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Abstract
People are not always receptive to their voice data
being collected and misused. Training the au-
dio intelligence systems needs these data to build
useful features, but the cost for getting permis-
sions or purchasing data is very high, which in-
evitably encourages hackers to collect these voice
data without people’s awareness. To discourage the
hackers from proactively collecting people’s voice
data, we are the first to propose a clean-label poi-
soning attack, called WaveFuzz, which can pre-
vent intelligence audio models from building use-
ful features from protected (poisoned) voice data
but still preserve the semantic information to the
humans. Specifically, WaveFuzz perturbs the voice
data to cause Mel Frequency Cepstral Coefficients
(MFCC) (typical representations of audio signals)
to generate the poisoned frequency features. These
poisoned features are then fed to audio prediction
models, which degrades the performance of audio
intelligence systems. Empirically, we show the ef-
ficacy of WaveFuzz through attacking two repre-
sentative types of intelligent audio systems, i.e.,
speaker recognition system (SR) and speech com-
mand recognition system (SCR). For example, the
accuracies of models are declined by 19.78% when
only 10% of the poisoned voice data is to fine-tune
models, and the accuracies of models declined by
6.07% when only 10% of the training voice data is
poisoned. Consequently, WaveFuzz is an effective
technique that enables people to fight back to pro-
tect their own voice data, which sheds new light on
ameliorating privacy issues.

1 Introduction
Due to the prevalence of social networks (e.g., Facebook,
Twitter, and YouTube), individuals prefer to share their daily
lives on the web. For example, individuals interact with their
friends and acquaintances with videos or audios in these nets.
Therefore, such rich data at never-before-seen scales is con-
tained on the web. Unfortunately, social networking sites al-

∗Qian Wang is the corresponding author.

Figure 1: The protected voice example sounds like normal voice
example but will produce the wrong features to the audio model,
which degrades the accuracy of malicious models.

ways lack data protection, meaning that hackers can easily
collect and misuse users’ voice data as shown in Fig. 1 (a).
Nowadays, training high-performance audio intelligence sys-
tems requires massive voice data to build valuable features
(e.g., voiceprint, pronunciation, and phoneme). Hackers pre-
fer to collect these voice data without users’ awareness from
the web, e.g., using the crawler, owing to the expensive cost
of getting permissions or purchasing voice data. However,
people are not always receptive to their voice data being col-
lected and used since voice data contains various information,
including voiceprint and speech content. Collecting and us-
ing people’s voice data will bring privacy leakage concerns
for the individual. Despite the great success in protecting user
privacy (e.g., face) [Liu et al., 2017], it is still an open chal-
lenge to mitigate privacy leaks about people’s voice data.

To discourage the hacker from proactively collecting peo-
ple’s voice data, we propose a clean-label poison attack,
called WaveFuzz, which achieves the ability to generate in-
distinguishable protected voice data. Specifically, WaveFuzz
elaborately perturbs voice data by maximizing the feature dis-
tance between unprotected (clean) voice data and protected
(poisoned) voice data and minimizing their input distance,
where features are extracted by MFCC (the de facto standard
used by most intelligent audio systems). Then, the poisoned
features extracted from poisoned voice data are fed into audio
prediction models, where the performance of the models will
inevitably be degraded. Besides, we utilize a penalty term to
limit the difference between benign and perturbed voice data
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Figure 2: The typical architecture of audio recognition systems and
the overview of MFCC.

to preserve the semantic meaning. Therefore, the protected
voice data can transfer the correct information to humans but
wrong knowledge to the machine. Moreover, the hacker is
hard to use the poisoned samples to training modes and suf-
fers from a punishment as shown in Fig. 1 (b), i.e., perfor-
mance decline .

We conduct experiments on two representative types of in-
telligent audio systems: SR and SCR. Moreover, we assume
that the hacker may use users’ voice data to fine-tune mod-
els or train models from scratch. For fine-tuning models,
our WaveFuzz can reduce the average of model accuracies
by 19.78%, 14.98%, and 10.74% when 10%, 5%, and 0.5%
of the poisoned voice data is to fine-tune models. For train-
ing model from scratch, our WaveFuzz can reduce the aver-
age of model accuracies by 6.07%, 4.87%, and 3.86% when
10%, 5%, and 0.5% of voice data is poisoned. Besides, Wave-
Fuzz outperforms the baseline method by 9.42%, 6.81%, and
4.79% of accuracy decline, when 10%, 5%, and 0.5% of the
training voice data is poisoned. We also make a human study
to validate that semantic meaning is preserved, where about
90% volunteers can correctly understand the semantic mean-
ing of poisoned voice data.

2 Background and Related Work
In this section, we introduce the components of intelligence
audio recognition systems and then review related studies.

2.1 Background
The typical intelligence audio recognition system consists of
three major components (as shown in Fig. 2): pre-processing,
feature extraction, and the prediction model. Given a raw
audio input, pre-processing will retain the frequencies in the
range of human hearing and the segments higher than a spe-
cific energy threshold. Then, feature extraction will ob-
tain the features from the processed audio by a feature ex-
traction algorithm, such as Mel-frequency Cepstral Coeffi-
cients (MFCC) [Muda et al., 2010], Linear Predictive Coeffi-
cient (LPC) [Itakura, 1975], and Perceptual Linear Predictive
(PLP) [Hermansky, 1990]. It is noted that MFCC is the de
facto standard used in the audio field. Finally, the prediction
model takes the extracted features as input and outputs the
decisions.

MFCC [Muda et al., 2010] can extract the parametric rep-
resentation from an acoustic signal, which is in line with the

acoustic characteristics of the human ear. As shown in Fig. 2,
MFCC consists of the following steps: 1) pre-emphasis in-
creases the energy of signal at a higher frequency; 2) framing
segments the speech samples into a small frame; 3) hamming
windowing considers the next block and integrates all the
closest frequency lines; 4) Fast Fourier transform (FFT) con-
verting each frame from the time domain into the frequency
domain; 5) The energy spectrum is fed to a set of Mel-scale
filter banks; 6)Discrete Cosine Transform (DCT) is used to
convert the log Mel spectrum into the time domain; 7) Delta
energy & delta spectrum are used to add features related to
the change in spectral features over time.

2.2 Related Work
In this section, we simply review the related studies, includ-
ing privacy protection methods and poisoning attacks.

Privacy Protection: To protect the users’ privacy in the
social networks, a bulk of studies [Devaux et al., 2009;
Wilber et al., 2016] utilized various obfuscation methods
to blur human faces in a photo which can evade face de-
tection. Moreover, several studies [Szegedy et al., 2014;
Oh et al., 2017] used adversarial examples to protect photo
privacy. The defender generates the adversarial example by
adding invisible perturbation to the benign image, where the
adversarial example can mislead the recognition models.

Poisoning attack: The poisoning attacks can be divided
into two classes [Jagielski et al., 2018] based on the attack
behaviors, including availability attacks and targeted attacks.
Availability attacks [Nelson et al., 2008; Xiao et al., 2012]
introduce failures in the final classifier by tampering with
the training dataset, which have been the focus of many re-
search efforts over time. Targeted attacks [Gu et al., 2017;
Xiao et al., 2015; Muñoz-González et al., 2017] affect spe-
cific data points for the victim model. Recently, clean la-
bel poisoning attacks [Aghakhani et al., 2021; Geiping et
al., 2020; Huang et al., 2020; Zhu et al., 2019] have been
proposed. The poisoned image example needs to be simi-
lar to the legal example but can perturb the model. Recent,
VENOMAVE[Aghakhani et al., 2020] is proposed to induce
a targeted misclassification against automatic speech recog-
nition (ASR) model using data poisoning. For example, the
poisoned ASR model classifies the target frame xτ as state
Z, but performs well on the clean input. However, our pa-
per aims to prevent unauthorized exploitation of voice data, a
new aspect of data privacy and different from VENOMAVE.

Despite great success in protecting the privacy of users’
images, there remains an urgent problem of preserving indi-
vidual voices from being misused.

3 Method
In the following, we introduce our WaveFuzz (see Fig. 3), the
first clean label poisoning attack to discourage hackers from
collecting users’ voice data.

Insight. Given a voice example, the feature extraction
component will extract the features as the input fed into the
prediction model. Therefore, if the current features generated
by the feature extraction algorithm are wrong, the wrong fea-
tures will damage the prediction model inevitably. Moreover,



Figure 3: The overview of WaveFuzz: The defender generates cor-
rupted points by maximizing the distance of the MFCC features be-
tween normal and corrupted voice data, and minimizing their input
distance. Then, poisoned features are fed into the prediction model
will cause intelligence systems’ performance to decline.

Algorithm 1 WaveFuzz

Input: Normal example x; MFCC threshold ε;
Output: poisoned example x∗

1: initialization: δ(0)
2: i = 0
3: while

∥∥MF(x+ δ(i))−MF(x)
∥∥
p
< ε do

4: δ(i) ← E.q. 3
5: i = i+ 1
6: end while
7: x∗ = x+ δ(i)

8: return x∗

the feature spectrum is not intuitive, making it difficult for
humans to judge whether the spectrum is correct.

Threat Model. We discourage the hacker from proactively
collecting users’ voice data by generating protected voice
data. These protected voice examples are sound normal but
can degrade the performance of the systems that want to steal
the information from users’ voice data. We assume that the
malicious systems use the MFCC to extract the features since
MFCC is the most popular feature extraction algorithm in the
audio field. Besides, we assume that the defender does not
know the information of the prediction model.

3.1 WaveFuzz
Considering the popularity of MFCC, we use it as the fea-
ture extraction algorithm and denote it as MF(·). MFCC
will output featuresMF(x) for a voice example x, and the
features are fed into the prediction model.

Given a voice input x and the original label y, we want to
craft a corrupted example x∗ that sounds like x, butMF(x∗)
has a huge gap (distance) withMF(x). To achieve that, the
overall solution can be divided into two steps. In the first step,
we need to push the current example away from the original
feature boundary. In other words, we need to find such exam-
ple x∗ which meets the following constraint:

‖MF(x∗)−MF(x)‖p > ε, (1)

where ε is a pre-defined threshold, and ‖·‖p calculates the
distance. We think that if the threshold ε is large enough, the
featuresMF(x∗) are away from the feature boundary of the
current class .

Task SR SCR

Model VggVox Resnet-18 Attention CNN

Dataset Voxceleb Voxceleb Speech
Command V1

Speech
Command V2

Feature
Extraction FFT MFCC MFCC FFT

Accuracy 82.20% 79.07% 93.78% 91.00%

Table 1: The information about the malicious models, the accura-
cies, and the datasets.

The current poisoned samples can compromise malicious
models, where the models are hard to learn from the sam-
ples. However, the protected samples remain a weakness.
That is, the individual may not understand the semantic con-
tent. To solve the problem, we make the poisoned example x∗
sound like the normal example x in the second step. There-
fore, the poisoned example x∗ should still satisfy the second
constraint:

‖x∗ − x‖p < ε, (2)
where ε is a threshold to limit the difference between the two
examples.

It is difficult to find such a example x∗ by solving the re-
stricted problem. Therefore, we turn the restricted problem
into the following optimization function:

argmin
δ

− ‖MF(x+ δ)−MF(x)‖p + α · ‖δ‖p , (3)

where δ is the elaborate noise added to the original example,
and α is a parameter to balance the attack performance and
stealthiness. Besides, we use the L2-norm to calculate the
distance between the two feature vectors.

The overall pseudo-code is shown in Algorithm 1, which
is easy to implement. We perform the optimization function
(E.q. 3) until the distance betweenMF(x) andMF(x∗) is
longer than the preselected threshold.

4 Experiment
In this section, we consider that the hackers may use users’
voice data to fine-tune pre-trained models (e.g., model updat-
ing) or train models from scratch.

4.1 Experiment Setup
The information about the malicious models and the datasets
is summarized in Table 1. We introduce the datasets and the
relevant models used in our experiments in the following.

• Voxceleb1: It contains about 100,000 voices from
1,251 celebrities, extracted from interview videos up-
loaded to YouTube. VggVox is a speaker recognition
model proposed by [Chung et al., 2018].

• SpeechCommand2: It contains 64,727 utterances from
1,881 speakers. Version 1 (V1) includes ten words. Ver-
sion 2 (V2) adds four more command words. The detail

1https://www.robots.ox.ac.uk/ vgg/data/voxceleb/
2https://tensorflow.google.cn/datasets/catalog/speech commands



Model PR(%) DAcc.(%) SNR ε α

TASK:SR

VggVox
Model

10 30.34 11.13

400 0.15 24.55 11.15
1 22.48 11.19

0.5 20.31 11.25

TASK:SCR

Attention
Model

10 14.63 4.14

300 0.15 10.64 4.92
1 7.42 5.40

0.50 6.18 5.12

CNN
Model

10 14.37 7.89

1700 0.15 9.75 7.80
1 7.37 7.73

0.50 5.75 7.69

Table 2: WaveFuzz against models that are fine-tuned by the poi-
soned voice data.

information of the Attention-based model and the con-
volutional neural networks (CNN) is in [de Andrade et
al., 2018] and [Arik et al., 2017], respectively, where
the two models are used to solve the speech command
recognition task.

We quantify the following evaluation goals.
• DAcc.: DAcc. is defined as: DAcc. = Acc.(F) −
Acc.(F∗), where Acc.(F) is the accuracy of the model
trained on clean dataset, and Acc.(F) is the accuracy
of the model trained on poisoned dataset. Besides,
Acc.(F) of all malicious models is reported in Table 1.

• PR: Poison rate (PR) represents the rate of poisoned data
in training data. PR is defined as: PR = m/n, where m
denotes the number of the poisoned examples, n denotes
the number of the benign examples.

• SNR: We use SNR to describe the perturbation on the
poisoned example x∗. SNR = 10 lg(x

∗−x
x ), where x

denotes the original example.

4.2 Implementation and Training Details
We generate malicious voice files following the formats of
the datasets we use, e.g., sampling rate and bit number. For
fine-tuning, we directly use the poisoned voice data to fine-
tune a pre-trained model. For training from scratch, we per-
turb a PR rate training samples. We will re-write the current
samples using the corresponding poisoned samples. Given an
voice sample, we use WaveFuzz to generate a compared poi-
soned sample and Adam optimizer [Kingma and Ba, 2014] to
optimize the sample. Besides, We utilize a substitute model
to calculate a proper ε where the output is changed when the
feature distance between the pure and poisoned samples is
longer than the ε.

4.3 Attack Performance
To fully evaluate the performance of our WavFuzz, we target
two classical intelligence audio systems (i.e., SR and SCR).

Model PR(%) DAcc.(%) SNR ε α

TASK:SR

VggVox
Model

10 7.28 10.14

1000 0.15 5.23 10.28
1 4.00 10.04

0.5 2.15 10.27

Resnet-18
Model

10 2.48 9.96

1000 0.15 1.84 10.14
1 1.54 10.23

0.5 3.39 10.05

TASK:SCR

Attention
Model

10 7.89 3.88

1700 0.15 6.97 3.90
1 6.31 3.83

0.50 4.68 3.91

CNN
Model

10 6.62 6.89

1700 0.15 5.45 7.45
1 5.35 7.26

0.50 5.23 7.76

Table 3: WaveFuzz against models that are trained from scratch by
the poisoned voice data.

Here, the hackers use the poisoned voice data to fine-tune
their pre-trained models or train models from scratch. The
attack results are reported in Table 2 and Table 3. We make
the following key observations.

Performance Degradation. Based on the results, we find
that all the models experienced some degradation in accuracy,
implying that the poisoned voice data reduces the expected
performance of the malicious models. The performance of
the models is severely compromised, especially when the
hackers only use the poisoned voice data to fine-tune their
models. For example, we only use the 5% poison data points
to fine-tune the models, and the precisions of the malicious
models are decreased by 24.55%, 10.64%, and 9.75%, re-
spectively. Moreover, for training the models from scratch,
our WaveFuzz is still effective to hinder the models from
learning useful information from the protected voice data. In-
terestingly, the average model accuracy drops by 3.87% even
when only 0.5% of the samples were poisoned. We also
notice the abnormal results from Resnet-18, where only an
DAcc. of 2.48 on an PR of 10%. The effect we attribute
to the poor ability of the model where the model accuracy is
only 79.07%.

DAcc. vs PR. To validate the effectiveness of our Wave-
Fuzz, we conduct the poisoning attack under different PRs
(e.g., 10%, 5%, 1%, and 0.5%). A high PR value means that
more protected voice samples are collected and used them to
fine-tune or train the models. Based on these experimental re-
sults, we find a consistent conclusion that the more poisoned
samples used for training, the more severely the performance
of the model suffers.

Transferability. The malicious models we use adopt two
feature extraction algorithms (i.e., MFCC and FFT). Our
WaveFuzz still mitigates privacy leakage since all the model



TASK Poisoned audio benign audio

Normal(%) Noise A(%) Noise B(%) Lable Acc.(%) Normal(%) Noise A(%) Noise B(%) Label Acc.(%)

SCR 59.50 33.00 7.50 90.50 94.50 5.50 0.00 96.00

SR 69.00 27.00 4.00 88.50 90.75 8.00 1.25 93.50

Table 4: Results of the human perception evaluation on poisoned audio generated by WaveFuzz and the corresponding benign audio.

Figure 4: Spectrograms of the benign and poisoned voice examples
generated by our WaveFuzz.

performances are damaged. There is no doubt that the per-
formance of WaveFuzz will be decreased when it encounters
some feature extraction algorithms different from MFCC. To
further improve the generalization ability of WaveFuzz, we
plan to integrate various feature extraction algorithms to dis-
turb the benign audio example as future work.

Visualization. Fig. 4 shows the spectrograms of the be-
nign voice and poisoned voice examples. First, the two spec-
trograms are different, proving that the poisoned voice fea-
tures are confused. Second, though there are apparent dif-
ferences between the two spectrograms, we cannot visually
judge which is wrong since the spectrogram is not intuition-
istic. Fig. 5 shows the waveforms of the benign voice and
poisoned voice examples. The two waveforms are close and
indistinguishable, indicating that the poisoned voice data can
successfully transfer the information to others, and they do
not feel abnormal.

4.4 Human Study
We conduct a human study to evaluate the imperceptibility of
the corrupted samples. In this experiment, the volunteers are
asked to do two studies, where we survey 20 volunteers aged
from 18 to 26, including nine males and eleven females. In
the first study, given an voice example, the volunteers need to
label the example, where they give the content of example for
SCR task or judge who is the speaker from three candidates
for SR task. We use Label Acc. to represent the rate of the
poisoned samples understood by the users. If the label given
by the user is the same as the original label, we believe that
the current poisoned example can be successfully understood
by the user. In the second study, the volunteers listen to voice

Figure 5: Waves of the benign and poisoned voice examples gener-
ated by our WaveFuzz.

Figure 6: The DAcc. under different SNR on CNN, where we man-
ual add the DAcc. from training from scratch by 5% to draw.

examples and give their views, i.e., “normal”, “noise but ac-
ceptable” (NoiseA), and “noise and unacceptable” (NoiseB).
Specifically, we pick ten pairs of clean and poisoned voice ex-
amples for each audio task, where we use the clean voice ex-
amples as the reference. Table 4 presents the results of the ex-
periments on human study, showing that our poisoned voice
can successfully transfer the semantic meaning to humans.

4.5 Compare with Baseline and Trade-off
Here, we discuss that our WaveFuzz can damage the model
performance, not caused by adding some noises. We report
the results only adding random noise (gaussian noise) as the
reference. Table 5 shows the DAcc. caused by WaveFuzz
and random noise under the same level of PR and SNR .
The DAcc. shows that our WaveFuzz will cause more de-



PR
WaveFuzz Random noise

DAcc.(%) SNR DAcc.(%) SNR

Hacker’s Goal: Fine-tuning CNN

10% 14.37 7.89 3.62 7.91
5% 9.75 7.90 2.75 7.68
1% 7.37 7.73 2.12 7.64

0.50% 5.75 7.69 1.87 7.73

Hacker’s Goal: Training CNN from Scratch

10% 6.62 6.89 2.26 7.02
5% 5.45 7.45 0.62 7.24
1% 5.35 7.26 0.12 7.51

0.50% 5.23 7.76 0.77 7.69

Hacker’s Goal: Training VggVox from Scratch

10% 7.28 10.14 1.23 10
5% 5.23 10.28 -2.77 10
1% 4.00 10.23 0.01 10

0.50% 3.39 10.05 0.31 10

Table 5: The comparison of accuracy decline caused by our Wave-
Fuzz and random noise. We fine-tune CNN, and train CNN and
VggVox from scratch.

cline in the model performance, where the average values
of the differences are 6.49%, 4.77%, and 5.28% for fine-
tuning CNN, and training CNN and VggVox from scratch
respectively. Besides, the difference between DAcc.s from
WaveFuzz and random noise increases with the poisoning
rate, e.g., 3.88% (PR=0.5%) to 10.75% (PR=10%) for fine-
tuning, 3.77% (PR=0.5%) to 5.21% (PR=10%) for training
from scratch.

Besides, we also conduct an experiment to analyze the
trade-off between the DAcc. and the SNR (see Fig. 6), where
the targeted model is the CNN. It is clear that the DAcc. de-
creases as the SNR increases, whereas a low SNR indicates
more noise added in the clean example. The high SNR or
slight noise limits us from fully interfering with the sample,
so the feature distance between the original example and the
poisoned example is not huge enough to confuse the mali-
cious model. Hence, there is a trade-off between the attack
performance and stealthiness.

4.6 WaveFuzz against Pre-Trained Models
We evaluate whether our poisoned voice data can confuse
the pre-trained automatic recognition systems. ECAPA-
TDNN [Desplanques et al., 2020], an SR model, achieves
the state-of-the-art performance. DeepSpeech [Hannun et
al., 2014] is a popular automatic speech recognition (ASR)
model, and Alibaba3 is an ASR online service. Malicious
entities may extract private information from the voice to an-
alyze users’ behaviors, which will lead to severe problems
of privacy leakage. We generate the poisoned voice by our
WaveFuzz and use it to “attack” the pre-trained models. If the
models returns the output that is different from the label of the
corresponding benign voice, we think the malicious model is
hard to extract the information contained in the voice. The
results are shown in Table 6, where we calculate accuracies

3https://ai.aliyun.com/nls/asr

Task Model Normal
Acc.(%)

Poisoned
Acc.(%) SNR ε

SR VggVox 82.29 66.15 10.27 1000
ECAPA-TDNN 96.62 54.75 4.03 1700

SCR Attention 93.28 60.12 3.88 1400
CNN 91.28 58.24 7.89 1600

Task Model Normal
WER(%)

Poisoned
WER(%) SNR ε

ASR DeepSpeech 23.24 121.12 3.66 3500
Alibaba 12.2 72.21 3.54 3500

Table 6: Classification accuracies of pre-trained models on the clean
and poisoned voice data, respectively.

on the benign and poisoned voice data. Particularly, we use
word error rate (WER) for ASR task. Based on these results,
we observe that the protected voice could not be correctly
recognized by these recognition systems, meaning that the
poisoned voice data is hard to by analyzed by the pre-trained
models.

5 Discussion
Previously, we evaluated our WaveFuzz on SR models with
the input speech containing short sentences (∼5 words) and
SCR models for single-word command. In this section, we
discuss the possibility of preventing more sophisticated auto-
matic speech recognition (ASR), e.g., Kaldi 4, from stealing
useful information from long sentences. Here, we use the
Kaldi, a classic ASR model, to discuss the possibility. When
PR=0.5%, the word error rate (WER) is decreased by 0.29%,
where the model generalization ability is improved. WER
increases as PR further increases. For example, the word er-
ror rate (WER) increases by 0.42% when PR=10%. The re-
sults show that our WaveFuzz is not effective enough against
Kaldi. The reason is that the prediction model of Kaldi is ro-
bust to poisoned features and complicated. We plan to design
more effective methods to avoid various information in voice
data extracted by various audio models as future work.

6 Conclusion
In this paper, we proposed a clean label poisoning attack,
WaveFuzz, which can mitigate the risk of users’ voice data
being misused and maintain its messaging functionality.
Specifically, we generate the protected voice data by maxi-
mizing the feature distance between the original voice data
and poisoned voice data. We test two classic intelligence au-
dio systems. The models can not steal information from the
users’ voice data and suffer from the punishment (i.e., per-
formance decline). Moreover, protected voice data can avoid
being analyzed by pre-trained recognition systems, fooling
these malicious systems. We make a human study to show
that poisoned voice data can be understood by other users, in-
dicating that its messaging function is normal. Consequently,
WaveFuzz is a simple and effective baseline for mitigating
privacy leakage of the user’s voice. We think our work sheds
new light on ameliorating privacy issues.

4http://www.kaldi-asr.org/
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