
PDF-Malware: An Overview on Threats, Detection
and Evasion Attacks

Nicolas Fleury
Université Polytechnique

Hauts-De-France
Valenciennes, France

nicolas.fleury@etu.uphf.fr

Theo Dubrunquez
Université Polytechnique

Hauts-De-France
Valenciennes, France

theovalentin.dubrunquez@etu.uphf.fr

Ihsen Alouani
IEMN-DOAE Lab CNRS 8520

Université Polytechnique Hauts-De-France
Valenciennes, France
ihsen.alouani@uphf.fr

Abstract—In the recent years, Portable Document Format,
commonly known as PDF, has become a democratized standard
for document exchange and dissemination. This trend has been
due to its characteristics such as its flexibility and portability
across platforms. The widespread use of PDF has installed a
false impression of inherent safety among benign users. However,
the characteristics of PDF motivated hackers to exploit various
types of vulnerabilities, overcome security safeguards, thereby
making the PDF format one of the most efficient malicious code
attack vectors. Therefore, efficiently detecting malicious PDF files
is crucial for information security. Several analysis techniques has
been proposed in the literature, be it static or dynamic, to extract
the main features that allow the discrimination of malware files
from benign ones. Since classical analysis techniques may be
limited in case of zero-days, machine-learning based techniques
have emerged recently as an automatic PDF-malware detection
method that is able to generalize from a set of training samples.
These techniques are themselves facing the challenge of evasion
attacks where a malicious PDF is transformed to look benign. In
this work, we give an overview on the PDF-malware detection
problem. We give a perspective on the new challenges and
emerging solutions.

Index Terms—Security, Machine Learning

I. INTRODUCTION

Malicious attackers compromise systems to install malware
[1], [2] to gain access and privilege, to compromise personal
or sensitive data, to sabotage systems, or to use them in other
attacks such as DDOS [3]. Preventing the compromise of
information systems is practically impossible. In fact, attackers
succed the intrusions in a variety of manners, such as drive-
by-downloads with websites exploiting browser vulnerabilities
[4] or network-accessible vulnerabilities [5]. Besides, social
engineering attacks such as Phishing attacks, and malicious
email attachments allow user-authorized installation of mali-
cious binaries [6].

Regular end users are easily able to see the threat of a
clear binary and executable files. Their awareness is also in-
creasing against many threat vectors such as Microsoft Office
documents including macros. However, despite the complexity
PDF format, end users still tend to consider that PDF files are
harmless static documents. This implicit assumption mainly
results from ignoring the fact that what PDF file displays is
the execution output of a potentially complex program; mainly
javascript code running in the background. In 2010 Symantec

Fig. 1. Number of attacks: Microsoft Office vs. PDF [7].

[7] reported a large rise in PDF-driven attacks, mainly justify-
ing it with a corresponding rise in the vulnerabilities identified
in the Adobe Reader software. More recently, Ke Liu reported
[8] about his discovery since December 2015 of more than
150 vulnerabilities in the most common PDF reader software
products. This latter news shows how, even today, PDF is an
important infection vector that provides a large attack surface.
As shown in Figure I, the amount of PDF attacks Symantec
has recorded [7] have increased dramatically, which shows that
the PDF file format is being targeted more often. The spikes on
these graphs coincide with the release of specific PDF-related
CVEs.

The potential attack vector of PDF files combined with
a widespread wrong assumption of harmlessness makes the
detection of malicious PDF an important topic for the infor-
mation security community.

Malware developers typically exploit the possibility to
supply Javascript to the PDF reader interpretation engine to
execute malicious code. Such code is usually sandboxed for
execution, but it may still exploit unpatched vulnerabilities
to escape the environment boundaries and execute shellcode
at the user level. Complex payloads can be included in the
PDF as obfuscated text to evade inspection techniques, or can

ar
X

iv
:2

10
7.

12
87

3v
1

 [
cs

.C
R

]
 2

7
Ju

l 2
02

1

be downloaded from the Internet as soon as the attacker takes
control of the user shell. Malicious PDF files are then delivered
through different methods [7]: from drive-by downloads, to
targeted attacks or mass mailing approaches.

This paper aims at presenting a brief overview on the
main PDF-malware threats, the main detection techniques and
gives a perspective on emerging challenges in detecting PDF-
malware.

The remainder of the paper is organized as follows: Section
2 presents a brief background on PDF format as well as on
machine learning. Section 3 presents the PDF-based threat
used by attackers. Section 4 gives an overview on state of
the art malware detection techniques. The evasion attacks
challenge is explained in Section 5. We finally give concluding
remarks in Section 6.

II. BACKGROUND

A. The Portable Document Format

The Portable Document Format is the world’s most widely
used for both paper and online format for printed documents.
PDF was defined in 1993 by Adobe Systems and used until
today to exchange and print documents regardless the under-
lying hardware architecture, software platform, and operating
system. In 2008, PDF became an open standard released as
ISO 32000-1. A PDF file may contain a mix of textual and
binary data and is composed by different abstraction layers.
The layers define the sequential flow by which a PDF viewer
application reads the contents and renders them on the screen.
According to the PDF Reference [9], the internal structure of
a PDF file is made up of the elements depicted in Figure 2.

The PDF contains four sections: header, body, cross-
reference table and trailer.

• The header is used to identify the file format and the
version, %PDF − 1.x where x is a number between 0
and 7. However, the header could be placed anywhere in
the first 1024 bytes. If PDF file contains data, that line
is followed by a comment line containing at least four
binary characters whose codes are 128 or greater.

• The body contains multiple types of objects, and these
are the most important: (i) Objects: They may be either
direct (embedded in another object) or indirect. Indirect
objects are identified with an object number and a gen-
eration number (object’s version number) and defined
between the obj and endobj keywords if residing in the
document root.
(ii) A dictionary: object that starts with ”<<” and end
with ”>>” and is enclosed by obj and endobj keywords.
(iii) A stream object: it is represented by a sequence
of bytes and may be unlimited in length, which is why
images, javascript and other big-size data blocks are
usually represented as streams. Stream object can make
use of a special feature called filters. Filters can be used
for different purposes such as encoding or decoding of
content, compression and decompression. Furthermore,
multiple filters can be applied on a stream object.

• The cross-reference table: it indexes all objects’ locations
in the file. This table can have multiple subsection
containing objects, represented by 2 numbers : the first
number corresponds to the object number, while the
second line states the number of objects in the current
subsection, so if the object number is 0 and we have
3 objects, we will have objects 0, 1 and 2. Objects are
represented by one entry, which is 20 bytes: 10 first
bytes are the object offset from the start of the PDF
document to the beginning of that object, followed by
a space separator with another number specifying the
object’s generation number. After that there is an other
space separator followed by a letter f or n indicating if
the object is free or in use.

• The trailer is the first thing to be processed in a PDF and it
specifies how the application reading the PDF document
should find the cross-reference table and other special
objects. The trailer’s dictionary generally contains the
document’s catalogue object, and sometimes the docu-
ment’s information dictionary in which we can find the
creation and modification dates of the file, together with
some simple metadata.

An important but critical feature of PDF comes from the fact
that a document can be modified or updated in an incremental
way. This means that if a file is updated by adding a new body,
cross-reference table and trailer without changing anything in
the rest of the file. That feature allows any user coming back
with original data by cancelling the modifications.

B. Machine Learning

Machine Learning (ML) is one of the most useful tools
nowadays. It has shown in recent years an impressive capa-
bility to effectively deal with a plethora of complex real-life
problems. The main characteristic in ML computing paradigm
is to create knowledge from data. A ML algorithm goes
through a training phase with a dataset until converging to
a trained state where it can be tested and then validated on
a separate data set. A trained model is expected to be able
to generalize to unseen samples. As shown in Figure [10],
the training depends mostly on the available data structure: it
can be supervised when data is labeled, unsupervised when no
labels are available, or semi-supervised when data is partially
labeled.

There is four important steps in ML design. The First is
to determine the category that suits the problem. There are
four main categories: clustering, classification, regression and
rule extraction. Secondly, once the category is fixed, a specific
model corresponding to the category needs to be identified. For
example, one could choose Artificial Neural Network, Random
Forest, Naive Bayesian, a Support Vector Machine (SVM), etc.
Then, using the available data set, the model goes through
a training process to identify the optimal parameters of the
model that solves the considered problem. The final step is
to test the model with data that has not been seen in training
process. This step is also important because it’s where we will
get all the metrics to validate or not the model. The accuracy

Header

• Version
number

Body

• Page objects
• Font objects
• Bookmark

objects
• Image objects
• …

Cross-reference
Table

• Object
locations
within the file

Trailer

• Location of
special
objects

• Location of
the Cross-
reference
Table

Fig. 2. Simplified structure of a PDF file.

Fig. 3. Design methodologies of different machine learning categories [10].

and false negative rate are the more representative of the model
but there is also others such as average precision, specificity,
F1-score, etc.

III. PDF MALWARE

It is important to know that PDF can be a great attack
vector because a lot of people believes it’s safe and don’t even
suspect a PDF to be potentially dangerous. Email attachments
combined with social engineering are among many attack
vectors cybercriminals take advantage of. In addition to email

attachments, the use of web malware exploitation is one of the
most widely used attack vectors.

There are different ways to perform malicious actions using
PDF. The most common attack vector for malware PDFs
derives from embedded JavaScript code that can be executed
by the PDF reader. Indeed, many surveyed papers consider
features derived in different ways from embedded JavaScript
code [11]–[16].

The following are some well-known PDF-based attack sce-
narios:

• OpenAction feature can be used to set an exploit when
the file is opened. An action is a legitimate PDF fea-
ture. Some potentially dangerous actions include Launch,
Go-to, Universal Resource Indicator (URI), Named and
JavaScript actions [17], [18].

• Launch action, giving the possibility to launch special
commands on the operating system, and could run an
executable if the user clicks OK on the confirmation
windows that is opened [17].

• Embedded files, which can be extracted and opened by
the reader. This may be used to hide malicious exe-
cutables or malicious PDF, Embedded Flash applications
stored as embedded SWF files or malicious ActionScript
code [17], [18].

• GotoEmbedded action can be dangerous as PDF files can
contain embedded PDF files, which can be encrypted.
When a user loads the main PDF file, it could immedi-
ately load its embedded PDF file. This allows attackers to
hide malicious PDF files inside other PDF files, fooling
antivirus scanners by preventing them from examining
the hidden PDF file [17], [18].

• URI action allows access to a remote resources by mean
of an Universal Resource Indicator. This way, an attacker
could redirect an user to a malicious website [19] or exfil-
trate data [20] by combining that feature with Javascript,
OpenAction or using PDF forms (with the Submit Form
action).

IV. PDF MALWARE DETECTION

The most commonly used way for detecting PDF malware
is to search files for signatures or patterns of known malware.

Fig. 4. Output of PDFiD [22].

While this widely used techniques in classical anti-virus soft-
ware is fast and pragmatic, they are easily fooled and overcome
by attacker through simple evasion and obfuscation techniques.
In fact, in addition to its ineffectiveness against zero-days, even
if the vulnerable APIs that malware uses as an attack vector
might be known, detecting them syntactically can be evaded
by an attacker through obfuscation. Several public datasets
are available to develop PDF-malware detection techniques;
Contagio [21] is one of the most widely used ones.

A. Static analysis

Static analysis can be done by looking directly at the content
of the file or using specific tools. PDFiD [23] or peepdf 1 are
among the most widely used tools to statically analyze PDFs.
PDFiD is fine if you need a quick overview of what is in your
PDF file but if you want a better and deeper analysis peepdf
might be a better choice. PDFiD python script was designed
by Didier Stevens [23]. This script scans through a PDF file,
and counts the number of occurences of each features. These
21 features are commonly found in malicious files. PDFiD
gives a simple and fast overview IV of what the PDF contains
(Javascript, Open action, Launch action...)

B. Dynamic analysis

Unlike the static analysis, dynamic analysis is performed
at runtime. One of the challenges that are specific to PDF-
malware is the fact that PDF documents are not executable
and are launched through a PDF reader. Then, the analysis
needs to be performed on a vulnerable machine so that the
payload, if any, can be triggered and thereby analysed. If the
payload does not run due to security measures, the results are
useless. Varying the PDF viewer is also essential since some
malicious PDF are made for a specific viewer or even for

1https://github.com/jesparza/peepdf

Fig. 5. Example system call trace of process (truncated to 10 calls) [24].

a specific version of a viewer (ex: Adobe Acrobat Reader
DC). Once again, the priority with dynamic analysis is to
capture what happen when the payload is running. Once this
is achieved, the analysis process has to collect APIs and are
system calls. These are the main traces that are useful to
detect the potentially malicious requests for operating system
services [24]. An illustration of such traces is given in Figure
5.

The tools that you can use are for example strace 2 for Linux
or dtrace 3 under Windows OS. Once traces are collected,
postprocessing is needed to make them more human readable;
for example by sorting them by type of syscalls.

C. Hardware Malware Detection

While most of the existing malware analysis approaches
tackle the problem from sofware abstraction level, a number
of works have looked at using low-level features. These
approaches are referred to as Hardware Malware Detectors
(HMDs) and rely on micro-architecture features such as
frequency of opcodes [25], evaluation of opcode sequence
signatures [26]. These features are collected while a binary
is running and analysed for malware behavior detection. In
[27], offline analysis is performed through opcode sequence
similarity graphs. In the same direction, Demme et al. [28] pro-
posed collecting performance counter statistics for programs
and malware under execution and used them to show that
offline detection of malware is effective. Then, a real-time
hardware malware detector was built by Ozsoy et al. [29].
Tang et al. [30] used unsupervised learning to detect malware
exploits, which will make the regular program deviate from the
baseline execution model. Kazdagli et al [31] identified some
pitfalls in training and evaluating HMDs for mobile malware,
and proposed several improvements to them.

D. Machine-learning based techniques

The main goal of using machine learning for malware
detection is to build a classifier that is able to detect malicious
PDFs that he has never seen. Ideally, that should help to

2https://github.com/strace
3https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/dtrace

M
al

ic
io

us
 P

DF
 d

et
ec

tio
n

Static Analysis

Dynamique Analysis

Software Features

Hardware Features

Static features

Micro-architecture Features

PDF Form

Presence of javascript

Number of pages

ngram

System Calls

Memory features

API frequency

Fig. 6. An overview on PDF-malware detection features.

prevents new attacks and that should be more robust than a
classic antivirus. One can extract features using static analysis
and perform an analysis using an artificial neural network.

As Explained in section IV.A. PDFiD can be used to extract
features to train a model. For example related work [22]
implemented this solution. They used a dataset of 10000 clean
and 10000 malicious PDF documents. The model was a SVM
implemented in Python using 60% of the dataset for training
and the other 40% for test. They obtain an accuracy of 99.60%
and a false-positive rate of 0.05%.

Notice that static, dynamic, software and hardware features
can be used to design a ML-based PDF-malware detection
system.

V. EVASION ATTACKS

A. Attack Mechanism

The main goal of these Evasion attacks is to fool the
classifier by changing the features of the infected PDF files so
that the classifier considers them as clean. To have an effective
attack, these modifications should not be noticeable by the
defender by scanning the appearance of the file. Removing
objects is not effective for evasion because most of the time,
it will change the behavior and probably the display of the
file. On the other hand, adding empty objects seems to be a
good and easy way to modify a PDF file without damaging its
original content. We consider a white box adversary. In this
model, the adversary has access to everything the defender
has, namely: the training dataset used to train the classifier,
the classifier algorithm, the classifier parameters (kernel, used
features for vector, etc.), and infected PDF files that are
detected by the classifier. We experimented an Evasive attack
against a Classifier (ANN) we trained on Contagio dataset
[21]. Our intuition was that, in our dataset and in general,
infected PDF only contain the payload with no more content.

Hence, a simple solution was to add enough object in an
infected PDF to make it look like a normal PDF (in term of
number objects). Most of the PDF readers were able to find
PDF file’s objects even if the objects location in the cross-
reference are wrong. This means that adding objects in a PDF
file is easy and doesn’t affect the PDF behavior in most of
the cases. We implemented this attack to generate evasive
examples and we obtained more than 98% attack success
rate, i.e., the classifier was not able to recognize the evasive
malware. A very similar attack has already been implemented
[22], the attacker picks one feature and increments it until the
vector is considered as clean by the classifier.

Other techniques inspired from adversarial attacks in image
applications are based on gradient-descent to analytically find
the minimum noise needed to fool the system. It has been
used to evade Support Vector Machines (SVMs) and neural
networks classifiers [22], [32]. Moreover, this approach is
applicable to any classifier with a differentiable discriminant
function.

B. Defenses & Perspectives
A counter-measure that can be applied to counter the first

attack we proposed is to use a maximum value for our features,
and that totally blocks the attack when that value was set up
to 1. The gradient-descent attack works very well because the
algorithm has a huge degree of freedom due to the possibility
of increasing every component of the vector as much as
required. Selecting robust features could be a solution, but that
would a deeper analysis of the PDF [33] and use a threshold
for our features could counter the gradient-descent. [22]

However, we could simply train our classifier using the files
we used to evade it : it is called adversarial learning [34].

In previous work [35], combination of static and dynamic
features seems to improve the detection rate of malicious
Mobile App, and we think that it is worth exploring to utilize

it in PDF-malware context. We believe that combining static,
dynamic and hardware features can enhance the classifier
robustness against evasion attacks.

VI. CONCLUSION

In this paper, we present a brief overview on the main PDF-
malware threats, the main detection techniques. We give a
perspective on emerging challenges in detecting PDF-malware
and suggest ideas to enhance PDF malware detectors robust-
ness.

REFERENCES

[1] G. McGraw and G. Morrisett, “Attacking malicious code: A report to
the infosec research council,” IEEE Software, vol. 17, no. 5, pp. 33–41,
2000.

[2] E. Skoudis and L. Zeltser, Malware: Fighting Malicious Code. USA:
Prentice Hall PTR, 2003.

[3] W. Xu, G. Hu, D. W. C. Ho, and Z. Feng, “Distributed secure cooperative
control under denial-of-service attacks from multiple adversaries,” IEEE
Transactions on Cybernetics, pp. 1–10, 2019.

[4] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and
M. Winslett, “Vetting browser extensions for security vulnerabilities
with vex,” Commun. ACM, vol. 54, no. 9, p. 91–99, Sep. 2011.
[Online]. Available: https://doi.org/10.1145/1995376.1995398

[5] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
552–561. [Online]. Available: https://doi.org/10.1145/1315245.1315313

[6] S. Abraham and I. Chengalur-Smith, “An overview of social
engineering malware: Trends, tactics, and implications,” Technology in
Society, vol. 32, no. 3, pp. 183 – 196, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0160791X10000497

[7] K. Selvaraj and N. F. Gutierrez. (2010) The rise of pdf malware.
Accessed: 2020-05-18. [Online]. Available: https://vx-underground.org/
papers/security-response-rise-of-pdf-malware-10-en.pdf

[8] K. Liu, “Dig Into the Attack Surface of PDF and Gain
100+ CVEs in 1 Year,” Black Hat Asia, Tech. Rep., 2017.
[Online]. Available: https://www.blackhat.com/docs/asia-17/materials/
asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.
pdf

[9] A. Systems. (2008) Document management- portable document - format
part 1: Pdf 1.7. Accessed: 2020-05-18. [Online]. Available: https://www.
adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000 2008.pdf

[10] R. Boutaba, M. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. Caicedo Rendon, “A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9, 05
2018.

[11] I. Corona, D. Maiorca, D. Ariu, and G. Giacinto, “Lux0r: Detection of
malicious pdf-embedded javascript code through discriminant analysis
of api references,” in Proceedings of the 2014 Workshop on Artificial
Intelligent and Security Workshop, ser. AISec ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 47–57. [Online].
Available: https://doi.org/10.1145/2666652.2666657

[12] S. Karademir, T. Dean, and S. Leblanc, “Using clone detection to find
malware in acrobat files,” in Proceedings of the 2013 Conference of the
Center for Advanced Studies on Collaborative Research, ser. CASCON
’13. USA: IBM Corp., 2013, p. 70–80.

[13] P. Laskov and N. Šrndić, “Static detection of malicious javascript-
bearing pdf documents,” in Proceedings of the 27th Annual Computer
Security Applications Conference, ser. ACSAC ’11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 373–382.
[Online]. Available: https://doi.org/10.1145/2076732.2076785

[14] X. Lu, J. Zhuge, R. Wang, Y. Cao, and Y. Chen, “De-obfuscation and
detection of malicious pdf files with high accuracy,” in 2013 46th Hawaii
International Conference on System Sciences, 2013, pp. 4890–4899.

[15] F. Schmitt, J. Gassen, and E. Gerhards-Padilla, “Pdf scrutinizer: Detect-
ing javascript-based attacks in pdf documents,” in 2012 Tenth Annual
International Conference on Privacy, Security and Trust, 2012, pp. 104–
111.

[16] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos,
“Combining static and dynamic analysis for the detection of malicious
documents,” in Proceedings of the Fourth European Workshop
on System Security, ser. EUROSEC ’11. New York, NY, USA:
Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/1972551.1972555

[17] C. Ulucenk, V. Varadharajan, V. Balakrishnan, and U. Tupakula, “Tech-
niques for analysing pdf malware,” 12 2011, pp. 41–48.

[18] D. Maiorca, G. Giacinto, and I. Corona, “A pattern recognition system
for malicious pdf files detection,” vol. 7376, 07 2012, pp. 510–524.

[19] V. Hamon, “Malicious uri resolving in pdf documents,” Journal of
Computer Virology and Hacking Techniques, vol. 9, 05 2013.

[20] J. Müller, F. Ising, V. Mladenov, C. Mainka, S. Schinzel, and J. Schwenk,
“Practical decryption exfiltration: Breaking pdf encryption,” 11 2019, pp.
15–29.

[21] M. Parkour. Contagio dataset. [Online]. Available: http://contagiodump.
blogspot.com/

[22] B. Cuan, A. Damien, C. Delaplace, and M. Valois, “Malware detection
in pdf files using machine learning,” 01 2018, pp. 578–585.

[23] D. Stevens. (2009) Pdf tools. [Online]. Available: https://blog.
didierstevens.com/2009/03/31/pdfid/

[24] R. Canzanese, S. Mancoridis, and M. Kam, “System call-based detection
of malicious processes,” in 2015 IEEE International Conference on
Software Quality, Reliability and Security, 2015, pp. 119–124.

[25] D. Bilar, “Opcodes as predictor for malware,” Int. J. Electron. Secur.
Digit. Forensic, vol. 1, no. 2, p. 156–168, Jan. 2007. [Online].
Available: https://doi.org/10.1504/IJESDF.2007.016865

[26] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,” in
Proceedings of the Second International Conference on Engineering
Secure Software and Systems, ser. ESSoS’10. Berlin, Heidelberg:
Springer-Verlag, 2010, p. 35–43. [Online]. Available: https://doi.org/10.
1007/978-3-642-11747-3 3

[27] N. Runwal, R. M. Low, and M. Stamp, “Opcode graph similarity
and metamorphic detection,” J. Comput. Virol., vol. 8, no. 1–2,
p. 37–52, May 2012. [Online]. Available: https://doi.org/10.1007/
s11416-012-0160-5

[28] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, “On the feasibility of online malware
detection with performance counters,” SIGARCH Comput. Archit.
News, vol. 41, no. 3, p. 559–570, Jun. 2013. [Online]. Available:
https://doi.org/10.1145/2508148.2485970

[29] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware-aware processors: A framework for efficient online
malware detection,” in 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), 2015, pp. 651–661.

[30] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in Research in At-
tacks, Intrusions and Defenses, A. Stavrou, H. Bos, and G. Portokalidis,
Eds. Cham: Springer International Publishing, 2014, pp. 109–129.

[31] M. Kazdagli, L. Huang, V. J. Reddi, and M. Tiwari, “Emma: A new
platform to evaluate hardware-based mobile malware analyses,” ArXiv,
vol. abs/1603.03086, 2016.

[32] B. Biggio, I. Corona, D. Maiorca, B. Nelson, P. Laskov, G. Giacinto,
and F. Roli, “Evasion attacks against machine learning at test time,” 01
2013, pp. 387–402.

[33] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers: A case
study on pdf malware classifiers,” 01 2016.

[34] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
2017.

[35] M.-Y. Su, J.-Y. Chang, and K.-T. Fung, “Machine learning on merging
static and dynamic features to identify malicious mobile apps,” 07 2017,
pp. 863–867.

https://doi.org/10.1145/1995376.1995398
https://doi.org/10.1145/1315245.1315313
http://www.sciencedirect.com/science/article/pii/S0160791X10000497
https://vx-underground.org/papers/security-response-rise-of-pdf-malware-10-en.pdf
https://vx-underground.org/papers/security-response-rise-of-pdf-malware-10-en.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf
https://www.blackhat.com/docs/asia-17/materials/asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-CVEs-In-1-Year-wp.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_ 2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_ 2008.pdf
https://doi.org/10.1145/2666652.2666657
https://doi.org/10.1145/2076732.2076785
https://doi.org/10.1145/1972551.1972555
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
https://blog.didierstevens.com/2009/03/31/pdfid/
https://blog.didierstevens.com/2009/03/31/pdfid/
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1007/978-3-642-11747-3_3
https://doi.org/10.1007/978-3-642-11747-3_3
https://doi.org/10.1007/s11416-012-0160-5
https://doi.org/10.1007/s11416-012-0160-5
https://doi.org/10.1145/2508148.2485970

	I Introduction
	II Background
	II-A The Portable Document Format
	II-B Machine Learning

	III PDF Malware
	IV PDF Malware Detection
	IV-A Static analysis
	IV-B Dynamic analysis
	IV-C Hardware Malware Detection
	IV-D Machine-learning based techniques

	V Evasion Attacks
	V-A Attack Mechanism
	V-B Defenses & Perspectives

	VI Conclusion
	References

