
Conv obtained an improvement of 0.3% (99.93% - 99.90%) on
Ki-D dataset. Moreover, there is an improvement of 0.13%
(99.93% - 99.80%) in the detection accuracy achieved over the
technique implemented by Ki et al. [47] using the Ki-D dataset,
0.58% (98.18%-97.60%) over Ceschin et al.’s [145] detection
technique achieved using the Brazilian dataset and an improve-
ment of 3.75% (99.93%-96.18%) over the detection technique
presented by Tran and Sato [102]. MalDetConv has also out-
performed the performance of a malware detection technique
presented by Amer et al. [29], with an improvement of 2.76%
(98.18%-95.40%) in the accuracy achieved using the Brazil-
ian dataset. Figure 15 also depicts the comparison between
MalDetConv against the above techniques. The overall perfor-
mance achieved in various experiments shows that the MalDet-
Conv framework can potentially identify and detect malware
attacks with a high precision and detection accuracy, giving our

framework the ability to deal with different malware attacks on
Windows platforms.

5.3.2. Understanding MalDetConv Prediction With LIME
It is often complicated to understand the predic-

tion/classification outcome of deep learning models given the
many parameters they use when making a prediction. There-
fore, in contrast to the previous malware detection tech-
niques based on API calls, we have integrated LIME [32] into
our proposed behaviour-based malware detection framework
which helps to understand predictions. The local interpretable
model-agnostic explanations (LIME) is an automated frame-
work/library with the potential to explain or interpret the predic-
tion of deep learning models. More importantly, in the case of
text-based classification, LIME interprets the predicted results
and then reveals the importance of the most highly influential
words (tokens) which contributed to the predicted results.This
works well for our proposed framework as we are dealing with
sequences of API calls that represent malware and benign files.
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Figure 16: Explaining the predicted outcome. MalDetConv predicts that a sequence of API calls is malicious, and LIME highlights the API calls in the sequence
that led/contributed to the prediction. These can help security analysts to make decisions and trust MalDetConv’s prediction.

Figure 17: An example of an explanation of the classification outcome generated by LIME when classifying a malware file with MalDetConv.

It is important to mention that the LIME framework was chosen
because it is open source, has a high number of citations and the
framework has been highly rated on GitHub.

Figure 16 shows how LIME works to provide an explana-
tion/interpretation of a given prediction of API call sequence.
LIME explains the framework’s predictions at the data sam-
ple level, allowing security analysts/end-users to interpret the
framework’s predictions and make decisions based on them.
LIME works by perturbing the input of the data samples to
understand how the prediction changes i.e., LIME considers a
deep learning model as a black box and discovers the relation-
ships between input and output which are represented by the
model [32] [146]. The output produced by LIME is a list of
explanations showing the contributions of each feature to the
final classification/prediction of a given data sample. This pro-
duces local interpretability and allows security practitioners to
discover which API call feature changes (in our case) will have
the most impact on the predicted output. LIME computes the
weight probabilities of each API call in the sequence and high-
lights individual API calls that led to the final prediction of a
particular sequence of API calls representing malware or be-
nign EXE file.

For instance, in Figure 17, the Process32NextW, Nt-
DelayExecution, Process32FirstW, CreateToolhelp32Snapshot,
and NtOpenProcess are portrayed as the most API calls
contributing to the final classification of the sequence as
“malicious” while SearchPathW, LdrGetDllHandle, SetFileAt-
tributesW, and GetUserNameW API calls are against the final

prediction. Another example showing Lime output is presented
in Figure 18 where API calls features that led to the correct
classification of a benign file are assigned weight probabilities
which are summed up to give the total weight of 0.99. API
calls such as IsDebuggerPresent, FindResourceW, and GetSys-
temWindowsDir are among the most influential API calls that
contribute to the classification of the sequence/file into its re-
spective class (benign in this case).

The screenshots of lime explanations presented in Figures
17 and 18 are generated in HTML as it generates clear visu-
alizations than other visualization tools such as matplotlib. In
addition, the weights are interpreted by applying them to the
prediction probability. For instance, if API calls IsDebugger-
Present and FindResourceW are removed from the sequences,
we expect MalDetConv to classifier the benign sequence with
the probability of 0.99-0.38-0.26= 0.37. Ideally, the interpre-
tation/explanation produced by Lime is a local approximation
of the MalDetConv framework’s behaviours, allowing to reveal
what happened inside the black box. Note that in Figure 18,
the tokens under “Text with highlighted words”, represent the
original sequences of API while the number before each API
call (e.g., 0 for RegCreateKeyExW) corresponds to its index
in the sequence. The highlighted tokens show those API calls
which contributed to the classification of the sequence. Thus,
having this information, a security analyst can decide whether
the model’s prediction should be trusted or not.
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Figure 18: Explanation of the classification outcome generated by Lime when classifying a benign file with the MalDetConv framework.

6. Limitations and Future Work

We have covered Windows 7 OS EXE files (malware and
benign) in this research work. In our future work, we intend
to evaluate the performance of the proposed framework on the
latest versions of Windows OS such as Windows 10 or Win-
dows 11 and other Windows file formats such as PowerShell
scripts. Our dataset of API calls (MalBehavD-V1) will be ex-
tended to include more features from newly released malware
variants. We also plan to evaluate the proposed framework on
API call features extracted in the Android applications where
API calls features will be extracted from APK files through dy-
namic analysis. Although, currently we can explain the results
using LIME, but, in some cases LIME can be unstable as it de-
pends on the random sampling of new features/perturbed fea-
tures [37]. LIME ignores correlations between features as data
points are sampled from a Gaussian distribution[37]. There-
fore, we plan to explore and compare explanation insights pro-
duced by other frameworks such as Anchor[147] and ELI5
[148] which also interpret deep learning models.

7. Conclusion

This work has presented a dynamic malware detection
framework, MalDetConv. In addition, a new dataset of API call
sequences, namely, MalBehavD-V1, are also presented, which
is extracted from benign and malware executable program files.
The analysis was performed in a virtual isolated environment
powered by the Cuckoo sandbox. The proposed framework is
mainly based on natural language processing and deep learn-
ing techniques. The Keras Tokenizer APIs and embedding
layer were used to perform feature vectorization/representation
of API call sequences which generate embedding vectors of
each API and group them based on their semantic relationships.
MalDetConv uses a CNN-BiGRU module to perform automatic
extraction and selection of high-relevant features that are fed
to a fully connected neural network component for the classi-
fication of each sequence of API calls. The performance of
MalDetConv was evaluated using the newly generated dataset
(MalBehavD-V1) and some of the well-known datasets of API
calls presented in the previous works. The experimental results
prove the potential of MalDetConv over existing techniques

based on API calls extracted from EXE files. The experimen-
tal results show high detection accuracy and better precision
achieved by MalDetConv on both seen and unseen data. This
provides the confidence that this framework can successfully
identify and classify newly emerging malware attacks based on
their behaviours. Moreover, MalDetConv achieved high detec-
tion accuracy on both small and large datasets, making it the
best framework able to deal with the current malware variants.
To address the problem of model interpretability encountered
in most of the deep learning-based techniques, the LIME mod-
ule was integrated into MalDetConv, enabling our framework
to produce explainable predictions. The MalDetConv frame-
work can be deployed in high-speed network infrastructures to
detect both existing and new malware in a short time, with high
accuracy and precision.
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