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Abstract—Electric power grids are at risk of being compro-
mised by high-impact cyber-security threats such as coordinated,
timed attacks. Navigating this new threat landscape requires a
deep understanding of the potential risks and complex attack
processes in energy information systems, which in turn demands
an unmanageable manual effort to timely process a large amount
of cross-domain information. To provide an adequate basis to
contextually assess and understand the situation of smart grids
in case of coordinated cyber-attacks, we need a systematic and
coherent approach to identify cyber incidents. In this paper, we
present an approach that collects and correlates cross-domain
cyber threat information to detect multi-stage cyber-attacks in
energy information systems. We investigate the applicability and
performance of the presented correlation approach and discuss
the results to highlight challenges in domain-specific detection
mechanisms.

Index Terms—Intrusion Detection System, Cyber Attacks,
Alert Correlation, Cyber Security, Cyber-Physical System

I. INTRODUCTION

Power grids are currently undergoing far-reaching changes
and evolving into smart grids (SGs) to accommodate
the increasing penetration by distributed energy resources
(DERs) [1]. Intelligently integrating the actions of all con-
nected stakeholders using information and communication
technology (ICT) requires the secure and controllable integra-
tion of volatile DERs as well as novel grid components such
as heat pumps and electric vehicles, which SGs can provide
a foundation for [2]. However, the increasing prevalence of
ICT and the convergence between information and operational
technology in the energy sector means that more access
points to control systems are emerging and, consequently, new
cybersecurity challenges are arising [3]–[5]. This new threat
landscape poses risks of incidents with critical disruptive con-
sequences to grid operation [6]. Here, cyber countermeasures
such as intrusion detection systems (IDSs) can help identify
early indicators of an attack and provide an information base
for deriving appropriate response and mitigation measures [7].
Detecting intrusions by unauthorized persons into the cen-
tral monitoring and control system of network operators,
especially attacks within the network perimeter, is fraught
with challenges. For example, commands with potentially
negative effects on the grid may originate from legitimate
but compromised hosts. Consequently, it is not sufficient to

secure and monitor communication paths. This requires the
contextual correlation of indicators of an attack from differ-
ent components and temporal developments that unfold over
time [8]–[10]. Common approaches to address this challenge
are based on Security Information and Event Management
(SIEM) systems that aggregate and correlate from different
IDSs to provide real-time traffic analysis, early detection of
attack-related events, and event correlation. However, process
networks in power grids offer special advantages in detecting
implausible events and anomalies in the process environment
due to the static network structure, deterministic data traffic,
and physically constrained process information [11].

To remedy security issues in SGs, different streams of
research address the challenges of automatically analyzing
large amounts of cyber threat data. In particular, an approach
of physical consistency checking at the substation level has
been proposed to validate process data according to a set of
constraints, thus noticing when an individual substation enters
a “bad state” that represents, e.g., a physical instability [8].
Further research aimed to reduce the false positive rate of
rule-based IDS solutions by correlating different IDS events
to create attack scenarios and using machine learning to teach
a system which attacks reported by an IDS is likely to be
genuine [12]. Using a situational awareness approach where
sensors distributed in the SG relay relevant information to a
command center (similar to a SIEM system), event correla-
tion and integrity checking can be used to detect complex
attacks [13]. Many of the related works present approaches for
contextual assessment and reconstruction of security incidents
in SGs. However, limiting knowledge acquisition to events
from the same source and not considering alarms from other
security systems or logs from other ICT network components
excludes additional information from different perspectives.
This limits the extent to which a potential incident may
be understood and assessed. Thus, when detecting complex
attacks with data from multiple sources, additional information
such as domain-specific knowledge from power grids enriches
the detection. For example, process data in the form of data
points, the flow of data in the Operational Technology (OT)
environment, the ICT network topology, and the interaction
between assets provide an additional perspective for a holistic
and global view of the cyber-physical situation.
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To provide a foundation for detecting and preventing such
attacks, this paper addresses the detection of multi-stage
cyber-attacks by leveraging domain-specific attributes of attack
indicators within a context-based, cross-domain correlation
approach of ICT security incident indicators. To this end,
we propose a SIEM-based detection system of multi-stage
coordinated attacks (DOMCA) to identify the appropriate
attack evolution and strategy. Our contributions are:

1) We propose an event correlation mechanism to identify
complex attack actions based on cyber threat observations
(Section III-C).

2) We present and describe a structured approach to detect
strategies of multi-stage attacks in energy information
systems (Section III-D).

3) We demonstrate and discuss the performance of our
proposed framework against different attack scenarios in
a simulation environment (Section IV).

II. CYBER SECURITY IN SMART GRIDS

In this section, we set the foundation for our work by
providing a brief overview of cyber-security issues in process
networks, as well as detection and correlation mechanisms for
identifying security incidents.

A. Cyber Security & Power Grids

The integration of ICT into power grids enables the ex-
change of process data, e.g., measurement values from sen-
sors, via Remote Terminal Units (RTUs) to Master Terminal
Unit (MTU) within Supervisory Control and Data Acquisition
(SCADA) systems [14]. The SCADA system is responsible
for monitoring received data and issuing alarms in case of
disturbances to the grid (e.g., critical load, voltage threshold
violations, power quality disturbances) [2]. Based on the
higher-level decision and optimization functions, such as op-
timal power flow calculations, suitable commands that control
the actuators via the field devices in the process network are
determined [8]. This process is performed to optimize the grid
state considering stability, resource utilization, and flexibility
constraints. Traditional process networks were characterized
by isolated, proprietary, legacy components that created a
barrier to unauthorized third parties. This has been dismantled
by the increasing integration of ICT and the interconnection
of various grid assets and actors, leading to the emergence
of a new cyber threat landscape [15]. The new access points,
traversable communication paths, and vulnerabilities can be
leveraged in coordinated cyber-attacks that aim to disrupt or
damage the power grid by intercepting, manipulating, and
spoofing communications between its SCADA components on
a large scale [16]. For example, the Stuxnet attack in 2010
reportedly severely disrupted Iran’s nuclear program [17].
Further, between 2013 and 2014, a Stuxnet-like Trojan called
Havex compromised the control systems of more than 1,000
energy companies in 84 countries [17]. Moreover, coordinated
attacks in 2015 and 2016 in Ukraine led to a temporary power
outage affecting more than 200,000 customers [17].

B. Contextual Detection of Cyber Incidents

To timely detect coordinated cyber-attacks, IDS solutions
automate the process of intrusion detection by recognizing ei-
ther attack indicators based on the normal operation (anomaly-
based) or attack signatures (misuse-based) or their combined
knowledge [12]. Traditional IDSs monitor only the ICT net-
work and/or its host components (e.g., login attempts, network
scans, suspicious log traffic, or syslog) without involving the
process semantics of the power grid [18]. Contextual detection
can be achieved based on a SIEM system that combines
functionalities such as security data collection and consol-
idation, long-term data storage, automation of analysis and
reporting, and real-time monitoring and correlation of events
from various data sources [19]. Data aggregation involves
collecting log and event data from different types of sources
(e.g., IDS or firewalls) [20]. It also involves normalizing data
to a common format as well as synchronizing associated
event fields such as timestamps, providing comparable and
accessible characteristics of the data for processing and corre-
lation [21]. In particular, correlation and reasoning approaches
that aim to classify and infer characteristics and relationships
between entities involved in multi-stage attacks use contextual
information in the graph-based representation of such attacks.
To this end, attack graphs have proven beneficial to model
the hierarchical unidirectional dependency between the steps
within a multi-stage attack and their transitions [22]. By
having nodes with multiple successors or predecessors, attack
graphs can represent strategies that involve multiple possible
paths to an attacker’s target [22]. Alternatively, the Kill-Chain
modeling concept provides an approach for structuring multi-
stage attacks aimed at disrupting or destroying vital processes
or devices. Steps within the structure include gaining access
to and information about the target system, developing and
testing new capabilities on the compromised targets, exploiting
vulnerabilities and moving laterally in the network, building
Command and Control (C2) infrastructure, and acting on the
objection (e.g., disrupting grid operations) [23].

III. MULTI-STAGED ATTACK DETECTION SYSTEM

The correlation of cyber threat information and process
data faces challenges, such as accounting for false posi-
tives that occur in traditional probabilistic-based correlation
approaches [12]. The approaches assign simple probability
values to statements about an attack but do not provide a
representation for the certainty of those assignments [12].
Thus, an appropriate quantification method is needed to model
the level of confidence of detected attack indicators. This
challenge is exacerbated by the lack of data to quantify the
likelihood of an attack, particularly attack data from critical
infrastructure. Subsequently, assigning probabilities to indica-
tors of an attack a priori becomes infeasible [12]. To address
this issue, theories that deal with epistemic uncertainty can
be used, such as Dempster Shafer Theory (DST) [24]. DST
is seen as a generalization of traditional Bayesian probability
theory, making it possible to assign a probability to sets of
statements rather than individuals. This allows the combination



Fig. 1. Structural overview of the presented kill-chain-based correlation and
detection system for contextual detection of multistage cyber incidents.

of evidence from multiple sources without a priori knowledge,
i.e., a priori probability distributions, about system states [24].
In the following, we present the architecture of DOMCA to
detect the corresponding attack evolution and strategy based
on domain-specific attribution and contextual correlation of
cyber incident indicators using DST.

A. Framework Overview

Our core idea is to reconstruct the propagation of a cyber-
attack in several stages and identify corresponding appropriate
strategies, as shown in Figure 1. To reconstruct cyber inci-
dents based on attack indicators, DOMCA’s pre-processing
component takes domain-specific process, communication, and
semantic indicators captured by distributed sensors. Further,
DOMCA pre-processes data into normalized alarms for effec-
tive analysis (cf. Section III-B). For simplicity, we represent
various monitoring and attack indicator generation from multi-
ple sources as distributed IDS sensors. In addition, we envision
a central architectural framework (e.g., at the operations center
level) to increase situational awareness at a more global level.
Although outside the scope of this paper, architectural security
can be enhanced by a distributed ledger communication layer
connecting the sensors and the central correlation framework.
Given a set of known possible actions that an attacker could
perform, the Event Correlator (EC) uses the pre-processed
attack indicators to determine their possible occurrences, as-
signing each a confidence level via DST (cf. Section III-C).
Once the event correlation process has identified all potentially
performed attack actions, the Strategy Correlator (SC) uses
DST and custom combination rules to determine possible paths
through known attack graphs. By considering both the mass
of each detected action and masses assigned to attack graph
edges, the SC therefore identifies feasible attack strategies
based on current observations (cf. Section III-D). The final step
of the correlation process is kill-chain identification, which is
responsible for determining the most likely attack path and
corresponding graph based on SC results. Subsequently, this
determines the kill-chain step corresponding to the last step of
the chosen path (cf. Section III-E). Finally, the post-processing
component is responsible for the comprehensive visualization
and higher-level processing of the result (cf. Section III-B).

B. Pre-Processing

The preprocessing component of our framework brings
diverse input information from different data sources into a
comparable and processable output format via normalization
processes. A predominant source of input is made up of

TABLE I
DOMAIN-SPECIFIC ATTRIBUTION OF ALARMS WITHIN EVENTS.

Fields Description
IoC Participation in an attempt to access a host.
ADR_FROM_CHECK Suspicious source of the message.
ADR_TO_CHECK Suspicious destination of the message.
CON_CHECK The connection over which the packet was

sent is not allowed.
DP_FROM_CHECK The packet contains data points that are

unexpected for the source host.
DP_TO_CHECK The packet contains data points that are

unexpected for the receiver host.
CYCLE_CHECK A message that normally arrives cyclically

deviates from its schedule.

alerts from distributed IDS sensors in the process network,
which in our work are conceptualized as specification-based
IDS. The sensors occupy selected ICT network edges and
perform domain-specific attribution of the captured packets
(cf. Table I). In case of a failed check, a packet event is
generated containing the name of the failed criterion, along
with information about the packet. This includes its payload,
payload type (e.g., a command, measurement, monitoring, IT
payload), a timestamp of the alarm’s occurrence, the source
and destination addresses of the packet, the endpoints of the
monitored ICT edge, and the ID of the sensor reporting the
packet. Furthermore, for identifying the consistent path of a
message through multiple hosts (IT and OT components), the
chronological ordering of packet events is performed based on
timestamps and the topological relationship of the monitored
ICT edges. Sensor placement is an important factor in this
context, however, some missing sensors can be accounted
for by identifying pairs of paths characterized by consistent
connectivity in the network, sensor coverage, and marginal
timing differences of events between pairs. Each pair found
in this way is consolidated into a new path that combines the
information of the stored pairs, including the concatenation
of their host paths and the consolidation of possible failed
security checks. The final format of the normalized events is
clustered by the constructed paths in (cf. Table II).

TABLE II
NORMALIZED OUTPUT FORMAT OF THE PRE-PROCESSING COMPONENT.

Fields Description
EVENT_ID List of event IDs assigned to this message path.
SEND_TIME Sending time of the original responsible host.
RECEIVE_TIME Receiving time of the last destination host.
FROM_HOST Host responsible for the message.
PASSED_HOSTS Hosts that the message passed through on its way.
TO_HOST Final destination of the message.



C. Event Correlator

The objective of the EC is to use normalized alarms to draw
conclusions about an attacker’s actions and sort the identified
actions in chronological order. Subsequently, the SC can use
this information to identify attack strategies that use a subset
of the known action set. First, the EC performs an analysis
of suspicious communications to identify infected hosts based
on frequently sent suspicious packets. Additionally, the EC
attempts to identify the position of the C2 coordinator. This is
done based on the structure of the infected hosts’ communi-
cations, assuming that the node with the most outgoing suspi-
cious messages is the C2 host. After this analysis, the EC de-
tects individual actions based on normalized alerts, such as an
attacker’s attempt to access a host (e.g., RTU). To identify such
an access attempt, it first generates a list of all occurrences
of access attempt indicators (e.g., network scan, attempted
or suspicious login, privilege escalation). Then, it sorts them
in chronological order, grouping them by the ICT network
host they targeted, and consolidating them across all detected
Indicators of Compromise (IoCs) into pairs of source and
destination hosts. Afterward, the EC assigns mass functions
to each possible access attempt. These weigh the relevance of
the observed IoCs in the context of access attempts, taking into
consideration their types, chronological order, and possible
associations with other related access attempts IoCs. Based on
the access attempt detection action, network access attempt de-
tection is performed by iterating the list of source-destination
pairs to determine when each infected host first attempted to
infiltrate another. Also, malware installation detection on likely
infected ICT hosts is performed (e.g., compromised RTUs),
using the timestamp of the last detected access attempt on
such a host along with the first detected suspicious message
sent from it. After malware installation, an infected node may
not immediately have a preconfigured initial task and instead
send a request to the C2 host asking for instructions (e.g.,
RTUs waiting for control action on data manipulation). The
EC can detect this by recognizing that such a message was
sent outside of specified allowed connections (e.g., server
outside the process network perimeter), and by verifying that
the C2 host has sent a message back to the requestor within a
certain time. Detection of communication-dependent attacker
actions using compromised hosts (e.g. to collect information
on the infiltrated ICT network) considers any normalized alert
reporting suspicious communication. Particularly, alert that is
not an access attempt or command request, and checks for C2
network exclusion, an indication of bilateral communication
(e.g., horizontal communication between RTUs). The EC
uses DST to store the confidence in detected attack actions.
Specifically, Zhang’s combination rule [24] is used to combine
mass distributions of different statements as additive evidence.
Additionally, if multiple actions are reliant on the same alert,
their current mass will each be combined with an “impact
mass” that represents the negative impact that this has on
their legitimacy (e.g., indication of legitimate but compromised
RTUs). The EC finally outputs a list of attacker actions with

Fig. 2. Exemplary attack graph based on attacker actions for the Havex attack.
Edges represent mass assignments and inference links between actions.

associated confidence values, timestamps, and affected hosts
for a preconfigured time horizon.

D. Strategy Correlator

Based on the set of attacker actions determined by the EC,
the SC begins the task of identifying which known attack
strategies fit the observed behavior. Using a set of predefined
attack graphs, the likely attack incident and possible attack
evolution are determined (cf. Figure 2). Our concept of an
attack graph has structural similarities to exploit dependency
graphs [22]. However, we focus on general attack actions
rather than the exploitation of specific vulnerabilities. There-
fore, attack actions can represent different types of steps that
an attacker can take in different domains and situations.Thus, a
node in an attack graph contains a unique identifier within the
attack graph, a description that links the action to the overall
strategy, the attack action represented by that node, and a phase
within the kill chain to which that step of the attack strategy
belongs. Nodes can have one or more predecessors and suc-
cessors representing decisions an attacker can make within the
strategy, as well as consequences caused by the state of the ICT
network or the attacker. The edges in the attack graph represent
the transition between actions, including possible connections
between the hosts involved. Also, each edge contains a mass
distribution, which depends on the probability of the connected
actions succeeding each other within the represented attack
strategy. Thus, an attack graph consists of multiple nodes and
edges that form paths representing a sequential attack process.
The attack graph in its essence represents the attack strategy
defined with the focus on SGs. Based on a predefined set of
such attack graphs, and after receiving the attacker actions
from EC, SC starts its analysis. The initial process involves
adding new edges to each attack graph, taking into account
possible undetected actions or irregularities in the attacker’s
behavior. After the graphs are prepared, the attacker’s possible
paths through each known attack graph are reconstructed,
each resulting in a chronological list of traversed nodes and
the hosts involved. Furthermore, overall mass distribution is



assigned to each path, taking into account both the masses
of the traversed edges and considered actions. Beforehand,
action masses have been adjusted to contain a relatively high
uncertainty. This is necessary because of the additive nature
of Zhang’s combination rule, which would result in very high
certainty with few considered actions otherwise. The attack
graphs themselves are also assigned mass distributions. These
depend on the overlap between detected actions and those
contained in each attack graph, as well as the mass of the path
with the highest belief value running through the graph. It is
then checked whether the attack path with the highest belief
value is contained in the attack graph with the highest belief
value and whether they both exceed their respective confidence
thresholds. At this stage, the SC finishes its analysis and
outputs a collection of pairs containing reconstructed attack
paths and associated graphs with their corresponding belief
values for the next component to consider.

E. Kill-Chain Identification

After the correlation performed by SC, the Kill-Chain
identification component must decide whether an attacker is
present in the environment and if so, which known graph
most closely represents the attacker’s behavior. To determine
the most credible and plausible attack graph and path pair
within the provided set, a successive comparison of the mass
distribution of each pair is performed against a predefined
threshold and cutoff values. The corresponding plausibility
and belief values of the attack graph and path are checked
to see if they exceed the lower predefined threshold values
representing the cutoff process. After determining the most
credible attack path and graph, the system checks if the path
passes through the graph and outputs it as the optimal solution.
The name of the attack strategy corresponding to the attack
graph identified by this process is output as the detected attack
strategy. Furthermore, the last kill-chain phase of the attack
is the kill-chain phase stored in the last node reached by
the path. This identifies the attacker’s current phase within
a kill-chain-based process, indicating what state the attacker
is currently in. If no matching pair of path and graph could
be determined, either no attack occurred or an attack that did
not match any of the known strategies occurred. Based on the
correlation results, the system can identify whether an attack
occurred within a certain time horizon (meaningful output
available), how the attack evolved (detected attack path), and
what strategy the attacker followed (detected attack graph).
Moreover, it identifies which attack phase was last observed
(detected kill-chain phases), and which host was involved in
the attack process (list of infected hosts).

F. Post-Processing

Upon a successful correlation process, a post-processing
component can be used for further higher-level processing
and visualization of identified attack graph, path, and actions.
Streamlined and visualized correlation results could make
cyber incidents understandable to a user and be presented with

Fig. 3. The classification accuracy assessment chart shows on the x-axis the
attack scenarios performed, including the “no attack” event, and on the y-axis
the distribution of the detection rate of attack strategies, kill-chain phases, and
the influence of sensor placement on detection quality.

the appropriate confidence level, for example in security op-
erations centers, for potential incident response. Additionally,
post-processing can also be part of a decision support system
in the incident response task area to automate and support
containment and mitigation strategies by also predicting the
next step of attacker actions based on correlation results.

IV. EVALUATION & DISCUSSION

In the following, we evaluate and discuss the performance of
DOMCA concerning the reconstruction of multi-staged attacks
within a simulation environment according to [11].

A. Procedure for the Investigation

For the investigation, attack scenarios are simulated in an
SG simulation environment according to [11] with different
strategies, each representing a Havex, Stuxnet, randomized
(performing random attack actions), or no attack incident.
The network parameters that can be modified to include
the vulnerability of individual hosts, the configuration of
hosts with no vulnerability (no successful access attempts),
and hosts that are explicitly vulnerable to remote access
attempts. Besides, sensor placement is an important aspect
of parametrization. It affects the functionality of DOMCA by
influencing the observation provided, i.e., directly affecting
situational awareness. This especially applies to sensors near
the C2 host. As part of the investigation, we performed a total
of 207 simulation runs with approximately evenly distributed
runs of the attack scenarios presented in the environment.

B. Classification Accuracy Evaluation

Figure 3 illustrates for each real attack scenario the detection
rate of attacker presence, Kill-Chain step, as well as the
distribution of detected strategies among simulation runs. The
plot also illustrates the average impact of sensor placement
on classification accuracy. In general, no false positives were
observed in the experiments, which means that the system
never detected an attacker when none was present. The average
detection rate concerning the presence of any attacker was
87.86%. In a “randomized” attack, where random attack
actions are performed, the attack is still detected in the vast
majority of cases. However, it is often incorrectly assigned to
a known attack graph. When examining the detection rate of



the system in identifying infected hosts and individual attack
actions, we found that its accuracy is affected by the placement
of a sensor in the C2 node’s communications. Finally, our
results regarding the correct determination of the last kill chain
phase of an attacker shows a detection accuracy of 56.38% for
different kill chain phases, regardless of the chosen strategy.

C. Discussion

As our evaluation shows, our proposed approach DOMCA
reliably detects the presence of an attacker in an ICT network,
with no false positives observed in our experiments. We
also found that the detection accuracy of individual strategies
depends on several factors, e.g., placement of the sensors
close to the C2 nodes. In particular, the presence of a sensor
monitoring communication with a C2 host contributes sig-
nificantly to the accuracy of detecting the strategy used by
an attacker. Additionally, the duration of a simulation and
corresponding attack has a large impact on the effectiveness of
the system by affecting the false-negative rate that occurs for
a given duration. This can result in an attack being detected
in its initial stages but not correctly mapped to a known
attack graph. The system might have benefited from additional
functionality to detect these early, more universal kill chain
phases independent of a particular strategy. However, when the
correct strategy was first identified, the accuracy of detected
kill chain phases was consistently above 97%, as well as when
kill chain phases were correctly not detected, such as in the
“no attack” scenario. Overall, depending on the observable
network area and the previous knowledge of attack actions
and strategies, DOMCA can reliably reconstruct the attack
evolution process and provides an advanced basis for attack
prediction and mitigation.

V. CONCLUSION

Detecting and defending against increasingly complex
cyber-attacks requires an approach that enables an understand-
ing of the current cyber-physical situation, especially in the
context of communication-dependent processes. To this end, in
this paper, we present a kill-chain-based correlation approach
- DOMCA - to contextually identify multi-stage cyber-attacks
with severe consequences for reliable power supply in SGs.
We discuss the design and subsequent implementation of
DOMCA, which consists of a data formatting normalizer,
an attack action, and a strategy correlator respectively, as
well as a Kill-Chain identifier responsible for identifying the
attacker’s most likely strategy and the current kill-chain stage.
Furthermore, we evaluate DOMCA’s detection rate against
different attack scenarios and parametrized network settings.
Our key findings are that DOMCA can reliably detect an
attacker in the simulated energy ICT environment for our
conducted attack scenario experiments. Notably, the accuracy
of the kill-chain phase and attack strategy identification is
highly dependent on the placement of sensors, the extent of
observation, and the degree of attack development. Future
work includes further investigation of the applicability of
DOMCA in a realistic SG environment and other use cases

(e.g., local energy communities, microgrids) to draw reliable
conclusions about the effectiveness of the proposed approach.
In addition, secure-by-design principles will be explored with
respect to the architecturally central framework using commu-
nication layer security technologies such as distributed ledgers.
Nevertheless, even in its current form, DOMCA can reliably
reconstruct the development process and strategy of known
attacks and provide an advanced basis for future research in
decision support systems for actions to mitigate such attacks.
In addition to its applicability in SGs, DOMCA can be
extended to other critical infrastructures if attack graphs and
actions as well as domain-specific attribution are adapted.
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