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Abstract—Spear Phishing is a type of cyber-attack where the
attacker sends hyperlinks through email on well-researched tar-
gets. The objective is to obtain sensitive information by imitating
oneself as a trustworthy website. In recent times, deep learning has
become the standard for defending against such attacks. However,
these architectures were designed with only defense in mind.
Moreover, the attacker’s perspective and motivation are absent
while creating such models. To address this, we need a game-
theoretic approach to understand the perspective of the attacker
(Hacker) and the defender (Phishing URL detector). We propose a
Conditional Generative Adversarial Network with novel training
strategy for real-time phishing URL detection. Additionally, we
train our architecture in a semi-supervised manner to distinguish
between adversarial and real examples, along with detecting
malicious and benign URLs. We also design two games between
the attacker and defender in training and deployment settings by
utilizing the game-theoretic perspective. Our experiments confirm
that the proposed architecture surpasses recent state-of-the-art
architectures for phishing URLs detection.

Index Terms—Generative Adversarial Networks; Phishing At-
tacks; Phishing URL detection; Cyber Security; Phishing

I. INTRODUCTION

Historically, cyber-security companies have used machine
learning as a defensive measure to identify malicious websites
and suspicious network activity. Given the massive surge in
phishing attacks in recent times, it propelled companies to
advertise novel systems for detecting inbound threats. Accord-
ing to the FBI [1], phishing was the most common type of
cybercrime in 2020 and phishing incidents nearly doubled from
114,702 incidents in 2019 to 241,324 incidents in 2020. Out
of this, 65% of active hacker groups relied on spear-phishing
to carry out the primary infection vector as reported in [2].
In another report by Verizon [3], the attackers used email as
a carrier for 96% of the targeted attacks. While sites such as
Phishtank [4] exist for sharing and verifying plausible malicious
or phishing URLs, there has been little exploration into how
attackers can also utilize machine learning to their advantage
for generating such URLs.

The necessity for efficient countermeasures has made spear
phishing a popular field of research in recent times. Effectively,
two main types of methods for phishing URL detection have
emerged: (i) Database of Blacklists and Whitelists URLs [5],
(ii) Character or feature level URL detection [6], [7]. The
database approach is quite inefficient due to not being updated
on time or overlooking possible attacks from new URLs. The

second approach is quite convenient for possible new attacks
due to extracting latent representation of the feature level
information and utilizing that to train a deep learning models
(RNN [8], LSTM [9], CNN [10], GAN [11]) to make the pre-
diction. Compared to character-level detectors, the feature-level
detection system suffers from out-of-distribution predictions
because the features are constrained. As a result, the current
state-of-the-art approaches utilize deep learning to learn from
distinct characters of URLs to improve detection performance
and enable zero-day phishing defense [6], [8], [12].

Cyber-security companies design this system with only de-
fense in mind. The underlying motivation and perspective of
the attacker are not taken into account, so the system can’t
formulate the best defense strategy for current or future attacks.
We need a game-theoretic approach to understand the rational
decision-making process of the attacker and how the defender
should counter-play in this game. By taking all these into we
propose the following in this paper:
• We propose a Conditional Generative Adversarial Net-

work with novel training strategy for simultaneous gen-
eration and detection of phishing URL, trained in a semi-
supervised manner.

• We design two novel games based on game theory, i)
between the pseudo attacker and the discriminator for
training our conditional GAN, and ii) between the real
hacker and the defender (the discriminator) for deployment
in the wild.

• Our model outperforms other state-of-the-art architectures
by learning from real and adversarial phishing URLs.

• Our discriminator detects URLs in real-time and is robust
against adversarial examples.

II. LITERATURE REVIEW

Over the years, cyber-security firms have extensively utilized
Machine Learning for detecting Phishing URLs and malicious
sites. These works ranged from SVM [13], [14], [15], Random
Forest [16], [17], KNN [18], [19] and a combinations of
this techniques[20], [21]. After the advent of Deep Learning,
Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) have become the norm for automated feature
extraction from a huge volume of data without any human inter-
vention. Some recent works involving deep learning are based
on CNN [22], [23], [10], CNN with Multi-headed Attention
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Fig. 1: Proposed Conditonal GAN consists of a single Generator and Discriminator where the Generator takes the Real Benign or
Malicious URL, a noise vector, and the class labels as input. The Generator outputs a synthesized URL, whereas the Discriminator
categorizes Benign or Malicious URL, and detects adversarial examples.

[24], RNN with Attention module [8], and LSTM [25], [9],
[26]. There are two problems with this technique, a) the models
are trained on lexical features such as URL Length, Count
of top-level-domain, Number of punctuation symbols, and b)
There are no adversarial elements present in training strategies,
meaning no synthetic samples are generated or utilized for
predictions. The first problem can be addressed by training
the model on character-level features rather than lexical or
word-level features. On the other hand, the second problem
can be solved by utilizing Generative Adversarial Networks
for training the model for both real and adversarial examples.

With the popularity of Generative adversarial networks
(GAN), there has been a surge in NLP applications ranging
from text generation [27], [28], [29], language models, [30],
[31] and text classification [32], [33]. The reason being, GANs
can extract and learn fine-grained information from texts and
utilize that to create synthetic examples using a generator archi-
tecture. Along with that, it utilizes a discriminator architecture
for distinguishing between real and synthetic examples. By
leveraging the generator and discriminator, the GAN can be
trained in an adversarial setting with multiple cost functions and
weights. Generative networks has also been used for synthe-
sizing and identifying malicious URLs from lexical [12], [34],
[35] or character-level data [36], [6]. The latter work involves
training the generator to synthesize each URL character by
sampling from a random noise vector, and the architecture
is called unconditional GAN. This type of GAN suffers from
”mode collapse” [37], [38] due to sampling from only a noise
vector. As a result, the generator creates garbage data that
the discriminator fails to distinguish, leading to nonconvergent
adversarial loss. In contrast, conditional GAN incorporates both
original data (malicious or benign URL) and label with the
noise vector as input. As a result, it improves the overall model

training and helps to synthesize more realistic output.
Another major problem with the current state-of-the-art

architecture is that they heavily emphasize defensive measures,
somewhat ignoring the attacker’s perspective in this scenario.
A cyber-defense scenario almost always depends on game
theory to understand the attacker’s motives and perspective for
maximizing the defender’s reward. Many similar games have
been designed for phishing URL detection with humans in
the loop [39], [40], [41] and adversarial games for generative
networks [42], [43], [44]. However, no work has been proposed,
combining adversarial components of GAN and game-theoretic
perspectives of attacker-defender for detecting phishing URLs.
To alleviate this, we propose a novel conditional GAN that
detects phishing URLs and is robust against adversarial exam-
ples. Furthermore, we design two games, one for training our
architecture and the other for deploying it to a real environ-
ment for better understanding the attacker’s perspective. Our
quantitative result proves that the proposed technique surpasses
state-of-the-architectures and synthesizes realistic benign and
malicious URLs.

III. THE PROPOSED METHODOLOGY

We propose a conditional generative adversarial network
(GAN) comprising a generator for producing adversarial phish-
ing URLs and a discriminator for robust classification of
malicious/benign URLs. We also introduce two non-cooperative
and non-zero-sum games between the i) Pseudo Attacker &
Discriminator and ii) Attacker & the Phishing URL Detector.
By formalizing the game concept and addressing the limitations
of current systems, we illustrate how generative networks
can produce robust results in Phishing URLs detection and
synthesis tasks. First, we elaborate on the proposed architecture
in Sections III-A, III-B, III-C. Next, we structure the two games



based on players, their utilities, and action spaces in Section
III-D, III-E.

A. Generator

Combining generative networks with an auxiliary classifica-
tion module has been shown to produce realistic text-generation
and accurate class prediction as observed in [32], [45]. We
adopt a similar architecture to Auxiliary Classification GAN
[46] by incorporating a class conditioned generator and a
multi-headed discriminator for categorical classification and
adversarial example recognition as illustrated in Fig. 1. The
generator concatenates the original URL x, label y, and a noise
vector ζ as input and generates G(x, ζ, y) malicious/benign
URL. The noise vector, z, is smoothed with a Gaussian filter
with σ = 3 before pushing as input. The generators consist
of Convolution, Transposed Convolution, Batch-Normalization,
and Leaky-ReLU activation layers. We use convolution for
downsampling 3× and use transposed convolution to upsample
3× again to make the output resolution the same as the input.
For regular convolution we use kernel size, k = 3, stride, s = 1
and padding, p = 1. For downsampling convolution and trans-
posed convolution we use kernel size, k = 3, stride, s = 2 and
padding, p = 1. Convolution and Transposed Convolutions are
followed by Batch-normalization and Leaky-ReLU layers. The
encoder consists of six convolution layers. The number of fea-
tures are [F1, F2, F3, F4, F5, F6]= [32, 32, 64, 64, 128, 128].
The decoder consists of three transposed convolution layers,
and they have [D1, D2, D3] =[128, 64, 32] number of features.
The generator has an input and output dimension of 200× 67
and incorporates Sigmoid activation as output.

B. Discriminator

In contrast, the discriminator takes both real URL x and
adversarial URL G(x, ζ, y) as input sequentially. It simultane-
ously predicts if the example is real or adversarial and classifies
the signal as either Benign or Malicious. The discriminator con-
sists of Convolution, Batch-Normalization, Leaky-ReLU activa-
tion, and Dense layers. We use convolution for downsampling 3
times. For convolution we use kernel size, k = 3, stride, s = 1
and padding, p = 1, except for downsampling convolution
where we use stride, s = 2. The convolution layer is succeeded
by Batch-normalization and Leaky-ReLU layers. After that,
we use two fully connected layers. The encoder consists of
six convolution layers and two dense layers. The number
of features are for each layer is [F1, F2, F3, F4, F5, F6]=
[16, 16, 32, 32, 128, 128, 256, 64]. We use two output activation:
classification with Softmax activation for Benign/Malicious
classes and Sigmoid activation for real/adversarial example
detection.

C. Weighted Cost Function and Adversarial Loss

We use LSGAN [47] for calculating the adversarial loss and
training our Genarative Network. The objective function for our
conditional GAN is given in Eq. 1.

Ladv(G,D) = Ex,y
[

(D(x, y)− 1)2
]

+

Ex,y
[

(D(G(x, ζ, y), y) + 1))2
]

(1)

In Eq. 1, we first train the discriminators on the real URLs,
x. After that, we train with the synthesized URLs, G(x, ζ, y).
We begin by batch-wise training the discriminators D on the
training data for couple of iteration. Following that, we train
the G while keeping the weights of the discriminators frozen.
For classification of Benign and Malicious URLs, we use
categorical cross-entropy as in Eq. 2.

Lclass(D) = −
k∑
i=0

yi log(y′i) (2)

The generators also incorporate the reconstruction loss (Mean
Squared Error) as shown in Eq. 3. By incorporating the loss, we
ensure the synthesized URLs as convincing as the real URLs.

Lrec(G) = Ex,y‖G(x, ζ, y)− x‖2 (3)

By incorporating Eq. 1, 2 we can formulate our final objec-
tive function as given in Eq. 4.

min
G,D

(
max
D

(λadvLadv(D)) +λrec Lrec(G) +λclassLclass(D)
)

(4)
Here, λadv , λrec, and λclass implies different weights, that
is multiplied with their respective losses. The loss weighting
decides which architecture to prioritize while training. For
our system, more weight is given to the Lclass(D) for better
categorical prediction, and thus we select bigger λ value for
this.

D. Game during Model Training

We begin by contextualizing a novel two-person game
similar to [48], using the proposed conditional GAN be-
tween the Pseudo Attacker and the Phishing URL detector.
Both the players are interlocked in a non-cooperative, non-
zero-sum game signified formally by the following tuple of
players, action spaces, and utility variables: GameMT =
{P,D}, {ΘG,ΘD}, {uG, uD} where
• P is the pseudo-attacker who controls generator G

by utilizing its θG-parametrized function approximator,
G(x, ζ, y) with G : R→ Rd, to choose its actions,

• D is the phishing URL detector, which uses a θD-
parametrized function approximator, D(G(x), y) with D :
Rd → R, to choose its actions,

• θG is the action space of the generator, where θG ∈ ΘG,
• θD is the action space of the discriminator, where θD ∈

ΘD,
• uG and uD are the generator and discriminator’s utility

variables.
Based on the assumptions above, we can rewrite the Eq. 1 as

Eq. 5. Here p(x) is the distribution of the given data samples,
x ∈ R, p(ζ) is the the Gaussian distribution of the noise sample,
ζ ∈ [0, 1] and p(y) is the distribution of the ground truth, y ∈
{0, 1}.

uadv(θG, θD) = Ex∼p(x),y∼p(y)
[
D(x, y)− 1

]
2+

Ex∼p(x),ζ∼p(ζ),y∼p(y)
[
D(G(x, ζ, y), y) + 1)

]
2 (5)



Fig. 2: Game during Model training between the Pseudo
Attacker and Phishing URL detector. The game has eight
possible outcomes, based on the actions taken by the Attacker
and Defender.

The phishing URL detector can also distinguishes between
”Benign” and ”Malicious” URL using categorical-cross entropy
loss in Eq. 2. Moreover, the generator also tries to fool the
discriminator with realistic sample using L2 bounded recon-
struction loss in Eq. 3. We can rewrite Eq, 2 and Eq. 3, and
formulate it into, Eq. 6, and Eq. 7. By combining Eq. 5, Eq. 6,
Eq. 7, we can find the final utility function given in Eq. 8.
Here, λ is the weight values of each utility functions similar
to weight values in Eq. 4.

uclass(θG, θD) = Ey∼p(y),y′∼p(y′)
[
−

k∑
i=0

yi log(y′i)
]

(6)

urec(θG, θD) = Ex∼p(x),ζ∼p(ζ),y∼p(y)
[
‖G(x, ζ, y)− x‖2

]
(7)

u(θG, θD) = λadv
[
uadv(θG, θD)

]
+ λrec

[
urec(θG, θD)

]
+

λclass
[
uclass(θG, θD)

]
(8)

Next, we design a Kuhn tree between the Pseudo Attacker
(Attacker) and the Phishing URL detector (Defender) as illus-
trating in Fig. 2. We assume the strategy space of the Pseudo
Attacker consists of two actions: providing (i) adversarial
example G(x, ζ, y) and (ii) real example x. In contrast, the
Phishing URL detector can take four actions: classify the
sample as (i) Benign Fake, (ii) Malicious Fake, (ii) Benign
Real, or (iv) Malicious Real. We further assume that the Pseudo
Attacker will make the first move, and then the Phishing URL
detector will follow by taking one of the four possible actions.
It should also be noted that the Phishing URL detector does
not have information about the sample’s type and if they are
real or fake.

The game has eight possible outcomes, based on the actions
taken by the Attacker and Defender. Suppose the attacker uses

Fig. 3: Game after Model Deployment between the Real
Attacker and Phishing URL detector.

the adversarial example G(x, ζ, y), then the defender can use
any of the four actions to classify it. We can see in Fig. 2,
the best strategy for the defender would be to classify it as
either Malicious Fake or Benign Fake. On the other hand,
if the attacker uses the real example x, then the defender’s
best strategy would be to classify it as either Malicious Real
or Benign Real. The payoff for the attacker and the defender
were created using the λ values in Eq. 8. The maximum profit
the attacker can gain by fooling the Phishing URL detector
(discriminator) can be λrec = 10. The minimum can be 0.
Contrarily, the defender would get a maximum value of 11, by
summing λcls = 10 and λadv = 1. The minimum payoff would
be 10, because of the correct class prediction.

E. Game after Model Deployment

Next, we design a novel two-person game for model deploy-
ment, which would be played between the real-life attacker and
the Phishing URL detector (Defender) in a non-cooperative,
non-zero-sum game signified formally by the following tuple
of players, action spaces, and utility variables: GameMD =
{A,D}, {ΘA,ΘD}, {uA, uD} where
• A is the attacker who either sends and doesn’t send

the phishing URL and the action is defined by θA ∈
{Dont Send, Send},

• D is the phishing URL detector, which either classifies the
URL as Benign or Malicious and the actions is defined by
θD ∈ {Benign, Malicious},

• θA is the action space of the attacker, where θA ∈ ΘA.
• θD is the action space of the discriminator, where θD ∈

ΘD,
• uA and uD are the attacker and phishing URL detector’s

utility variables.
Based on this above assumption we create our Kuhn tree for

Model Deployment and is illustrated in Fig. 3. This time the
strategy space of the attacker consists of two actions: either
to (i) Send Phishing URL or (ii) Don’t Send. Contrarily, the



Phishing URL detector can take two actions: classify the sample
as (i) Benign or (ii) Malicious. The assumption also remains
the same: the attacker will make the first move, and then the
Phishing URL detector will follow by taking one of the two
possible actions. The utility values are such that uA ∈ R and
uD ∈ R.

The game has three possible outcomes, based on the actions
taken by the attacker and defender. If the attacker does not
send the phishing URL, they will both get a payoff of 0. On
the other hand, if the attacker sends the phishing URL, the
defender either has to classify it as malicious or benign. We
can see in Fig. 3, the best strategy for the defender would be
to classify it as Malicious. The payoff for the attacker and the
defender were created using arbitrary values. The maximum
profit the attacker can gain carrying out a successful attack is
3. The minimum can be 1, if the attacker is unsuccessful. In
contrast, the defender would get a maximum value of 3 by
classifying it as malicious. The minimum payoff would be -3,
because it would mean losing all the sensitive information.

IV. EXPERIMENTS

In the next section, we detail our model experiments and
evaluate our architecture based on quantitative metrics. First,
we elaborate on the structuring and pre-processing of our
dataset in Sec. IV-A. Then detail our hyper-parameter selection
and tuning in Sec. IV-B. Next, we describe our adversarial train-
ing scheme in Sec. IV-C. Also, we compare our architecture
with existing state-of-the-art models based on some quantitative
evaluation metrics in Sec. IV-D.

A. Dataset

We used the publicly curated and standardized dataset pro-
vided in Kaggle [49]. It consists of 500,000+ benign and
malicious URLs collected from various sources. Next, we
sample 50,000 benign and malicious URLs with a max length
of 200 characters. The dataset includes an equal portion of
benign and malicious samples. We use a dictionary of 67
unique characters (twenty-six alphabets, ten digits, and thirty-
one special characters) to convert the data into a one-hot
encoding matrix. Now, each URL ends up being a 2-D matrix of
size 200×67. We use 40,000 URLs for training and 10,000 as
test-set. For training, we use 5-fold cross-validation and choose
the best model for testing.

B. Hyper-parameter tuning

For adversarial training, we used LS-GAN loss [47]. We
picked λrec = 10 and λclass = 10 (Eq. 4). For optimizer,
we used Adam [50], with learning rate α = 0.0002, β1 = 0.5
and β2 = 0.999. We train with mini-batches with batch size,
b = 64 for 200 epochs. It took approximately 6 hours to train
our model on NVIDIA GPU. Code Repository Link.

C. Training procedure

In this section, we elaborate on our detailed algorithm
provided in Algorithm 1. To train our model, we start by
initializing all the hyper-parameters. Next, we sample a batch of
the real URLs x. We train the real URLs D. After that, we use

Algorithm 1 Phishing URL detection Training

Input: xiεX , yiadvεYadv , yiclsεYcls
Output: G, D

1: Initialize hyper-parameters:
max epoch, b, max d iter, ωD, ωG, αD, αG, βD, βG,
λadv , λrec, λcls

2: for e = 0 to max epoch do
3: Sample x, yadv, ycls, using batch-size b
4: for d iter = 0 to max d iter do
5: Lreal(D),Lcls(D)← D(x, yadv, ycls)
6: Lfake(D),Lcls(D)← D(Gc(x), yadv, ycls)
7: Ladv(D)← Lreal(D) + Lfake(D)
8: ωD ← ωD +Adam(D,G, ωD, αD, βD)
9: end for

Freeze ωD
10: Sample x, yadv, ycls, using batch-size b
11: Lrec(Gc)← G(x, ζ, y), x
12: ωcG ← ωG +Adam(G,ωG, αG, βG)
13: Lreal(D),Lcls(D)← D(x, yadv, ycls)
14: Lfake(D),Lcls(D)← D(Gc(x), yadv, ycls)
15: Ladv(D)← Lreal(D) + Lfake(D)
16: ωD ← ωD +Adam(D,G, ωD, αD, βD)
17: Save weights and snapshot of D,G
18: L ← λadv(Ladv) + λrec(Lrec) + λcls(Lcls)
19: end for

G to synthesize fake URLs G(x, ζ, y) and use them for training
our discriminator D again. We train the discriminator in this
manner for a couple of iterations. Following that, we calculate
the adversarial loss, Ladv(D), the classifier loss, Lcls(D), and
update the weights. We freeze the weights of the discriminator.
Next, we train the generator and calculate the Lrec(G), and
update the generator’s weights. In the final stage, while keeping
the discriminator’s weights frozen, we jointly fine-tune the
discriminator and generator together. We calculate the total
loss by adding and multiplying with their relative weights. For
testing, we save the snapshot of the model and its weights.

D. Quantitative Evaluation

For finding the character similarity with the original URL,
we benchmark synthesized adversarial URLs using four dif-
ferent metrics, i) Mean Squared Error (MSE), ii) Structural
Similarity Index (SSIM), and iii) Normalized Mean Squared
Error (NRMSE). Table. I shows that SSIM for the test set
has a 98.33% score, which means the adversarial examples
are structurally similar to the original signal. As for MSE
and NRMSE, our model generates quite similar adversarial
examples to real ones. It is important to note that we want
to achieve lower MSE and RMSE. Similarly, we want to score
higher for SSIM.

For benign and malicious URL classification tasks, we
compare our model with other state-of-the-art architectures
as given in Table. II. We further experiment on adversarial
examples synthesized using our Generator from the above
tests set, which we show in Table. III. We use Accuracy

https://github.com/SharifAmit/Semi-supervised-Phishing-Detection-GAN


Fig. 4: Our model outperforms other methods in terms of
Area under the Receiver Operating Curve (ROC) for detecting
Benign/Malicious Phishing URLs.

(ACC), Sensitivity, Precision, F1-Score, and AUC (area-under-
the-curve) for metrics. We can see for the first experiment,
except for the architectures given in [24], our model achieves
the best score compared to other deep learning and machine
learning derived architectures. The architecture in [24] uses 1D
CNN and LSTM architectures. Because these architectures have
millions of parameters, they might be overfitting on the data.
Compared to them, our architecture is quite lightweight and
has around 81,000 parameters. Our model also has an inference
speed of 0.64 ms (milisecond). Meaning it can process around
1500+ URLs in 1 second. The models in [34], [6] uses DC-
GAN with character level data. However, they perform poorly
compared to our model. We also provide AUC and illustrate
all the model’s Receiver operating curve (ROC) in Fig. 4.

For our last experimentation, we evaluate our discriminator
and check its accuracy to detect adversarial examples as given
in Table. III. We use a test set with 50% adversarial and
50% real data to carry out this benchmark. By combining
the real and the adversarial examples synthesized by our
generator, we can have this 50/50 test split. So from the test
set of 10,000 URLs, we end up having 20,000 samples. We
use Accuracy, Sensitivity, Specificity, F1-score, and AUC as
standard metrics for measuring our model’s performance. As
shown in Table. III, our model is quite robust against adversarial
examples. However, the model performs better for detecting
real examples compared to adversarial examples, which is
validated by 100% Specificity. Moreover, the model detects
74.9% adversarial examples correctly, which is validated by the

TABLE I: Generator’s Performance: Similarity between real
and adversarial Phishing URLs.

MSE Structural Similarity Normalized RMSE
0.000579 0.9833 0.19708

TABLE II: Phishing URL classification : Comparison of
architectures trained and tested on real Phishing URLs

Method ACC Sensitivity Precision F1-score AUC
Proposed Method 0.9552 0.9600 0.9508 0.9554 0.9552

TextGAN [36] 0.9135 0.9210 0.9073 0.9141 0.9135
SVM [51] 0.8638 0.8822 0.8508 0.8662 0.8638

Random Forest [35] 0.8688 0.8508 0.8825 0.8664 0.8688
CNN [24] 0.9251 0.9190 0.9303 0.9246 0.9251

LSTM [24] 0.9471 0.9522 0.9425 0.9473 0.9471

TABLE III: Adversarial Example Detection: Discriminator’s
performance for detecting adversarial examples

Method ACC Sensitivity Specificity F1-score AUC
Proposed Method 0.8745 0.749 1.000 0.856 0.8745

Recall. Consequently, it confirms the hypothesis that Generative
Networks are far superior for detecting adversarial examples.

V. CONCLUSION

In this paper, we introduced a conditional Generative Ad-
versarial Network with novel game-theoretic training strategy
for simultaneous synthesis of adversarial examples and de-
tecting Phishing URLs. Our architecture outperforms previous
techniques by adopting a semi-supervised learning scheme of
synthesizing adversarial URLs while predicting their category.
The model is best suited for real-time Phishing detection
monitoring both locally (client-end) and globally (server-end),
where it can perform robustly and effectively. One future work
is to test the adversarial examples on other architectures and
compare their robustness.
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