
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Behavior-aware Account De-anonymization
on Ethereum Interaction Graph

Jiajun Zhou, Chenkai Hu, Jianlei Chi, Jiajing Wu, Senior Member, IEEE,
Meng Shen, Member, IEEE, and Qi Xuan, Senior Member, IEEE

Abstract—Blockchain technology has the characteristics of
decentralization, traceability and tamper-proof, which creates a
reliable decentralized trust mechanism, further accelerating the
development of blockchain finance. However, the anonymization
of blockchain hinders market regulation, resulting in increasing il-
legal activities such as money laundering, gambling and phishing
fraud on blockchain financial platforms. Thus, financial security
has become a top priority in the blockchain ecosystem, calling for
effective market regulation. In this paper, we consider identifying
Ethereum accounts from a graph classification perspective, and
propose an end-to-end graph neural network framework named
Ethident, to characterize the behavior patterns of accounts
and further achieve account de-anonymization. Specifically, we
first construct an Account Interaction Graph (AIG) using raw
Ethereum data. Then we design a hierarchical graph attention
encoder named HGATE as the backbone of our framework,
which can effectively characterize the node-level account features
and subgraph-level behavior patterns. For alleviating account
label scarcity, we further introduce contrastive self-supervision
mechanism as regularization to jointly train our framework.
Comprehensive experiments on Ethereum datasets demonstrate
that our framework achieves superior performance in account
identification, yielding 1.13% ∼ 4.93% relative improvement
over previous state-of-the-art. Furthermore, detailed analyses
illustrate the effectiveness of Ethident in identifying and un-
derstanding the behavior of known participants in Ethereum
(e.g. exchanges, miners, etc.), as well as that of the lawbreakers
(e.g. phishing scammers, hackers, etc.), which may aid in risk
assessment and market regulation.

Index Terms—Blockchain, de-anonymization, behavior pattern,
graph neural network, hierarchical graph attention, contrastive
learning.

I. INTRODUCTION

THE past few years have witnessed the application of
blockchain technology in new technological and industrial

revolutions, such as cryptocurrency [1], financial services [2],

J. Zhou and C. Hu are with the Institute of Cyberspace Security, College
of Information Engineering, Zhejiang University of Technology, Hangzhou
310023, China. E-mail: jjzhou@zjut.edu.cn, ckhu0122@gmail.com.

J. Chi is with the Hangzhou Research Institute of Xidian University,
Hangzhou 311231, China. E-mail: chijianlei@gmail.com.

J. Wu is with the School of Computer Science and Engineering, Sun Yat-sen
University, Guangzhou 510006, China. E-mail: wujiajing@mail.sysu.edu.cn.

M. Shen is with the School of Cyberspace Science and Technology, Beijing
Institute of Technology, Beijing 100081, China, and also with Peng Cheng
Laboratory (PCL), Shenzhen 518066, China. E-mail: shenmeng@bit.edu.cn.

Q. Xuan is with the Institute of Cyberspace Security, College of Information
Engineering, Zhejiang University of Technology, Hangzhou 310023, China,
with the PCL Research Center of Networks and Communications, Peng Cheng
Laboratory, Shenzhen 518000, China, and also with the Utron Technology
Co., Ltd. (as Hangzhou Qianjiang Distinguished Expert), Hangzhou 310056,
China. E-mail: xuanqi@zjut.edu.cn.

Corresponding author: Qi Xuan.

supply chain management [3], healthcare [4], etc. As a
distributed data storage technology, blockchain is decentralized,
traceable and tamper-proof, which guarantees the fidelity
and security of data recording and generates trust without
a third-party notarization. Benefiting from these characteristics,
blockchain has attracted considerable attention and is best
known for its crucial role in the field of digital cryptocurrencies,
such as Bitcoin and Ethereum. According to statistics from
market analysis sites such as CoinMarketCap1, as of August
2021, about 11,000 types of cryptocurrencies existed, with a
total market value of up to 1.9 trillion dollars.

However, blockchain has become a tempting target for
hackers and other cybercriminals due to its huge economic
value and anonymization. Each individual has a virtual identity
on blockchain unrelated to the real one, called pseudonym.
For instance, in the Ethereum system, the last 20 bytes of
the public key hash are used as the account address (i.e.,
pseudonym). However, while pseudonymous accounts protect
users’ privacy, it also provides shelter for illegal transactions,
making it difficult for regulators to identify the culprit. At
present, the weak regulation of blockchain platforms has led to
endless financial crimes such as money laundering, gambling
and phishing scams. In 2018, a statistical report published by
Kaspersky Lab showed that Ether is the most popular digital
asset for criminals, and the loss caused by illegal activities on
decentralized applications (DApps) has reached 900 million
dollars. Therefore, financial security has become a top priority
in the blockchain ecosystem, and it is of great significance to
study security strategies for public blockchain in application
scenarios such as risk assessment and market regulation.

A. Account Identification vs. Address Clustering

Fortunately, the openness and transparency of blockchain
make access to block information without barriers. Recently,
existing related work has focused on using the public transac-
tion information to analyze the behavior patterns of accounts
and mine the identity information behind them, such as
exchanges, phishing scammers, miners and Ponzi schemes,
deriving several typical de-anonymization tasks, especially for
address clustering and account identification. Fig. 1 shows an
illustrative example to explain the difference between address
clustering and account identification. From the definition
perspective, address clustering aims to partition the address set
observed in Bitcoin transactions into maximal address subsets
likely controlled by the same entity, i.e., re-identifying multiple

1https://coinmarketcap.com/

ar
X

iv
:2

20
3.

09
36

0v
3

 [
cs

.S
I]

 1
3

Se
p

20
22

https://coinmarketcap.com/

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

Address Clustering

These addresses belonging to user A.

These addresses belonging to exchange.

Account Identification

This address behaves like a phishing scam.

This address behaves like an exchange.

Address Clustering

These addresses belonging to user A.

These addresses belonging to exchange B.

Account Identification

This address behaves like a phishing scam.

This address behaves like an exchange.

Fig. 1. Illustration of the difference between account identification and address
clustering.

addresses belonging to the same entity. Account identification
aims to determine the identity type of the account by mining
the attributes and behavioral characteristics, i.e., attributing
the accounts to specific types. From the task paradigm, the
former can be regarded as an unsupervised clustering task,
while the latter is generally the supervised classification task.
From the application perspective, a large number of existing
address clustering methods are usually designed according
to the characteristics of the Bitcoin system, and are usually
applied to Bitcoin rather than Ethereum due to their technical
differences [5]. While account identification methods only rely
on general information such as transaction records on the
blockchain, as well as external technologies such as machine
learning and network science, thus showing better universality.

B. Challenges

In this paper, we focus on de-anonymizing Ethereum
accounts through account identification. Existing account
identification methods mainly concentrate on manual feature
engineering [6]–[9] and graph analytics [10]–[13], which are
effective but suffer from several shortcomings and challenges.
First, manual feature engineering relies on the prior knowledge
of feature designers and is incapable of capturing the underlying
information in blockchain data, such as transaction patterns,
resulting in low feature utilization and unsound expressiveness.
In addition, manual features have weak reusability across
different blockchain platforms due to technical differences.
For example, Ethereum data has features associated with
smart contracts that Bitcoin does not, which greatly limits
the reusability of manual features. Second, graph analytics
relies on large-scale transaction graphs constructed from mass
blockchain data, resulting in high computational consumption
and time cost when applying graph random walks or graph
neural networks (GNNs). Meanwhile, the growing number
of transactions on the blockchain drives frequent updates in
the transaction graphs in terms of nodes and edges, which
is not conducive to full-graph learning. Lastly, the annotated
information of account identities published in the third-party

sites is relatively scarce, resulting in a poor generalization of
supervised models.

C. Our Contributions

To tackle these challenges, we design a behavior-aware
Ethereum account identification framework (Ethident) — an
end-to-end graph neural network model, to characterize the
behavior patterns of accounts and further achieve account
de-anonymization on Ethereum. Specifically, we first collect
and collate large amounts of data involving transaction, smart
contract and public annotation of account identity from the
Ethereum-related platforms, and then construct an Account
Interaction Graph (AIG) and its lightweight version. Since the
large-scale account interaction graph is not feasible for full-
batch training of GNNs, we consider account identification as
a subgraph-level classification task, and extract neighborhood
subgraphs of target accounts from the complete interaction
graph, yielding micro interaction subgraphs, which allows for
mini-batch training of GNNs. To better capture the account
behavior patterns, we design a Hierarchical Graph ATtention
Encoder named HGATE as the backbone of our framework,
which can effectively characterize the node-level account
features and subgraph-level behavior patterns. Furthermore, we
introduce data augmentation and contrastive self-supervision
mechanism for account identification to alleviate the label
scarcity that may lead to poor model generalization during
supervised learning. In this way, our framework jointly trains
the subgraph contrast and classification tasks, achieving state-
of-the-art performance in account identification. The main
contributions of this work are summarized as follows:

• Data collection: We construct the Account Interaction
Graph (AIG) using collected Ethereum data, and further
publish the subgraph datasets for account identification
research on Ethereum.

• Scalability: We consider identifying Ethereum accounts
from a graph classification perspective, and design sub-
graph sampling strategies to achieve scalable account
identification.

• Powerful feature characterization: We propose a hi-
erarchical graph attention encoder named HGATE to
effectively characterize the node-level account features
and subgraph-level behavior patterns.

• Generalization: We establish a behavior-aware Ethereum
account identification framework named Ethident2 which
integrates graph augmentation and self-supervision mech-
anisms, to alleviate the label scarcity and learn highly-
expressive behavior pattern representations.

• State-of-the-art performance: Extensive experiments on
Ethereum datasets demonstrate that our framework can
achieve state-of-the-art performance in account identifica-
tion. We further analyze the behavior patterns of different
accounts and illustrate the superiority of our framework
in terms of performance, scalability and generalization.

2Data and code are available at https://github.com/jjzhou012/Ethident

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

TABLE I
MAIN SYMBOLS USED IN THIS PAPER.

Symbol Definition
G, g Graph, subgraph.
v, V,E Node (account), node set, edge set.
N (i) 1-hop neighbor set of node vi.
x,X Node feature, node feature matrix.
e Edge feature.
y, Y Account identity label, label set.
h Hidden representation of node feature.
s, g Subgraph representation before/after attentive pooling.
z Projection representation of subgraph.
fθ, fψ , fφ Encoder, prediction head, projection head.
α, β Normalized attention scores.
a Unnormalized attention scores.
Θ Weight parameters.
T Graph augmentation method.
L Loss function.
N Parameter: batch size.
h Parameter: hop in subgraph sampling.
K Parameter: number of sampled neighbors per hop.
λ Parameter: trade-off hyper-parameter in loss functions.

II. RELATED WORK

De-anonymization in blockchain has received considerable
attention for market analysis, abnormal behavior detection, and
law enforcement, deriving several mainstream techniques, such
as address clustering and account identification.

A. Address Clustering

Early studies [14]–[20] mainly focus on address clustering,
also known as user re-identification or entity recognition. Reid
et al. [16] proposed the first heuristic for re-identification,
named multi-input heuristic, which assumes that the input
addresses of a particular transaction are possessed by the same
entity. This heuristic is based on the fact that all private keys
associated with addresses must be used conjointly to sign a
transaction. Androulaki et al. [17] proposed the change address
heuristic, which assumes that a new “change” address created
by a transaction is likely controlled by the same entity that
created the transaction, and has also been applied in [14], [15].
This heuristic stems from the change characteristics of Bitcoin
that serves as a mechanism for enhancing user privacy. Martin
et al. [18] explored the reasons behind the effectiveness of
using the multi-input heuristic for address clustering. Cazabet
et al. [19] proposed to construct an identity hint network and
applied the Louvain algorithm [21] to detect communities
representing the sets of addresses belonging to the same entities.

The aforementioned address clustering methods are widely
used in Bitcoin. Robin [5] analyzed the feasibility of two
Bitcoin de-anonymization methods of IP linking and address
clustering on Ethereum, and concluded that these two methods
meet difficulties when applied to Ethereum due to technical dif-
ferences. Friedhelm [22] proposed three heuristics that exploit
patterns related to deposit addresses, multiple participation in
airdrops and token authorization mechanisms, and quantified

the feasibility of each heuristic over the first four years of the
Ethereum. Shlomi et al. [23] assumed that the smart contract
code written by the same author has a unique style, and further
linked contract addresses with similar code styles together,
thinking that these addresses are generated by the same author.

B. Account Identification

Thanks to the openness of blockchain transactions, as well
as the development of machine learning and network science,
a new class of de-anonymization strategies — account identi-
fication, has been proposed and comprehensively developed.
Existing account identification methods mainly concentrate on
manual feature engineering and graph analytics.

1) Manual Feature Engineering: Manual feature engineering
extremely relies on the prior knowledge of feature designers.
Normally, the more expert experience involved, the more
reliable the manual features are. Toyoda et al. [6] extracted
seven statistical features such as the rate of bitcoin coinbase
transactions to infer account identities. Lin et al. [7] designed
various features associated with transaction timestamps and
analyzed the importance of each one. Bartoletti et al. [8]
designed the Gini coefficient and the characteristics of possible
abnormal behavior patterns to infer the Ponzi accounts in
the transaction network. Marc et al. [24] designed a large
number of manual features associated with addresses, entities
and graph motifs in Bitcoin transaction networks, and classified
different Bitcoin entities via LightGBM [25]. In addition, some
emerging public blockchains contain smart contracts, providing
new features. Huang et al. [9] considered the calling information
of smart contracts to expand the feature space, and realized
the identification of bot accounts in EOSIO.

2) Graph Analytics: Massive transaction data can be mod-
eled as graphs, and a considerable part of existing methods
regards account identification as a classification task from a
graph perspective. Li et al. [10] considered the topological
features of accounts and found the difference in topological
structure between the Ponzi accounts and the normal ones. Yuan
et al. [11] applied graph random walks such as DeepWalk [26]
and Node2vec [27] to learn account features in the transac-
tion graph. Wu et al. [28] performed graph random walks
by considering both the transaction amount and timestamp
information, proposing a novel embedding method named
Trans2Vec to extract the address feature for phishing detection.
Yuan et al. [29] extracted the subgraphs for each target account
and embedded their transaction topology via Graph2Vec [30].
Moreover, they introduced the SGN mechanism [31] to further
enhance the transaction structure embedding. Chen et al. [13]
also extracted transaction subgraphs and got the embeddings by
a graph convolution layer combining graph auto-encoder in an
unsupervised manner, finally achieving phishing detection by
LightGBM. Shen et al. [12] constructed the account interaction
graphs using Ethereum and EOSIO data, and proposed an end-
to-end graph convolution network model to identify different
categories of accounts or bots.

Besides the aforementioned methods, there are other frame-
works to achieve identity identification. Phetsouvanh et al.
[32] proposed a graph mining technology to detect suspicious

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

TABLE II
INFORMATION OF RAW ETHEREUM BLOCK DATA.

Data
Field

Custom
Symbol

Definition

blockNumber The block ID where the transcation is located.
timestamp d The timestamp of a transaction.
from v The account that initiates the transaction.
to v The account that receives the transaction.
fromIsContract Whether the transaction is sent by a CA.
toIsContract Whether the transaction is received by a CA.
callingFunction f The name of function called if there is a contract call.
value w The transaction amount.

bitcoin flows and accounts by analyzing the path length and
confluence account of the directed subgraph. Zhang et al. [33]
introduced the concept of meta-path from the heterogeneous
network. This method deals with the bitcoin network from
both static and dynamic perspectives and can effectively detect
abnormal accounts and transactions.

III. ACCOUNT INTERACTION GRAPH MODEL

A. Problem Description

In this paper, we mainly focus on identifying accounts in
Ethereum via deep graph analytics, especially from a graph
classification perspective. A transaction graph constructed from
blockchain transaction data is typically represented by a graph
G = (V,E,X,E, Y), where V = {v1, v2, · · · , vn} is the set
of account nodes, E ⊆ {(vi, vj) | vi, vj ∈ V } is the set of
interaction edges, X ∈ Rn×F1 is the node feature matrix, and
E ∈ Rm×F2 is the edge feature matrix (we assume, |E| = m).
We use Y = {(vi, yi) | vi ∈ V } to represent the label set of
partial account nodes. The subgraph of an account node v can
be represented as gv ⊂ G. For the given transaction graph
G, subgraph-level account identification is to learn a function
f (gv) 7→ y mapping the pattern of account subgraph gv to the
identity label y.

B. Ethereum and Block Data

Ethereum is the second-largest blockchain platform after
Bitcoin, and it allows users to conduct complex transactions
based on smart contracts, which are applications that run on
Ethereum virtual machines. An account in Ethereum is an
entity that owns Ether and can be divided into two categories:
Externally Owned Account (EOA) and Contract Account (CA).
EOA is controlled by a user who owns the private key of the
account, and can initiate transactions. CA is controlled by smart
contract code, which cannot initiate transactions actively and
can only be executed according to the pre-written smart contract
code after being triggered. Between Ethereum accounts, there
are usually two types of interactions: transaction and contract
call. The transaction must be initiated by EOA, and can be
received by EOA or CA. The contract call refers to the process
of triggering the smart contract code in CA to perform different
operations. The Ethereum blockchain is a succession of blocks,
and each block contains a set of transactions and contract calls.
The raw block data of Ethereum is structural and provides a
wealth of information, as listed in Table II.

𝒕: 𝟐
෥𝒘: 𝟎.𝟐𝟖

𝒕: 𝟐

𝐶𝐴1 𝐶𝐴2 𝐶𝐴3

𝒅: 𝟏𝟒𝟒𝟓𝟔𝟑𝟐𝟑𝟖𝟐
𝒘: 𝟎. 𝟐𝟑

𝒅: 𝟏𝟒𝟒𝟓𝟔𝟑𝟑𝟑𝟗𝟐
𝒘: 𝟎. 𝟎𝟓

𝒅: 𝟏𝟒𝟒𝟓𝟔𝟑𝟑𝟕𝟖𝟖
𝒘: 𝟎. 𝟖𝟖

𝐸𝑂𝐴1 𝐸𝑂𝐴2

𝐶𝐴1 𝐶𝐴2 𝐶𝐴3

𝐸𝑂𝐴1 𝐸𝑂𝐴2

𝒕: 𝟏
෥𝒘: 𝟎.𝟖𝟖

𝒕: 𝟏 𝒕: 𝟏 𝒕: 𝟏

𝐸𝑂𝐴1 𝐸𝑂𝐴2

2 1 0

𝐶𝐴2

0 1 1

𝐶𝐴3𝐶𝐴1

𝐸𝑂𝐴1 𝐸𝑂𝐴2

2 1 0 0 1 1

𝑡

𝑤

𝑓

𝑑

𝒕: 𝟏 𝒕: 𝟏
𝒕: 𝟏𝒕: 𝟐

𝒕: 𝟏
෥𝒘: 𝟎.𝟖𝟖

𝒕: 𝟐
෥𝒘: 𝟎.𝟐𝟖𝒕: 𝟏

෥𝒘: 𝟎.𝟖𝟖

𝒕: 𝟐
෥𝒘: 𝟎.𝟐𝟖

𝒕: 𝟐
෥𝒘: 𝟎.𝟐𝟖

𝒕: 𝟐
𝐶𝐴1 𝐶𝐴2 𝐶𝐴3

𝒅: 𝟏𝟒𝟒𝟓𝟔𝟑𝟐𝟑𝟖𝟐
𝒘: 𝟎. 𝟐𝟑

𝒅: 𝟏𝟒𝟒𝟓𝟔𝟑𝟑𝟑𝟗𝟐
𝒘: 𝟎. 𝟎𝟓

𝒅: 𝟏𝟒𝟒𝟓𝟔𝟑𝟑𝟕𝟖𝟖
𝒘: 𝟎. 𝟖𝟖

𝐸𝑂𝐴1 𝐸𝑂𝐴2

𝐶𝐴1 𝐶𝐴2 𝐶𝐴3

𝐸𝑂𝐴1 𝐸𝑂𝐴2

𝒕: 𝟏
෥𝒘: 𝟎.𝟖𝟖

𝒕: 𝟏 𝒕: 𝟏 𝒕: 𝟏

𝐸𝑂𝐴1 𝐸𝑂𝐴2

2 1 0

𝐶𝐴2

0 1 1

𝐶𝐴3𝐶𝐴1

𝐸𝑂𝐴1 𝐸𝑂𝐴2

2 1 0 0 1 1
𝒕: 𝟏 𝒕: 𝟏 𝒕: 𝟏𝒕: 𝟐

𝒕: 𝟏
෥𝒘: 𝟎.𝟖𝟖

𝒕: 𝟐
෥𝒘: 𝟎.𝟐𝟖𝒕: 𝟏

෥𝒘: 𝟎.𝟖𝟖

𝒕: 𝟐
෥𝒘: 𝟎.𝟐𝟖

𝑡

𝑤

𝑓

𝑑

Fig. 2. Constructing Account Interaction Graph and its lightweight version.

C. Account Interaction Graph

The raw block data is informative and provides the details
of transactions and contract calls, by which we can construct
an Account Interaction Graph (AIG), as defined below.

Definition 1. (Account Interaction Graph, AIG): a di-
rected, weighted and heterogeneous multigraph G =
(Veoa, Vca, Et, Ec, Y), where Veoa and Vca are the set of EOA
and CA respectively, Et = {(vi, vj, d, w) | vi, vj ∈ Veoa} is
the directed edge set constructed from transaction information,
and Ec = {(vi, vj, d, f) | vi ∈ Veoa ∪ Vca, vj ∈ Vca} is the
directed edge set constructed from contract call information.
The three edge attributes d, w, f represent timestamp, value and
callingFunction respectively in Table II. The AIG is partially
labeled, i.e., a few EOA have identity labels y and can compose
the labeled node set Y = {(vi, yi) | vi ∈ Veoa}.

The original AIG is a heterogeneous multigraph that has
dense connections as well as different types of information
attached to nodes and edges, as shown in Fig. 2(a). The
heterogeneity and multiple edges significantly increase the
complexity of information mining. So we further simplify the
AIG into a homogeneous and more sparse graph by interaction
merging and feature construction.

Definition 2. (Lightweight Account Interaction Graph, lw-
AIG): a directed, weighted and homogeneous graph G =
(Veoa, Ẽt,X,E, Y), where Ẽt = {(vi, vj, t, w̃) | vi, vj ∈ Veoa},
X is the node feature matrix constructed from contract call
information and E is the edge feature matrix. The edge attribute
t denotes the number of directed interactions from vi to vj, and
the edge attribute w̃ denotes total transaction amount from vi

to vj.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

Edge

Feature
Account Subgraph

𝐱𝑣𝑖

𝐱𝐴

𝐱𝐵

𝐱𝐶

Node

Feature

𝐞𝐴−𝑣𝑖

𝐞𝐵−𝑣𝑖

𝐞𝐶−𝑣𝑖

𝑣𝑖

A ∑𝑣𝑖
𝐡𝑣𝑖

……

……

∑

𝑣𝑖

𝐡𝐶

𝐡𝐴

𝐡𝐵

Node-Level Attention

𝐡𝑣𝑖 𝐡𝐶𝐡𝐴 𝐡𝐵

Subgraph-Level Attentive Pooling

𝐬𝑖

𝐡𝑣𝑖 𝐡𝐶𝐡𝐴 𝐡𝐵

𝐠𝑖

Max Pooling L
in

e
a
r L

a
y
e
r

L
in

e
a
r L

a
y
e
r

Prediction Head

ICO-Wallet

Miner

Exchange

Phisher

(a)

(b)

Neighbor Feature Alignment

A𝑣𝑖

B𝑣𝑖

C𝑣𝑖
𝐱𝑗

Node

Contract Interaction

Edge

𝐞𝑖𝑗

෤𝐱𝑗

𝑣𝑖

𝑣𝑖

𝑣𝑖

𝐡𝑣𝑖

𝐡𝑣𝑖

𝐡𝑣𝑖

𝐡𝐴

𝐡𝐵

𝐡𝐶

Softmax

𝑒𝑖𝐴

Account 𝑣𝑖 is ?

𝑒𝑖𝐵

𝑒𝑖𝐶

𝑎𝑖𝐴

𝑎𝑖𝐵

𝑎𝑖𝐶

𝐡𝐴

𝐡𝐵

𝐡𝐶

𝐶

Graph Attention Mechanism

Attention

Weighting

Attention

Scoring

Context

Aggregation

- concatenation - linear transformation

𝑒 - attention score 𝑎 - attention weight

𝐶 attention context

(c)

𝛼

𝛽

(d)

Neighborhood Feature

𝐱 - node feature 𝐞 - edge feature

𝐱𝑖

Hierarchical Attention Mechanism

A
tt

e
n

ti
v
e

P
o

o
li

n
g

M
a

x

P
o

o
li

n
g

G
A

T

G
A

T

𝐗

𝐄

𝐴

Y

L
in

e
a

r

𝐡0

G
A

T𝐡1 … 𝐡𝑘−1

𝐡𝑘

𝐬𝐠

P
re
d
ic
ti
o
n

In
p

u
t

Account Encoding

Pattern EncodingO
p

ti
m

iz
a
ti

o
n

Encoder Architecture

Prediction head

Encoder𝑓𝜃

𝑣𝑎

𝑣𝑏

𝑣𝑎

𝑣𝑏

Subgraph

Sampling

𝑣𝑎

𝑣𝑏

Graph Augmentation

𝑣𝑎

𝑣𝑏

𝒕𝟏 : Edge Removing 𝒕𝟐 : Attribute Masking

ො𝑔𝑎
1 = 𝑇1 (𝑔𝑎) ො𝑔𝑎

2 = 𝑇2(𝑔𝑎)

ො𝑔𝑏
1 = 𝑇1 (𝑔𝑏) ො𝑔𝑏

2 = 𝑇2(𝑔𝑏)

Encoder: encoding for views

𝐠𝑎
1 , 𝐠𝑎

2 𝐠𝑏
1 , 𝐠𝑏

2

𝐠𝒂 𝐠𝒃
Encoder: encoding for identities

𝒛𝑎
1

𝒛𝑏
1

𝒛𝑏
2

Projection Head

𝐳𝐠

𝑓𝜃

𝑓𝜃

𝑓𝜙

Subgraph Contrast

𝒛𝑎
2

Subgraph Classification

Prediction Prediction Head

[0.923, 0.077]
0.374, 0.626

... …

𝑓𝜓

𝐠

ICO-Wallet

Miner

Exchange

Phisher

Account 𝑣𝑖 is ?

Account Identification

Lw-AIG

𝑔𝑎

𝑔𝑏

𝑔𝑖

ො𝑦

𝐡𝑣𝑖

𝐡𝑣𝑖
′

𝑓𝜓

Hierarchical Graph Attention Encoder

𝑣𝑖

Subgraph Contrastive Learning

Fig. 3. The architecture of Ethident. The complete workflow proceeds as follows: (1) sampling subgraphs centered on target accounts from lw-AIG; (2)
applying two augmentation operators on each subgraph to generate two correlated views; (3) encoding subgraphs and corresponding augmented views; (4)
optimizing the GNN encoder by jointly training subgraph contrast and classification tasks.

1) Interaction Merging and Edge Feature Construction:
During interaction merging, as shown in Fig. 2(b), multiple
directed interactions (transactions or contract calls) from the
source account vi to the target account vj will be merged into
a single edge with a newly added edge attribute t representing
the number of merged interactions. For transactions, another
new edge attribute w̃ represents the total transaction amount of
merged interactions. In addition, a feature pruning operation
will take effect, removing the two raw edge attributes of
timestamp d and callingFunction f . Finally, we represent the
edge feature vector for arbitrary transaction edge (vi, vj) ∈ Et
as eij = [t, w̃].

2) Node Feature Construction: The behavior characteristics
of an account are not only related to its transaction objects,
amount and frequency, but also to the smart contracts it calls.
Accounts with different behavior patterns have different calling
preferences for smart contracts. Therefore, we can construct
account features using the information on contract call, as
shown in Fig. 2(c). Specifically, let n and F be the number
of EOA and CA respectively in AIG, we can construct an
account feature matrix X ∈ Rn×F to represent the preference
for contract call, as formulated below:

X = [x1; · · · ; xi ; · · · ; xn]>,

xi = [t1, · · · , tj , · · · , tF],

where tj =

{
t If there are t calls to vca

j ;
0 If there is no call to vca

j ;

(1)

Note that xi is the feature of veoa
i . During feature construction,

we convert the AIG to a homogeneous lw-AIG.
In summary, the node features of the lw-AIG reflect the

contract call information, and the edge features reflect the
transaction information.

IV. METHODOLOGY

In this section, we provide the details of the proposed
framework Ethident, as schematically depicted in Fig. 3. For a
target account vi, the input of Ethident is the account interaction
subgraph gi sampled from lw-AIG, and the output is the predic-
tive identity label ŷi. Our framework is mainly composed of the

2

6

A
m

o
u

n
t: ෥𝑤

2

2

3

缩小后的图

2

1

6

2

2

2

1

T
im

e
s

: 𝑡
a

v
g

A
m

o
u

n
t: ෥𝑤

/𝑡

Neighborhood of

target account in lw-AIG

TopK sampling according to

different edge information

Subgraph

of target account

Fig. 4. Subgraph sampling according to different edge information.

following components: (1) a subgraph extractor that captures
the micro interaction subgraphs centered on target accounts
from the lw-AIG topology; (2) a subgraph augmentation module
that generates a series of variant graph views using various
transformations on subgraphs; (3) a GNN encoder that encodes
the subgraphs as expressive representations via hierarchical
graph attention mechanism; (4) a training module that jointly
trains the subgraph contrast and classification tasks. Next, we
describe the details of each component.

A. Subgraph Sampling

The raw data contains tens of millions of blocks, making AIG
a large-scale graph and not feasible for full-batch training of
GNNs. Even though the lightweight process greatly simplifies
AIG, it still maintains a large number of EOA nodes. On
the other hand, existing account identification methods based
on graph embedding or GNNs generally rely on full-batch
training, which restricts their scalability on large-scale graphs

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

Edge

Feature
Account Subgraph

𝐱𝑣𝑖

𝐱𝐴

𝐱𝐵

𝐱𝐶

Node

Feature

𝐞𝐴−𝑣𝑖

𝐞𝐵−𝑣𝑖

𝐞𝐶−𝑣𝑖

𝑣𝑖

A ∑𝑣𝑖
𝐡𝑣𝑖

……

……

∑

𝑣𝑖

𝐡𝐶

𝐡𝐴

𝐡𝐵

Node-Level Attention

𝐡𝑣𝑖 𝐡𝐶𝐡𝐴 𝐡𝐵

Subgraph-Level Attentive Pooling

𝐬𝑖

𝐡𝑣𝑖 𝐡𝐶𝐡𝐴 𝐡𝐵

𝐠𝑖

Max Pooling L
in

e
a
r L

a
y
e
r

L
in

e
a
r L

a
y
e
r

Prediction Head

ICO-Wallet

Miner

Exchange

Phisher

(a)

(b)

Neighbor Feature Alignment

A𝑣𝑖

B𝑣𝑖

C𝑣𝑖
𝐱𝑗

Node

Contract Interaction

Edge

𝐞𝑖𝑗

෤𝐱𝑗

𝑣𝑖

𝑣𝑖

𝑣𝑖

𝐡𝑣𝑖

𝐡𝑣𝑖

𝐡𝑣𝑖

𝐡𝐴

𝐡𝐵

𝐡𝐶

Softmax

𝑒𝑖𝐴

Account 𝑣𝑖 is ?

𝑒𝑖𝐵

𝑒𝑖𝐶

𝑎𝑖𝐴

𝑎𝑖𝐵

𝑎𝑖𝐶

𝐡𝐴

𝐡𝐵

𝐡𝐶

𝐶

Graph Attention Mechanism

Attention

Weighting

Attention

Scoring

Context

Aggregation

- concatenation - linear transformation

𝑒 - attention score 𝑎 - attention weight

𝐶 attention context

(c)

𝛼

𝛽

(d)

Neighborhood Feature

𝐱 - node feature 𝐞 - edge feature

𝐱𝑖

Hierarchical Attention Mechanism

A
tt

e
n

ti
v
e

P
o

o
li

n
g

M
a

x

P
o

o
li

n
g

G
A

T

G
A

T

𝐗

𝐄

𝐴

Y

L
in

e
a

r

𝐡0

G
A

T𝐡1 … 𝐡𝑘−1

𝐡𝑘

𝐬𝐠

P
re
d
ic
ti
o
n

In
p

u
t

Account Encoding

Pattern EncodingO
p

ti
m

iz
a
ti

o
n

Encoder Architecture

Prediction head

Encoder𝑓𝜃

𝑣𝑎

𝑣𝑏

𝑣𝑎

𝑣𝑏

Subgraph

Sampling

𝑣𝑎

𝑣𝑏

Graph Augmentation

𝑣𝑎

𝑣𝑏

𝒕𝟏 : Edge Removing 𝒕𝟐 : Attribute Masking

ො𝑔𝑎
1 = 𝑡1 (𝑔𝑎) ො𝑔𝑎

2 = 𝑡2(𝑔𝑎)

ො𝑔𝑏
1 = 𝑡1 (𝑔𝑏) ො𝑔𝑏

2 = 𝑡2(𝑔𝑏)

Encoder: encoding for views

𝐠𝑎
1 , 𝐠𝑎

2 𝐠𝑏
1 , 𝐠𝑏

2

𝐠𝒂 𝐠𝒃
Encoder: encoding for identities

𝒛𝑎
1

𝒛𝑏
1

𝒛𝑏
2

Projection Head

𝐳𝐠

𝑓𝜃

𝑓𝜃

𝑓𝜙

Subgraph Contrast

𝒛𝑎
2

Subgraph Classification

Prediction Prediction Head

[0.923, 0.077]
0.374, 0.626

... …

𝑓𝜓

𝐠

ICO-Wallet

Miner

Exchange

Phisher

Account 𝑣𝑖 is ?

Account Identification

Lw-AIG

𝑔𝑎

𝑔𝑏

𝑔𝑖

ො𝑦

𝐡𝑣𝑖

𝐡𝑣𝑖
′

𝑓𝜓

Hierarchical Graph Attention Encoder

𝑣𝑖

Subgraph Contrastive Learning

Fig. 5. Schematic depiction of the hierarchical graph attention encoder (HGATE): (a) the pipeline of HGATE on account identification; (b) the process of
neighbor feature alignment; (c) the illustration of graph attention mechanism; (d) the model architecture of HGATE.

for account representation learning. Thus, we consider account
identification as a subgraph-level classification task based on
the following facts: (1) different types of accounts have different
behavior patterns, implicit in their local structure; (2) subgraph
consisting of the target account and its local neighborhood
information (neighbors and their interactions) is informative
and plays a critical role in providing behavior patterns for
account identification; (3) subgraph is the receptive field of
the center target node, which is much smaller than the whole
graph and allows for mini-batch training.

In this work, we consider subgraph sampling that allows for
mini-batch training of GNNs on large-scale graphs. We perform
TopK sampling to obtain the h-hop interaction subgraphs
according to different edge information: Amount (w̃), Times
(t) or average Amount (avgAmount, w̃/t). Specifically, for
a target account node vi, we sample top-K most important
neighbors based on one of the edge attributes, and again sample
top-K most important neighbors for each account sampled at
the previous hop, and recursive ones in the downstream hops.
The recursive sampling can be formulated as follows:

Vk =
⋃

v∈Vk−1

topK (Nv,K,E [v,Nv, i]) , i ∈ {0, 1, 2}, (2)

where Vk is the set of nodes sampled at hop k and V0 = {vi},
Nv is the 1-hop neighbor set of node v, K is the number of
sampled neighbors per hop, E [v,Nv, i] is the edge attributes
of candidate interactions that guides the neighbor sampling, i
is an indicator of which edge attribute to use, and topK is the
function that returns the top-K most important nodes. After
h iterations, we obtain the account set Vi = ∪hk=0Vk sampled

from lw-AIG, and the subgraph gi of target account vi can be
induced by Vi from the lw-AIG. Fig. 4 illustrates the process of
subgraph sampling according to different edge information. For
the labeled target account set Y , their corresponding subgraphs
form a dataset: D = {(gi, yi) | ∀ (vi, yi) ∈ Y }. Note that we
assign the label of the target account to the subgraph, and aim
to learn a function mapping the subgraph patterns to account
identity labels.

B. Encoder Architecture

The backbone of Ethident is the designed GNN encoder
named HGATE, which is capable of learning expressive
representations for accounts and their behavior patterns, as
schematically depicted in Fig. 5. This encoder learns account
and pattern embeddings via a hierarchical attention mechanism,
and can also implement account identification independently
by following a prediction head, as shown in Fig. 5(a). Next,
we describe the details of our encoder fθ.

1) Neighbor Feature Alignment: For lw-AIG, its nodes and
edges are encoded according to contract call and transaction
information. Since our encoder is account-centric, each account
vi has its neighbor features that concatenate both neighboring
account features (xj) and the connecting interaction features
(eij), represented as [xj ‖ eij]. Here we need to perform a
column normalization on neighbor features to eliminate the
dimensional differences between different attributes. Note that
the target account feature xi ∈ RF and its neighbor features
[xj ‖ eij] ∈ RF+2 do not have the same dimension, so a linear
transformation and a nonlinear activation are performed to align
the feature dimension, as shown in Fig. 5(b). This procedure

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

can be achieved via a fully connected layer parameterized by
Θx as follows, and generates aligned embeddings for neighbors
of the target account.

x̃j = LeakyRelu (Θx · [xj ‖ eij]) . (3)

2) Node-level Attention for Account Embedding: This mod-
ule aims to preserve the relevance of interactive accounts
in the input subgraph, and learns account representation by
focusing on the most relevant parts of the neighborhood. When
identifying a target account in the interaction subgraph, different
neighboring accounts generally contribute differently to it.
For example, both accounts va and vb have transactions with
account vi, if va has many high-volume transactions with vi

while vb has only one low-volume transaction with vi, or if va

has a more similar preference of contract call with vi than vb,
then va often plays a more important role in identifying vi since
it preserves more information associated with the identity of
vi. Based on the above understanding and inspired by previous
work [34], we utilize the node-level attention mechanism, as
illustrated in Fig. 5(c), to learn the hidden representation of
each account in the input subgraph by composing its neighbor
features with different contributions (attentions).

Specifically, for arbitrary account vi in the input subgraph
g, the node-level attention mechanism learns the contribution
attention scores for its neighbors vj, as follows:

al
ij = LeakyRelu

(
Θl

n · [hl
i ‖ hl

j]
)
, (4)

where a linear transformation parameterized by Θl
n and a

nonlinear LeakyRelu activation are performed together to
compute the importance of account vj’s hidden features to
account vi in l-th layer. Subsequently, to make attention scores
easily comparable across different accounts, the attention scores
a are further normalized using the softmax function over the
neighbor accounts:

αl
ij = Softmax

(
al

ij

)
=

exp
(
al

ij

)∑
x∈N (i)∪{i} exp

(
al

ix

) , (5)

where N (i) is the 1-hop neighbor set of account vi. Once
obtained, the normalized attention scores are used to update the
features of target account via neighborhood context aggregation:

hl+1
i = Elu

αl
ii ·Θl

α · hl
i +

∑
j∈N (i)

αl
ij ·Θl

α · hl
j

 , (6)

where a linear transformation parameterized by Θl
α and a

nonlinear Elu activation are used to compute the final output
features.

The node-level attention mechanism serves for account
embedding. Specifically, we use a stack of k graph attention
layers to capture the account features, as illustrated in Fig. 5(d).
The input of this stack is the initial account embedding h0

generated by a fully connected layer that accepts the account
and interaction features (Eq. (3)). Notably, for a target account
vi, its initial embedding is h0

i = xi, and that of its neighboring
accounts vj is h0

j = x̃j. To better characterize accounts, the
stack performs an iterative process of transferring, transforming,
aggregating and updating the representation from interactive

neighbors. And after k iterations, the final output account
embeddings hk contain the interaction influence within k-hops.

3) Subgraph-level Attentive Pooling for Pattern Embedding:
This module aims to characterize the behavior patterns of
target accounts in the input subgraphs by extracting expressive
subgraph-level features. Actually, the behavior patterns of
accounts are associated with their identities, i.e., accounts of
different identities usually behave differently and have different
subgraph patterns. For “Exchange” subgraphs, the center node
generally has an extremely high centrality and frequently
interacts with surrounding neighbors, indicating high-volume
transaction orders. For “Ponzi” or “Gambling” subgraphs, there
exist two explicit characteristics indicating high investment
and low return: (1) bi-directional edges (mutual transactions)
between the center node and surrounding neighbors are rare,
and the center node has high in-degree and low out-degree;
(2) the incoming edges (investment) of the center node contain
larger feature values associated with the digital currency than
the outgoing edges (return). Therefore, different accounts
contribute differently to characterize the subgraph pattern
reflecting the behavior of the target account. Meanwhile,
traditional practice usually captures the graph-level features
using sum, mean or max pooling, resulting in feature smoothing
and poor expressiveness. Based on the above understanding,
we design a novel subgraph-level attentive pooling module, as
illustrated in Fig. 5(a), to learn the expressive representation
of account subgraphs.

Specifically, for a subgraph g, we first obtain the initial
subgraph-level embedding s by using global max pooling over
all account embeddings in the subgraph:

s = MaxPooling
(
hk) . (7)

Note that the input of the MaxPooling layer is the final account
embeddings hk generated in Sec. IV-B2. To better characterize
the subgraph pattern, we update s by aggregating features of
all accounts with different contributions (attentions). In other
words, for the initial subgraph embedding s, we use an attention
mechanism to learn the contribution attention score for arbitrary
account vj in the subgraph as follows:

aj = LeakyRelu
(
Θs · [s ‖ hk

j]
)
, (8)

where a linear transformation parameterized by Θs and a
nonlinear LeakyRelu activation are performed to compute
the importance of account vj’s hidden features to the initial
subgraph embedding s. Same as the node-level attention, a
softmax function is applied to compute the normalized attention
scores:

βj = Softmax (aj) =
exp(aj)∑

x∈Vg∪{s} exp(ax)
, (9)

where Vg is the node set of subgraph g, and as is the self-
attention score of s. Finally, the attentive pooling performs the
update process as follows:

g = Elu

βs ·Θβ · s +
∑
j∈Vg

βj ·Θβ · hk
j

 , (10)

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

where a linear transformation parameterized by Θβ and a
nonlinear Elu activation are used to compute the final subgraph
embedding g which characterizes the behavior pattern of the
target account.

C. Subgraph Contrastive Learning

To alleviate the account label scarcity as well as learn
highly-expressive pattern embeddings, our Ethident introduce
the contrastive self-supervision learning as a regularization to
jointly train the GNN encoder.

1) Graph Augmentation: Contrastive learning relies heavily
on well-designed data augmentation strategies for view gener-
ation. So far, widely used techniques concentrate on structure-
level and attribute-level augmentation [35]–[37]. In this paper,
we use three categories of graph augmentation methods to
generate the augmented views of subgraphs.
• Structure-level Augmentation
◦ Node Dropping: Each node has a certain probability
P to be dropped from subgraph.

◦ Edge Removing: Each edge has a certain probability
P to be removed from subgraph.

• Attribute-level Augmentation
◦ Node Attribute Masking: Each dimension of node

features has a certain probability P to be set as zero.
◦ Edge Attribute Masking: Each dimension of edge

features has a certain probability P to be set as zero.
• Sampling-based Augmentation

Since each subgraph is sampled from lw-AIG via one of
the three sampling strategies mentioned in Sec. IV-A, we
can use the other two sampling methods to generate the
sampling-based augmented views for this subgraph.

During graph augmentation, we generate two augmented
views ĝ1i , ĝ2i for each target account subgraph gi, and assign
the identity label of target account to them as a pseudo label:

Daug1 =
{

(ĝ1i , yi) | ĝ1i = T1(gi); (vi, yi) ∈ Y
}
,

Daug2 =
{

(ĝ2i , yi) | ĝ2i = T2(gi); (vi, yi) ∈ Y
}
.

(11)

In this way, we can scale up the training data and alleviate
label scarcity. The raw and augmented datasets will be used
together to train the encoder.

2) Subgraph Contrast: In our contrastive learning setting, for
each account subgraph gi, its two correlated views ĝ1i and ĝ2i are
generated by undergoing two augmentation operators T1 and T2,
where ĝ1i = T1(gi) and ĝ2i = T2(gi). The correlated augmented
views are fed into the encoder fθ, producing the whole subgraph
representations g1

i and g2
i . Then they are mapped into an

embedding space for contrast via a projection head fφ, yielding
z1i and z2i . Note that θ and φ are the parameters of graph
encoder and projection head respectively. Finally, the goal of
subgraph-level contrast is to maximize the consistency between
two correlated augmented views of subgraphs in the contrastive
space via minimizing the contrastive loss:

Lself =
1

N

N∑
i=1

Li, (12)

TABLE III
STATISTICS OF SUBGRAPH DATASETS SAMPLED FROM ACCOUNT

INTERACTION GRAPH OF ETHEREUM. |G| IS THE NUMBER OF SUBGRAPHS,
Avg. |V | AND Avg. |E| ARE THE AVERAGE NUMBER OF NODES AND EDGES

IN SUBGRAPHS RESPECTIVELY, |x| AND |e| ARE THE NUMBER OF NODE
AND EDGE FEATURES IN SUBGRAPHS.

Dataset |G| Avg. |N | Avg. |E| |x| |e|
Eth-ICO-A 146 42.5 141.3 14885 2
Eth-ICO-T 146 52.2 152.6 14885 2
Eth-ICO-aA 146 42.4 140.7 14885 2
Eth-Mining-A 130 23.7 72.9 14885 2
Eth-Mining-T 130 24.7 67.2 14885 2
Eth-Mining-aA 130 29.0 91.9 14885 2
Eth-Exchange-A 386 33.6 123.7 14885 2
Eth-Exchange-T 386 38.0 113.4 14885 2
Eth-Exchange-aA 386 38.6 148.6 14885 2
Eth-Phish&Hack-A 5070 37.3 110.8 14885 2
Eth-Phish&Hack-T 5070 37.8 101.6 14885 2
Eth-Phish&Hack-aA 5070 37.8 111.3 14885 2

where N is the number of subgraphs in a batch (i.e., batch
size). The loss for each subgraph can be computed as:

Li = − log
ecos(z1

i ,z
2
i)/τ∑N

j=1,j 6=i e
cos(z1

i ,z
2
j)/τ

, (13)

where cos(·, ·) is the cosine similarity function with
cos(z1i , z

2
j) = z1i

>
z2j /‖z1i ‖‖z2j ‖, and τ is the temperature

parameter. The two correlated views z1i and z2i of account
subgraph gi are treated as a positive pair while the rest view
pairs in the batch are treated as negative pairs. The objective
aims to maximize the consistency of positive pairs as opposed
to negative ones, i.e., contrastive learning allows accounts of the
same type to have more consistent representations, and makes
accounts of different types have more obvious differences.

D. Model Training

We achieve account identification by a prediction head fψ,
which maps the subgraph representations to labels reflecting
account identity, yielding a classification loss:

Lpred = − 1

N

N∑
i=1

yi · log (fψ (gi)) , (14)

where Lpred is the cross entropy loss.
The self-supervised subgraph contrast is a pretext task that

serves as a regularization of the subgraph classification task.
The encoder HGATE is jointly trained with the pretext and
subgraph classification tasks. The loss function consists of both
the self-supervision and classification task loss functions, as
formularized below:

L = Lpred + λ · Lself, (15)

where λ is a trade-off hyper-parameter controls the contribution
of the self-supervision term.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

TABLE IV
SUMMARY OF PERFORMANCE ON ACCOUNT IDENTIFICATION IN TERMS OF F1-SCORE IN PERCENTAGE WITH STANDARD DEVIATION. THE HIGHEST

PERFORMANCE IS MARKED WITH BOLDFACE; THE HIGHEST PERFORMANCE OF DIFFERENT CATEGORIES OF BASELINES IS UNDERLINED. THE OPS. VALUE
STANDS FOR THE OPTIMAL PERFORMANCE STATISTICS OF ALL GRAPH EMBEDDING AND GNN-BASED METHODS UNDER DIFFERENT SUBGRAPH DATASETS.

Method
Dataset (with different sampling strategy)

Eth-ICO Eth-Mining Eth-Exchange Eth-Phish&Hack
Amount Times avgAmount Amount Times avgAmount Amount Times avgAmount Amount Times avgAmount

Manual + LR
←

76.73±0.059

→ ←
77.15±0.036

→ ←
87.34±0.037

→ ←
80.94±0.042

→Manual + RF 79.52±0.045 81.32±0.044 90.13±0.030 90.10±0.007

Manual + LGBM 74.71±0.046 82.16±0.051 91.25±0.030 90.51±0.007

DeepWalk + LR 56.69±0.094 58.96±0.054 59.64±0.049 56.94±0.067 60.26±0.066 62.07±0.084 59.17±0.059 63.82±0.049 62.53±0.045 58.73±0.020 67.99±0.028 64.29±0.011

DeepWalk + RF 73.24±0.078 68.93±0.045 67.12±0.076 65.13±0.045 71.58±0.078 65.40±0.035 76.31±0.049 80.53±0.038 80.19±0.020 91.14±0.012 89.77±0.008 92.71±0.008

DeepWalk + LGBM 58.28±0.085 59.18±0.076 58.28±0.061 60.29±0.077 56.17±0.078 61.56±0.062 73.73±0.035 73.21±0.062 71.49±0.040 89.78±0.006 89.65±0.009 92.13±0.007

Node2Vec + LR 80.95±0.054 62.36±0.055 79.37±0.079 64.36±0.061 72.85±0.063 79.24±0.046 66.06±0.024 82.77±0.029 81.05±0.029 66.53±0.020 82.58±0.007 79.73±0.009

Node2Vec + RF 88.21±0.048 78.91±0.051 89.34±0.042 74.37±0.041 78.48±0.068 78.72±0.058 83.12±0.039 88.98±0.033 86.56±0.012 92.04±0.003 94.06±0.005 92.17±0.007

Node2Vec + LGBM 81.41±0.064 65.53±0.086 80.95±0.040 65.45±0.073 73.36±0.060 78.72±0.052 80.28±0.033 87.68±0.022 85.79±0.012 91.67±0.006 94.00±0.005 91.90±0.005

Struc2Vec + LR 61.00±0.051 58.96±0.082 55.10±0.084 51.82±0.059 61.56±0.072 59.80±0.093 63.48±0.038 57.02±0.031 59.09±0.056 57.02±0.012 59.47±0.014 54.89±0.013

Struc2Vec + RF 61.45±0.069 60.32±0.079 60.09±0.057 63.61±0.080 69.44±0.058 60.81±0.059 74.07±0.030 71.66±0.035 69.60±0.033 66.33±0.016 68.93±0.007 65.02±0.007

Struc2Vec + LGBM 62.36±0.053 56.01±0.059 58.05±0.055 55.12±0.041 60.25±0.045 62.80±0.072 70.97±0.030 71.49±0.024 68.13±0.045 65.25±0.018 68.53±0.009 64.52±0.010

Trans2Vec + LR 73.77±0.081 61.05±0.064 59.64±0.066 71.41±0.068 53.78±0.076 75.87±0.061 57.52±0.034 76.81±0.041 79.75±0.034 68.67±0.019 63.05±0.016 58.21±0.013

Trans2Vec + RF 86.50±0.051 71.02±0.060 73.16±0.067 73.34±0.072 61.85±0.084 77.87±0.065 72.91±0.046 82.65±0.042 87.31±0.025 89.94±0.008 89.75±0.006 89.98±0.007

Trans2Vec + LGBM 73.91±0.063 59.88±0.059 59.30±0.059 67.94±0.069 50.81±0.084 72.60±0.072 68.19±0.035 76.30±0.040 84.67±0.030 87.90±0.008 88.46±0.010 89.65±0.006

Graph2Vec + LR 65.21±0.061 68.21±0.067 63.90±0.063 53.25±0.068 48.33±0.080 56.24±0.073 66.45±0.037 61.58±0.036 66.79±0.043 80.73±0.009 78.92±0.006 79.94±0.008

Graph2Vec + RF 66.71±0.072 71.15±0.057 65.75±0.049 53.68±0.080 49.94±0.072 57.38±0.081 66.50±0.044 63.42±0.033 64.72±0.034 80.91±0.008 78.97±0.008 79.60±0.008

Graph2Vec + LGBM 61.02±0.070 63.02±0.063 58.29±0.071 52.32±0.072 46.56±0.089 57.62±0.078 64.09±0.046 60.65±0.041 61.17±0.041 82.11±0.009 80.43±0.009 81.44±0.006

GCN 87.57±0.112 86.73±0.109 86.89±0.126 75.25±0.130 82.91±0.098 83.52±0.073 90.23±0.021 89.85±0.026 89.79±0.026 96.49±0.005 96.15±0.006 96.49±0.006

GAT 88.44±0.084 90.02±0.047 86.11±0.147 80.28±0.111 78.63±0.152 82.71±0.084 91.01±0.024 91.42±0.023 90.70±0.021 95.87±0.006 95.68±0.005 95.91±0.005

GIN 75.20±0.104 78.66±0.102 75.17±0.096 59.07±0.106 57.48±0.113 63.99±0.129 81.56±0.074 84.35±0.067 85.42±0.055 95.89±0.007 95.79±0.007 95.88±0.005

I2BGNN-A 92.13±0.039 91.10±0.042 92.41±0.033 82.24±0.056 79.52±0.124 80.20±0.117 89.64±0.021 91.63±0.021 88.76±0.032 95.94±0.005 95.93±0.005 96.07±0.004

I2BGNN-T 91.02±0.084 91.72±0.034 90.13±0.085 82.64±0.077 82.13±0.101 83.84±0.062 89.28±0.025 91.87±0.022 89.87±0.028 95.99±0.004 95.98±0.005 96.11±0.004

Ethident (w/o GC) 93.02±0.029 93.36±0.032 94.38±0.028 85.62±0.060 83.68±0.080 84.91±0.051 92.28±0.027 92.77±0.027 92.39±0.021 97.79±0.003 97.37±0.004 97.80±0.003

Ethident 94.05±0.034 92.76±0.038 94.05±0.033 86.38±0.049 87.00±0.040 85.30±0.057 93.16±0.021 93.55±0.027 93.34±0.022 97.93±0.002 97.58±0.004 97.98±0.003

OPS. 11 7 5 2 4 16 6 11 5 6 7 10

V. EXPERIMENTS

A. Data Preparation

We intercept the first 10 million block data (the time
interval is between “2015-07-03” to “2020-05-04”) from the
Xblock website3 [38]. Within this time interval, we can extract
in total 309,010,831 transactions and 175,351,541 contract
calls, involving 90,193,755 EOA and 16,221,914 CA. Account
identity labels are obtained from Label Word Cloud in Ethereum
blockchain browser4, including 73 ICO-wallet, 65 Mining, 193
Exchange and 2,535 Phish/Hack.

These four types of accounts are prevalent on blockchain
platforms, and have received widespread attention. It is of
sufficient practical significance to identify whether an account
belongs to these types, especially for phish and hack accounts.
For each type of identity label (ICO-wallet, Mining, Exchange
and Phish/Hack), we sample all target account subgraphs with
this label as the positive sample, as well as the same number
of randomly sampled account subgraphs with other labels
as the negative sample. We perform subgraph sampling for
each labeled account according to different edge information
(Amount, Times or avgAmount), yielding three types of
datasets whose names are suffixed with “-A”, “-T”, “-aA”,
respectively. Table III shows the specifications of subgraph
datasets sampled from lw-AIG with h = 2 and K = 20 .

3http://xblock.pro/
4https://etherscan.io/labelcloud

B. Comparison Methods

To illustrate the effectiveness of our Ethident on account
identification, we compare with three broad categories of meth-
ods: manual feature engineering, graph embedding methods
and GNN-based methods.

For manual feature engineering that is the most common
and simplest method for account identification, we design 16
manual features for Ethereum accounts according to the prior
knowledge and the characteristics of raw Ethereum data, as
detailedly described in Appendix A, yielding account embed-
dings with dimension size of 16. For graph embedding methods,
we consider DeepWalk [26], Node2Vec [27], Struc2Vec [39],
Trans2Vec [28] and Graph2Vec [30] for account embedding.
For the above two categories of methods, we achieve account
identification by feeding the generated account embeddings into
three kinds of machine learning classifiers: Logistic Regression
(LR), Random Forest (RF) and LightGBM (LGBM).

For GNN-based methods, we first compare with three
commonly used GNNs: GCN [40], GAT [34], and GIN [41],
which are adjusted for subgraph classification by following
with a pooling layer and a prediction head. We also compare
with previous related work for account identification: I2BGNN,
which achieves account identification based on different edge
information, yielding two variants: I2BGNN-A and I2BGNN-T.

C. Experimental Settings

For subgraph sampling in Ethident, we set the subgraph
hop h to 2 and sample K = 20 neighbors per hop. For

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

2 4 6 8 10 12 14 16 18 20

75

80

85

90

95

F1
-s

co
re

 (%
)

ICO-wallet

2 4 6 8 10 12 14 16 18 20

75.0

77.5

80.0

82.5

85.0

87.5
Mining

2 4 6 8 10 12 14 16 18 20
90

91

92

93

94
Exchange

2 4 6 8 10 12 14 16 18 20

88

90

92

94

96

98

Phish/Hack

2 4 6 8 10 12 14 16 18 20

75

80

85

90

95

F1
-s

co
re

 (%
)

2 4 6 8 10 12 14 16 18 20

75.0

77.5

80.0

82.5

85.0

87.5

91

92

93

94

2 4 6 8 10 12 14 16 18 20

88

90

92

94

96

98

2800

2900

3000

3100

3200

0.15

0.20

0.25

0.30

0.35

0.40

2700

2800

2900

3000

3100

0.150

0.175

0.200

0.225

0.250

2800

3000

3200

3400

3600

0.4

90
2 4 6 8 10 12 14 16 18 20

0.6

0.8

1.0

13500

13550

13600

13650

13700

M
em

or
y

(M
B)

10

12

14

16

18

20

Ti
m

e
(e

po
ch

 /
s)

1-hop & Amount

2-hop & Amount

1-hop & Times

2-hop & Times

1-hop & avgAmount

2-hop & avgAmount

2-hop & Memory

2-hop & Time

Number of sampled neighbors per hop (K)

Fig. 6. Impact of sampling scale on performance and consumption (memory and time).

graph augmentation, we set the probability P to 10%. For
the encoder HGATE, we stack k = 2 graph attention layers
with the hidden dimension of 128 for account embedding, and
use global max pooling for initial subgraph embedding. In
addition, the projection head fφ is a two-layer perceptron with
Relu activation and linear skip connection, and the prediction
head fψ is a two-layer perceptron with Relu and Softmax
activation. We set the temperature parameter τ and trade-off
coefficient λ to 0.2 and 0.01, respectively.

For GCN, GAT, GIN and I2BGNN, the number of the
corresponding message passing layers are 2, 2, 5 and 2
respectively. The global max pooling is used for final subgraph
embedding. For all GNN-based methods, we set the embedding
dimension, batch size N , learning rate, dropout to 128, 32,
0.001, 0.2, respectively. During model training, we use early
stopping with patience of 20.

For DeepWalk, Node2Vec, Struc2Vec and Trans2Vec, we
set the length of walks to 20, the number of walks to 40,
and the context size to 3. For Node2Vec, we set the return
parameter p and in-out parameter q to 0.25 and 0.4, respectively.
For the above four random walk-based methods which are
extremely inefficient on large-scale graphs, we generate a
training graph by sampling the connected subgraph containing
all target accounts and their partial 2-hop neighbors from lw-
AIG. For Graph2Vec, we set the number of Weisfeiler-Lehman
iterations to 2, the downsampling frequency to 0.0001, the
minimal count of graph feature occurrences to 5, the epoch
to 500 and the learning rate to 0.025. For the above graph
embedding methods, we set the dimension of output account
embedding to 128.

For each subgraph dataset sampled from lw-AIG, we split
it into training, validation and testing sets with a proportion
of 1:1:1, repeat 3-fold cross validation 10 times and report the
average micro-F1 score as well as standard deviation.

D. Evaluation on Account Identification

We evaluate our Ethident on account identification and the
results are presented in Table IV, from which we can observe

that our Ethident achieves state-of-the-art results with respect
to comparison methods. Specifically, our Ethident significantly
outperforms manual feature engineering and graph embedding
methods across all datasets, and yields 2.09% ∼ 18.27%
relative improvement over best baselines in terms of F1-score,
indicating that the learned subgraph features are better at
capturing the behavior patterns of accounts than manual or
shallow topology features. When compared to GNN-based
methods, our Ethident surpasses strong baselines: we observe
1.13% ∼ 4.93% relative improvement over best baselines.

These observations meet our intuition. As we can see, the
performance of manual features and graph embedding methods
varies largely across different datasets with comparatively
lower performance rankings. This is consistent with our
assertion that they have limited expressiveness for different
kinds of account subgraphs. Because manual features and
graph embedding methods cannot learn task-related features
in an end-to-end manner, they rely heavily on the choice of
classifiers to achieve relatively high performance. Meanwhile,
classic GNN baselines normally surpass the manual features
and graph embedding methods since they learn simultaneously
from both graph topology and latent features. Nevertheless,
these baselines like GCN and GAT disregard the important
edge information and generate subgraph-level features via
naive pooling operations. The two variants of I2BGNN only
consider one single interaction information and disregard
others. Combining with the above analysis, we know that
our Ethident learns from both node and edge information
associated with behavior patterns and identities of accounts,
and uses a hierarchical attention mechanism to effectively
characterize node-level account features and subgraph-level
behavior patterns, reasonably achieving superior performance
on account identification.

E. Pattern Analysis in Micro Interaction Subgraphs

After evaluating the overall performance of our method,
we investigate the behavior patterns of different accounts
using experimental results on micro interaction subgraphs.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

(a) ICO-wallet Mining (d) Phish/Hack(c) Exchange

System

Contract

Fig. 7. Different categories of accounts generally have different behavior patterns, as embodied in their micro interaction subgraphs. Here we present some
interesting accounts to help explanation.

Furthermore, we list the following Observations as well as
explainable analysis.

1) Obs. 1. Larger subgraphs generally contain more
critical identity-related pattern information: We analyze the
impact of subgraph scale by evaluating our encoder on subgraph
datasets with different scale settings. Specifically, we vary
h in {1, 2} and K in {2, 4, · · · , 20}. We observe that it is
generally better to infer from 2-hop subgraphs than 1-hop
ones, especially for ICO-wallet and Phish/Hack, judging from
Fig. 6. Meanwhile, as the size of subgraphs increases, the
performance becomes better first and then remains stable
or fluctuates slightly in most cases. The above phenomenon
suggests that subgraphs with larger scale benefit account
identification more, meeting our intuition that larger subgraphs
generally contain more critical pattern information associated
with account identities.

2) Obs. 2. Different subgraph information highlights the
behavior patterns of accounts with different contributions:
For each category of accounts, the performance of all methods
except manual features varies largely across the datasets with
different sampling strategies. And we count the number of
optimal performances obtained by all methods under different
sampling strategies, yielding the OPS. values. Judging from
the bottom row in Table IV, we have reasonable explanations
for such phenomenon that different sampling strategies benefit
differently for account identification.

As we know, different categories of accounts have different
behavior patterns that are embodied in their micro interaction
subgraphs. Here we present some interaction subgraphs of real
accounts to help explain, as shown in Fig. 7. Note that only the
cumulative transaction amount of Ether is displayed between
any two connected nodes in the interaction subgraphs.
• ICO-wallet: Initial Coin Offering (ICO) is a financing

method that raises funds for blockchain projects by issuing
tokens. ICO projects usually pre-sell tokens in exchange
for a large amount of Ether, and after a period, the projects
will give supporters a certain return on their investment.
The key behavior pattern is represented as a large number
of outgoing edges with a certain Amount of investment
rewards from the center ICO account to the surrounding
supporters. Since investment actions generally involve a
higher transaction amount, sampling interaction subgraphs
according to Amount information can maximally preserve

the behavior pattern of ICO accounts.
• Mining: Mining pooling is a cooperative mining team

that shares computational power to find blocks. The
mining pool will receive a large amount of mining rewards
issued by the system, and distribute them to subordinate
miners according to the proof-of-work (PoW) consensus
protocol. The key behavior pattern is represented as a
large number of outgoing edges with a certain amount
of cumulative rewards from the center mining pool to
the surrounding miner nodes. Since the block reward
of Ethereum is fixed for a period, miners in the same
mining pool generally have a relatively stable average
mining income, which inspires us to use the average
amount (avgAmount) information to guide the sampling
of interactive subgraphs.

• Exchange: The exchange is a platform that provides users
with asset transaction matching and clearing services.
Exchange accounts usually interact frequently with their
clients to process a large number of transaction orders,
and behave as hub nodes with extremely high centrality
(i.e., large in-degree and out-degree) in the interaction
graphs. So sampling interaction subgraphs according to
Times information benefits more.

• Phish/Hack: Both Phishers and Hackers engage in il-
legal fraud activities, in which they usually spread a
large number of websites, emails or links containing
viruses, Trojans, unwanted software, etc., and trick the
recipient into doing remittances directly or providing the
sensitive information of system privileges. As shown in
Fig. 7(d), the center phish/hack account receives large
amounts of Ether through various scams and disperses
them to other phish/hack accounts for concealment. The
key behavior pattern has one explicit characteristic: bi-
directional edges (mutual transactions) between the center
node and surrounding ones are rare, and the center node
has high in-degree and low out-degree. Since illegal frauds
such as fake token exchange or ransomware often set a
specific threshold amount or fixed ransom which can
be reflected in the average amount information, using
subgraphs sampled according to avgAmount information
may benefit more for identifying Phish/Hack accounts.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

ICO-wallet Miner Exchange Phish/Hack

Iden
tity 0.44 0.15 -0.01 0.51 -0.15 -0.37 0.29 -0.99 0.08 -1.00 -0.54 -1.07 -0.28 -0.18 0.48 0.05 0.65 0.95 0.28 0.28 0.48 -0.03 -0.03 -0.11 0.02 -0.03 -0.01 -0.01

Time
s -0.15 0.08 0.52 0.00 1.02 0.44 -0.29 -1.88 -1.10 -0.20 -2.08 -1.53 -0.99 -1.53 -0.05 0.16 -0.16 0.62 0.20 0.81 0.00 0.02 -0.11 -0.13 -0.03 -0.08 -0.05 -0.12

avgA
moun

t -0.22 0.37 -0.37 0.37 0.45 -0.52 0.15 -1.10 -1.81 -0.18 -0.54 -0.64 -0.64 -0.37 0.93 0.34 0.03 0.39 0.37 0.28 0.79 -0.08 0.00 -0.01 -0.02 -0.29 -0.12 -0.13

Node
Drop 0.23 0.15 -0.15 0.14 0.29 -0.08 1.11 0.27 -2.08 0.00 -0.99 -0.99 -1.89 -0.37 0.37 0.60 0.62 -0.02 0.05 0.09 0.76 0.05 -0.03 0.14 -0.02 0.08 -0.02 -0.11

Edge
Remo

ve 0.08 0.08 0.29 0.06 0.37 0.66 0.06 0.36 -0.90 -0.47 -0.28 -0.98 -1.26 -0.47 0.42 0.88 0.51 0.28 0.70 0.73 0.67 0.02 -0.12 -0.15 -0.03 -0.13 -0.12 -0.04

0.08 0.81 -0.08 0.01 0.14 -0.08 0.23 -0.09 -0.29 -0.54 -0.54 -0.47 -0.27 -0.54 0.28 0.76 0.74 0.37 0.40 0.28 0.48 -0.05 -0.06 -0.09 -0.06 -0.07 0.03 -0.05

A
m
o
u
n
t

-0.14 0.15 -0.08 -0.08 0.29 0.52 0.37 -0.72 -0.27 0.89 -0.11 -0.53 -0.63 -0.09 0.12 0.67 0.60 0.20 0.53 0.28 0.51 -0.01 0.05 -0.10 0.07 -0.13 -0.07 -0.12

Iden
tity

 Time

s
avgA

moun
t

Node

Drop

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Time

s
avgA

moun
t

Node

Drop

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Time

s
avgA

moun
t

Node

Drop

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Time

s
avgA

moun
t

Node

Drop

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask

Iden
tity -1.17 -1.23 -2.71 -0.79 -1.97 -1.09 -2.05 2.32 3.15 3.13 1.02 3.60 2.77 2.61 0.03 0.03 0.01 0.31 0.06 0.84 0.45 -0.01 -0.02 -0.04 0.05 -0.09 -0.09 0.00

Amou
nt -1.38 -1.82 -0.80 -1.82 -1.75 -1.31 -1.38 2.14 2.58 2.68 1.77 3.24 3.51 2.95 0.34 -0.36 -0.30 0.12 0.42 -0.02 0.28 -0.14 -0.07 -0.07 0.08 -0.04 0.10 -0.10

avgA
moun

t -1.38 -1.75 -1.23 -1.53 -1.46 -2.04 -0.64 1.48 3.97 2.68 1.48 2.86 3.14 2.76 0.03 -0.16 -0.22 0.01 -0.11 0.51 0.03 -0.03 -0.09 -0.01 0.14 -0.02 0.08 0.06

Node
Drop -1.60 -0.79 -1.76 -1.82 -1.16 -1.08 -1.31 2.32 2.50 2.87 3.04 3.06 3.14 2.68 -0.30 -0.16 -0.05 -0.58 -0.39 -0.08 -0.13 0.16 0.17 0.09 0.22 0.14 0.05 0.11

Edge
Remo

ve -1.67 -0.65 -1.97 -1.67 -1.67 -1.16 -1.75 2.31 2.69 2.68 2.58 2.86 2.95 1.94 0.37 0.06 0.12 0.17 0.29 -0.08 0.26 0.20 -0.06 0.03 0.08 -0.17 0.01 0.04

-1.38 -1.61 -1.38 -2.32 -1.16 -0.65 -0.94 2.68 3.15 2.87 2.68 2.32 3.14 2.12 -0.16 -0.41 0.37 0.26 0.42 -0.02 -0.08 -0.12 0.06 0.04 0.09 0.02 0.15 0.08

T
im

e
s

-2.11 -1.09 -1.60 -0.79 -1.01 -1.45 -1.75 3.33 3.50 3.05 2.40 2.77 2.51 2.04 -0.02 -0.16 0.23 0.31 -0.02 0.37 0.12 0.05 -0.13 0.00 0.11 -0.10 0.13 0.01
Edge

Iden
tity

 Am

ount
 avg

Amou
nt

Node

Drop

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Am

ount
 avg

Amou
nt

Node

Drop

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Am

ount
 avg

Amou
nt

Node

Drop

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Am

ount
 avg

Amou
nt

Node

Drop

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask

Iden
tity -1.22 -1.02 -1.02 -0.50 -1.22 -1.07 -0.93 0.19 -0.26 -2.43 -0.71 -0.71 -0.90 -0.98 0.22 0.25 0.28 0.53 0.16 0.50 0.83 -0.13 -0.17 -0.16 -0.04 -0.17 -0.03 -0.17

Amou
nt -0.86 -1.52 -1.22 -1.00 -0.86 -0.78 -1.22 -0.62 -1.07 -1.08 -0.08 -1.26 -1.35 -0.72 -0.14 0.02 0.44 0.44 0.53 0.44 0.19 -0.06 -0.04 -0.08 0.13 -0.08 0.09 0.04

Time
s -1.14 -1.29 -0.86 -1.01 -1.07 -1.44 -1.01 -0.80 -1.07 -1.06 -1.26 -1.53 -1.07 -1.71 0.42 -0.06 0.53 0.58 0.53 0.30 0.64 -0.07 -0.04 -0.04 0.08 -0.07 0.01 -0.05

Node
Drop -1.22 -0.57 -0.57 -1.44 -0.57 -0.93 -1.43 -0.25 -1.15 -2.17 -1.26 -0.90 -0.72 0.38 0.30 0.19 0.16 -0.23 0.22 0.30 0.95 0.00 0.04 0.03 -0.04 -0.09 0.07 -0.02

Edge
Remo

ve -1.00 -0.35 -0.78 -1.15 -1.22 -1.01 -1.30 -0.16 0.46 -1.71 -0.98 -0.80 0.12 0.46 0.69 -0.37 1.03 0.64 -0.06 0.27 0.08 -0.11 -0.18 -0.12 0.14 -0.09 -0.09 -0.13

-1.02 -0.57 -1.80 -1.22 -0.93 -1.14 -1.65 -0.09 -0.09 -1.63 -2.08 -0.45 -1.80 -0.72 0.22 0.55 0.22 0.30 0.48 0.73 0.00 0.09 -0.03 -0.07 0.02 -0.06 -0.05 0.01

-1.14 -1.15 -0.71 -0.86 -1.29 -0.92 -0.78 -0.45 -0.53 0.19 -0.54 -0.81 -0.45 -0.35 0.34 -0.06 0.36 0.34 0.11 0.19 0.39 -0.14 -0.06 0.18 0.07 -0.13 0.03 -0.14

Iden
tity

 Am

ount

Time
s

 Nod
eDro

p

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Am

ount

Time
s

 Nod
eDro

p

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Am

ount

Time
s

 Nod
eDro

p

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask
Iden

tity

 Am

ount

Time
s

 Nod
eDro

p

 Ed
geRe

move

Node
Attr

Mask

Edge
Attr

Mask

av
g
A
m
o
u
n
t

EdEdg
eAtt

rMas
k

Low High

Node
Attr

Mask

Node
Attr

Mask

Node
Attr

Mask

Edge
Attr

Mask

Edge
Attr

Mask

Fig. 8. Account Identification F1-score gain (%) when contrasting different augmentation pairs, compared to Ethident (w/o GC) which stands for a
no-augmentation version of our framework, under all datasets. “Identity” represents the original view.

F. Effect of Subgraph Contrastive Learning

We further investigate the effectiveness of subgraph contrast
in our Ethident, and list several Observations as well as
explainable analysis.

1) Obs. 3. Graph augmentation is crucial, and structure-
level augmentation seems to benefit more: We first apply
various pairs of augmentation views to all datasets, as illustrated
in Fig. 8, and obtain the performance gain of Ethident compared
with Ethident (w/o GC) which stands for a no-augmentation
version of our framework (i.e., identifying accounts by using
our encoder and a followed prediction head). Overall, it seems
more likely to yield positive gain by using either “NodeDrop” or
“EdgeRemove” as one of the augmented views, when compared
to other augmentation pairs. In addition, for exchange accounts
that frequently call various contracts, there will be more non-
zero values in their node features, making attribute masking an
effective augmentation strategy as well. Finally, we note that
the combination of various augmentation views is sensitive to
subgraph datasets with different sampling strategies, i.e., the
performance gain of our Ethident with the same augmentation
pairs varies largely across datasets with different sampling
strategies, which encourages adaptive selections of sampling
strategies and augmentation combinations in future work.

E
th

id
en

t(
w

/o
G

C
)

ICO-wallet
ICO-wallet

Others

Mining
Mining

Others

Exchange
Exchange

Others

Phish/Hack

Phish/Hack

Others

E
th

id
en

t

ICO-wallet

Others

Mining

Others

Exchange

Others

Phish/Hack

Others

Fig. 9. The UMAP visualization of the subgraph embeddings learned by
Ethident with and without subgraph contract.

2) Obs. 4. Contrastive self-supervision improves the gen-
eralization of model in account feature learning: We utilize
the UMAP [42] to visualize the subgraph embeddings learnt
by Ethident and Ethident (w/o GC) in Fig. 9, where different
colors mean different labels. Compared with Ethident (w/o
GC) which only uses prediction loss Lpred, more obvious inter-
class separability and intra-class compactness are achieved
after applying the contrastive constraint Lself, which illustrates
its effectiveness on learning the behavior pattern differences.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

TABLE V
COMPARISON OF ENCODER PERFORMANCE WITH AND WITHOUT

SUBGRAPH-LEVEL ATTENTIVE POOLING.

Dataset Method Sampling Strategy
Amount Times averAmount

Eth-ICO
HGATE (w/o AttPooling)1 92.81±0.034 93.30±0.039 93.57±0.034
HGATE 93.02±0.029 93.36±0.032 94.38±0.028
gain 0.23% 0.06% 0.87%

Eth-Mining
HGATE (w/o AttPooling) 86.21±0.055 84.38±0.072 85.38±0.030
HGATE 85.62±0.060 83.68±0.080 84.91±0.051
gain -0.68% -0.83% -0.55%

Eth-Exchange
HGATE (w/o AttPooling) 91.27±0.026 91.12±0.027 90.98±0.023
HGATE 92.28±0.027 92.77±0.027 92.39±0.021
gain 1.11% 1.81% 1.55%

Eth-PhishHack
HGATE (w/o AttPooling) 96.81±0.006 96.15±0.009 96.72±0.005
HGATE 97.79±0.003 97.37±0.004 97.80±0.003
gain 1.01% 1.27% 1.12%

1 AttPooling: subgraph-level attentive pooling operation.

TABLE VI
RESULTS OF ACCOUNT IDENTIFICATION ON EOSIO.

Method EOSIO
h = 1, K = 10 h = 1, K = 20 h = 2, K = 10

GCN 99.59±0.003 99.47±0.003 99.30±0.004
GAT 99.52±0.002 99.68±0.002 99.12±0.004
GIN 99.52±0.002 99.55±0.001 99.40±0.002

I2BGNN-A 99.47±0.002 99.53±0.002 99.12±0.005
I2BGNN-T 99.25±0.002 99.62±0.002 99.17±0.005

Ethident (w/o GC) 99.58±0.003 99.70±0.002 99.20±0.005
Ethident 99.75±0.001 99.75±0.001 99.47±0.002

Moreover, Ethident separates different patterns with relatively
clearer boundaries, suggesting that contrastive self-supervision
can effectively improve the generalization of models when
training with scarce labels.

G. More Analysis

1) Impact of Subgraph-level Attentive Pooling: To illustrate
the effectiveness of subgraph-level attentive pooling, we
compare the performance of our encoder with and without
this module, as reported in Table V. We observe that the
encoder with AttPooling achieves better performance on 3
out of 4 categories of accounts, validating the effectiveness
of our proposal. For the exception that AttPooling brings a
negative gain on Mining subgraphs, we speculate that a mining
pool organization usually behaves very differently from an
individual miner whose transaction behavior has no significant
relationship with the mining pool, so aggregating information
from neighbors may interfere with the characterization of
mining pools’ behavior patterns.

2) Impact of Perturbation Probability: We continue to
analyze the impact of perturbation probability P in data
augmentation. We use a view for data augmentation (in the
form of “Identity & DA”) and vary P in {0.1, 0.2, · · · , 0.5},
the results are shown in Fig. 10. Combined with the statistics
in Table III, we have drawn the following conclusions: (1)
Datasets with larger amounts of samples are more robust to
variation in perturbation probability; (2) Datasets with larger
average sample scales (in terms of Avg. |N | and Avg. |V |) are
less sensitive to variation in perturbation probability; (3) An
effective and reasonable selection interval for the perturbation
probability could be [0.1, 0.3]. Finally, we observe that our

TABLE VII
RESULTS ON THE ORIGINAL AND MALFUNCTIONING EXCHANGE &

PHISHING DATASETS.

Sample
Strategy

Test with
Dori

test or Dmal
test

Method

Ethident
(w/o GC)

Ethident
edgeRemove

&
identity

edgeRemove
&

edgeRemove

edgeRemove
&

nodeDrop

averAmount
Original 89.74±0.026 90.57±0.031 91.22±0.029 91.74±0.025

Malfunctioning 89.56±0.038 91.32±0.029 91.24±0.031 91.22±0.030
Loss -0.20% 0.83% 0.02% -0.57%

Amount
Original 89.09±0.035 90.70±0.033 89.39±0.039 90.86±0.024

Malfunctioning 89.28±0.034 90.13±0.027 89.92±0.030 90.96±0.030
Loss 0.21% -0.63% 0.59% 0.11%

Times
Original 86.97±0.029 87.92±0.029 87.51±0.027 88.83±0.023

Malfunctioning 87.21±0.034 87.40±0.035 87.48±0.028 88.33±0.031
Loss 0.28% -0.59% -0.03% -0.56%

method still performs well when the perturbation is large, which
is likely to benefit from the attentive graph pooling.

3) Impact of Loss Tradeoff: Here we analyze the impact of
the trade-off coefficient λ which controls the contribution of
subgraph contrast. As we can see from Fig. 11, our Ethident
achieves relatively better performance when λ is less than
1, which meets our intuition. We treat subgraph contrast as
a pretext task or a regularization to subgraph classification.
When the coefficient of regularization is greater than 1, the
classification task cannot be fully optimized, failing to learn
the task-related features.

4) Tradeoffs between Performance and Consumption: Since
the subgraph extraction allows for mini-batch training of our
framework, greatly reducing computational consumption and
time cost. Here we further investigate the tradeoffs between
performance and consumption under different sampling scales,
as shown in Fig. 6. Since the performance of 2-hop subgraphs
significantly outperforms that of 1-hop subgraphs, we just draw
the consumption curves of 2-hop subgraph. We can first observe
that the memory and time consumption increase almost linearly
with the sample scale, while the performance converges when
the sample scale increases to a certain extent. We then use the
“ performance

consumption ” metric to roughly analyze the tradeoff between them.
Note that a larger “ performance

consumption ” metric generally indicates better
performance with less consumption. After observation and
calculation, we finally conclude that an appropriate parameter
setting of sample scale could be h = 2 and K ∈ [8, 10].

5) Generalization Application to Other Cryptocurrency:
To verify the generalization of our framework on other
cryptocurrencies, we collect transaction data of another on-
chain cryptocurrency EOSIO and deploy related experiments.
We first construct an account interaction graph including
944,865 nodes and 10,435,037 edges, in which the node
features (X ∈ Rn×1216) are constructed by the contract calling
information and account name restriction mechanism, and
the edge features are constructed in the same way as in
Sec. III-C1. We then collect 2000 target accounts, half of which
are normal accounts and half are bot accounts, and our goal
is to determine the identity of these accounts, that is, normal
accounts or bot accounts. We apply our Ethident framework
to achieve the account identification on the EOSIO dataset,
and the experimental settings are similar to that in Sec. V-C.
Table VI report the account identification results on EOSIO

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

0.1 0.2 0.3 0.4 0.5
91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

F1
-s

co
re

ICO-wallet

identity & edgeRemove

identity & nodeDrop

identity & edgeAttrMask

identity & nodeAttrMask

0.1 0.2 0.3 0.4 0.5
80.0

80.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0
Mining

0.1 0.2 0.3 0.4 0.5

Perturbation probability in data augmentation P

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0
Exchange

0.1 0.2 0.3 0.4 0.5
95.0

95.5

96.0

96.5

97.0

97.5

98.0

98.5

99.0
Phish/Hack

Fig. 10. Impact of perturbation probability in data augmentation (P).

10−310−210−1 1 101 102 103

80

85

90

95

100

F
1

-s
co

re

ICO-wallet

Amount Times averAmount

10−310−210−1 1 101 102 103

70

75

80

85

90

Mining

86

88

90

92

94

F
1

-s
co

re

Exchange

10−310−210−1 1 101 102 103

90

92

94

96

98

100

Phish/Hack

 Trade-off coefficient (λ)

10−310−210−1 1 101 102 103

Fig. 11. Impact of tradeoff coefficient (λ).

dataset. As we can see, our Ethident still achieves the state-
of-the-art identification performance on the EOSIO dataset,
showing a good generalization to other cryptocurrencies.

6) Generalization Evaluation on Malfunctioning Exchange
Accounts: Accounts in the same broad category share common
transaction patterns, but also have their own particularities, so
that they can generally still be classified at a more fine-grained
level. For example, the malfunctioning exchange accounts
which have different transaction patterns from normal ones
are common in real Ethereum, and still belong to ‘Exchange’
accounts. However, these malfunctioning exchange accounts
which only receive amount from trader accounts but do not send
amount back to traders may be more likely to be misclassified
as a ‘Phishing’ account rather than an ‘Exchange’ account, as
it has a more similar transaction pattern to the former. Here, we
conduct experiments to validate whether our Ethident model
can successfully identify the malfunctioning exchange account

as an ‘Exchange’ account instead of a ‘Phishing’ account.

• Randomly select the same number of ‘Exchange’ accounts
and ‘Phishing’ accounts, and extract their transaction sub-
graphs, yielding a new dataset of 386 account subgraphs.
Split the new dataset into training Dtrain, validation Dval

and testing Dori
test sets with a proportion of 1 : 1 : 1.

• Generate the malfunctioning exchange account by remov-
ing the target exchange account’s outgoing edges from
account subgraph. In this way, we yield the malfunction-
ing testing set Dmal

test containing phishing accounts and
malfunctioning exchange accounts.

• Train Ethident model to determine whether an account
is an ‘Exchange’ account or a ‘Phishing’ account using
Dtrain and Dval.

• Evaluate the performance of the model in determining
whether an account is an ‘Exchange’ account or a
‘Phishing’ account using Dori

test and Dmal
test respectively.

As we can see from Table VII, our Ethident models still
achieve powerful performance in identifying indistinguishable
‘Phishing’ accounts and ‘Malfunctioning Exchange’ accounts.
Compared with the original results in Dori

test, our Ethident show
-0.63% ∼ 0.83% performance fluctuations in malfunctioning
testing set Dmal

test , which is a rational and normal performance
jitter. This phenomenon suggests that our model has almost
no performance loss in distinguishing between phishing ac-
counts and malfunctioning exchange accounts, showing strong
robustness and generalization.

VI. CONCLUSION

Financial security has become a top priority in the blockchain
ecosystem. This paper provides a new perspective on account
de-anonymization, and proposes a behavior-aware Ethereum
account identification framework that integrates hierarchical
graph attention and self-supervision mechanism, to effectively
characterize the behavior patterns of different accounts. Ex-
tensive experiments on Ethereum datasets demonstrate the
superiority of our framework in terms of state-of-the-art
performance and powerful generalization. Furthermore, our
framework also has a good transferability to other blockchain
platforms like Bitcoin and EOSIO, which will be discussed in
future work.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 15

TABLE VIII
STATISTICS OF THE AVERAGE OF MANUAL FEATURE FOR VARIOUS ACCOUNTS IN ETHEREUM.

Manual Features Phish-Hack Exchange Mining ICO-Wallets Common Definition
active days 76.94 703.35 595.98 547.84 14.49 the number of active days of the account.
total received 110.84 1551629.77 5470.67 6642.11 245.38 the total amount of Ether received by the account.
num received tx 27 88490.39 68.55 279.86 4.13 the number of transactions with Ether received by the account.
inter acct received 23.29 29985.26 13.6 218.77 0.4 the number of accounts sending Ether to the target account.
total output 124.03 2309107.24 367339.66 33824.02 370.21 the amount of Ether spent by the account.
num output tx 29.91 88285.11 818877.92 62.84 4.56 the number of transactions that the account has spent Ether.
inter acct output 8.18 46692.69 16825.85 37.53 1.48 the number of accounts receive Ether from the target account.
avg received 29.52 2002.55 49.79 854.35 7.06 the average amount of Ether received by the account.
avg received day 11.66 1748.8 6.55 11.36 4.93 the average amount of Ether received by the account per day.
avg received tx day 1.51 113.5 0.16 0.49 0.03 the number of transactions with Ether received by the account per day.
avg output 30.58 1453.75 249.95 4399.06 9.46 the average amount of Ether spent by the account.
avg output day 14.66 2213.77 389.08 80.3 5.39 the average amount of Ether spent by the account per day.
avg output tx day 0.66 101.26 633.21 0.2 0.03 the average number of transactions with Ether spent by the account per day.
times contract called 11.68 66682.01 61002.03 690.93 1.52 the number of times the account calls the smart contract.
times contract called day 0.5 82.66 41.84 1.07 0.02 the number of times the account calls the smart contract per day.
num contract called 3.29 2031.6 1256.31 3.26 0.13 the number of contracts called by the account.

ACKNOWLEDGMENTS

This work was partially supported by the Key R&D Program
of Zhejiang under Grant 2022C01018, by the National Key
R&D Program of China under Grant 2020YFB1006104, by
the National Natural Science Foundation of China under
Grant 61973273, by the Zhejiang Provincial Natural Science
Foundation of China under Grant LR19F030001, and by
the Major Key Project of PCL under Grants PCL2022A03,
PCL2021A02 and PCL2021A09.

APPENDIX A
MANUAL FEATURE DETAILS

Manual feature engineering is the most common and simplest
way for account identification. According to the characteristics
of raw Ethereum data and prior knowledge, we design 16
manual features for Ethereum accounts, as shown in Table VIII.

REFERENCES

[1] M. H. Miraz and M. Ali, “Applications of blockchain technology beyond
cryptocurrency,” Annals of Emerging Technologies in Computing (AETiC),
vol. 2, no. 1, 2018.

[2] K. Fanning and D. P. Centers, “Blockchain and its coming impact on
financial services,” Journal of Corporate Accounting & Finance, vol. 27,
no. 5, pp. 53–57, 2016.

[3] G. Blossey, J. Eisenhardt, and G. Hahn, “Blockchain technology in supply
chain management: An application perspective,” in Proceedings of the
52nd Hawaii International Conference on System Sciences, 2019.

[4] T. McGhin, K.-K. R. Choo, C. Z. Liu, and D. He, “Blockchain in
healthcare applications: Research challenges and opportunities,” Journal
of Network and Computer Applications, vol. 135, pp. 62–75, 2019.

[5] R. Klusman and T. Dijkhuizen, “Deanonymisation in ethereum using
existing methods for bitcoin,” 2018.

[6] K. Toyoda, T. Ohtsuki, and P. T. Mathiopoulos, “Multi-class bitcoin-
enabled service identification based on transaction history summarization,”
in 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). IEEE, 2018, pp. 1153–1160.

[7] Y.-J. Lin, P.-W. Wu, C.-H. Hsu, I.-P. Tu, and S.-w. Liao, “An evaluation
of bitcoin address classification based on transaction history summa-
rization,” in 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). IEEE, 2019, pp. 302–310.

[8] M. Bartoletti, B. Pes, and S. Serusi, “Data mining for detecting bitcoin
ponzi schemes,” in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT). IEEE, 2018, pp. 75–84.

[9] Y. Huang, H. Wang, L. Wu, G. Tyson, X. Luo, R. Zhang, X. Liu,
G. Huang, and X. Jiang, “Understanding (mis) behavior on the eosio
blockchain,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 4, no. 2, pp. 1–28, 2020.

[10] Y. Li, Y. Cai, H. Tian, G. Xue, and Z. Zheng, “Identifying illicit addresses
in bitcoin network,” in International Conference on Blockchain and
Trustworthy Systems. Springer, 2020, pp. 99–111.

[11] Q. Yuan, B. Huang, J. Zhang, J. Wu, H. Zhang, and X. Zhang, “Detecting
phishing scams on ethereum based on transaction records,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2020,
pp. 1–5.

[12] J. Shen, J. Zhou, Y. Xie, S. Yu, and Q. Xuan, “Identity inference on
blockchain using graph neural network,” in International Conference on
Blockchain and Trustworthy Systems. Springer, 2021, pp. 3–17.

[13] L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, and Z. Zheng, “Phishing scams
detection in ethereum transaction network,” ACM Transactions on Internet
Technology (TOIT), vol. 21, no. 1, pp. 1–16, 2020.

[14] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: Characterizing payments
among men with no names,” in Proceedings of the 2013 Conference on
Internet Measurement Conference, 2013, pp. 127–140.

[15] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting intelli-
gence from the bitcoin network,” in International Conference on Financial
Cryptography and Data Security. Springer, 2014, pp. 457–468.

[16] F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin
system,” in Security and Privacy in Social Networks. Springer, 2013,
pp. 197–223.

[17] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in International Conference on
Financial Cryptography and Data Security. Springer, 2013, pp. 34–51.

[18] M. Harrigan and C. Fretter, “The unreasonable effectiveness of address
clustering,” in 2016 Intl IEEE Conferences on Ubiquitous Intelligence &
Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld).
IEEE, 2016, pp. 368–373.

[19] C. Remy, B. Rym, and L. Matthieu, “Tracking bitcoin users activity using
community detection on a network of weak signals,” in International
Conference on Complex Networks and Their Applications. Springer,
2017, pp. 166–177.

[20] M. Lischke and B. Fabian, “Analyzing the bitcoin network: the first four
years,” Future Internet, vol. 8, no. 1, p. 7, 2016.

[21] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[22] F. Victor, “Address clustering heuristics for ethereum,” in International
Conference on Financial Cryptography and Data Security. Springer,
2020, pp. 617–633.

[23] S. Linoy, N. Stakhanova, and S. Ray, “De-anonymizing ethereum
blockchain smart contracts through code attribution,” International
Journal of Network Management, vol. 31, no. 1, p. e2130, 2021.

[24] M. Jourdan, S. Blandin, L. Wynter, and P. Deshpande, “Characterizing

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 16

entities in the bitcoin blockchain,” in 2018 IEEE International Conference
on Data Mining Workshops (ICDMW). IEEE, 2018, pp. 55–62.

[25] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in Neural Information Processing Systems 10, vol. 30, pp.
3146–3154, 2017.

[26] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 701–710.

[27] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–
864.

[28] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, and Z. Zheng,
“Who are the phishers? phishing scam detection on ethereum via network
embedding,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 2020.

[29] Z. Yuan, Q. Yuan, and J. Wu, “Phishing detection on ethereum
via learning representation of transaction subgraphs,” in International
Conference on Blockchain and Trustworthy Systems. Springer, 2020,
pp. 178–191.

[30] N. Annamalai, C. Mahinthan, V. Rajasekar, C. Lihui, L. Yang, and
J. Shantanu, “Graph2vec: Learning distributed representations of graphs,”
in Proceedings of the 13th International Workshop on Mining and
Learning with Graphs (MLG), 2017.

[31] Q. Xuan, J. Wang, M. Zhao, J. Yuan, C. Fu, Z. Ruan, and G. Chen,
“Subgraph networks with application to structural feature space expansion,”
IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 6,
pp. 2776–2789, 2019.

[32] S. Phetsouvanh, F. Oggier, and A. Datta, “Egret: Extortion graph explo-
ration techniques in the bitcoin network,” in 2018 IEEE International
Conference on Data Mining Workshops (ICDMW). IEEE, 2018, pp.
244–251.

[33] R. Zhang, G. Zhang, L. Liu, C. Wang, and S. Wan, “Anomaly detection in
bitcoin information networks with multi-constrained meta path,” Journal
of Systems Architecture, vol. 110, p. 101829, 2020.

[34] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” Proceedings of the 6th International
Conference on Learning Representations, 2018.

[35] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” in Proceedings of the 34nd
International Conference on Neural Information Processing Systems,
vol. 33, 2020, pp. 5812–5823.

[36] Y. Wang, W. Wang, Y. Liang, Y. Cai, J. Liu, and B. Hooi, “Nodeaug: Semi-
supervised node classification with data augmentation,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2020, pp. 207–217.

[37] J. Zhou, J. Shen, and Q. Xuan, “Data augmentation for graph classifi-
cation,” in Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, 2020, pp. 2341–2344.

[38] P. Zheng, Z. Zheng, J. Wu, and H.-n. Dai, “Xblock-eth: Extracting and
exploring blockchain data from ethereum,” IEEE Open Journal of the
Computer Society, vol. 1, pp. 95–106, 2020.

[39] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “Struc2vec: Learning
node representations from structural identity,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2017, pp. 385–394.

[40] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proceedings of the 5th International
Conference on Learning Representations, 2017.

[41] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Proceedings of the 6th International Conference
on Learning Representations, 2018.

[42] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “Umap: Uniform
manifold approximation and projection,” The Journal of Open Source
Software, vol. 3, no. 29, p. 861, 2018.

Jiajun Zhou received the BS degree in automa-
tion from the Zhejiang University of Technology,
Hangzhou, China, in 2018, where he is currently
pursuing the Ph.D degree in control theory and
engineering with the College of Information and
Engineering. His current research interests include
graph data mining and deep learning, especially for
graph self-supervised learning and blockchain data
analytics.

Chenkai Hu is currently pursuing the bachelor’s
degree in automation at Zhejiang University of
Technology, HangZhou, China. His current research
interests include data mining in blockchain.

Jianlei Chi received the B.S. degree in computer
science and technology from Harbin Engineering
University, China, 2014, and the Ph.D. degree in
computer science and technology in 2022 from
Xi’an Jiaotong University, China. He is currently
an assistant professor at Hangzhou Research Institute
of Xidian University. His research interests include
trustworthy software, software engineering, program
analysis and machine learning.

Jiajing Wu (Senior Member, IEEE) received the
Ph.D. degree from The Hong Kong Polytechnic
University, Hong Kong, in 2014. In 2015, she joined
Sun Yat-sen University, Guangzhou, China, where
she is currently an Associate Professor. Her research
interests include blockchain, graph mining, and
network science.Dr. Wu was awarded the Hong Kong
Ph.D. Fellowship Scheme during her Ph.D. degree in
Hong Kong from 2010 to 2014. She also serves as
an Associate Editor for IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS.
Meng Shen (Member, IEEE) received the B.Eng.
degree in computer science from Shandong Univer-
sity, Jinan, China, in 2009, and the Ph.D. degree in
computer science from Tsinghua University, Beijing,
China, in 2014. He is currently an Associate Professor
with Beijing Institute of Technology, Beijing. He
has authored over 50 papers in top-level journals
and conferences, such as ACM SIGCOMM, IEEE
JOURNAL ON SELECTED AREAS IN COMMUNI-
CATIONS (JSAC), and IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY

(TIFS). His research interests include data privacy and security, blockchain
applications, and encrypted traffic classification. He received the Best Paper
Award from IEEE/ACM IWQoS 2021. He was selected by the Beijing Nova
Program 2020 and the winner of the ACM SIGCOMM China Rising Star
Award in 2019. He has guest edited Special Issues on Emerging Technologies
for Data Security and Privacy in IEEE Network and IEEE INTERNET OF
THINGS JOURNAL.

Qi Xuan (M’18) received the BS and PhD degrees
in control theory and engineering from Zhejiang
University, Hangzhou, China, in 2003 and 2008,
respectively. He was a Post-Doctoral Researcher
with the Department of Information Science and
Electronic Engineering, Zhejiang University, from
2008 to 2010, respectively, and a Research Assistant
with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong, in 2010 and
2017. From 2012 to 2014, he was a Post-Doctoral
Fellow with the Department of Computer Science,

University of California at Davis, CA, USA. He is a senior member of the IEEE
and is currently a Professor with the Institute of Cyberspace Security, College
of Information Engineering, Zhejiang University of Technology, Hangzhou,
China. His current research interests include network science, graph data
mining, cyberspace security, machine learning, and computer vision.

	I Introduction
	I-A Account Identification vs. Address Clustering
	I-B Challenges
	I-C Our Contributions

	II Related Work
	II-A Address Clustering
	II-B Account Identification
	II-B1 Manual Feature Engineering
	II-B2 Graph Analytics

	III Account Interaction Graph Model
	III-A Problem Description
	III-B Ethereum and Block Data
	III-C Account Interaction Graph
	III-C1 Interaction Merging and Edge Feature Construction
	III-C2 Node Feature Construction

	IV Methodology
	IV-A Subgraph Sampling
	IV-B Encoder Architecture
	IV-B1 Neighbor Feature Alignment
	IV-B2 Node-level Attention for Account Embedding
	IV-B3 Subgraph-level Attentive Pooling for Pattern Embedding

	IV-C Subgraph Contrastive Learning
	IV-C1 Graph Augmentation
	IV-C2 Subgraph Contrast

	IV-D Model Training

	V Experiments
	V-A Data Preparation
	V-B Comparison Methods
	V-C Experimental Settings
	V-D Evaluation on Account Identification
	V-E Pattern Analysis in Micro Interaction Subgraphs
	V-E1 Obs. 1. Larger subgraphs generally contain more critical identity-related pattern information
	V-E2 Obs. 2. Different subgraph information highlights the behavior patterns of accounts with different contributions

	V-F Effect of Subgraph Contrastive Learning
	V-F1 Obs. 3. Graph augmentation is crucial, and structure-level augmentation seems to benefit more
	V-F2 Obs. 4. Contrastive self-supervision improves the generalization of model in account feature learning

	V-G More Analysis
	V-G1 Impact of Subgraph-level Attentive Pooling
	V-G2 Impact of Perturbation Probability
	V-G3 Impact of Loss Tradeoff
	V-G4 Tradeoffs between Performance and Consumption
	V-G5 Generalization Application to Other Cryptocurrency
	V-G6 Generalization Evaluation on Malfunctioning Exchange Accounts

	VI Conclusion
	Appendix A: Manual Feature Details
	References
	Biographies
	Jiajun Zhou
	Chenkai Hu
	Jianlei Chi
	Jiajing Wu
	Meng Shen
	Qi Xuan

