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Abstract

At the intersection of Topological Data Analysis (TDA) and machine

learning, the field of cellular signal processing has advanced rapidly in re-

cent years. In this context, each signal on the cells of a complex is processed

using the combinatorial Laplacian, and the resultant Hodge decomposition.

Meanwhile, discrete Morse theory has been widely used to speed up com-

putations by reducing the size of complexes while preserving their global

topological properties.

In this paper, we provide an approach to signal compression and recon-

struction on chain complexes that leverages the tools of algebraic discrete

Morse theory. The main goal is to reduce and reconstruct a based chain

complex together with a set of signals on its cells via deformation retracts,

preserving as much as possible the global topological structure of both the

complex and the signals.

We first prove that any deformation retract of real degree-wise finite-

dimensional based chain complexes is equivalent to a Morse matching. We

will then study how the signal changes under particular types of Morse

matching, showing its reconstruction error is trivial on specific components

of the Hodge decomposition. Furthermore, we provide an algorithm to

compute Morse matchings with minimal reconstruction error.

1 Introduction

The analysis of signals supported on topological objects such as graphs or sim-

plicial complexes is a fast-growing field combining techniques from topological
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data analysis, machine learning and signal processing [2, 32, 33]. The emerg-

ing field of simplicial and cellular signal processing falls within this paradigm

[1,34,35], and here the combinatorial Laplacian ∆n plays a pivotal role. In this

context, a signal takes the form of a real-valued chain (or cochain) on a chain

complex (C, ∂) endowed with a degree-wise inner product. In particular, the

eigenvectors of ∆n, called the Hodge basis, serve as a ‘topological’ Fourier basis

to transform a signal into a topologically meaningful coordinate system [10,35].

Additionally, the combinatorial Laplacian gives rise to the combinatorial Hodge

decomposition [11]:

Cn = Im ∂n+1 ⊕Ker ∆n ⊕ Im ∂†n,

the components of which each have their own topological interpretation [1] and

respect the eigendecomposition of ∆n.

The goal of the paper is to investigate signal compression and reconstruction

over cell complexes by combining tools of Hodge theory and discrete Morse

theory. We take an entirely algebraic approach to this problem, working at

the level of degree-wise finite-dimensional based chain complexes endowed with

inner products. The classical example is the chain complex of a cell complex

equipped with its canonical cellular basis, but more general constructions such

as cellular sheaves fit into this framework as well. This algebraic perspective not

only gives us greater flexibility, but also helps to illuminate connections between

Hodge theory and discrete Morse theory that occur only at the level of chain

complexes.

Our approach to compressing and reconstructing signals over complexes in-

volves deformation retracts of based chain complexes, which have the advantage

of reducing the size of complexes while preserving their homology. A deformation

retract of a chain complex C onto D consists of a pair of chain maps (Ψ,Φ)

D C
Φ

Ψ
h

such that ΨΦ = IdD and a chain homotopy h : C→ D between ΦΨ and IdC. In

this context, the map Ψ is used to compress the signal s onto the reduced com-

plex D, and Φ serves to reconstruct it back in C. Thus, for every s ∈ C one can

compute the difference ΦΨs − s, called the topological reconstruction error, to

understand and evaluate how compression and reconstruction changes the signal.

Among the many topological methods to reduce the size of complexes [36, 40],

discrete Morse theory [12, 13] provides the perfect tool to efficiently generate

such deformation retracts of chain complexes. This technique has already been
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used with great success in the compression of 3D images [40], persistent homol-

ogy [29] and cellular sheaves [8]. In this paper we utilise Sköldberg’s algebraic

version of discrete Morse theory [37,38]. It takes as input a based chain complex

C and, by reducing its based structure with respect to a Morse matching M ,

returns a smaller, chain-equivalent complex CM . The first result presented in

this article connects the Hodge decomposition of a complex with discrete Morse

theory by defining a natural pairing in the Hodge basis. In particular, we show

that any deformation retract (Ψ,Φ, h) of degree-wise finite-dimensional, based

chain complexes of real inner product spaces can be obtained from a Morse

matching over the Hodge basis of a certain sub-complex. This process, called

the Morsification of (Ψ,Φ, h), is described in Theorem 3.7. In the second part

of the paper, we study how the topological reconstruction error associated to a

deformation retract (Ψ,Φ, h) is distributed amongst the three components of the

Hodge decomposition. We define a class of deformation retracts (Ψ,Φ, h), called

(n, n−1)-free, for which the topological reconstruction error has trivial (co)cycle

reconstruction. Specifically, they are characterised by the following properties

(Theorem 4.5).

1. (Cocycle Reconstruction) A signal s ∈ Cn and its reconstruction ΦΨs

encode the same cocycle information:

Proj
Ker ∂†n+1

(ΦΨs− s) = 0 for all s ∈ Cn.

2. (Cycle Reconstruction) A signal s ∈ Cn−1 and the adjoint of the recon-

struction Ψ†Φ†s have the same cycle information:

ProjKer ∂n−1
(Ψ†Φ†s− s) = 0 for all s ∈ Cn−1.

Moreover, the Morsification concept defined above simplifies many of the proofs

and allows them to be extended into a more general framework (Corollary 4.6).

Finally, we study how the topological reconstruction error of (n, n − 1)-free

deformation retracts can be minimized while maintaining (co)cycle reconstruc-

tion. We develop an iterative algorithm to find the retract (Ψ,Φ) that minimizes

the norm of the topological reconstruction error for a given signal s ∈ C. Our

algorithm is inspired by the reduction pair algorithms in [8, 25, 29] and, like

these algorithms, computes a single Morse matching at each step with the ad-

ditional requirement of minimizing the norm. We show that its computational

complexity is linear when the complex is sparse, and discuss bounds on how well

the iterative process approximates the optimal deformation retract. Finally, we

show computationally that iterating single optimal collapses leads to topological
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reconstruction loss that is significantly lower than that arising from performing

sequences of random collapses.

The paper is structured as follows. In Section 2, we present the necessary

background in algebraic topology, discrete Hodge theory, and algebraic discrete

Morse theory, giving the definitions and main results that will be used throughout

the paper. Section 3 introduces the notion of Hodge matching, which allows us

to prove that every deformation retract of a degree-wise finite-dimensional based

chain complex C of real inner product spaces is equivalent to a Morse retraction

(see Morsification Theorem 3.7). In Section 4 we investigate the interaction

between deformation retracts and Hodge theory. The main results, Theorem

4.5 and Corollary 4.6, utilise the Morsification theorem to prove that (n, n− 1)-

free (sequential) Morse matchings preserve (co)cycles. Section 4.3 presents an

additional result that explains how the reconstruction ΦΨs can be understood as

a sparsification of the signal s (see Lemma 4.10). Finally, Section 5 is dedicated

to presenting algorithms to minimize the topological reconstruction error in case

of iterative single pairings (see Algorithms 1 and 2).

Related Work. Many articles incorporate topology into the loss or recon-

struction error function [5, 14, 26, 30], however, these deal almost exclusive with

point cloud data. At the same time discrete Morse theory has been used in

conjunction with machine learning in [22] for image processing, but not in the

context of reconstruction error optimisation.

The notion of taking duals (over Z) of discrete Morse theoretic constructions

is featured in [13]. There, the dual flow is over Z, whereas we work with adjoint

flow over R, for which the orthogonality considerations are somewhat different,

as discussed in Appendix A.2.

On the computational side, the articles [8, 24, 25, 29] involve algorithms to

reduce chain complexes over arbitrary PIDs, including those of cellular sheaves

but do not investigate the connection with the combinatorial Laplacian (or sheaf

Laplacian). Our algorithms are based on the coreduction algorithms of [24, 25],

with the additional requirement of a topological loss minimization.

To the best of our knowledge, the only other contemporary work that ex-

amines the link between the combinatorial Hodge decomposition and discrete

Morse theory is [7], linking the coefficients of the characteristic equation of ∆n

to the n-dimensional paths in an acyclic partial matching.
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2 Background

In this section, for the sake of completeness, we first recall some basic notions

in algebraic topology. We refer the reader to [18] for a more detailed exposition.

Then we present the main concepts of algebraic discrete Morse theory and finally,

we discuss the foundations of discrete Hodge theory.

Algebraic Discrete Morse Theory. For two chain complexes (C, ∂) and

(D, ∂′), a pair of chain maps Ψ : C→ D and Φ : D→ C are chain equivalances

if Φ ◦ Ψ : C → C and Ψ ◦ Φ : D → D are chain homotopic to the identities

on C and D, respectively. Note that this implies that the maps induced on the

homology modules by Φ and Ψ are isomorphisms. The chain equivalences Ψ and

Φ form a deformation retract of the chain complexes C and D if Ψ ◦ Φ is the

identity map on D. Deformation retracts will be often depicted as the following

diagram.

D C
Φ

Ψ
h

With a slight abuse of notation, we denote such deformation retract by the pair

(Ψ,Φ) instead of (Ψ,Φ, h). Throughout the paper we will be working with the

following notion of based chain complexes, as defined in [37], which in this context

are chain complexes with a graded structure.

Definition 2.1. Let R be a commutative ring. A based chain complex of R-

modules is a pair (C, I), where C is a chain complex of R-modules and I =

{In}n∈N is a set of mutually disjoint sets such that for all n and all α ∈ In there

exist Cα ⊆ Cn such that Cn =
⊕

α∈In Cα.

Similarly, a based cochain complex is a cochain complex with an indexing set

and graded decomposition as above. The components of the boundary operator

∂n are denoted ∂β,α : Cα → Cβ for all α ∈ In and β ∈ In−1. We will refer to

the elements of In as the n-cells of (C, I), and if ∂β,α 6= 0, we say that β is a

face of α. If C is endowed with a degree-wise inner product, we say that I is an

orthogonal base if Cα ⊥ Cβ for all α 6= β ∈ I.

Remark 2.2. In this paper, working with combinatorial Hodge theory means

that, if not specified otherwise, we restrict our study to degree-wise finite-

dimensional chain complexes over R with an inner product on each of the chain

module Cn.1 Moreover, we will refer to degree-wise finite-dimensional based

chain complexes as finite-type based chain complexes.

1We leave the original definition here to emphasise that algebraic discrete Morse theory

works in more generality.
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The following examples motivate such a choice of terminology for based chain

complexes.

Example 2.3. In the special case where (C, I) is a finite-type based chain

complex over R and Cα ∼= R for all α ∈ I, we can think of I as a choice of basis,

and each ∂β,α ∈ Hom(R,R) = R as the (β, α)-entry in the boundary matrix

multiplying on the left with respect to such a basis.

Example 2.4 (CW complexes). The chain complex associated to a finite CW

complex with a basis given by its cells is an example of a based chain complex

(see [18] for a precise definition of CW complex). For two cells σ, τ in a CW

complex X , denote the degree of the attaching map of σ to τ by [σ : τ ] and write

σ . τ whenever they are incident2. For two incident cells, ∂τ,σ is multiplication

by [σ : τ ].

Example 2.5 (Cellular Sheaves). Here we present the main definitions for cel-

lular sheaves, following the more detailed exposition of sheaf Laplacians found

in [17]. A cellular sheaf of finite dimensional Hilbert spaces over a regular3 CW

complex X consists of an assignment of a vector space F(σ) to each cell σ ∈ X
and a linear map Fτ/σ : F(τ) → F(σ) to each pair of incident cells σ . τ . This

defines a cochain complex,with

Cn =
⊕
τ∈Xn

F(τ),

where Xn denotes the set of n-cells of X , and coboundary maps δn : Cn → Cn+1

defined component-wise by δσ,τ = [σ : τ ]Fτ/σ : Cτ → Cσ.

Using the inner product on Cn induced by the inner product on each Hilbert

space F(σ), one can define a boundary map ∂n : Cn+1 → Cn as the adjoint

of the coboundary map δn. This chain complex is an example of a based chain

complex, where the n-cells of the base correspond the n-cells of the underlying

indexing complex.

Discrete Morse theory was originally introduced by Forman in [12] as a com-

binatorial version of classical Morse theory. Here we present its fundamental

ideas in a purely algebraic setting, following the exposition in [37].

Definition 2.6. Let (C, I) be a finite-type based chain complex with base I.

We denote by G(C, I) the graph of the complex, which is the directed graph

consisting of vertices I and edges α→ β whenever ∂β,α is non-zero. When clear

from the context we will denote G(C, I) by G(C). For a subset of edges E of

G(C), denote by G(C)E the graph G(C) with the edges of E reversed.

2Here, incident means that the closure σ of σ contains τ .
3Regular here indicates that the attaching maps are homeomorphisms.
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Using these notions we can define a Morse matching as follows.

Definition 2.7. An (algebraic) Morse matching M on a based complex (C, I)

is a selection of edges α→ β in G(C) such that

1. each vertex in G(C) is adjacent to at most one edge in M ;

2. for each edge α→ β in M , the map ∂β,α is an isomorphism;

3. the relation on each In given by α � β whenever there exists a directed

path from α to β in G(C)M is a partial order.

For context, the third condition corresponds to acyclicity in the classical

Morse matching definition, where directed paths akin to gradient flow-lines –

which are non-periodic – in the smooth Morse theory setting [28].

When there is an edge α → β in M , we say that α and β are paired in M ,

and refer to them as a (dimα,dimα − 1)-pairing. We use M0 to denote the

elements of I that are not paired by M , and refer to them as critical cells of

the pairing. For a directed path γ = α, σ1, . . . , σk, β in the graph G(C, I)M , the

index I(γ) of γ is then defined as

I(γ) = εn∂
εn
β,σn
◦ . . . ◦ ε1∂ε1σ2,σ1

◦ ε0∂ε0σ1,α : Cα → Cβ

where εi = −1 if σi → σi+1 is an element of M , and 1 otherwise. For any

α, β ∈ I, we define the summed index Γα,β to be

Γβ,α =
∑
γ:α→β

I(γ) : Cα → Cβ,

the sum over all possible paths from α to β. In the case that there are no paths

from α→ β then Γβ,α = 0.

The theorem below is the main theorem of algebraic Morse theory. While

this theorem was originally proved in [38], here we state it in the form presented

in [37] where it is proved as a corollary of the Homological Perturbation Lemma

([37], Theorem 1, [4,15]). This proof provides an explicit description of the chain

homotopy h : C→ C that witnesses the fact that the algebraic Morse reduction

is a homotopy equivalence.

Theorem 2.8 (Sköldberg, [37]). Let (C, I) be a based chain complex indexed by

I, and M a Morse matching. For every n ≥ 0 let

CM
n =

⊕
α∈In∩M0

Cα.

The diagram
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CM C
Φ

Ψ
h

where for α ∈M0 ∩ In and x ∈ Cα

∂CM (x) =
∑

β∈M0∩In−1

Γβ,α(x) Φ(x) =
∑
β∈In

Γβ,α(x)

and for α ∈ In and x ∈ Cα

Ψ(x) =
∑

β∈M0∩In−1

Γβ,α(x) h(x) =
∑

β∈In+1

Γβ,α(x)

is a deformation retract4 of chain complexes.

We refer to the finite-type based chain complex (CM , ∂CM , I ∩M0) as the

Morse chain complex. Moreover, we call this deformation retract of C into CM

the Morse retraction induced by M .

Example 2.9. Given a based chain complex (C, I) and a single (n+1, n)-pairing

M = (α→ β), Lemma 2.8 can be used to get a simple closed form of the updated

complex (CM , ∂CM ) as well as the chain equivalences. We write them explicitly

here, and will refer to them throughout the paper.

• For every τ, σ ∈M0, the Morse boundary operator is

∂C
M

τ,σ = ∂τ,σ − ∂τ,α∂−1
β,α∂β,σ.

• The map Ψ is the identity except at components Cα and Cβ, where it is

ΨM
n

∣∣
Cβ

=
∑

τ∈In\α

−∂τ,α∂−1
β,α ΨM

n+1

∣∣
Cα

= 0.

• The map Φ is the identity except at components Cη for each η ∈M0∩In+1,

where it is

ΦM
n+1

∣∣
Cη

= IdCη − ∂−1
β,α∂β,η.

Note that these equations are identical to those appearing in [25,29] in the case

that each component Cα is of dimension 1.

When (C, I) is a finite-type based chain complex of real inner product spaces,

the adjoints of the maps in Theorem 2.8 play an important role in later sections.

Their discrete Morse theoretic interpretation in terms of flow, however, hinges

on the orthogonality of the base of C (see Appendix A.2). We will require the

following basic result of linear algebra regarding adjoints throughout the paper.

4In fact the result is stronger. Specifically the maps form a strong deformation retract.
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Figure 1: The chain maps Ψ and Φ operating on a signal s ∈ C1.

Lemma 2.10. Let V be an finite dimensional inner product space and W ⊆ V

be a subspace. The adjoint of the inclusion map i : W → V is the orthogonal

projection ProjW = i† onto W .

Example 2.11. Let (C, I) be the canonical based chain complex associated to

the cell complex in Figure 1, (left). Following the standard convention of discrete

Morse theory, we visually depict a pairing α→ β by an arrow running from the

cell β to the cell α. We consider the single (2, 1)-pairing M = (α, β), depicted by

the black arrow. Figure 1 illustrates how the maps ΨM and ΦM , made explicit

Example 2.9, operate on s ∈ C1.

Remark 2.12. Motivated by the emerging field of cellular signal processing, we

refer to elements s ∈ Cn as signals ([1, 35]).

In the next definition we introduce the concept of sequential Morse matching,

an iterative sequence of Morse matchings. This type of matching, unlike a Morse

matching, has a low computational cost to reduce the chain complex to a minimal

number of critical cells. We discuss this in detail in Section 5.

Definition 2.13. A sequential Morse matching M on a based chain complex

(C, I) is a finite sequence of Morse matchings, M(1), . . . ,M(n) and bases I1, . . . , In

such that the following conditions hold.

1. M(1) is a Morse matching on (C, I).

2. M(j+1) is a Morse matching in (CM(j) , Ij) for every j ∈ {1, . . . , n− 1}.

3. CM(j) is a based complex over Ij ⊆ Ik for every 1 ≤ j ≤ k ≤ n.

We denote by (CM , ∂CM ) the based chain complex obtained from C by it-

eratively composing the Morse matchings in the sequential Morse matching M ,

implying that (CM , ∂CM ) = (CM(n) , ∂CM(n)
). Note that in this case, the critical

cells of each individual matching in M form a nested sequence M0
(1) ⊇ · · · ⊇M

0
(n).

We denote by M0 the set of critical cells of the sequential Morse matching M

and define it to be the set of critical cells in the last Morse matching in the

sequence, namely M0 = M0
(n).
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Combinatorial Laplacians. For a finite-type based chain complex C over R
with boundary operator ∂ and inner products 〈·, ·〉n on each Cn, define ∂†n : Cn →
Cn+1 as the adjoint of ∂n, i.e., the map that satisfies 〈σ, ∂†nτ〉n = 〈∂nσ, τ〉n−1 for

all σ ∈ Cn and τ ∈ Cn−1. The adjoint maps form a cochain complex

. . .
∂†n+1←−−− Cn

∂†n←− Cn−1
∂†n←− . . .

where (∂†)2 = 0 follows from the adjoint relation.

Remark 2.14. If ∂n is represented as a matrix in a given basis, and the inner

products with respect to that basis are represented as 〈σ, τ〉n = σTWnτ where

each Wn is a positive-definite symmetric matrix, then the matrix form of the

adjoint is given by ∂†n = (W−1
n )∂TnWn−1. Note that in our definition the inner

product matrix Wn does not necessarily preserve the orthogonality of the stan-

dard cellular or simplicial basis in case we are working with cell complexes. In

practice, other authors require Wn to be a diagonal matrix to keep the stan-

dard basis orthogonal [21]. In this way the coefficients of Wn can be thought as

weights on the n-cells, see Appendix A.1

Definition 2.15. The combinatorial Laplacian is then defined as the sequence

of operators

(∆n = ∂†n∂n + ∂n+1∂
†
n+1 : Cn −→ Cn)n≥0.

For each n, the two summands can be further delineated into

1. the n-th up-Laplacian ∆+
n = ∂n+1∂

†
n+1 : Cn → Cn and

2. the n-th down-Laplacian ∆−n = ∂†n∂n : Cn → Cn.

The fundamental results concerning the combinatorial Laplacian were proved by

Eckmann in the 1940s [11].

Theorem 2.16. (Eckmann, [11]) If C is a finite-type based chain complex over

R equipped with an inner product in each degree, then for all n ≥ 0

1. Hn(C) ∼= Ker ∆n, and

2. Cn admits an orthogonal decomposition

Cn
∼= Im ∂n+1 ⊕Ker ∆n ⊕ Im ∂†n. (1)

The decomposition in the second point, called the combinatorial Hodge de-

composition, is the finite-dimensional analogue of the Hodge decomposition for

smooth differential forms. Two additional orthogonal decompositions associated

with adjoints that we will use frequently are

Cn = Ker ∂†n+1 ⊕ Im ∂n+1 = Ker ∂n ⊕ Im ∂†n. (2)
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Singular value decomposition. Let V,W be real finite-dimensional inner-

product spaces. Let f : V → W be a linear map and f † : W → V its adjoint.

The Spectral Theorem states that f †f and ff † have the same set of real eigen-

values Λ. Moreover, the singular value decomposition guarantees that there exist

orthonormal bases R(f) and L(f) of V and W formed by eigenvectors of f †f

and ff † such that for each non-zero λ ∈ Λ there exists a unique v ∈ R(f) and

a unique w ∈ L(f) such that

f(v) =
√
λw.

We denote by L+(f) and R+(f) the subsets of L(f) and R(f) respec-

tively corresponding to non-zero eigenvalues. Consider now f = ∂n : Cn →
Cn−1, n ≥ 0, the boundary operators associated to a based chain complex. Note

that L+(∂n+1) and R+(∂n), the sets of eigenvectors with positive eigenvalues

of ∆+
n = ∂n+1∂

†
n+1 and ∆−n = ∂†n∂n, form orthonormal bases for Im ∂n+1 and

Im ∂†n, respectively (by Equation (2)). In the next section we will see how these

eigenvectors together with the Hodge decomposition will allow us to define a

canonical Morse matching.

3 Morsification of Deformation Retracts

The aim of this section is to prove that every deformation retract of a finite-

type based chain complex C over R equipped with degree-wise inner products

is equivalent to a Morse retraction, with a canonical choice of basis. We first

introduce the notion of the Hodge matching on C, a Morse matching defined

over the eigenbasis of the combinatorial up and down Laplacians ∆+
n and ∆−n .

We can see the matching obtained by Hodge decomposition and the eigenvectors

of ∆+
n and ∆−n as a canonical Morse matching.

3.1 Hodge Matchings

The following concept marries the discrete Morse theoretic notion of pairing to

the pairing inherent to the eigendecomposition of ∆+
n and ∆−n , which is intrinsi-

cally connected to the Hodge decomposition of a finite real chain complex.

Definition 3.1 (Hodge basis). Let C be a finite-type based chain complex over

R. A Hodge basis of C is the basis given by I∆ = {I∆
n }n∈N, where

I∆
n = L+(∂n+1)

⋃
R+(∂n)

⋃
B(Ker ∆n),

for some choice of bases L+(∂n+1),R+(∂n) and B(Ker ∆n).

11



Observe that in the definition above each set in I∆
n forms a basis for one of

the components in the Hodge decomposition (see Equation 1). Our discussion

on the singular value decomposition ensures that Hodge bases always exist.

Definition 3.2 (Hodge matching). Let C be a finite-type based chain complex

of real inner product spaces, and let I∆ be a Hodge basis. The Hodge matching

on (C, I∆) is

M∆ :=
⋃
i

{v ∈ R+(∂i)→ w ∈ L+(∂i) | ∂iv = σw, σ 6= 0}.

Lemma 3.3. For a finite-type based chain complex (C, I∆) of real inner product

spaces and I∆ be a Hodge basis. The Hodge matching M∆ on (C, I∆) is a Morse

matching and satisfies

1. (M∆)0
n = Ker ∆n, where ∆ : C → C is the combinatorial Laplacian of C

and

2. ∂M
∆

= 0.

Proof. The description of orthonormal bases L(∂n) and R(∂n) described at the

end Section 2 implies that each cell is adjacent to at most one other cell in

G(C)M
∆

. This means there are no nontrivial paths from any n-cell to any other

n-cell for all n in G(C)M
∆

. Thus, condition (3) in Definition 2.7 is trivially

satisfied, and M∆ indeed constitutes a Morse matching. By definition,

Im ∂n+1 = spanL+(∂n+1) and Im ∂†n = spanR+(∂n),

and all basis elements are paired. The remaining basis elements of Cn are critical,

and constitute (M∆)0
n = Ker ∆n for all n. Since there are no non-trivial paths,

∂M
∆

agrees with the boundary operator ∂ of C on Ker ∆, which is indeed the

zero map.

We call the data

Ker ∆ C
ΦM

∆

ΨM
∆

h

the Hodge retraction of (C, I∆). Noting that the maps ΦM∆
, ΨM∆

are chain

equivalences reproves Eckmann’s result that Ker ∆ is isomorphic to the homology

H(C) of the original complex.

The same proof also encompasses the case of cellular sheaves discussed in [17].

Note that here, a Hodge matching will be over a Hodge base I∆ rather than the

one specified by the cellular structure of the indexing complex. Nevertheless,

since Ker ∆ does not depend on the choice of base, the result is the same.
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Figure 2: Two choices of bases and Morse matchings for the R-valued chain

complex of a simplicial complex. Edges in the Morse matchings are highlighted

in blue and critical cells in red.

Example 3.4. In Figure 2 we depict two different choice of bases – the stan-

dard cellular basis and the Hodge basis – for the celllular chain complex of the

pictured simplicial complex. Two matchings M and M∆ are visualized through

their corresponding Morse graphs G(C)M and G(C)M
∆

. The structure of the

singular value decomposition of ∂ and ensuing Hodge matching ‘straightens out’

the connections in the matching graph, as pictured in Figure 2.

3.2 Morsification Theorem

In this section, we say that two deformation retracts

D C
Φ

Ψ
h and D′ C′

Φ′

Ψ′

h′

are equivalent if there exist isomorphisms of chain complexes, f : D → D′ and

g : C→ C′ such that the diagrams

D C

D′ C′

f ∼= g∼=

Ψ

Ψ′

D C

D′ C′

f ∼=

Φ

g∼=

Φ′

commute. Our goal is to show that any deformation retraction of finite-type

chain complexes of real inner product spaces is isomorphic to a Morse retraction

(Theorem 3.7).

In the special case that C = C′ and g is the identity, the commutativity of

the diagrams above implies that

Φ′Ψ′ = Φf−1fΨ = ΦΨ. (3)

Thus, to study the topological reconstruction error of a deformation retract,

it is enough to study that of an equivalent deformation retract of the original
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complex. Two equivalent deformation retracts over a shared domain C may have

different homotopies, however, they are related by

∂h+ h∂ = 1− ΦΨ = 1− Φ′Ψ′ = ∂h′ + h′∂.

The main theorem of this section relies on the observation that deformation

retracts share a number of characteristics with projection maps in linear algebra

i.e. a linear endomorphism P : V → V of a vector space V satisfying P 2 = P .

For any projection map, there exists a decomposition V = ImP ⊕ KerP such

that P can be decomposed as

P = 1ImP + 0 : ImP ⊕KerP → ImP ⊕KerP.

The following lemma describes an analogous structure for real chain complexes,

where a deformation retraction plays the role of a projection.

Lemma 3.5. For any deformation retract

D C
Φ

Ψ
h

of chain complexes over R,

C = Ker Ψ⊕ Im Φ. (4)

as chain complexes.

Proof. The deformation retraction condition ΨΦ = IdD implies that

(ΦnΨn)2 = ΦnΨnΦnΨn = ΦnΨn,

i.e., each component ΦnΨn of ΦΨ is a projection operator. Thus there is a

splitting of vector spaces

Cn = Ker(ΦΨ)n ⊕ Im (ΦΨ)n

for each n. Since ΦΨ is a chain map, the decomposition above commutes with

the boundary operator of C, whence

C = Ker ΦΨ⊕ Im ΦΨ

as chain complexes. Lastly, Ψ is surjective and Φ is injective since ΨΦ = IdD,

implying that Im ΦΨ = Im Φ and Ker ΦΨ = Ker Ψ.

The decomposition defined in Equation 4 has an interesting interpretation

when passing to homology: all of the non-trivial homology of C arises from the

Im Φ component of the decomposition. One way to think of this decomposition is

that Ker Ψ is the component of C that is discarded by the deformation retraction,

whereas Im Φ is preserved.

14



Lemma 3.6. Under the hypotheses of Lemma 3.5

1. H(C) ∼= H(Im Φ), and

2. H(Ker Ψ) = 0.

Proof. Since Ψ is a weak equivalence, H(C) ∼= H(D). Since ΨΦ = IdD, Φ is

injective, so D
Φ−→ Im Φ is an isomorphism of chain complexes, proving point (1).

Since C = Ker Ψ⊕ Im Φ by Equation 4, it follows that H(Ker Ψ) = 0.

Theorem 3.7 (Morsification). Any deformation retract

D C
Φ

Ψ
h

of finite-type chain complexes of real inner product spaces is equivalent to a Morse

retraction (ΨM,ΦM) over C .

Notation 3.8. We refer to the pairing M in this theorem as the Morsification

of a deformation retract.

Proof. Define a pairingM = M̃∆tM̂ on C as the union of a Hodge pairing M̃∆

on Ker Ψ (which is given the subspace inner product) and the trivial pairing M̂

on Im Φ. We previously showed that C = Ker Ψ ⊕ Im Φ and H(C) = H(Im Φ),

implying that H(Ker Ψ) = 0. Consequently, all the basis elements in Ker Ψ are

paired by the Hodge pairing, and further, the Morse retraction maps

H(Ker Ψ) ∼= 0 Ker Ψ
ΦM̃

∆

ΨM̃
∆

defined by the matching M̃∆ are trivial.

On the other hand, since M̂ is the trivial pairing, the entirety of Im Φ is

critical in the pairingM. Further, the Morse boundary operator ∂M̂ is the same

as the boundary operator on C, implying CM = Im Φ and that the maps

CM ∼= Im Φ Im Φ
ΦM̂

ΨM̂

are identities. We conclude that ΦMΨM = iIm Φ ◦πIm Φ, where iIm Φ : Im Φ ↪→ C

is the inclusion.

Now we show that this is equivalent to the original deformation retract. To

do so, first note that Φ : D → Im Φ is an isomorphism. We then need to show

that the following diagram
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C

D Im Φ

Ψ ΨM

Φ

∼=

commutes. For any (s,Φ(t)) ∈ C = Ker Ψ⊕ Im Φ, we have

ΦΨ(s,Φ(t)) = (ΦΨ(s),ΦΨΦ(t)) = (0,Φ(t)) = i◦πIm Φ(s,Φ(t)) = ΦMΨM(s,Φ(t))

as required. Finally, to see that

C

D Im Φ

Φ

Φ

∼=

ΦM

commutes simply note that ΦM is the inclusion map.

Remark 3.9. When the original deformation retract comes from a Morse match-

ing, the subspace Im Φ = Im ΦΨ = Ker(1 − ΦΨ) is the space of flow-invariant

chains used by Forman in his foundational articles [12, 13]. The difference here

is that these chains are linear combinations of genuine critical cells, albeit for a

Morse matching in a new base.

It is not difficult to see that the Morsification of a deformation retract is

unique up to a choice of bases in the eigenspaces of ∆+ and ∆−, and that each

such choice produces equivalent deformation retracts. Combining Theorem 3.7

with Equation 3, we get a simple expression for the reconstruction error of a

deformation retract in terms of the paired cells in its Morsification.

Corollary 3.10. Any deformation retract

D C
Φ

Ψ
h

of finite-type chain complexes of real inner product spaces and Morsification M

1−ΨΦ =
∑

α∈IM\M0

iα ◦ πα

Proof. By Equation 3 and Theorem 3.7, we have

1− ΦΨ = 1− iIm Φ ◦ πIm Φ = iKer ΦΨ ◦ πKer ΦΨ =
∑

α ∈ IM \M0iα ◦ πα

which proves the statement, noting that the paired cells in M span Ker Ψ.
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In the case that the deformation retract arises from a Morse matching on

a based complex, the Morsification construction will most likely alter the base.

However, the number of pairings and critical cells in each dimension are related,

as described in the following proposition.

Notation 3.11. For a sequential Morse matching M on a based chain complex

(C, I), let M−n and M+
n denote the elements of In that are the union of all start

and endpoints respectively of edges in each of the matchings M(i),n for all i. This

means that

In = M−n tM0
n tM+

n .

Further, let

|M∗n| =
∑
α∈M∗n

dimCα

where ∗ ∈ {+,−, 0}, and the subscript n refers to the dimension of the cells.

Proposition 3.12. Let M be a sequential Morse matching on a finite-type based

chain complex (C, I) of real inner product spaces and M be its Morsification.

Then

|M∗n| = |M∗n|

for ∗ ∈ {+,−, 0}, in each dimension n ≥ 0.

Proof. By Theorem 3.7 we know that CM ∼= CM, implying that the dimensions

spanned by critical cells∣∣M0
n

∣∣ = dim CM
n = dim CMn =

∣∣M0
n

∣∣
are equal for all n. This implies that∣∣M+

n

∣∣+
∣∣M−n ∣∣ = dim Cn − dim CM

n =
∣∣M+

n

∣∣+
∣∣M−n ∣∣ (5)

where we have used the identity dim Cn =
∣∣M+

n

∣∣+
∣∣M−n ∣∣+

∣∣M0
n

∣∣.
Since the chain complex is concentrated in non-negative degrees, cells in

dimension 0 can be paired only with elements in dimension 1, implying that∣∣M−0 ∣∣ =
∣∣M−0 ∣∣ = 0. Combining this with Equation 5 we conclude that

∣∣M+
0

∣∣ =∣∣M+
0

∣∣. The bijection between cells paired up in dimension i with those paired

down in dimension i+ 1 then implies that∣∣M−1 ∣∣ =
∣∣M+

0

∣∣ =
∣∣M+

0

∣∣ =
∣∣M−1 ∣∣ ,

and, again using Equation 5, that
∣∣M+

1

∣∣ =
∣∣M+

1

∣∣. By inductively performing

this procedure, we prove the result for all n as required.
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It is not difficult to see that two equivalent Morse retractions of C must have

the same Morsification. Thus the above proposition then implies that when two

sequential Morse retractions M and M ′ of a complex C under two different bases

I and I ′ are equivalent, there are equalities between the number of dimensions

paired up
∣∣M+

n

∣∣ =
∣∣∣M ′+

n

∣∣∣ and down
∣∣M−n ∣∣ =

∣∣M−n ∣∣ for all n. Notably, this occurs

independently of the bases I and I ′.

4 (Co)cycle Preservation and Sparsification

Discrete Morse theory aims to reduce the dimension of a chain complex while pre-

serving its homology. Meanwhile, for combinatorial Hodge theory, understanding

the effect of deformation on the components of the Hodge decomposition is of

equal importance. However, because of the ‘adjointness’ inherent in the Hodge

decomposition, neither chain or cochain maps between two complexes usually

respect the grading of the Hodge decomposition.

Here, we define a different notion of preservation by examining the effect of

applying either ΦΨ or Ψ†Φ† to an element s ∈ Cn. For a pair of chain maps

D C
Φ

Ψ

we define the topological reconstruction error at s ∈ C as ΦΨs − s ∈ C. The

goal of this section is to examine the projection of ΦΨs − s on the different

components of the Hodge decomposition. In particular, we describe which com-

ponents of the signal are preserved and discarded by ΦΨ when the deformation

retract arises from a (n, n−1)-free Morse matching, a special type of (sequential)

Morse matchings described in the next section. Further, we show that for such

matchings the reconstruction ΦΨs (or Ψ†Φ†s) is supported only on the critical

cells, and serves to sparsify the data on the original complex while preserving

the (co)cycle information.

4.1 (n, n − 1)-free Matchings

Definition 4.1. A Morse matching M is said to be (n,n − 1 )-free if |M−n | = 0.

An equivalent condition is that |M+
n−1| = 0. Put simply, a Morse matching

is (n, n− 1)-free if no n-cells are paired with (n− 1)-cells. In what follows, the

mantra is that preservation of (co)cycle information in dimension n − 1 (or n)

is equivalent to absence of such pairings. We define an (n,n − 1 )-free sequential

Morse matching M = (M(1), . . . ,M(k)) to be a sequential Morse matching where

all Mi are (n, n− 1)-free Morse matchings.
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Figure 3: Two Morse matchings – the left is (1, 0)-free and the right is (2, 1)-free.

Example 4.2. Figure 3 shows a (1, 0)-free and a (2, 1)-free matching. The

matchings are computed on the cellular chain complex of the depicted cell com-

plex, based with the standard cellular basis. We visually depicted the pairings

in the macthings by black arrows. Note that being (n, n− 1)-free does not nec-

essarily prohibit all n or (n− 1)-cells from appearing in the matching, implying

that (n, n − 1)-free matchings can still lead to dimension reduction of both Cn

and Cn−1.

Example 4.3. If C is finite-type chain complex of real inner product spaces

such that ∂n = 0, then the Hodge matching M∆ is (n, n−1)-free for some choice

of Hodge basis I∆.

The corollary below, which follows immediately from Proposition 3.12, shows

that the property of being (n, n − 1)-free is not an artifact of our choice of

basis. Namely, if two Morse matchings are equivalent, then either they are both

(n, n− 1)-free or neither is.

Corollary 4.4. A sequential Morse matching M on a based chain complex (C, I)

is (n, n− 1)-free if and only if its Morsification M is (n, n− 1)-free.

4.2 (Co)cycle Preservation for (n, n − 1)-free Matchings

The following reconstruction theorem shows that both the topological recon-

struction error of the deformation retract and its adjoint are supported on non-

kernel components of the Hodge decomposition.

Theorem 4.5 (Reconstruction). Suppose that M is a Morse matching on a

finite-type based chain complex (C, I) of real inner product spaces. Let

CM C
Φ

Ψ
h

be the deformation retract given by Theorem 2.8. Then

1. for all s ∈ Cn,

Proj
Ker ∂†n+1

(ΦΨs− s) = 0, and
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2. for all s ∈ Cn−1,

ProjKer ∂n−1
(Ψ†Φ†s− s) = 0

if and only if M is a (n, n− 1)-free matching.

Proof. We first prove that if M is a (n, n− 1)-free matching, then conditions (1)

and (2) hold. If M−n = ∅, then there are no paths in G(C)M from an (n− 1)-cell

to an n-cell. Theorem 2.8 then implies that hn−1(x) = 0 for all α ∈ In−1 and

x ∈ Cα, whence

(ΦΨ− 1)n = ∂n+1hn + hn−1∂n = ∂n+1hn. (6)

The first claim now follows from the orthogonal decomposition

Cn = Ker ∂†n+1 ⊕ Im ∂n+1.

The argument above also shows that h†n−1 = 0, since the adjoint of the zero

map is the zero map. By taking the adjoint of Equation 6 one dimension lower,

it then follows that

(Ψ†Φ† − 1)n−1 = (ΦΨ− 1)†n−1 = ∂†n−1h
†
n−2 + h†n−1∂

†
n = ∂†n−1h

†
n−2.

The second claim is then a consequence of the orthogonal decomposition Cn−1 =

Ker ∂n−1 ⊕ Im ∂†n−1.

For the other direction we will prove the contrapositive statement. It is

sufficient to show that if the Morse matching is not (n, n − 1)-free, then there

exists s ∈ Cn such that

Proj
Ker ∂†n+1

(ΦΨs− s) 6= 0.

The Morse matching M is (n, n − 1)-free if and only if its Morsification M is

(n, n − 1)-free (Corollary 4.4) and, further, 1 − ΦMΨM = 1 − ΦMΨM (Equa-

tion 3). Therefore, it is sufficient to prove the contrapositive statement for the

Morsification.

Since the Morsification is not (n, n − 1)-free, there exists an (n, n − 1)-pair

α → β such that ∂β,α is an isomorphism. Recall that by 3.10, we have that

(ΦMΨM − 1)x = x for x ∈ Cα. The orthogonal decomposition of Cn implies

that

x = ProjKer ∂nx+ Proj
Im ∂†n

x.

Applying ∂n and using the fact that ∂n(x) 6= 0, we obtain

0 6= ∂nProjKer ∂nx+ ∂nProj
Im †n

x = ∂nProj
Im ∂†n

x.
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Since Im ∂†n ⊆ Ker ∂†n+1, this implies that

0 6= Proj
Ker ∂†n+1

x = Proj
Ker ∂†n+1

(ΦMΨM − 1)x = Proj
Ker ∂†n+1

(ΦMΨM − 1)x,

which proves our statement.

The utility of the theorem above is that an (n, n−1)-free matching M reduces

the dimension of Cn, while perfectly preserving the n-cocycles of a signal s ∈ Cn

under the reconstruction ΦnΨn. The extent of this reduction depends on the (n+

1, n)-pairs in M . Indeed, the direct sum of the components
⊕

α∈M+
n
Cα of n-cells

in such pairs is isomorphic to the subspace Ker Ψn discarded by the deformation

retract. One way to see this is using the fact that the Morsification has the same

pair structure as the sequential Morse matching, and the Morsification ΦM is

zero on non-critical cells.

If, on the other hand, one is interested in preserving the cycle information of

a signal s ∈ Cn−1, then one can use the adjoint maps Φ†Ψ† to perform a similar

procedure. Namely, an (n, n − 1)-free matching M will perfectly preserve the

(n− 1)-cycle part of s under the reconstruction Ψ†n−1Φ†n−1. Analogously to the

dual case, the extent of reduction depends on the (n− 1, n− 2)-pairings, where

the subspace
⊕

α∈M−n−1
Cα is isomorphic to the discarded subspace Ker Φ†n−1.

Using Morsification, we can extend the (co)cycle reconstruction theorem to

(n, n− 1)-free sequential Morse matchings.

Corollary 4.6. Let M be a sequential Morse matching on a based chain complex

(C, I). Then the (co)cycle preservation conditions (1) and (2) of Theorem 4.5

hold if and only if M is (n, n− 1)-free.

Proof. By Corollary 4.4 we know that M is (n, n − 1)-free if and only if its

Morsification M is (n, n− 1)-free. Further, we know that

1− ΦMΨM = 1− ΦMΨM

by Equation 3. Then the statement follows by applying Theorem 4.5 to C and

M.

One may wonder whether there is a proof by induction that follows directly

from Theorem 4.5. The problem with using induction is that each chain complex

in the sequential Morse matching has a different Hodge decomposition, and that

the maps between them do not necessarily respect the grading. So Theorem 4.5

implies the (co)cycle preservation conditions will be satisfied between the i-th

and (i+ 1)-th chain complexes but not necessarily between C and CM.
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In the general case of deformation retracts that do not arise from a Morse

matching, combining Theorem 4.5 and Corollary 4.4 yields the following.

Corollary 4.7. Let (Φ,Ψ) be a deformation retract of based finite-type chain

complexes (C, I) and (D, I ′) of real inner product spaces. Then the (co)cycle

preservation conditions (1) and (2) of Theorem 4.5 hold if and only if the Mor-

sification M associated to (Φ,Ψ) is (n, n− 1)-free.

4.3 Sparsification for (n, n − 1)-free Matchings

In the previous section, we showed how a signal’s projection onto each Hodge

component is related to that of its reconstruction. In addition, one would like to

know how the reconstructed signal sits in the complex with respect to the base

on which the Morse matching is constructed.

In this section we will show that, for a (n, n − 1)-free (sequential) Morse

matching, the image of ΦnΨn is supported only on the critical cells M0
n of In.

Intuitively, applying ΦnΨn can be thought of as a form of sparsification which

preserves one of either cycles or cocycles (Theorem 4.5).

Lemma 4.8. Let M be an (n, n − 1)-free matching of an orthogonally based

finite-type chain complex (C, I) of real inner product spaces. Then

1. Φn : CM
n → C and

2. Ψ†n−1 : CM
n−1 → C

are subspace inclusions and, thus, isometries.

Proof. By Theorem 2.8

Φn =
∑
α∈M0

n

∑
β∈In

Γβ,α.

A path in G(C)M starting at an n-dimensional critical cell must first step down

a dimension. Since M is (n, n − 1)-free, it cannot return to dimension n. This

shows that the only paths starting at critical cells in dimension n are trivial and

hence

Φn(x) =
∑
β∈In

Γβ,α(x) = x

for all x ∈ Cα, α ∈M0
n.

For point (2), recall that

Ψn−1 =
∑

α∈M0
n−1

∑
β∈In−1

Γα,β.
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When α ∈M0
n−1, all non-trivial paths in G(C)M from β ∈ In−1 to α must pass

through dimension n. However, this is impossible since M is (n, n − 1)-free,

implying all paths out of critical cells in dimension (n− 1) to cells in dimension

(n− 1) are trivial and
∑

β∈In−1
Γα,β = πα. This yields

Ψn−1 =
∑

α∈M0
n−1

πα = πCM .

According to Lemma 2.10, the inclusion i : CM → C is the adjoint of the

orthogonal projection ProjCM , and is not necessarily the same as the categorical

projection πCM . However, the condition that the base I is orthogonal, implies

that CM is is indeed orthogonal to C/CM , and that Ψ†n−1 is the inclusion map

i : CM ↪→ C as required.

Remark 4.9. The condition that the base is orthogonal is also important for

having a discrete Morse theoretic interpretation of the adjoint in terms of back-

wards flow within the Morse graph G(C)M . We explain this perspective in detail

in Appendix A.2.

Given that the composition of a sequence of inclusions of sub-spaces is again

an inclusion, Lemma 4.8 holds equally well for (n, n − 1)-free sequential Morse

matchings.

Corollary 4.10 (Sparsification). Let M be an (n, n − 1)-free sequential Morse

matching of an orthogonally based chain complex (C, I). Then

1.

ΦM
n ΨM

n (s) ∈
⊕

α∈M0∩In

Cα for all s ∈ Cn

2.

Ψ
M†
n−1Φ

M†
n−1(s) =

⊕
β∈M0∩In−1

Cβ for all s ∈ Cn−1.

Proof. By definition we know that

ΨM
n (s) ∈

⊕
α∈M0∩In

Cα = CM
n and ΦM†n−1(s) ∈

⊕
β∈M0∩In−1

Cβ = C
M
n−1.

The result then follows from Lemma 4.8, which implies that both Φ
M
n and Ψ

M†
n−1

are compositions of subspace inclusions.

Example 4.11. In this example we consider the based chain complex C asso-

ciated to the cell complex X in Figure 4-A. We work with the standard basis
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generated by the n-cells and the standard boundary operator ∂∗. The signal

s ∈ C1 is obtained by randomly sampling from [0, 1]. We consider the (1, 0)-

free matching M in Figure 4-C, where there are two 1-cells are paired with two

2-cells, denoted by the arrows. All the other cells are critical.

In Figure 4-A we show how the signal s is transformed by the maps ΦM and

ΨM induced by the (1, 0)-free matching M . The absolute value of the recon-

struction error, |s−ΦMΨM | is shown in Figure 5-B. As proved in Theorem 4.5,

we observe in Figure 5-D that the reconstructed signal ΦMΨMs is perfectly pre-

served on Ker ∂1 = Ker ∆1 ⊕ Im ∂†1, and all changes in the reconstructed signal

are contained in Im ∂2. Note that ΦM
1 ΨM

1 s is supported only on the critical

1-cells as proved in Lemmas 4.10 and 4.8.
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Figure 4: The life-cycle and reconstruction error of a signal s ∈ C in the standard

basis of a simplicial complex under the maps associated to a Morse matching.

5 Algorithms and Experiments

The goal of this section is to reduce a based complex (C, I) together with a

signal s ∈ C (or set of signals S ⊂ C) via a sequential Morse matching while

trying to minimize the norm of the topological reconstruction error.

We propose the following procedure to iterativly reduce a based chain com-

plex (C, I) with signal s via a sequential Morse matching. The method is inspired

by the classical reduction pair algorithm described in [24, 25] but differs in the

optimization step in (1).

1. If ∂ 6= 0, select a single pairing α→ β in (C, ∂) minimizing ‖s− ΦΨs‖.

2. Reduce C to CM and repeat with C = CM and ∂ = ∂C
M

.
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Note that this procedure differs as well from that of Nanda et al. which, in the

context of both persistent homology [29] and cellular sheaves [8], requires an

actual Morse matching. The details of the algorithm are provided in Section 5.1

(see Algorithm 1 and Algorithm 2), where we also show that their computational

complexity is linear in the number of (n+ 1)-cells. In Section 5.2 we discuss the

behaviour of the norm of the topological reconstruction error when performing

this type of iterated reduction. In Section 5.3 we prove that such an algorithm

converges to a based chain complex with the minimal number of critical cells.

Finally, in Section 5.4 we provide experiments on synthetic data.

Remark 5.1. Since in most of the applications dimCα = 1 for all α ∈ I, we

will work with this assumption throughout the following sections. Thus, without

loss of generality, we will refer to the elements of In as a basis of Cn and denote

∂β,α = [α : β] (see Example 2.3 for more details).

5.1 Algorithms for Optimal (sequential) Morse Matchings

For a pair of chain maps

D C
Φ

Ψ

between based chain complex with inner product on each Cn and Dn, and a

signal s ∈ Cn, define the topological loss of the maps (Φ,Ψ) over s to be the

norm of the topological reconstruction error

Ls(Ψ,Φ) = 〈s− ΦΨs, s− ΦΨs〉1/2Cn
= ‖s− ΦΨs‖Cn . (7)

For a finite subset S ⊂ Cn, the loss is defined to be the sum

LS(Ψ,Φ) =
∑
s∈S
Ls(Ψ,Φ)

of the individual losses. The loss of a single collapse can be given a closed form

by using Theorem 2.8, in the case of a deformation retract associated to a Morse

matching.

Specifically, suppose we have a single (n+ 1, n)-pairing α→ β. Theorem 2.8

implies that the homotopy h maps β to − 1
[α:β]α and is zero elsewhere. For a

signal s ∈ Cn, using the equations developed in Example 2.9, we have

Ls(Ψ,Φ) = ‖(1− ΦΨ)s‖Cn =
∥∥∂nhns‖Cn =

∥∥∥∥∥ sβ
[α : β]

· ∂n+1(α)

∥∥∥∥∥
Cn

(8)

where sβ is the component of s on basis element β. Similarly, for a signal

s ∈ Cn+1 we have a dual topological loss

Ls(Φ†,Ψ†) = ‖(1−Ψ†Φ†)s‖n+1 = ‖∂†n+1h
†
ns‖n (9)
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If I is an orthogonal basis for C, Theorem A.2 implies that we can write this

loss as

Ls(Φ†,Ψ†) =

∥∥∥∥∥sα∂
†
n+1(β)

[α : β]

∥∥∥∥∥
Cn+1

Note that to write a compact form for Equation (7), in case M is not a

single Morse matching, one needs to sum over all possible non-trivial paths in

Theorem 2.8. Therefore finding the matching M minimizing this norm would

be computationally expensive, if not infeasible. On the other hand, it is not

hard to find the single (n+ 1, n)-pairing α→ β minimizing the topological loss

in Equation (8). Therefore, as a first approach towards finding an approximate

solution of the problem, we begin by studying optimal matchings by restricting

to iterated single pairings.

Remark 5.2. Naturally, one can ask the same questions about finding the op-

timal pairing minimizing the topological loss for Ψ†Φ†s − s. Given the duality

of the problem, we will present algorithms and experiments only for ΦΨs − s.
The algorithms and computations for the dual topological loss can be found by

dualizing the chain and boundary maps.

Given a finite-type based chain complex (C, I) of real inner product spaces

and a signal s on the n-cells, our goal is now to find the the (n + 1, n)-pairing

α→ β minimizing the topological loss in Equation (8). Computing the minimum

and its arguments for a single pair boils down to storing for each (n + 1)-cell τ

in the basis the face σ where the quantity

|sσ|
|[τ : σ]|

‖∂n+1τ‖n

is minimal, and choosing among all the (n+ 1)-cells the one realizing the mini-

mum of Ls.

Example 5.3. Consider the based chain complex associated to a simplicial

complex X with basis induced by its cells and ∂∗ the standard boundary operator.

Let s be a signal on the n-cells. The minimum of the reconstruction loss Ls in

Equation (8) is then realized on the n-cell β, where |sβ| is minimum, paired with

any of its cofaces α. Note that the minimum and its argument might not be

unique.

Following the idea above, Algorithm 1 returns a single (n + 1, n)-pairing

α → β that minimizes the topological loss for a given based chain complex

(C, I) and signal s.
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Algorithm 1 Perform a single optimal pairing
Input A based chain complex C with basis I, a signal on Cn, ∂n+1, the non-zero n+1-boundary.

Output A a single (n+ 1, n)-pairing α→ β which minimize the topological loss.

1: function OptimalPairing(C, I, signal, ∂n+1)

2: for each n+ 1-cell τ in In+1 do

3: OptCol[τ ]=0 . OptCol keeps track of the face which realizes the optimal collapse on

τ

4: end for

5: for each n+ 1-cell τ in In+1 do

6: ValOptCol[τ ]=∞ . ValOptCol keeps track of the value of the optimal collapse on τ

7: end for

8: for each n+ 1-cell τ in In+1 do

9: for each face ξ of τ in Fτ do

10: x← |signal[ξ]|
|[τ : ξ]| ‖∂n+1(τ)‖Cn

11: ValOptCol[τ ]←minimum(x, ValOptCol[τ ])

12: end for

13: σ ← random

(
arg min
ξ∈Fτ

(
|signal[ξ]|
|[τ : ξ]| ‖∂n+1(τ)‖Cn = ValOptCol[τ ]

))
. σ is randomly chosen among the faces of τ which have minimal reconstruction loss

14: OptCol[τ ]← σ

15: end for

16: TotalMin←minimum(ValOptCol) . The value TotalMin is the minimum

reconstruction loss.

17: α← random(arg min
τ∈In+1

(ValOptCol=TotalMin)) . The n+ 1 cell α to collapse is

randomly chosen among the n+ 1 cells where the reconstruction loss is minimal.

18: D ← OptCol[α] . The n cell β to collapse is the face of τ obtaining minimal

reconstruction loss.

19: return (α, β)

20: end function
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The computational complexity of Algorithm 1 is O(pc2) + O(p), where p =

dim Cn+1 and c = maxτ∈In+1 |∂n+1τ |. The first term follows from the fact that

we need to iterate through all the (n + 1)-cells and their faces, computing the

minimum of lists of size at most c. The second summand follows from the fact

that the final step of the algorithm requires computations of the minimum of a

list of size at most c. Since the first summand dominates the second one, the

computational complexity of Algorithm 1 is O(pc2). We assume that in most of

the computations we are dealing with sparse based chain complexes, i. e. based

chain complexes in which the number of n-cells in the boundary of an (n + 1)-

cell is at most a constant c � p. In this case the computational complexity of

Algorithm 1 is O(p).

In practice, one would like to further reduce the size of a based chain com-

plex. In Algorithm 2 we provide a way to perform a sequence of single optimal

collapses. For a based chain complex C and a signal s, the algorithm computes at

each iteration a single optimal pairing (α, β) and it updates (C, ∂) to (CM , ∂CM )

and the signal s to ΨMs.

Algorithm 2 Perform k single optimal pairings
Input A based chain complex C with basis I, a signal on Cn, ∂n+1 the non-zero (n + 1)-

boundary and parameter k of the number of single optimal collapses to perform.

OutputA based chain complex CM with basis IM ⊆ I and its boundary ∂CM obtained by

iteratively computing k optimal pairings starting from C.

1: function k-OptimalPairings(C, I, signal, ∂n+1, k)

2: i← 1

3: while i ≤ k do

4: (α, β)←OptimalUpCollapse(C, I, signal, ∂n+1)

5: (C, ∂, I)← (CM , ∂CM , IM )

6: signal← Ψ(signal)

7: i← i+ 1

8: end while

9: return C , ∂

10: end function

In fact, Algorithm 2 consists of the classical reduction pair algorithm pro-

posed in [24, 25] with the additional step of the loss minimization. If applied

only to a (n, n − 1)-free sequential Morse matching, Algorithm 2 will converge

to a based chain complex with given dimensions, as we prove in Proposition

5.9. Otherwise, if applied to cells of every size, it allows us to reduce a chain

complex up to a minimal number of critical n-cells, as proved in [25]. We state

again this result in Section 5.3. At the same time, the algorithm constructs a

(n, n−1)-free sequential Morse matching, therefore the original signal is perfectly

reconstructed on part of the Hodge decomposition, as proved in Theorem 4.5.
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Finally, a further justification for the choice of this iterative algorithm, is that

the loss on the original complex is bounded by the sum of the losses in the

iterative step. We further discuss this in the next section.

5.2 Conditional Loss

The computational advantages outlined above are dictated by the fact that Al-

gorithm 2 iteratively searches for optimal pairings. One important detail to

understand is then how the loss function interacts with such iterated reductions.

For a diagram of chain maps

E D C
Φ′

Ψ′

Φ

Ψ

and s ∈ Cn, define the conditional loss to be

Ls(Ψ′,Φ′ | Ψ,Φ) = LΨ(s)(Ψ
′,Φ′) = ‖Ψs− Φ′Φ′Ψs‖Dn .

In practice, we will generate a sequential Morse matching by taking a series of

collapses and optimising the conditional loss at each step.

Lemma 5.4. Let C,D, and E be inner product spaces and suppose we have a

diagram of linear maps

E D C
φ′

ψ′

φ

ψ

where φ is an isometry. Then for all s ∈ C we have

‖(1− φφ′ψ′ψ)s‖C ≤ ‖(1− φψ)s‖C + ‖(1− φ′ψ′)ψ(s)‖D.

Proof. Using the triangle inequality and the fact that φ is an isometry, we have

‖(1− φφ′ψ′ψ)s‖C = ‖(1− φψ)s+ φ(1− φ′ψ′)ψ(s)‖C
≤ ‖(1− φψ)s‖C + ‖φ(1− φ′ψ′)ψ(s)‖C
= ‖(1− φψ)s‖C + ‖(1− φ′ψ′)ψ(s)‖D

as required.

The following corollary justifies the approach of minimizing the conditional

loss at each step. It states that the loss on the original complex will be bounded

by the sum of the conditional losses. Note that the same result and proof also

work for the adjoint case where s ∈ Cn−1, as long as the complex is orthogonally

based.
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Corollary 5.5. Suppose we have a diagram of chain maps

E D C
Φ′

Ψ′

Φ

Ψ

where each step arises from an (n, n − 1)-free Morse matching. Then for all

s ∈ Cn

Ls(Ψ′Ψ,ΦΦ′) ≤ Ls(Ψ,Ψ) + Ls(Ψ′,Φ′ | Ψ,Φ)

Proof. In the Sparsification Lemma 4.10, we showed that taking (n, n − 1)-

matchings implied that Φn,Φ
′
n are isometries. The result then follows from

applying the lemma above.

5.3 Reduction Pairings and Convergence

The following proposition ensures that the reduction pair algorithm proposed

in [25], which is the foundation of Algorithm 2, converges in a finite (and pre-

determined) number of steps to the homology of C. This advantage of being

able to maximally reduce a based complex is in contrast with the well-studied

NP-hard problem [23] of finding Morse matchings. In this section, we will prove

an analogous result for (n, n− 1)-free matchings.

Theorem 5.6 (Kaczynski et al. [25]). Let (C, I) be a finite-type based chain

complex over R, where dimCα = 1 for all α ∈ I. The iteration of the following

procedure

1. If ∂ 6= 0, select a single pairing α→ β in (C, ∂).

2. Reduce C to CM and repeat with C = CM and ∂ = ∂CM .

converges to the complex H(C) with ∂ = 0 after

N =
1

2

∑
n

(dim Cn − dim Hn(C))

steps.

To prove a similar result for (n, n−1)-free matchings, we first prove two lem-

mas describing how the dimensions of the summands in the Hodge decomposition

of CM relate to those of C when M is a single pairing.

Lemma 5.7. Let M = (α → β) be an (n + 1, n)-pairing of a based complex

(C, I). Then

Im ∂Mn = Im ∂n
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Proof. Since no (n− 1)-cells are deleted by M , Cn−1 = CM
n−1. The formulas in

the background section in Example 2.9 show that ∂Mn = ∂n|CMn , implying that

Im ∂Mn + ∂n(Cβ) = Im ∂n. To prove the statement it then suffices to show that

∂n(Cβ) is contained in Im ∂Mn . Using ∂n∂n+1 = 0 and the fact that ∂α,β is an

isomorphism, we then have that

0 = ∂n(∂n+1(Cα)) = ∂n(∂β,α(Cα) +
∑

τ∈In\β

∂τ,α(Cα))

⇒ ∂n(Cβ) = −∂n(
∑

τ∈In\β

∂τ,α(Cα)) ⊆ Im ∂Mn .

which proves the result.

Note that while the images of both ∂Mn and ∂n agree, the eigendecomposition

of their correspondent up- and down-Laplacians may not be related in a straight-

forward way. In other words, the combinatorial Laplacian eigenbases for Cn−1

and CM
n−1 can be rather different, even though the corresponding summands of

their Hodge decompositions have the same dimensions.

Lemma 5.8. Let M = (α → β) be an (n + 1, n)-pairing of a finite-type based

complex (C, I) of real inner product spaces. Then

dim Im (∂Mi )† = dim Im ∂Mi =

dim Im ∂i − dimCβ i = n+ 1

dim Im ∂i else
(10)

Proof. The left equality is a basic property of adjoints. For the right equality,

note that (1) C ' CM implies dim Ker ∆M
i = dim Ker ∆i for all i and (2)Lemma

5.7 implies that dim Im (∂Mn )† = dim Im ∂†n. Together these imply that

dim Cn − dim CM
n = dim Im ∂n+1 − dim Im ∂Mn+1 = dimCβ.

Equivalently, this says that dim Im ∂†n+1−dim Im (∂Mn+1)† = dimCα, and now all

of the change in dimension from C to CM has been accounted for.

We can now state the convergence theorem for the (n, n−1)-sequential Morse

matchings over R in Algorithm 2. Along with homology, dim Im ∂n and dim Im ∂†n

provide a (strict) upper bound on how many pairings we can make in an (n, n−1)-

free sequential Morse matching.

Proposition 5.9 (Convergence). Let (C, I) be a finite-type based chain complex

over R with inner products. Then Algorithm 2 for (n, n−1)-free Morse matchings
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converges to a based chain complex D such that

Di
∼=


H(Ci)⊕ Im ∂†i i = n

H(Ci)⊕ Im ∂i+1 i = n− 1

H(Ci) else

where ∂Di = 0 for all i 6= n.

Proof. Given the conditions on the basis assumed at the beginning of the section,

∂α,β is an isomorphism if and only if it is a multiplication by a non-zero element of

R. Hence, ∂i = 0 if and only if we are not able to make any more (i, i−1)-pairings,

implying the process must converge to some complex D with ∂Di = 0 for all i 6= n.

Since D is weakly equivalent to C, this proves that Di = Hi(D) = Hi(C) for all

i 6∈ {n, n− 1}.
By Lemma 5.8, each (n+ 1, n)-pairing reduces the dimension of Im ∂n+1 by

1, and each (n − 1, n − 2)-pairing reduces the dimension of Im ∂†n−1 by 1. One

can iterate the process of either (n+ 1, n)-pairing or (n− 1, n− 2)-pairing, until

dim Im ∂n+1 = 0 or dim Im ∂†n−1 = 0 respectively. Thus, the isomorphism in the

Lemma follows from this itarative process and from the Hodge decomposition of

Di.

5.4 Experiments

In this section we provide examples of how algorithms 1 and 2 can be applied

to compress and reconstruct signals on synthetic complexes. Moreover, we show

computationally that the topological reconstruction loss of a sequence of optimal

pairings given by algorithm 2 is significantly lower than the loss when performing

sequences of random collapses (see Figure 5 and Figure 8). Our main goal is

to provide a proof of concept for the theoretical results and algorithms of this

article rather than an exhaustive selection of experiments. The code for the

experiments can be found in [39].

Example 5.10. In this example we consider the cell complex X in Figure 5.A-

left, constructed as the alpha complex of points sampled uniformly at random

in the cube [0, 1] × [0, 1]. We work with the basis given the cells of X and the

standard boundary operator ∂. The signal s on the 1-cells is given by the height

function on the 1-cells. The example illustrates a (1, 0)-free sequential Morse

matching M obtained by iterating Algorithm 2 for k = 120. Note that the

optimal matchings correspond to 1-cells where the signal is lower (see Figure 5.A-

center). This can be explained by Remark 5.3 and the fact that Equation (8)

favors collapsing cells with lower signal even when X is not a simplicial complex.
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The absolute value of the reconstruction error after the sequential Morse

matching M is shown in Figure 5.B. As expected from Equation (8), the error

is mainly concentrated on the 1-cells that are in the boundaries of the collapsed

2-cells. Further, the map ΦM is an inclusion as showed in Lemma 4.10. In panel

C of Figure 5 we show the projection of the signal s and the reconstructed signal

ΦMΨMs on the Hodge decomposition. By Theorem 4.5 the signal is perfectly

reconstructed on Ker ∂1 = Ker ∆1 ⊕ Im ∂†1, and only Im ∂2 contains non-trivial

reconstruction error. Due to formatting constraints, we show the projection onto

only 30 (randomly chosen) vectors of the Hodge basis in Im ∂†1 and Im ∂2.

1.5

1.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.4 0.7 1.1 1.4 1.8 0.0 0.4 0.7 1.1 1.4 1.8

0.0 0.3 0.5 0.8 1.1 1.3

Figure 5: Optimal (1, 0)-free sequential Morse matching (M) obtained by iter-

ating Algorithm 2 for k = 120 on (2, 1)-pairs. The signal s on the 1-cells is given

by the height function.

In Figure 6 we propose the same example as above with a non-geometric

function on the 1-cells. Specifically, the signal s on the 1-cells is given by sampling

uniform at random in [0, 1] and the (1, 0)-free sequential Morse matching M is

obtained by iterating Algorithm 2 until all 2-cells were removed.

To quantify how low the topological reconstruction loss is after performing a

sequential Morse matching with optimal pairings, we compare the reconstruction

loss after a sequence of k optimal matchings with the reconstruction loss after a
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Figure 6: Optimal (1, 0)-free sequential Morse matching M obtained by iterating

Algorithm 2 until all 2-cells were removed. The signal s on the 1-cells is given

by sampling uniform at random in [0, 1].

sequence of k random matchings.

Example 5.11. In this example we compare the sequence of optimal collapses

presented in Example 5.10 in Figure 5 and in Figure 6 respectively with sequence

of random collapses. In particular, we consider the complex X of Example 5.10

with signal on the 1-cells s given by the height function as in Figure 7 and signal s

given by sampling uniformly at random in [0, 1] as in Figure 6. Instead of finding

a sequence of (2, 1)-pairings minimizing the reconstruction loss, at each step of

algorithm 2 we will randomly remove a (2, 1)-pair. We apply this procedure for

k = 120 iterations in case s is the height function of the 1-cells and until all

2-cells are removed when the signal s is sampled uniform at random in [0, 1].

Figure 7.A shows the projection on the Hodge basis of s and ΦMΨMs when

s is the height function and Figure 7.B shows the same result for s sampled

uniform at random. Due to formatting constraints, we show the projection onto

only 30 (randomly chosen) vectors of the Hodge basis in Im ∂†1 and Im ∂2. Note

that, for both types of signal, the projection of the reconstructed signal ΦMΨMs

and s on Im ∂2 differ significantly more than the the projection on Im ∂2 of
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the reconstructed error and the signal in the case of optimal sequential Morse

matching presented in Example 5.10 (see Figure 5.D and Figure 6.D)
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1
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2

3

Figure 7: Projection of the signal and the reconstructed signal on the Hodge

basis after a sequence of random parings.

The quantitative results shown in the previous examples can be strengthened

by comparing the value of the topological reconstruction loss for random and

optimal sequence of pairings. In the next example we show that, for different

types of both geometric and random signals, the topological reconstruction loss is

significantly lower in sequentially optimal matchings than in random matchings.

Example 5.12. We consider again the same complex X as in Example 5.10.

Figure 8 shows the value of the topological reconstruction loss after a sequence

optimal and random pairings. We took sequences of length k = 1, 2, . . . 244,

terminating when all 2-cells were reduced. In panel A we consider a signal on

the 1-cells sampled from a uniform distribution in [0, 1], in panel B the signal is

the height function on the 1-cells, in panel C the signal is sampled from a normal

distribution (mean 0.5 and standard deviation 0.1), and in panel D the signal is

given by the distance of the middle point of the 1-cells from the center of the

cube [0, 1]× [0, 1]. The blue curve is the average over 10 instantiations of optimal

pairings while the green curve is the average over 10 instantiations of random

pairings. The filled opaque bars show the respective mean square errors. Note

that for all type of functions, the loss for the optimal pairings is significantly

lower than the loss of random pairings.

6 Discussion

Contributions. The contributions of this paper are threefold. First we demon-

strated that any deformation retract (Φ,Ψ) of finite-type based chain complexes

over R is equivalent to a deformation retract (ΦM,ΨM) associated to a Morse
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Figure 8: Topological reconstruction error for sequences of optimal and random

up-collapses with different lengths.

matching M in a given basis. Second, we proved that the reconstruction error

s − ΦΨs, associated to any signal s ∈ Cn and deformation retract (ΦM,ΨM ),

is contained in specific components of the Hodge decomposition if and only if

M is a (n, n − 1)-free (sequential) Morse matching. In the more general case,

we showed that the reconstruction error associated to a deformation retract of

a based chain complex is contained in specific parts of the Hodge decomposition

if and only if its Morsification M is (n, n − 1)-free. Moreover, we proved that

the composition ΦMΨMs can be thought as a sparsification of the signal s in the

(n, n− 1)-free case. Finally, on the computational side, we designed and imple-

mented algorithms that calculate (sequential) matchings that minimize the norm

of topological reconstruction error. Further, we demonstrated computationally

that finding a sequence of optimal matchings with our algorithm performs sig-

nificantly better than randomly collapsing.

Limitations. The type of collapses that preserve cocycles involve chain maps,

and those that preserve cycles involve the adjoints of these maps. This has two

main limitations. The first one is that one can pick only one of the two features

to be encoded at a time. The second limitation is the fact that chain maps do

not necessarily send cocycles in C to cocycles in D, and dually for cochain maps.

The proof of Theorem 4.5 hints at the difficulties of trying to define chain

maps that preserve cocycles and dually cochain maps that preserve cycles. Namely,
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to preserve cocycles with chain maps in dimension n, Morsification and Corollary

3.10 yield some insight, saying that this will occur only when the paired n-cells

of Morsification lie in ∂†n. A sufficient condition for this is that Ker Ψ ⊥ Im Φ,

in which case ∂†n

∣∣∣
Ker Ψ

= (∂n|Ker ΦΨ)† (See Appendix A.2). This rarely occurs in

the standard CW or sheaf bases.

6.1 Applications and Future Work

Algorithms for optimal collapses. In this paper we minimize the recon-

struction error by considering only single collapses. It would be desirable to

find algorithms either for the optimal (n, n − 1)-free Morse matchings, with no

restriction on the length of the sequence, or for optimal (n, n − 1)-free Morse

matchings of given length k. We speculate that this task is likely to be NP-hard,

given that the simpler task of finding a matching that minimises the number of

critical cells is already known to be NP-hard [23, 27]. In this case, it would be

useful to develop algorithms to approximate optimal matchings. These could be

then used to compare how far away the reconstruction error of a sequence of

k optimal pairings (Algorithm 2) is from the reconstruction error of a optimal

collapse of size k.

Applications with inner products. In this paper, we have chosen examples

that are helpful to visually illustrate the key results. However, the theory is built

to accommodate a far larger class of applications. Examples where our theory

may be useful for performing reductions that respect the inner product structure

include the following

• Markov-based heat diffusion. The foundational work of [6] introduces

a graph-theoretic model of heat diffusion on a point cloud, and can be

framed in terms of combinatorial (graph) Laplacians. Here, distance ker-

nel functions induce a weighting function on the nodes and edges of fully

connected graph over the points. This weighting function is equivalent

to specifying an inner product on C where the standard basis vectors are

orthogonal [21].

• Triangulated manifolds. If M is a Riemannian manifold with smooth

triangulation K, then C(K;R) has an inner product structure that con-

verges to the canonical inner product on the de Rham complex Ω(M)

under a certain type of subdivision [9]. This inner product on C(K;R)

– and variations thereof – are useful in discrete Exterior calculus and its

applications [19,20].
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The main theorems of this paper will hold in any of the circumstances described

above, and provide a discrete Morse theoretic procedure for signal compression

that is aware of the geometric information contained in the inner product struc-

ture.

Pooling in cell neural networks. Complementary to theoretical ideas, this

research direction may have potential applications in pooling layers in neural

networks for data structured on complexes or sheaves, such as in [3,10,16]. One

could use Algorithm 2 to reduce the complex for a fixed sized k and then the

map Φ to send the signal onto the reduced complex. We also envision that in

pooling layers one could learn the (n, n− 1)-free Morse matchings.
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A Adjoints and Discrete Morse Theory

A.1 Matrix Representation of Adjoints and Weights

In this appendix we include a lengthier discussion about inner products and

weight functions. To begin, we state a basic result about the matrix representa-

tion of the adjoint in finite-dimensional inner product spaces.

Proposition A.1. Let V and W be finite-dimensional inner product spaces

where

〈v1, v2〉V = vT1 Av2

and

〈w1, w2〉W = wT1 Bw2

for some fixed bases of V and W , where A,B are positive definite symmetric

matrices. If T : V →W , then the adjoint T † : W → V of T satisfies

T † = (A−1)TT TBT .

The idea is that inner products are a vehicle to incorporate data with weights

on the simplices into the linear algebraic world of combinatorial Laplacians. In

particular, as mentioned in Remark 2.14, there is a one-to-one correspondence

between inner products where elementary simplicial (co)chains form an orthog-

onal basis and weight matrices on the simplices. In the literature there are two

approaches to associate weights to the simplices.

Firstly, the work of [31] begins by letting ∂n : Cn(X ) → Cn−1(X ) be the

standard cellular boundary operator on a simplicial complex X , and defines an

inner product structure with respect to a basis given by the simplices via

〈σ, τ〉n = σtWnτ,

where where each Wn is a diagonal matrix. The diagonal entries of Wn can

be thought as weights on the n-cells. Then the coboundary operator ∂†n :

Cn−1(X )→ Cn(X ), is given by

∂†n = W−1
n ∂TnWn−1

following the proposition above.

The second approach, exemplified by the work of [21], starts instead with the

standard coboundary operator on a simplicial complex X , δn = ∂Tn : Cn−1(X )→
Cn(X ). Here the inner product structure on Cn(X ) with respect to a basis given

by the simplices is defined instead to be

〈σ, τ〉n = σtWnτ,
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where where each Wn is a diagonal matrix, the entries of which can be thought as

weights on the n-cells. In this approach, the boundary operator is then written

as

δ†n = W−1
n−1δ

T
nWn. (11)

Because we are working with discrete Morse theory, which conventionally is

built for homology, we take the approach of always beginning with a boundary

operator before constructing its adjoint operator. If one starts by defining a

weighted boundary operator

∂̃n = W−1
n−1∂nWn,

then the adjoint operator induced by the weighted inner product yields

∂̃†n = W−1
n Wn∂

T
nW

−1
n−1Wn−1 = ∂Tn .

In other words, the adjoint of this weighted boundary operator is the standard

coboundary operator, recovering the method of [21].

A.2 The Adjoint of a Morse Retraction

In this section, we explain why the orthogonality condition on the base I of a

based chain complex C is important for establishing a discrete Morse theoretic

interpretation when taking adjoints in Theorem 2.8. One can of course take

the adjoint of the maps in this theorem to construct a deformation retract of

the adjoint cochain complex, along with a coboundary operator, cochain weak-

equivalences, and a cochain homotopy between them. However, only in the

special case of an orthogonal base can these maps be decomposed in terms of

adjoint flow backwards along paths in the original matching graph G(C)M .

Adjoint paths and flow. Suppose we have a Morse matching M on any based

finite-type chain complex C over R with inner products. One can always define

a notion of adjoint flow. First, observe that

∂β,α = 0⇔ ∂†β,α = 0

and further

∂†β,α isomorphism ⇔ ∂β,α isomorphism.

The opposite digraph Gop(C)M (same vertices with edges reversed) of the di-

rected graph G(C)M then has an analogous relationship with the adjoint of the

boundary operator. Namely, there is an edge β → α whenever ∂†β,α is non-zero,

and a reversed edge β → α in Gop(C)M whenever α→ β is in M and ∂†β,α is an
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isomorphism. The same cells are unpaired in the adjoint world as the original

one, and thus the critical cells of both are the same.

For a directed path γ = α, σ1, . . . , σk, β in the graph G(C)M , the adjoint

index I†(γ) of γ is written as

I†(γ) = ε0∂
ε0†
α,σ0
◦ . . . ◦ ε1∂εn−1†

σn−2,σn−1
◦ εn∂εn†σn,β

: Cβ → Cα

where ki = −1 if σi → σi+1 is an element ofM , and 1 otherwise. For any α, β ∈ I,

we can interpret this as following the path backwards and taking the adjoint of

each map. The adjoint of the summed index also has a similar structure:

Γ†β,α =
∑
γ:α→β

I†(γ) : Cβ → Cα.

where the sum runs over all paths γ from α→ β in G(C)M or, equivalently, over

all paths β → α in Gop(C)M .

Main theorem for adjoint matching. To see what can go wrong, we need

to be careful to distinguish categorical projections – those that simply delete

components of a direct sum – from orthogonal projections that arise from the

inner product structure.

Let f : C = ⊕αCα → D = ⊕βDβ be a map of finite-type graded Hilbert

spaces, based by I and J respectively. Each component fβ,α can be thought of

as the composition of maps

fβ,α : Cα
iα−→ C

f−→ D
πβ−→ Dβ (12)

such that we recover the total map f via sums

f =
∑
α,β

fβ,α.

In a Hilbert space, the the inclusion iα is adjoint to the orthogonal projection

ProjCα onto Cα (Lemma 2.10), which not necessarily the categorical projection

πα. The categorical projection map πα agrees with ProjCα if and only if

Cα ⊥ Cα′ (13)

for all α′ ∈ I \ α. If this equation holds for both α ∈ I and β ∈ J , then the

adjoint of the component map

(fβ,α)† : Dβ

π†β−→ D
f†−→ D

i†α−→ Dα.
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agrees with the component maps of the adjoint

(f †)α,β : Dβ
iβ−→ D

f†−→ D
πα−→ Dα.

If Equation 13 holds for all α ∈ I and β ∈ J , then

f † =
⊕
α,β

(fβ,α)†.

In other words, the adjoint commutes with the direct sum.

The reasoning above underpins why orthogonal components lead to a natural

interpretation of the adjoint maps of 2.8 in terms of the adjoint flow. If this is the

case, we can take the adjoint of 2.8 everywhere to prove the following important

result.

Theorem A.2 (Sköldberg, [37]). Let C be a finite-dimensional chain complex

indexed by an orthogonal base I, M a Morse matching, and

CM
n =

⊕
α∈In∩M0

Cα.

The diagram

CM C
Ψ†

Φ†

h†

is a deformation retract of cochain complexes, where for x ∈ Cβ with β ∈ In,

• (∂†
CM

)n(x) =
∑

α∈M0∩In Γ†β,α(x)

• Φ†n(x) =
∑

α∈In Γ†β,α(x)

• Ψ†n(x) =
∑

α∈M0∩In Γ†β,α(x)

• h†n(x) =
∑

α∈In−1
Γ†β,α(x)

In most circumstances – weighted Laplacians, cellular sheaves, etc. – there

is indeed an orthogonal basis. However, in the Morsification Lemma 3.7, we

perform a reduction on the left component of

Ker Ψ⊕ Im Φ

which, in general, is not orthogonal to Im Φ. One needs to be careful in such

situations not to utilise the adjoint flow decompositions given in Theorem A.2.
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