
Spatially Focused Attack against Spatiotemporal Graph Neural Networks

Fuqiang Liu, Luis Miranda-Moreno, Lijun Sun*

McGill University, Montreal, QC, Canada
fuqiang.liu@mail.mcgill.ca, luis.miranda-moreno@mcgill.ca, lijun.sun@mcgill.ca

Abstract

Spatiotemporal forecasting plays an essential role in vari-
ous applications in intelligent transportation systems (ITS),
such as route planning, navigation, and traffic control and
management. Deep Spatiotemporal graph neural networks
(GNNs), which capture both spatial and temporal patterns,
have achieved great success in traffic forecasting applications.
Understanding how GNNs-based forecasting work and the
vulnerability and robustness of these models becomes criti-
cal to real-world applications. For example, if spatiotemporal
GNNs are vulnerable in real-world traffic prediction applica-
tions, a hacker can easily manipulate the results and cause
serious traffic congestion and even a city-scale breakdown.
However, despite that recent studies have demonstrated that
deep neural networks (DNNs) are vulnerable to carefully de-
signed perturbations in multiple domains like objection clas-
sification and graph representation, current adversarial works
cannot be directly applied to spatiotemporal forecasting due
to the causal nature and spatiotemporal mechanisms in fore-
casting models. To fill this gap, in this paper we design Spa-
tially Focused Attack (SFA) to break spatiotemporal GNNs
by attacking a single vertex. To achieve this, we first pro-
pose the inverse estimation to address the causality issue;
then, we apply genetic algorithms with a universal attack
method as the evaluation function to locate the weakest ver-
tex; finally, perturbations are generated by solving an inverse
estimation-based optimization problem. We conduct experi-
ments on real-world traffic data and our results show that per-
turbations in one vertex designed by SA can be diffused into
a large part of the graph.

1 Introduction
Spatiotemporal traffic forecasting has been a long-standing
research topic and a fundamental application in intelligent
transportation systems (ITS). For instance, with better pre-
diction of future traffic states, navigation apps can help
drivers avoid traffic congestion, and traffic signals can man-
age traffic flows to increase network capacity. Essentially,
traffic forecasting can be modeled as a multivariate time se-
ries prediction problem for a network of connected sensors
based on the topology of road networks. Given the com-
plex spatial and temporal patterns governed by traffic dy-
namics and road network structure, recent studies have de-

*Corresponding author.
Preprint. Under review.

Current 𝑡 Future 𝑡 + 1

Spatial Gap

s
p

e
e
d

0

85

Temporal Gap

: vertices most current adversarial studies attack 

manipulate

: vertex the proposed method attacks 

𝝆∗ = m𝑎𝑥
𝝆

𝐹(𝓖 + 𝝆) − 𝒢𝑡+1 2

Adversary

Sensors

Figure 1: Temporal and spatial gaps when applying current
adversarial studies to spatiotemporal forecasting.

veloped various Graph Neural Networks-based traffic fore-
casting models and achieved great success (Fang et al. 2019;
Wu et al. 2019; Guo et al. 2019).

It has been shown in many recent studies that deep learn-
ing frameworks are very vulnerable to carefully designed
attacks (see e.g., Kurakin, Goodfellow, and Bengio 2016b;
Goodfellow, Shlens, and Szegedy 2014; Papernot et al.
2016a; Tramèr et al. 2017; Kurakin, Goodfellow, and Bengio
2016a). This raises a critical concern about the application
of spatiotemporal GNNs-based models for real-world traf-
fic forecasting, in which robustness and reliability are of ut-
most importance. For example, with a vulnerable forecasting
model, a hacker can manipulate the predicted traffic states
and feed these manipulated values into the downstream ap-
plication, thus causing severe problems such as traffic con-
gestion and even city-scale breakdown. Despite having supe-
rior accuracy, GNNs-based traffic prediction models are also
facing great cyber-security challenges in practice. It remains
a critical question to understand and evaluate the vulnerabil-
ity of these models.

However, current adversarial works cannot be directly ap-
plied to evaluating the vulnerability of GNNs-based spa-
tiotemporal forecasting because of the temporal and spatial
gaps shown in Figure 1. In the following of this paper, we
refer to “sensors” in a “road network” as “vertices” of a
“graph” in GNNs and use two terms interchangeably. First,
current adversarial works like adversarial attacks against re-

ar
X

iv
:2

10
9.

04
60

8v
1 

 [
cs

.L
G

] 
 1

0 
Se

p 
20

21



current neural network (RNN) (Rosenberg et al. 2019; Pa-
pernot et al. 2016b; Hu and Tan 2017) rely on the ground
truth to generate perturbations, while the future state—the
forecasting models’ ground truth—is inaccessible in traffic
forecasting applications. For instance, the traffic condition at
11:35 am can not be detected by sensors at 11:30 am. Cur-
rent adversarial works require the unavailable information at
11:35 am to generate perturbations when they are utilized to
fool spatiotemporal forecasting models at 11:30 am. Thus
these ground truth-based adversarial models cannot work
anymore. We refer to this challenge as the “temporal gap”
(see right and bottom part of Figure 1). Second, in real-world
ITS applications, sensors are deployed on a large-scale road
network. Following current adversarial studies, one assumes
that all sensors can be manipulated at the same time (see red
dots in Figure 1). However, this assumption is is unrealistic
as it is impossible for the hacker vehicle to poison all sensors
in such a large-scale road network. We refer to this challenge
as the “spatial gap”. More discussions on why current adver-
sarial works cannot be directly applied to attacking GNNs-
based forecasting models are detailed in Section 2. Overall,
it remains unclear how vulnerable these GNNs-based spa-
tiotemporal forecasting using existing attack frameworks.

The goal of this paper is to understand and examine the
vulnerability and robustness of GNNs-based spatiotemporal
forecasting models. In doing so, we design a Spatially Fo-
cused Attack (SFA) framework to break these forecasting
models by manipulating only one vertex in the graph (see
the green square in Figure 1). We first propose Inverse Es-
timation (IE) to avoid using future ground truth and design
and IE-based universal attack mechanism. Then, we utilize
the genetic algorithm, of which the evaluation function con-
sists of the proposed universal attack method, to locate the
“weakest” sensor/vertex. Here the weakest vertex refers to
the vertex that will it will cause maximum damage to the
forecasting models when being attacked. Finally, we gen-
erate perturbations by solving an optimization problem. It
should be noted that the proposed method does not require
future information in designing perturbations. Following the
proposed SFA framework, one hacker can break forecasting
models by poisoning just one sensor in a large-scale road
network. Thus, SFA is a realistic solution to evaluate the
robustness and vulnerability of spatiotemporal forecasting
models for real-world applications.

To prove the effectiveness of the proposed SFA method,
we test it on two spatiotemporal traffic datasets with three
different Spatiotemporal GNNs, including STGCN (Yu, Yin,
and Zhu 2018), DCRNN (Li et al. 2017) and Graph Wavenet
(Wu et al. 2019). Our results show that SFA can cause at
least 15% accuracy drop, and there are about 10% sensors
severely impacted with the boundary of speed variation lim-
ited to 15 km/h. The main contributions of this paper can be
summarized as follows.
• We propose a novel Spatially Focused Attack (SFA)

method to find the weakest vertex and break the forecast-
ing model by poisoning single one vertex. To the best
of our knowledge, this is the first vulnerability study on
GNNs-based spatiotemporal forecasting models by poi-
soning only one vertex.

• We propose to use inverse estimation to avoid using fu-
ture ground truth when computing perturbations.

• We study the effectiveness of the proposed SFA with ex-
tensive experiments on real-world datasets.

2 Related Work
One Pixel Attack for Fooling Deep Neural Networks.
One pixel attack (Su, Vargas, and Kouichi 2019) utilizes
Differential Evolution (DE) to generate the perturbation to
poison one pixel in images and then fools CNNs. However,
one-pixel attack requires the ground truth to compute pertur-
bations, which means applying one-pixel attack still face the
temporal gap. Moreover, images are regular-structured and
there exist no temporal variations in one-pixel attack. One-
pixel attack’ poisoning positions vary in different frames,
which is not applicable to spatiotemporal forecasting do-
mains. The above features prevent us from directly using
one-pixel attack on spatiotemporal forecasting models.

Adversarial Attacks against Time Series Analysis.
Some previous works (Chen, Tan, and Zhang 2019; Zhou
et al. 2019; Alfeld, Zhu, and Barford 2016; Karim, Majum-
dar, and Darabi 2019) propose adversarial attack methods
against autoregressive models or time series classification
models. Essentially, these works only consider univariate
time series. Different from these works, we focus on mul-
tivariate time series generated from a complex spatial do-
main/network. The input of spatiotemporal GNNs is a dy-
namic graph rather than regular matrices or sequences. We
take the spatial correlation into consideration, which is over-
looked in previous studies.

Adversarial Attacks against Graph Neural Networks.
Many studies (Dai, Li, and Tian 2018; Tang et al. 2020;
Zhang and Zitnik 2020; You et al. 2020) utilize reinforce-
ment learning (RL), meta learning, or genetic algorithm to
fool GNNs in vertex, edge, and graph classification tasks
by tuning the graph topology. Still, these studies involve no
temporal variations in their graphs, and they mainly focus
on the spatial pattern. These models cannot be applied to
fool spatiotemporal forecasting models because of the lack
of temporal correlation. In particular, attacking spatiotempo-
ral forecasting models deployed in real-world applications
by graph topology-based attack methods (Zugner and Gun-
nemann 2019; Chang et al. 2020) are unrealistic, because
tuning graph topology corresponds to tuning the structure of
sensor networks (i.e., road networks) that collects spatiotem-
poral data continuously.

3 Preliminary
Traffic state data collected from a sensor network is often
represented a time varying graph, which encodes both spa-
tial and temporal information. In general, the spatiotemporal
sequences can be represented as Gt = {Vt, E ,W}, where E
is the set of edges in the graph,W is the weighted adjacency
matrix in which every element describes the spatial relation-
ship between different sensors, Vt = {v1,t, . . . , vn,t} is the
set of state values (e.g. traffic speed or traffic volume) col-
lected from sensors on timestamp t, and n is the number of



sensors (Shuman et al. 2013). For multi-step spatiotemporal
forecasting, future states are estimated as{

G∗t+M , ...,G∗t+1

}
= F ({Gt, ...,Gt−N+1}) , (1)

where G∗t denotes the prediction of the states at time t. Pre-
vious states from t − N + 1 to t are fed into a forecasting
model F that outputs predictions of future states from t+ 1
to t + M . In general, we have M ≤ N . The above pro-
cess is customarily called sequence-to-sequence (seq2seq)
forecasting. Most spatiotemporal forecasting models output
a single future state, which will be in turn fed as input into
the model to forecast the next state. This process is named
as the recursive multistep forecasting, and future states are
computed as

G∗t+1 = F ({Gt,Gt−1, ...,Gt−N+1})
G∗t+2 = F

({
G∗t+1,Gt, ...,Gt−N+2

})
...

G∗t+M = F
({
G∗t+M−1,G∗t+M−2, ...,Gt−N+M

})
.

(2)

State-of-the-art forecasting models, F , are generally con-
structed based on spatiotemporal GNNs (see e.g., Li et al.
2017; Wu et al. 2019; Yu, Yin, and Zhu 2018; Guo et al.
2019), consisting of both spatial layers and temporal lay-
ers. In general, these models use gated linear unit (GLU)
or Gated-CNN (Chen et al. 2020; Bai, Kolter, and Koltun
2018) as the temporal layer to capture the temporal patterns
embedded in the spatiotemporal sequence, and the Graph-
CNN (Shuman et al. 2013; Bruna et al. 2014) is used as
spatial layers to capture the spatial patterns. In this paper,
we concentrate our adversarial studies on recursive multi-
step spatiotemporal forecasting models. However, the anal-
ysis can be easily extended to seq2seq-based multistep fore-
casting.

4 Methodology
In this section, we detail the proposed SFA framework,
which essentially consists of three components. We first pro-
pose to use Inverse Estimation (IE) as a potential solution to
address the temporal gap. Second, we derive a solution to
locate the weakest vertex to avoid manipulating all sensors.
Finally, an optimization model is introduced to SFA to com-
pute and design the perturbations used to fool spatiotempo-
ral forecasting models.

4.1 Inverse Estimation
In the domain of computer vision, adversarial attacks aim

at fooling a machine learning-based classifier to misclassify
objects with undetectable modifications. When it comes to
spatiotemporal forecasting, adversarial attacks is to add un-
noticeable perturbations into historical time series such that
the forecasting models begin to generate bad predictions that
are far away from the ground truth. We formulate this goal
as the the following optimization problem:

max
ρ
‖F (G + ρ)− Gt+1‖2

s.t. ρ2i ≤ ξ,
(3)

where G = {Gt, ...,Gt−N+1} denotes the input graph se-
quence, Gt+1 denotes the future traffic state that is the
ground truth of the forecasting model, ρ = {ρt, ..., ρt−N+1}
denotes a collection of perturbations, and ξ denotes the pre-
specified constant to constrain the perturbation scale in order
to make the perturbations unnoticeable.

However, it is difficult to directly solve the optimization
model in (3). As an alternative, we design a proxy optimiza-
tion problem by integrating the constraint into the objective
function:

max
ρ
‖F (G + ρ)− Gt+1‖2−α

t∑
i=t−N+1

max
(
0, ρ2i − ξ

)
,

(4)
where α denotes the penalty factor. Even though the regu-
larization term in Eq. (4) is a soft constraint compared to the
original constraint ‖ρ‖2 ≤ ξ, it can still strictly force the per-
turbation’s scale less than the upper bound, ξ, by setting the
penalty factor to be a large value to make the scale penalty
term much larger than the first term in Eq. (4). In real-world
traffic applications, ξ is used to balance the attack perfor-
mance and degree of observability.

However, the fact is that the ground truth of a forecasting
model, Gt+1 in Eq. (4), is unavailable at time t. This issue is
referred to as the “temporal gap” in Figure 1. Due to the in-
evitable usage of the future information, fooling spatiotem-
poral GNNs as Eq. (4) with the simple optimization model
becomes unrealistic. A simple solution to address this issue
is to directly use the most recent observations as the forecast-
ing. This is equivalent to approximating the complex GNNs
with a “most recent” forecaster:

Gt+1 ← Gt. (5)
However, perturbations computed by the direct estimation
may not be effective enough to cause significant perfor-
mance drop. The reason is the direct estimation involves
great errors in the perturbation computation, which is dis-
cussed in Section 5.1. In addition, the maximization opti-
mization problem is still difficult to solve given the large
search space.

To address the said issue, we propose an Inverse Esti-
mation scheme to offer a simple but clear direction to the
optimization model. We introduce the concept of “opposite
state” and transform the maximization problem in (4) into a
minimization problem, whose goal is to fool spatiotemporal
GNNs to generate predictions opposite to the ground truth:

min
ρ

∥∥∥F (G + ρ)− G̃t+1

∥∥∥
2

+α

t∑
i=t−N+1

max
(
0, ρ2i − ξ

)
,

(6)
where G̃t+1 denotes the “opposite state” of Gt+1. Perturba-
tions can be generated more effectively by solving Eq. (6).
The above idea is similar to targeted attacks (Akhtar and
Mian 2018). However, classical targeted attacks still utilize
the ground truth in perturbation computations.

To avoid using future information, the opposite of future
state, G̃t+1, is estimated by computing the opposite of the
most recent state:

G̃t+1 ← G̃t =
{
Ṽt, E ,W

}
, (7)



where Ṽt = {ṽ1,t, ..., ṽn,t} denotes a collection of state
values opposite to these collected from sensors. Taking the
traffic speed as an example, when the condition is “con-
gested/low speed”, its opposite state should be “free/high
speed”. In this case, we compute ṽi,t—the the opposite of
vi,t—using two distinct values:

ṽi,t =

{
max (V) , vi,t < mid (V) ,

min (V) , vi,t ≥ mid (V) ,
(8)

where mid (V), max (V), and min (V) represent the mean,
maximum, and minimum value of the spatiotemporal
dataset, respectively. We examine the effectiveness of this
approach in the experiment section with real-world datasets.

4.2 Locating the Weakest Vertex
In this section, we introduce a solution to avoid manipulat-
ing (introducing perturbations on) all sensors in the road net-
work. The key idea is to identify the most vulnerable sensor,
which produces the largest accuracy drop to the whole sen-
sor network when being attacked. To achieve this goal, we
first solve a universal attack problem by making the pertur-
bation static. Thus, the universal attack implies that the per-
turbation is consistent and independent from the input. The
universal perturbation is computed by solving the following
optimization problem

min
ρu

∥∥∥F (G + {ρu})− G̃t+1

∥∥∥
2
+α·max

(
0, ρ2u − ξ

)
, (9)

where ρu denotes the universal perturbation. After the uni-
versal perturbation is generated, there is no need to update it
when new data come. It should be noted that this universal
perturbation can only break forecasting models by poison-
ing all sensors. Thus it is unrealistic to apply it to real-world
forecasting applications. Nevertheless, this universal pertur-
bation will be used to define and quantify sensor weakness.

We define the “weakness” score of the jth sensor as the
number of influenced/affected sensors when sensor jth is at-
tacked by the proposed universal perturbation. Specifically,
the weakness is computed as

weakj,t = ‖Kθ {F (G +Mj · ρu)− Gt+1}‖0 , (10)
whereMj ·ρu denotes that all elements except the one corre-
sponding to the jth sensor, and Kθ {·} denotes an element-
wise filter to set elements whose absolute value is smaller
than θ to 0. As Eq. (10) shows, the weakness is actually
time-dependent. By collecting the weakness in a time frame,
a weakness vector can be formed. The l2-norm of the vector
can be regarded as the time-invariant weakness for a vertex.
Thus, for a sensor j, a greater weakness value suggests that
more sensors will be influenced if it is attacked. We will at-
tack the vertex with the largest “weakness” value. For traffic
forecasting applications, we consider the vertex where the
prediction error is greater than 5 km/h as the influenced ver-
tex, and θ is set to 5 consequently.

A possible method to locate the weakest vertex is the com-
plete traversal algorithm. However, this method is time con-
suming. To reduce the time cost, we utilize the genetic al-
gorithm to locate the weakest vertex, which is shown as fol-
lows. The genetic process is presented schematically in Fig-
ure 2.

……

Step 1 𝑐1(0)

+ +

𝑐2(0) 𝑐𝑠(0)

Initialization

……

……

Step 2

Update

𝑐1(𝑔) 𝑐𝑠(𝑔)

𝑡𝑤
𝑒𝑎
𝑘 𝑗

,𝑡

……

𝑡𝑤
𝑒𝑎
𝑘 𝑗

,𝑡Step 3

Selection based on weakness

It
e
ra

ti
o
n
 𝑔

=
𝑔
+
1

the weakest

Step 4

𝑡

𝑤
𝑒𝑎
𝑘 𝑗

,𝑡

Figure 2: Locating the weakest vertex. Please note the red
dot refers to vertex to poison.

• First, the initial candidate set is generated with s sensors
with the most edges.

• Second, the updated set consists of s new candidates and
they are computed as

ci(g + 1) = cr1(g) + p(cr2(g)− cr3(g)), (11)

where ci denotes the position (longitude and latitude) of
the ith vertex, g denotes the gth iteration, r1, r2, and r3
are random numbers with different values, and p is set to
0.5 empirically.

• Third, compare the weakness of updated candidates with
the previous candidate set, then keep only s candidates
with the largest weakness value.

• Fourth, repeat the second and third step until the candi-
date set is consistent or g is sufficient. Select the weakest
vertex to attack. It should be noted that the bound of g
controls the trade-off of the effectiveness and efficiency
of the solution. The larger bound represents the proposed
solution is much closer to the complete traversal algo-
rithm.

4.3 Spatially Focused Attack
Once the weakest vertex is located, spatially focused attack
is proposed to fool the spatiotemporal forecasting model by
poisoning only the selected vertex. The perturbation is com-
puted by solving the following optimization problem:

min
MJ ·ρ

∥∥∥F (G +MJ · ρ)− G̃t
∥∥∥
2

+ α · R, (12)

where MJ · ρ is the generated one vertex perturbation,
J denotes the index of the weakest vertex, and R =
max

(
0, (MJ · ρ)2 − ξ

)
denotes the regularization term to

control the scale of the generated one vertex perturbation.
Different from adversarial attack methods as in Eq. (6)

and Eq. (9) that manipulates all sensors, the proposed SFA



poisons only one sensor in the road network in order to
achieve the largest accuracy drop. Therefore, SFA provides
a more realistic and reasonable framework for implementing
real-world attacks. In reality, perturbation on a selected sen-
sor can be introduced by making a hacker vehicle drive by or
by controling the network communication to generate fake
sensor readings. Overall, we consider SFA an essential and
meaningful attack strategy and thus it can be used to evalu-
ate the robustness and vulnerability of different GNNs-based
traffic forecasting models.

5 Evaluation and Results
In this section, we evaluate the proposed SFA framework
on two traffic datasets, namely PeMS and METR-LA(S).
PeMS consists of traffic speed data from 200 detectors of
Caltrans Performance Measurement System (PeMS) and
METR-LA(S) also registers traffic speed data for 100 de-
tectors on the highways of Los Angeles County. These
two datasets have been widely used as a benchmark to as-
sess spatiotemporal GNN models. Our experiments are con-
ducted on an NVIDIA Tesla V100 GPU.

We test three spatiotemporal GNNs-based forecasting
models including STGCN (Yu, Yin, and Zhu 2018),
DCRNN (Li et al. 2017), and Graph WaveNet (Wu et al.
2019). Each dataset is split into 3 subsets: 70% for train-
ing, 10% for validation, and 20% for test. All parameters are
as the same as in the original studies except that we set the
number of input and output channels to be consistent with
the number of detectors/sensors. We use the validation set to
locate the weakest sensor, and generate SFA perturbations in
real-time for the test set. As for evaluation metrics, we intro-
duce three metrics to quantify the effectiveness of attacks:
• MAPE Increase (MAPEI): MAPE is a measure of pre-

diction accuracy and smaller MAPE represents better
predictions. An increase in MAPE thus translates into a
decrease in the prediction accuracy.

• Normalized MAPE Increase (NMAPEI): The ratio be-
tween MAPEI and MAPE before the attacks.

• k%-Impacted Vertices (k%-IV): The number of ver-
tices with NMAPEI greater than k%.

5.1 Effectiveness of Inverse Estimation
We compare the effectiveness of perturbations generated
from the inverse estimation (Eqs. (6) and (7)) with the direct
estimation (Eqs. (4) and (5)). It should be noted that in this
experiment we apply perturbations on all sensors instead of
attacking only one sensor. We conduct the analysis on 15
min-head traffic prediction on the PeMS data with STGCN
as the base model.

Figure 3 shows the performance comparison between the
proposed inverse estimation and the baseline, direct estima-
tion. As can be seen, perturbations generated from inverse
estimation can cause the forecasting forecasting model’s ac-
curacy drop greater compared with perturbations generated
from direct estimation. Inverse Estimation outperforms di-
rectly estimating the future ground truth because the pro-
posed IE can feed less errors into the perturbation computa-
tion process. Both strategies cannot achieve perfect estima-

1 2 3 4 5
√ : perturbation scale (km/h)

0

5

10

15

M
A

P
E

I (
%

)

GWN
Direct Estimation
Inverse Estimation

Figure 3: Comparison between the inverse estimation and
the direct estimation.

tion and their estimation errors can impact the effectiveness
of perturbations. The proposed inverse estimation is a bi-
nary estimation and it is much easier than estimating a con-
tinuous value. Thus the proposed IE involves less errors in
perturbation computations, which in turn, as a result, also
lead to more effective adversarial examples. Take PeMS for
instance, errors fed by IE is small (MAPE: 0.56%), while
errors fed by the direct estimation is large (MAPE: 3.3%).

5.2 Experiments on Hyperparameters

We next examine the effect of hyperparameters on locating
the weakest sensor. The setting is as same as that in Sec-
tion 5.1. We set the number of candidates s to 5 and 10,
respectively, and record the number of the iterations. We use
NMAPEI and computation time to measure and compare the
performance of different hyperparameter configurations.

From Figure 4, the computation time generally grows
with the increase of the iteration g. When s is set to 5, lo-
cating the weakest vertex is much harder compared with the
case of setting s to 10. A possible reason is that, with a few
initial candidates, the proposed strategy tends to converge to
a local optimum. Note that when we set s to 10, the pro-
posed strategy breaks the iteration loop. For the following
experiments, we set both s and g to 10.

Figure 4: Experiments on hyperparameters of locating the
weakest vertex. The number of candidates, s, and the itera-
tion, g, are studied.



NMAPEI (%) 30%-IV time (s)

DEG 4.5 3 -
CEN 3.2 1 -
CT 15.2 17 1795

Proposed (s=10, g=10) 15.2 17 1104

Table 1: The effectiveness and efficiency analysis on the pro-
posed strategy to locate the weakest vertex.

5.3 Experiments on Effectiveness and Efficiency
of Locating the Weakest Vertex

In this section, we design experiments to demonstrate the
effectiveness and efficiency of different strategies in locat-
ing the weakest sensor. The setting in Section 5.1 is applied
to this experiment. We compare the proposed approach with
three simple baselines, including (1) locating the vertex with
the highest degree (DEG), i.e., the number of connected sen-
sors, (2) locating the vertex with the highest weighted degree
centrality (CEN), i.e., row-sum of the weighted adjacency
matrix, and (3) locating the weakest vertex by the complete
traversal algorithm (CT). After locating the weakest vertex
by different strategies, perturbations are computed based on
Eq. (12) and then fed into STGCN. We evaluate different
approaches using NMAPEI, 30%-IV, and computation time.

Table 1 shows the comparison results. As we can see, the
proposed solution achieves the same optimal as CT—it iden-
tifies the same weakest sensor as the full enumeration. On
the other hand, simply poisoning the vertices with highest
degree and the highest centrality cannot ensure an effective
and efficient attack. A possible reason is that the robustness
of sensors is improved by their neighbors because of the lo-
cal/spatial aggregation mechanism in GNNs. Besides, the
proposed strategy can reduce 40% computation cost com-
pared with the CT.

5.4 Tradeoff between Attack Performance and
the Attack Observability

In this section, we evaluate examine the effect of pertur-
bation scale on the attack performance. We can consider
perturbation scale an indicator for attack observability. A
larger perturbation is more likely to be noticed by the user of
GNNs. We first propose an experiment to assess how the pa-
rameter ξ in Eq. (12) influences the effectiveness of the pro-
posed one vertex attack method. In this subsection, 15 min
traffic speed forecasting is undertaken by STGCN, DCRNN,
and Graph Wavenet that work as the targeted models and
the experiment is conducted on META-LA(S). These mod-
els are attacked by the proposed SFA with different ξ. Note
that only one sensor/vertex is poisoned in this experiment.

Table 2 shows the number of impacted vertices (IV) with
different ξ. When setting

√
ξ to 20 km/h, we find that around

10% sensors will have an NMAPEI greater than 40% and
∼90% sensors will show at least 5% increase in NMAPEI.
This suggests that, when we have a large

√
ξ, the whole net-

work could be severely impacted even attacking only one
sensor. With a small

√
ξ, there are about 50% sensors are in-

fluenced for at least 5% NMAPE. Based on Table 2, we can

conclude that perturbations will be effectively diffused from
one vertex to most of the graph when we apply GNNs-based
spatiotemporal forecasting models. The greater the pertur-
bation is, the larger the number of sensors in the graph will
be influenced. Our analysis also suggests that setting ξ to an
appropriate range is important. An extremely large ξ, which
represents abnormal driving behaviors in traffic domains,
can be detected easily by the user of GNNs. By analyzing
PeMS and META-LA(S), speed variation within 15km/h oc-
curs frequently, and consequently, we regard the accessible
boundary of speed variation is 15 km/h, namely

√
ξ = 15

km/h.

5.5 Effectiveness of Spatially Focused Attack
We set parameters and hyperparameters in SFA based on
the aforementioned experimental results. Finally, we con-
duct experiments on PeMS to show the overall the effec-
tiveness of the proposed method. We perform 15 min-ahead
traffic speed forecasting using the three mentioned GNNs
and compare the proposed SFA with four attack baselines.

• GWN: Generate Gaussian White Noise (GWN) with the
scale being consistent with

√
ξ as in SFA, and attack the

same weakest sensor. This baseline is used to evaluate
the effectiveness of perturbation design as in Eq. (12).

• DEG: We simply consider the sensor with the largest
number of neighbors as the “weakest”, and attack it using
the same optimization algorithm as in SFA. This base-
line is designed to examine whether the proposed locat-
ing strategy can effectively identify the weakest sensor
(or a suboptimal that also works well).

• MFGSM: Attack all sensors with the modified Fast
Gradient Sign Method (FGSM) (Szegedy et al. 2015;
Moosavi-Dezfooli, Fawzi, and Frossard 2016). We re-
place the ground truth in the original FGSM with the pro-
posed inverse estimation as Eq. (7). The modified FGSM
perturbation is computed as

ρ = ε sign(5J (Φ,G, G̃t)), (13)

where 5J computes the gradient of the cost function
around the prediction of the forecasting model parame-
terized by Φ w.r.t the input sequence G, sign denotes the
sign function, G̃t denotes the inverse estimation of the
ground truth, and ε control the perturbation’s scale. This
baseline is chosen to compare the targeted attack in SFA
with manipulating all sensors. We set the scale parame-
ter, ε, to 2 and 3, respectively.

In these experiments, we set
√
ξ to 15 km/h for methods

that attack only one sensor (i.e., SFA, GWN, and DEG). Ta-
ble 3 shows the experiment results, which confirm the supe-
rior performance of the proposed SFA framework. We can
see that SFA outperforms attacking the vertex with the most
edges (DEG), showing that SFA can effectively identify a
weak sensor. SFA also outperforms GWN that attacks the
same weakest sensor, confirming that the proposed method
can generate the optimal perturbations for manipulating only
one vertex to fool the spatiotemporal forecasting model in
the entire graph.



STGCN DCRNN Grave Wavenet
√
ξ (km/h) 5 10 15 20 5 10 15 20 5 10 15 20

5%-IV 43 71 69 90 51 75 82 88 42 70 82 91
10%-IV 14 52 61 82 17 59 65 71 16 32 52 73
20%-IV 4 22 40 46 8 27 45 50 3 25 41 55
30%-IV 0 1 17 39 1 1 26 40 1 4 19 38
40%-IV 0 1 1 9 0 0 0 13 0 0 1 16

Table 2: The relationship between
√
ξ and the k%-IV.

STGCN DCRNN Grave Wavenet
NMAPEI 30%-IV NMAPEI 30%-IV NMAPEI 30%-IV

SFA 15.2% 17 16.7% 22 15.5% 21
GWN 1.7% 0 2.3% 0 2.1% 0
DEG 4.5% 3 4.7% 3 5.7% 2

MFGSM (ε=2) 15.4% - 15.6% - 16.2% -
MFGSM (ε=3) 27.3% - 24.4% - 25.8% -

Table 3: Effectiveness evaluation based on PeMS.

N
M

A
P

E
I 

(%
)

0

30

A

B

C

(a) Attack A

0 100 200
Time Step

0

20

40

60

80

T
ra

ffi
c 

S
pe

ed

Clean Input
Poisoned Input

(b) Input to sensor A

0 100 200
Time Step

20

40

60

T
ra

ffi
c 

S
pe

ed

No Attack
Attacked
Ground Truth

(c) Prediction of sensor B

0 100 200
Time Step

20

40

60

T
ra

ffi
c 

S
pe

ed

No Attack
Attacked
Ground Truth

(d) Prediction of sensor C

Figure 5: Results of the proposed Spatially Focused Attack.
(a) The NMAPEI values for all sensors at time step 60 when
A is attacked. (b) The designed perturbations to attack sen-
sor A. (c) and (d) Attack results for sensors B/C.

Fig. 5 shows an example of attack results on PeMS us-
ing STGCN as the forecasting model. We apply SFA to at-
tack sensor A with optimized/designed perturbations (see
Fig. 5(b)). In Figs. 5(c) and 5(d), we the values/results on
sensors (B) and (C), including the ground truth traffic speed,
the default forecasting of STGCN without attacks, and the
forecasting results when implementing the perturbations on
senosr A. As can be seen, the attack on sensor A can cause
substantial accuracy drop on sensor B, while sensor C is less
affected by the attack. A potential reason is that A and B
are connected on the highway, thus having strong dependen-

cies, while the forecasting of sensor C might be mainly de-
termined by its local neighbors in GNNs. Overall, for traf-
fic forecasting in PeMS, the proposed SFA framework can
cause more than 15% accuracy drop for all three Spatiotem-
poral GNN models, and about 10% sensors are severely im-
pacted (the NMAPEI of these sensors are greater than 30%)
when setting

√
ξ to 15 km/h.

Nevertheless, it should be noted that attacking all sensors
will always be more effective than attacking only one vertex;
however, the results in Table. 3 show that the one-vertex-
based SFA can offer comparable performance as MFSDM
that attack all sensors when setting ε = 2 km/h ≈ 0.13

√
ξ

(both
√
ξ and ε control the level of perturbations). Overall,

the above experiments confirms the effectiveness of SFA.
The perturbation can be diffused into the entire graph and
even predictions on sensors that are far from the attacked
one can be severely influenced.

6 Conclusion
In this paper, we propose Spatially Focused Attack (SFA)
to break GNNs-based spatiotemporal forecasting models by
poisoning only one vertex/sensor. SFA consists of three key
components—using inverse estimation to effectively design
a universal perturbation, identifying the most vulnerable
sensor based on “weakness”, and redesign perturbations on
the selected sensor. Different from other attack studies, the
routine of SFA does not require future information in com-
puting the optimal perturbations. Our experiments on two
real-world traffic datasets have demonstrated the effective-
ness of the single sensor-based attacks. One direction for
future research is to seek solutions to reformulate the white-
box attack to generate black-box perturbations. Given that
SFA has shown that attacking a single sensor can cause net-
work disruption, how to defend the real-world forecasting
systems and to make them more robust is an urgent research
question for agencies and practitioners.



References
Akhtar, N.; and Mian, A. 2018. Threat of Adversarial At-
tacks on Deep Learning in Computer Vision: A Survey.
arXiv preprint arXiv:1801.00553.
Alfeld, S.; Zhu, X.; and Barford, P. 2016. Data Poisoning
Attacks against Autoregressive Models. In AAAI.
Bai, S.; Kolter, Z.; and Koltun, V. 2018. An Empirical Evalu-
ation of Generic Convolutional and Recurrent Networks for
Sequence Modeling. arXiv preprint arXiv:1803.01271.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014.
Spectral Networks and Deep Locally Connected Networks
on Graphs. In ICLR.
Chang, H.; Rong, Y.; Xu, T.; Huang, W.; Zhang, H.; Cui, P.;
Zhu, W.; and Huang, J. 2020. A Restricted Black-box Ad-
versarial Framework Towards Attacking Graph Embedding
Models. In AAAI.
Chen, C. H.; Wu, L.; Kong, C.; Hao, X.; and Chen, W.
2020. A Short-Term Load Forecasting Method Based on
GRU-CNN Hybrid Neural Network Model. In Mathemati-
cal Problems in Engineering.
Chen, Y.; Tan, Y.; and Zhang, B. 2019. Exploiting Vulner-
abilities of Load Forecasting Through Adversarial Attacks.
In ACM ICFES.
Dai, H.; Li, H.; and Tian, T. 2018. Adversarial Attacks on
Graph Structured Data. In ICML.
Fang, S.; Zhang, Q.; Meng, G.; Xiang, S.; and Pan, C. 2019.
GSTNet: Global Spatial-Temporal Network for Traffic Flow
Prediction. In IJCAI, 2286–2293.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and Harnessing Adversarial Examples. arXiv preprint
arXiv:1412.6572.
Guo, S.; Lin, Y.; Feng, N.; Song, C.; and Wan, H. 2019. At-
tention Based Spatial-Temporal Graph Convolutional Net-
works for Traffic Flow Forecasting. In AAAI.
Hu, W.; and Tan, Y. 2017. Black-Box Attacks against
RNN based Malware Detection Algorithms. arXiv preprint
arXiv:1705.08131.
Karim, F.; Majumdar, S.; and Darabi, H. 2019. Adversarial
Attacks on Time Series. arXiv preprint arXiv:1902.10755.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016a. Ad-
versarial Machine Learning at Scale. arXiv preprint
arXiv:1611.01236.
Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2016b. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533.
Li, Y.; Yu, R.; Shahabi, C.; and Liu, Y. 2017. Diffusion con-
volutional recurrent neural network: Data-driven traffic fore-
casting. arXiv preprint arXiv:1707.01926.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neural
networks. In CVPR.
Papernot, N.; McDaniel, P. D.; Goodfellow, I. J.; Jha, S.;
Celik, Z. B.; and Swami, A. 2016a. Practical Black-Box
Attacks against Deep Learning Systems using Adversarial
Examples. arXiv preprint arXiv:1602.02697.

Papernot, N.; McDaniel, P. D.; Swami, A.; and Harang, R. E.
2016b. Crafting Adversarial Input Sequences for Recurrent
Neural Networks. arXiv preprint arXiv:1604.08275.
Rosenberg, I.; Shabtai, A.; Elovici, Y.; and Rokach, L. 2019.
Defense Methods Against Adversarial Examples for Recur-
rent Neural Networks. arXiv preprint arXiv:1901.09963.
Shuman, D. I.; Narang, S. K.; Frossard, P.; Ortega, A.; and
Vandergheynst, P. 2013. The emerging field of signal pro-
cessing on graphs: Extending high-dimensional data analy-
sis to networks and other irregular domains. IEEE Signal
Processing Magazine.
Su, J.; Vargas, D. V.; and Kouichi, S. 2019. One Pixel Attack
for Fooling Deep Neural Networks. In CVPR.
Szegedy, C.; Wei Liu; Yangqing Jia; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In CVPR.
Tang, X.; Li, Y.; Sun, Y.; Yao, H.; Mitra, P.; and Wang, S.
2020. Transferring Robustness for Graph Neural Network
Against Poisoning Attacks. In ICWSDM.
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2017. Ensemble Adver-
sarial Training: Attacks and Defenses. arXiv preprint
arXiv:1705.07204.
Wu, Z.; Pan, S.; Long, G.; Jiang, J.; and Zhang, C. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Model-
ing. In IJCAI.
You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen, Y.
2020. Graph contrastive learning with augmentations. In
Advances in Neural Information Processing Systems.
Yu, B.; Yin, H.; and Zhu, Z. 2018. Spatio-temporal graph
convolutional networks: A deep learning framework for traf-
fic forecasting. In IJCAI.
Zhang, X.; and Zitnik, M. 2020. Gnnguard: Defending graph
neural networks against adversarial attacks. In NIPS.
Zhou, X.; Li, Y.; Barreto, C. A.; Volgyesi, P.; and Kout-
soukos, X. 2019. Load forecasting with adversarial attacks
in power systems using DeepForge. In ASHTSS.
Zugner, D.; and Gunnemann, S. 2019. Adversarial Attacks
on Graph Neural Network via Meta Learning. In ICLR.


	1 Introduction
	2 Related Work
	3 Preliminary
	4 Methodology
	4.1 Inverse Estimation
	4.2 Locating the Weakest Vertex
	4.3 Spatially Focused Attack

	5 Evaluation and Results
	5.1 Effectiveness of Inverse Estimation
	5.2 Experiments on Hyperparameters
	5.3 Experiments on Effectiveness and Efficiency of Locating the Weakest Vertex
	5.4 Tradeoff between Attack Performance and the Attack Observability
	5.5 Effectiveness of Spatially Focused Attack

	6 Conclusion

