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ABSTRACT 

The security of a computer system depends on OS kernel protection. It is 

crucial to reveal and inspect new attacks on kernel data, as these are used by 

hackers. The purpose of this paper is to continue research into attacks on 

dynamically allocated data in the Windows OS kernel and demonstrate the 

capacity of MemoryRanger to prevent these attacks. This paper discusses three 

new hijacking attacks on kernel data, which are based on bypassing OS security 

mechanisms. The first two hijacking attacks result in illegal access to files open in 

exclusive access. The third attack escalates process privileges, without applying 

token swapping. Although Windows security experts have issued new protection 

features, access attempts to the dynamically allocated data in the kernel are not 

fully controlled. MemoryRanger hypervisor is designed to fill this security gap. 

The updated MemoryRanger prevents these new attacks as well as supporting the 

Windows 10 1903 x64.  

Keywords: hypervisor-based protection, Windows kernel, hijacking attacks 

on memory, memory isolation, Kernel Data Protection. 

1. INTRODUCTION  

The security of users’ data and 

applications depends on the security of 

the OS kernel code and data. Modern 

operating systems include millions of 

lines of code, which makes it 

impossible to reveal and remediate all 

vulnerabilities. Attackers can exploit 

the OS vulnerabilities to perform 

malicious actions. Windows OS kernel 

remains one of the most desired targets 

for hackers.  

Another big challenge of OS 

kernel protection is the third-party 

kernel-mode drivers, which execute at 

the same high privilege level as the OS 

kernel, and they also include a variety 

of vulnerabilities. Researchers 

consider that “kernel modules (drivers) 

introduce additional attack surface, as 

they have full access to the kernel’s 

address space” (Yitbarek and Austin, 

2019).  

At the recent DEF CON hacking 

conference researchers from 

Eclypsium released a list of more than 

40 drivers from Microsoft-certified 

hardware vendors, which are prone to 

privilege escalation attacks (Jesse and 

Shkatov, 2019).  



 

 

Another vulnerability in a signed 

third-party driver was presented at the 

Blue Hat IL conference by security 

experts from the Microsoft Defender 

ATP Research Team. The vulnerable 

driver uses a watchdog mechanism 

based on user APC injection, which 

can also be exploited by attackers to 

bypass driver signature enforcement 

and gain escalated privileges. 

(Rapaport, 2019).  

Recently revealed Banking trojan 

“Banload”, which targets bank 

customers in Brazil and Thailand, 

applied a malicious kernel-mode 

component to fight with anti-malware 

and banking protection programs. This 

digitally signed malware driver is 

designed “to remove software drivers 

and executables belonging to anti-

malware and banking protection 

programs”, such as AVG, Avast, IBM 

Trusteer Rapport (Bisson, 2019; 

Kremez, 2019). 

Kernel-mode drivers were also 

used during the recent RobbinHood 

ransomware attack. Hackers installed a 

legitimate driver and exploited its 

vulnerability to temporarily disable the 

Windows OS driver signature 

enforcement. Finally, they installed a 

malicious kernel driver (Cimpanu, 

2020).  

Notorious cryptocurrency mining 

malware also applies kernel-mode 

rootkits to prevent them from being 

terminated. Windows-based crypto 

miner infected more than 50000 

servers from 90 countries (Harpaz and 

Goldberg, 2019; O'Donnell, 2019).  

The Microsoft Security team do 

their best to maintain a high level of 

OS kernel protection by issuing 

various security features, for example, 

Microsoft Kernel Patch Protection 

(KPP) aka PatchGuard etc. At the 

same, time security researchers and 

rootkit developers are discovering 

different techniques to bypass 

PatchGuard. The most notable of them 

was GhostHook, which abused the 

Intel Processor Trace (PT) feature to 

overcome PatchGuard and patch the 

kernel. Cimpanu (2019) underlines that 

two recently published bypassing 

techniques InfinityHook and ByePg 

“establish a permanent foothold in the 

kernel itself and open the door for the 

return of rootkits on Windows 10”.  

We can see that on the one hand, 

all drivers and the OS kernel share the 

same memory space, and on the other 

hand, there are no built-in mechanisms 

to restrict access to the kernel memory. 

All drivers have full access to the 

system and can be used by attackers. 

Windows security features provide 

limited kernel memory protection.  

Threat model  

Let us assume that using various 

approaches, intruders are able to 

execute malicious kernel code. This 

paper analyses two types of attacks on 

kernel data, which result in the 

following, see Figure 1:  

• gaining access to the files open 

in an exclusive mode (Handle 

Hijacking and Hijacking NTFS 

data structures); 



 

 

• escalating process privileges 

without using the token 

swapping technique (Token 

Hijacking).  

For the attacks on files, a legal 

driver creates a file via ZwCreateFile 

with zero flag ShareAccess, which 

gives the caller exclusive access to the 

open file. While the file remains 

opened all attempts to gain access to 

this file via ZwCreateFile are in vain. 

Windows OS detects this illegal access 

and returns a status sharing violation 

code (0xC0000043), which indicates 

that “a file cannot be opened because 

the share access flags are 

incompatible” (Microsoft, 2019).  

This research reveals two different 

attacks, which bypass Windows 

security features and successfully gain 

unauthorized access to the files opened 

without shared access by patching OS 

internal data structures, related to the 

Object Manager and NTFS driver 

components.  

The third attack escalates process 

privileges by patching the static and 

the variable portions of _TOKEN 

structure, without using token 

swapping or token stealing techniques. 

This type of attack is mapped to 

MITRE ATT&CK (2020) under 

Access Token Manipulation. The type 

of escalation privilege attack based on 

SeImpersonatePrivilege function is out 

of the scope of this paper (Bisht, 

2020).  

All newly proposed attacks are 

working transparently on Windows 10 

1903 64 bit as well as for its security 

features, such as Patch Guard, Device 

Guard, and Security Reference 

Monitor.  

 

 

Figure 1. The following attacks will be considered: attacks on files and a privilege 

escalation attack.  
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To prevent all these attacks on 

Windows OS kernel data the updated 

MemoryRanger hypervisor will be 

presented.  

MemoryRanger prevents attacks 

on files by running newly loaded 

drivers in separated kernel spaces as 

well as restricting access to the 

corresponding sensitive memory areas.  

The newest key feature of 

MemoryRanger allows it to run a 

special data enclave for sensitive OS 

kernel data, such as _TOKEN 

structures. This enclave includes these 

sensitive OS structures, OS kernel 

core, and a limited number of OS 

kernel built-in drivers. This new 

scheme prevents illegal access from all 

drivers whether loaded before and after 

MemoryRanger. 

The remainder of the paper is as 

follows. 

Section 2 provides the details of 

the control flow and corresponding 

internal data structures involved during 

file operations in kernel mode. Two 

examples of hijacking attacks on files 

will be given.  

Section 3 presents the details of 

access control issues in the Windows 

OS kernel and shows how attackers 

can hijack the corresponding structure 

in order to escalate the process 

privileges.  

Section 4 contains the details of 

adapting MemoryRanger to prevent 

these attacks.  

Section 5 and Section 6 focus on 

the main conclusions and further 

research directions respectively. 

2. TWO HIJACKING ATTACKS 

ON THE FILES OPENED 

WITHOUT SHARED ACCESS  

This section describes the 

internals of file operations in the 

Windows OS kernel: data structures 

and correlations between them. Two 

given hijacking attacks make it 

possible to illegally read and overwrite 

the content of the file opened in an 

exclusive mode. These two hijacking 

attacks are based on modifying the OS 

internal data structures involved in file 

operations.  

2.1. Control Flow and Internal Data 

Structures Involved in Read and 

Write File Operations  

Windows OS provides four main 

kernel API routines to create, 

read/write, and close files: 

ZwCreateFile, ZwReadFile, 

ZwWriteFile, ZwClose.  

During file operations, several OS 

kernel components are involved 

(Russinovich, Solomon, and Ionescu, 

2012; Tanenbaum and Bos, 2014). 

Each time a driver calls ZwCreateFile 

the control goes to the following OS 

kernel subsystems: I/O manager, 

Object Manager, Security Reference 

Monitor, NTFS driver, and finally, the 

control goes to the low-level drivers, 

such as Disk Filter Driver and Disk 

Class Driver. These are in charge of 

access to the physical disk.  



 

 

The key features revealed by 

Korkin (2019) are that Security 

Reference Monitor checks access 

rights to the file for ZwCreateFile 

routine, while routines ZwReadFile, 

ZwWriteFile are uncontrolled by the 

Security Reference Monitor.  

Once a file is created via calling 

ZwCreateFile, the OS creates a file 

handle, adds an entry to the Handle 

Table, allocates file object, NTFS data, 

and other structures. The created file 

handle is returned to the caller and is 

used as a key to read and write the 

open file using functions ZwReadFile 

and ZwWriteFile.  

The details of the control flow and 

internal data structures involved in 

read and write file operations are given 

in Figure 2. Using a file handle, the OS 

traverses through the handle table to 

acquire the file object. By reading file 

object fields the OS locates control 

block structures (NTFS data 

structures) and moves to them. Disk 

drivers access the opened file on a disk 

by using NTFS data structures.  

OS kernel treats read and write 

file access by traversing through these 

structures without any checks by 

Security Reference Monitor.  

This vulnerability can be used to 

gain full illegal access to the files 

opened without shared access. To 

achieve it, intruders can create a file 

hijacker and patch any of the 

structures, see Figure 2. 

As a result, all intruders’ access 

attempts using the file hijacker handle 

will be redirected by the OS to the 

secret file, see Figure 3. This is the key 

point of all hijacking attacks on files.  

Intruders can modify the 

following data to change the control 

flow, the corresponding attacks are in 

brackets:  

• handle table entries (Handle 

Table Hijacking);  

• file object (Hijacking 

FILE_OBJECT);  

• NTFS data structures 

(Hijacking NTFS structures).  

A File Object Hijacking attack 

was presented by Korkin (2019). 

The next two subsections will 

describe the details of Handle 

Hijacking and Hijacking NTFS 

structures. 

 



 

 

 

Figure 2. OS subsystems and corresponding data structures involved during read and write file 

operations.  

(Russinovich, Solomon, and Ionescu, (2012), part2, pp 441).  

 

 

ZwReadFile/ ZwWriteFile

I/O Manager

Object Manager

Security Reference Monitor

NTFS driver

File handle

File Object

Handle Table

Handle Table Entry Object Header

Disk driversDisk drivers Other structures

Files on the disk

Handle Table Hijacking

Hijacking FILE_OBJECT 

Structure

Hijacking NTFS 
Data Structures

Handle Table Entry

Handle Table Entry

Control block 

Structures



 

 

 

 

Figure 3. An attacker creates a file hijacker and applies three different hijacking 

attacks: Handle Table Hijacking, Hijacking FILE_OBJECT structure, Hijacking 

NTFS structures, which are based on patching handle table entries, file object, and 

NTFS data structures.  

 

 

2.2. Handle Table Hijacking  

This section describes the details 

of the Kernel Handle Table and how 

attackers can hijack its values to gain 

illegal access to the files.  

Handle Table Basics 

The security issue with access to 

the files, locked by an application from 

another application is typical for 

Windows OS. Sysnap (2011) describes 

the details of illegal access to the 

locked file by modifying the handle 

table, belonging to the application. The 

author’s approach is designed for the 

user-mode handles and process for 

Windows XP and 2003. This section 

describes how to adapt Sysnap’s idea 

of patching the handle table for kernel 

case in the most recent Windows OS.  

A way for patching handle table 

entries for user process in order to 

change handle access rights is 

implemented in Blackbone by 

DarthTon (2019-a).  
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The Kernel Handle Table is used 

by the Windows OS to store the 

mapping from the handles to the 

corresponding object structures 

(Tanenbaum and Bos, 2014; Probert, 

2010; Schreiber, 2000). Using a 

handle, the OS traverses through 

Kernel Handle Table to acquire the 

object. Exported symbol 

nt!ObpKernelHandleTable points to 

this table. The address of this table can 

also be gained by reading the field 

EPROCESS.ObjectTable for 

SYSTEM:4 process. Kernel Handle 

Table is involved each time a driver 

reads and writes a file. This handle-

based mechanism manipulates various 

objects, such as files, processes, 

threads, or registry keys.  

The presented research is focused 

only on handles related to the file 

system, but the achieved results can be 

applied to all kernel objects as well.  

For each newly created file, the 

kernel handle table has an entry and an 

index of each entry equals the returned 

handle value (Hale-Ligh, M. Case, A, 

Levy, J., Walters, 2014). Each entry is 

defined in a 

HANDLE_TABLE_ENTRY structure, 

which includes access rights granted to 

the object (field GrantedAccessBits) 

and the link to the created object (field 

ObjectPointerBits). The field 

ObjectPointerBits includes 44 low bits 

of OBJECT_HEADER address, which 

can be used to gain the FILE_OBJECT 

address (Monnappa, 2018; 

CodeMachine, 2019).  

Tanenbaum and Bos (2014) found 

that “system calls, like ZwReadFile 

and ZwWriteFile, use the kernel 

handle table created by the object 

manager to translate a handle into a 

referenced pointer on the underlying 

object, such as a file object, which 

contains the data that is needed to 

implement the system calls” (pp 899).  

Handle table can have several 

levels, the number of levels and the 

number of entries in each level 

depends on which Windows version is 

being used (Suma, Dija, Thomas, 

2014; Probert, 2010; Schreiber, 2000). 

Windows OS provides a function 

ExEnumHandleTable to enumerate all 

the valid handles in a handle table. 

ExEnumHandleTable specifies an 

enumeration callback function, which 

is called for each valid handle in the 

handle table (DarthTon, 2019-b; 

Treadwell, 1989). The enumeration 

procedure needs to release implicit 

locks for each handle via call 

ExUnlockHandleTableEntry 

(ReactOS, n.d.; WRK. n.d.). The 

enumeration procedure returns a bool 

value. To stop the enumeration the 

procedure needs to return a TRUE 

value and as a result 

ExEnumHandleTable also returns 

TRUE. To continue the enumeration, 

the procedure needs to return FALSE.  

Using ExEnumHandleTable 

intruders can access the handle table 

entry, which belongs to the file 

hijacker, and patch it.  

 

 



 

 

 

 
a) 

 

 
b) 

Figure 4. The control flow between files structures: a) before and b) after Handle 

Table Hijacking 
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The Algorithm of Handle Table 

Hijacking  

The research reveals that during 

read and write access OS traverses 

through the kernel handle table and 

acquires the file object, without any 

checks. Attackers can use this 

vulnerability to gain illegal access to 

the exclusively open file in this way: 

1. Reveal OBJECT_HEADER 

address of the secret file.  

2. Create a file hijacker and locate 

a corresponding entry in the 

handle table entry. 

3. Overwrite the 

ObjectPointerBits field in this 

entry using the 

OBJECT_HEADER address of 

the secret file. 

After this handle hijacking attack 

all read and write access using a 

hijacked file handle will be redirected 

to the secret file, see Figure 4. 

This hijacking attack requires 

overwriting just 44 bits of dynamically 

allocated data, which is enough to gain 

illegal access to the exclusively opened 

file. This redirection will be carried out 

by the Windows OS automatically and 

transparently for the built-in security 

features.  

On the one hand, intruders can 

tamper with entries of the kernel 

handle table in order to exploit the 

translation mechanism, and on the 

other hand, Windows security features 

do not check the integrity of this table 

and cannot reveal this attack.  

2.3. Hijacking NTFS data structures  

This section describes the details 

of the attack called “Hijacking NTFS 

data structures”.  

This attack is an improvement of 

the attack presented by Korkin (2019), 

which was based on Hijacking 

FILE_OBJECT. Let us assume, that a 

security service continuously provides 

integrity and confidentiality for all 

FILE_OBJECT structures. As a result, 

only OS kernel has access to the 

FILE_OBJECT structures, while 

access attempts from all other drivers 

are forbidden.  

In this new situation, attackers 

cannot use FILE_OBJECT hijacking 

attack and they need to prepare a new 

attack. Attackers decide to organize a 

new lower-level attack on control 

block structures or NTFS data 

structures, which FILE_OBJECT 

fields point to, see Figure 4 b).  

FILE_OBJECT structure includes 

fields FsContext and FsContext2, 

which point to the control block 

structures: FsContext member points 

to the File Control Block, FCB 

(Stream Control Block, SCB) and 

FsContext2 points to the Context 

Control Block, CCB. Each file stream 

is uniquely represented in memory by 

an FCB structure. CCB structure is 

created by file system drivers to 

represent an open instance of a file 

stream (Nagar, 1997). This mechanism 

is deeply integrated into the Windows 

OS kernel and is very rarely updated.  



 

 

FsContext and FsContext2 

represent the physical stream context 

and the user handle stream context. 

FsContext2, is used to point to the 

Channel Control Block or CCB 

(Miller, 1991; Probert, 2004).  

Let us move on to the details of 

FCB and CCB structures. These 

structures pointed by FsContext and 

FsContext2 are only partially 

documented, but at the same time, the 

research has revealed the following 

details.  

The definition of the SCB, FCB 

and CCB for Windows NT 4.0 are in 

the file “ntfsstru.h” (Microsoft, n.d.-a). 

The definition of these structures can 

also be found in file “cdstruc.h” from 

ReactOS (ReactOS, n.d.-a). These 

definitions can be used for 

understanding some basic file 

principles because the structures are 

partially updated in the most recent 

Windows.  

According to the MSDN file 

object's FsContext member stores a 

pointer to the 

FSRTL_ADVANCED_FCB_HEADE

R structure, which uniquely identifies 

the file stream to the file system 

(MSDN, 2018-a, MSDN, 2018-b, 

MSDN, 2018-c).  

The research shows that an 

appropriate target for this new attack is 

a 

FSRTL_ADVANCED_FCB_HEADE

R structure, which FsContext fields 

from a FILE_OBJECT structure points 

to.  

In addition, the research has 

revealed that fields FsContext and 

FsContext2 point to the contiguous 

memory blocks and, when using a 

hijacking attack, intruders can copy 

and overwrite the content of these two 

structures simultaneously.  

Structures 

FSRTL_ADVANCED_FCB_HEADE

R are not protected by the OS security 

features, and their patching does not 

cause any kernel security check failure 

errors, such as BSOD.  

In a nutshell, Hijacking NTFS 

data structures is based on locating 

internal file object structures from 

FsContent and FsContent2 fields, 

copying their content to the 

corresponding memory areas pointed 

by the fields of file object hijacker and 

additional patching. Without this 

patching during read or write 

operation, the OS detects 

aforementioned copying and causes 

BSOD with 

RESOURCE_NOT_OWNED 

(0x000000E3) bug check.  

 

The Algorithm of Hijacking 

NTFS data 

To implement Hijacking NTFS 

data structures, intruders have to locate 

the NTFS data structures, which 

correspond to the secret file and to the 

file hijacker, and engage in the 

following three steps:  

Step 1. Overwrite the content of 

attackers’ 

FSRTL_ADVANCED_FCB_HEADE



 

 

R structure using the data from the 

FSRTL_ADVANCED_FCB_HEADE

R structure, which belongs to the 

secret file.  

However, this overwriting is not 

enough, because Windows OS reveals 

that a malware driver’s thread tries to 

release a resource it did not own and 

Windows OS causes BSOD with 

RESOURCE_NOT_OWNED bug 

check. To overcome this BSOD 

attackers move to the second step.  

Step 2. Set attackers’ thread ID 

gained by PsGetCurrentThread to the 

following fields in 

FSRTL_ADVANCED_FCB_HEADE

R structure:  

• Resource-

>OwnerEntry.OwnerThread;  

• PagingIoResource-

>OwnerEntry.OwnerThread. 

This patching helps malware 

driver to overcome BSOD with 

RESOURCE_NOT_OWNED bug 

check.  

Windows OS kernel changes the 

content of 

FSRTL_ADVANCED_FCB_HEADE

R structure while returning the result 

of reading and writing to the driver and 

if attackers try to access the file using 

previously modified structure the 

Windows OS will cause BSOD again. 

If attackers want to access the secret 

file several times, they move on to 

Step 3.  

Step 3. Repeat Step 1 and Step 2 

before each read and write access 

attempt during every hijacking attack.  

Attackers have to repeat Step 1 

and Step 2 before each unauthorized 

read and write access attempt, thus 

preventing the aforementioned BSOD. 

As a result, each time attackers 

read and write a file using a hijacked 

file handle, OS walks through patching 

structure and provides illegal read and 

write access to the secret file, without 

BSOD.  

 



 

 

 
a) 

 

 
b) 

Figure 5. The control flow between files structures: a) before and b) after 

hijacking the NTFS control block structures, e.g. 

FSRTL_ADVANCED_FCB_HEADER 
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3. TOKEN HIJACKING ATTACK: 

WHAT AND HOW 

The process privilege mechanism 

is crucial for OS security. This section 

describes the process privileges 

mechanism and how it can be hijacked 

by modifying the content of 

dynamically allocated memory.  

For each newly created process, 

Windows OS allocates a new 

EPROCESS structure and adds it to 

the list. This structure includes internal 

information about this process: its 

name and ID, threads and handles 

details, etc. (Monnappa, 2018; 

Tanenbaum and Bos, 2014). _TOKEN 

structure describes the process access 

token, which contains the 

security-related information about the 

process: user’s and group SIDs, 

process privileges, etc. (Hoglund and 

Butler, 2006). The _TOKEN structure 

is pointed by the field Object, which is 

located in Token _EX_FAST_REF in 

_EPROCESS structure, see Figure 6.  

Windows OS provides 

discretionary access control, which is 

governed by two main parts (Ismail, 

Aboelseoud, and Senousy, 2014; 

Johnson, 2015):  

• an access token associated with 

each process; 

• a security descriptor associated 

with each object, such as a file.  

According to the Russinovich 

(1998) and Stallings (2002) each time 

a process tries to access the object; the 

Security Reference Monitor reads the 

SIDs and group SIDs from _TOKEN 

structure to determine whether or not 

this access is allowed.  

Attackers apply various 

techniques to elevate privileges for the 

malware process (Chebbi, (2019).  

API-based approach to steal 

tokens in Windows was proposed by 

Barta (2009). The author leverages 

several kernel API routines, which 

makes it difficult to apply this 

approach via the malware payload.  

The ideas of applying direct 

kernel object manipulation (DKOM) to 

the process token in order to gain 

elevated access were discussed by 

Hoglund and Butler (2006) more than 

10 years ago.  

On the Black Hat USA 2004 for 

the first time, they proposed an idea of 

adding groups to Token structure using 

DKOM (Hoglund and Butler, 2004). 

The authors’ idea is based on patching 

UserAndGroups array so that the 

required high privileges will be 

enabled for the process.  

To prevent these manipulations 

Windows experts moved one step 

ahead and since Windows kernel 6.x 

several fields such as SidHash and 

RestrictedSidHash have been added 

into the _TOKEN structure to provide 

the integrity of this structure. OS 

checks these hashes to ensure that the 

SID list is not patched. These new 

fields prevent attackers from directly 

modifying the SID list.  

Perla and Oldani (2010, pp. 295) 

underlined three alternatives to bypass 

this security hash-based barricade. One 



 

 

of them is token stealing or token 

swapping and it is based on 

overwriting the Object field in the 

_EPROCESS structure from the 

malware process. This uses the value 

from the _EPROCESS structure 

corresponding to the higher-privileged 

process, for example, SYSTEM:4 

(Perla and Oldani, 2010, pp 305). 

However, newly updated Microsoft 

Windows Defender Antivirus detects 

such escalation by monitoring token-

swapping attempts (Oh, 2017; Singh, 

Kaplan, Feng, and Sanossian, 2019). 

Bui (2019) shows that access token 

manipulation can be detected using 

auditpol, which is based on ETW, but 

this detection approach can also be 

tampered with due to attacks on ETW.  

A New Token Hijacking Attack 

I propose a new Token Hijacking 

Attack, which is a development of 

ideas of Hoglund and Butler (2006). In 

a nutshell, attackers need to escalate 

privileges so that the calculated 

SidHash value will be corrected and 

the integrity check will not reveal any 

changes. 

Attackers can achieve this by 

overwriting the following whole three 

fields using the corresponding values 

from the Token structure 

corresponding to the higher-privileged 

process: 

• UserAndGroupCount; 

• UserAndGroups array: 

Attributes and Sid structures; 

• SidHash structure; 

The key feature is to completely 

copy the UserAndGroups array with 

updated internal structure 

arrangement from the Token for 

higher privilege process, while 

Hoglund and Butler (2006) proposed 

to overwrite just a few fields.  

During this attack copying 

UserAndGroupCount field and 

SidHash structure is trivial because 

they have the same size while copying 

a variable part pointed by 

UserAndGroups is quite complicated. 

The number of entries in 

UserAndGroups and sizes of SID 

structures are not the same for various 

processes with different credentials, 

Figure 6.  

The following two facts make this 

attack possible. Firstly, this updating is 

more than enough to gain elevated 

privileges yet not being detected by the 

OS. Secondly, TOKEN structure for 

common processes always has enough 

space, because a variable portion of 

_TOKEN structure for System:4 

process is less than the corresponding 

structure for a common one. 

This attack has been successfully 

tested on the newest Windows 10 1903 

x64, the source code and demo in this 

paper (Korkin, 2020). 



 

 

 
a) 

 

 
b) 

Figure 6. The content of _EPROCESS and _TOKEN structures for SYSTEM:4 

and malware processes:  a) before and b) after Token Hijacking 
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4. MEMORYRANGER 

PREVENTS KERNEL 

HIJACKING STRUCTURES 

This section describes the details 

of how the updated MemoryRanger 

hypervisor prevents hijacking attacks 

(Korkin, 2018; Korkin, 2019).  

4.1. MemoryRanger Overview 

MemoryRanger is a hypervisor-

based solution (a bare-metal 

hypervisor), designed to provide 

integrity and confidentiality for 

kernel-mode code and data. 

MemoryRanger leverages Intel VT-x 

technology and Extended Page 

Tables (EPT).  

MemoryRanger protects kernel 

memory by using isolated kernel 

enclaves with specified memory 

access restrictions. 

By running kernel drivers in 

separate memory enclaves 

MemoryRanger protects kernel 

memory from being tampered with: 

• It prevents attacks on OS 

kernel code and data from 

newly loaded drivers; 

• It protects the code and data 

of newly loaded drivers from 

the attacks from each other. 

After loading, MemoryRanger 

allocates the default kernel enclave: 

OS kernel and all drivers loaded 

before are running inside this 

enclave.  

Newly loaded drivers are 

running in separate enclaves. 

MemoryRanger traps the loading of 

each new driver and allocates an 

isolated kernel enclave for this 

driver. Each newly loaded kernel 

driver is running only inside the 

corresponding allocated kernel 

memory enclave.  

MemoryRanger updates the 

memory access restrictions for each 

enclave in run-time, which makes it 

possible to protect sensitive memory 

areas. MemoryRanger can monitor 

access to the kernel-mode memory 

and redirect the illegal access to the 

fake page.  

4.2. MemoryRanger: Key 

components 

MemoryRanger has the 

following key components: 

• A kernel-mode driver; 

• DdiMon; 

• MemoryMonRWX; 

• Memory Access Policy 

(MAP). 

 

All the details about 

MemoryRanger components are 

given by Korkin (2019).  

MemoryRanger does the 

following: 

• registers a driver-supplied 

callback that is notified 

whenever a new process is 

created/deleted and an image 

is loaded; 

• hooks kernel API by using 

DdiMon component;  



 

 

• restricts memory access even 

to a byte by using 

MemoryMonRWX; 

• provides dynamically 

updated access control rules 

using MAP. 

4.3. Main Updates of 

MemoryRanger to Block New 

Hijacking Attacks 

In order to prevent the newly 

presented hijacking attacks, the 

following modifications have been 

added to the MemoryRanger. 

MemoryRanger prevents Handle 

Hijacking and Hijacking NTFS data 

structures by doing the following: 

• it hooks ZwCreateFile() and 

ZwClose routines to locate 

the involved data structures 

in memory; 

• To prevent Handle Hijacking, 

it locates the 

HANDLE_TABLE_ENTRY 

structure corresponding to the 

opened file using the 

ExEnumHandleTable routine; 

• To prevent Hijacking NTFS 

Data, it locates the 

FSRTL_ADVANCED_FCB_

HEADER structure using the 

pointers from 

FILE_OBJECT. 

• MemoryRanger restricts 

access to the structures in the 

corresponding enclaves.  

To prevent Token Hijacking 

MemoryRanger implements a new 

technique, which is based on 

allocating a special isolated enclave, 

which includes only sensitive kernel 

data, see Figure 7.  

The details of these prevention 

techniques are given below. The 

source code of updated 

MemoryRanger, attacker, and 

allocator drivers as well as video 

demos are here (Korkin, 2020). 

4.4. Details of Prevention of 

Handle Hijacking Attack 

Preventing Handle Hijacking 

requires a fine-grained approach.  

MemoryRanger prevents Handle 

Hijacking by blocking only write 

access to ObjHeader field, which has 

6 bytes and corresponds to the file 

object header, see Figure 7. Neither 

does MemoryRanger restrict read 

access for ObjHeader, nor does it 

prevent any access to other fields of 

this entry, because they are used by 

the OS. In fact, some fields of these 

entries have to be accessed for write 

attempts due to synchronization 

issues and their restriction causes 

BSOD.  

MemoryRanger is notified about 

creating a new file by hooking 

ZwCreateFile routine and next it 

locates handle table entry by using 

file handle and the 

ExEnumHandleTable routine.  

4.5. Details of Prevention of 

Hijacking NTFS data structures 

For Hijacking NTFS data 

structures intruders modify the 

control block structures 

(FSRTL_ADVANCED_FCB_HEA



 

 

DER), which correspond to the file 

hijacker.  

To prevent this attack 

MemoryRanger implements a similar 

approach based on locating control 

block structures and restricting 

access to them.  

4.6. Details of Prevention of Token 

Hijacking 

Token Hijacking Attack is 

tampering with static and dynamic 

parts of _TOKEN structures, which 

results in local privilege escalation.  

To block Token Hijacking a 

special isolated kernel enclave is 

allocated to host sensitive data. This 

new enclave includes only sensitive 

kernel data, such as _TOKEN 

structures, Windows kernel core 

(ntoskrnl.exe), and a limited number 

of trusted Windows drivers. All other 

drivers will be excluded from this 

enclave, see Figure 7. 

This new scheme isolates token 

structures from all drivers loaded 

after and even before 

MemoryRanger without restricting 

the OS kernel. 

MemoryRanger is notified about 

creating a new process by registering 

a callback routine via call 

PsSetCreateProcessNotifyRoutineEx. 

4.7. Empirical Test Results 

All these attacks and their 

prevention have been successfully 

tested on Windows 10 1903 x64, 

details are in (Korkin, 2020). 

4.8. Performance Impact 

MemoryRanger causes 

affordable performance degradation. 

Switching between kernel enclaves is 

the main problem of this 

performance degradation. Changing 

the EPT pointer causes the flushing 

of TLB and further filling the TLB. 

Details about measuring the 

performance were given previously 

by Korkin (2018). I can conclude 

that MemoryRanger is suitable to 

protect the rarely accessed safe areas. 

To avoid this degradation, the new 

version will support VPID, which is 

designed to meet this need. 

4.9.  MemoryRanger vs. Virtual 

Secure Mode 

One of the global security 

challenges for modern operating 

systems is to prevent illegal access to 

the kernel data from drivers, while 

all drivers and OS share the same 

memory space.  

MemoryRanger is designed to 

tackle this issue by isolating newly 

loaded drivers inside allocated 

separated memory enclaves from the 

rest of the OS kernel. This drivers’ 

isolation can prevent attacks from 

kernel rootkits as well as providing 

exploit mitigation.  

MemoryRanger can be applied 

to protect Unix-based systems 

running on AMD and ARM CPUs.  

MemoryRanger includes a 

kernel driver, which allows it to trap 

and parse OS-related events. Using a 

hypervisor component 



 

 

MemoryRanger restricts access to 

the memory transparently for the OS 

kernel. MemoryRanger is protected 

from kernel attacks, due to running 

in ring -1) 

Windows OS comprises a new 

technology called Virtual Secure 

Mode (VSM), which is designed to 

maintain a secure Windows 

environment. VSM provides a 

particular case of enclave-based 

protection with only two memory 

partitions called VTL0 and VTL1, 

while MemoryRanger implements a 

general case with an infinite number 

of kernel enclaves. MemoryRanger 

has been tested using three (Korkin, 

2019), four (Figure 7), and five 

separate enclaves (Korkin, 2018). 

5. CONCLUSION 

To sum up I would like to 

highlight the following: 

1. Windows OS kernel manipulates 

dynamically allocated data, 

which can be tampered with by 

intruders during cyberattacks. 

Windows security features 

provide integrity only for limited 

memory areas, while others are 

becoming susceptible.  

2. Two new presented attacks on 

files: Handle Hijacking and 

Hijacking NTFS structures make 

it possible to gain illegal access 

to the files opened in an 

exclusive mode bypassing 

Security Reference Monitor.  

3. Hijacking Attack on NTFS data 

structures has never been 

presented before.  

4. A new Token Hijacking attack 

results in process privilege 

escalation via copying SID with 

their attributes as well as SID 

hashes from a higher privileges 

process. This attack gains 

elevated privileges with the 

correct hash value.  

5. Updated MemoryRanger 

prevents attacks on files by 

running drivers inside isolated 

enclaves and restricting access to 

the corresponding data structures.  

6. To prevent Token Hijacking, 

updated MemoryRanger 

implements a new special 

enclave, which includes only 

sensitive data and a part of the 

Windows OS kernel; all other 

drivers as well as newly loaded 

ones are not able to tamper with 

this data.  

7. All new attacks on files and 

tokens have been successfully 

tested on the most recent 

Windows 10 1903. Updated 

MemoryRanger can prevent all 

mentioned hijacking attacks. 

8. Various cybersecurity solutions 

will benefit from applying 

MemoryRanger. The source code 

and all demos are uploaded here 

(Korkin, 2020).  

 



 

 

 

Figure 7. MemoryRanger prevents Handle Hijacking and Token Hijacking 
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6. FUTURE PLANS 

Updated MemoryRanger is a very 

promising project and the following 

future directions can be outlined.  

6.1. Prevent patching of OS Internal 

Structures by Intel Memory 

Protection Keys (MPK) 

Prakash, Venkataramani, Yin, and 

Lin (2013) revealed the following 

examples of how attackers can patch 

the OS internal structures to gain 

ongoing and undetectable access to the 

target system: 

• Hackers can prevent a 

malicious process from 

terminating by changing the 

corresponding 

EPROCESS.Flags to 

0xFFFFFFFF value;  

• Hackers can make a file 

completely inaccessible by 

changing the file name field in 

FILE_OBJECT to an empty 

string;  

• Hackers can hide a program 

from the process list in the 

Task Manager by changing the 

corresponding 

EPROCESS.UniqueProcessId 

to 0.  

Despite the fact that the results 

were checked on Windows XP, the 

similar principles can be expanded on 

the most recent Windows 10 and for 

more OS internal structures. 

A recently issued key-based 

permission control called Intel 

Memory Protection Keys (MPK) can 

be leveraged to maintain and enforce 

memory access permission. MPK has 

several key benefits over the page-

table mechanism (Park, Lee et al. 

2019).  

6.2. MemoryRanger can do Deep 

Inspection of Memory Access  

The current version of 

MemoryRanger checks access rights 

using only the address of the module, 

which implements this access. As a 

result, malware can gain illegal access 

to sensitive data by exploiting any 

vulnerable function in the trusted 

module.  

The idea is to verify the function 

call stack additionally to check which 

sequence of functions leads to access 

this sensitive memory area.  

This new check helps to inspect 

memory access a bit deeper and 

prevent the mentioned attack.  

Finally, intruders have to exploit 

not only the function which accesses 

sensitive data but also the whole 

sequence of functions, which is very 

difficult and time-consuming.  

6.3. MemoryRanger vs. Mimikatz  

One more advanced direction is to 

analyze and prevent activities of 

Mimikatz, which is an effective post-

exploitation tool (Delpy, 2020).  

Mimikatz applies its driver to 

provide various commands to play 

with kernel memory:  



 

 

• read and write kernel-mode 

memory from user-mode 

applications; 

• disable Protected Process Light 

(PPL) mode; 

• duplicate process token; 

• set all privileges for a process. 

6.4. MemoryRanger vs. Privilege 

Escalation by using buggy StopZilla 

driver  

Security researchers have revealed 

that StopZilla AntiVirus Software 

includes a vulnerable driver, which can 

be used to elevate process privilege.  

For this attack hackers need to 

have SeLoadDriverPrivilege to load a 

vulnerable driver and launch the 

exploit to patch TOKEN structure.  

Ideas and details of such attacks 

were discussed by Pierini (2019) at 

Hack In Paris conference and by 

Cocomazzi and Pierini (2020) at the 

HITBSecConf2020.  

Protection of the OS kernel from 

vulnerable signed third-party drivers is 

a serious security problem, because 

these drivers run in the kernel memory 

without any restrictions. 

MemoryRanger can be updated to 

run StopZilla’s driver in isolated 

enclaves and prevent the overwriting 

of the sensitive data, such as TOKEN 

structures. We cannot reveal all 

vulnerabilities, but we can protect the 

sensitive data, which is usually the top 

target of attacks by hackers.  

6.5.  Isolated Enclave for the OS 

Scheduler: Unikernels Based 

Protection  

The current version of 

MemoryRanger has an issue with the 

protection of data from being tampered 

with by drivers loaded before it.  

MemoryRanger protects rarely 

accessed data with acceptable 

performance degradation, while 

protection of frequently accessed data 

causes significant performance 

degradation. 

To overcome this performance 

degradation and protect sensitive OS 

kernel data, such as EPROCESS 

structures from all drivers, 

MemoryRanger can allocate the 

following enclaves:  

• the Scheduler enclave includes 

sensitive OS structures, such as 

EPROCESS, ETHREAD etc., 

which are frequently used by OS 

kernel scheduler. OS scheduler is 

located in this enclave. Likewise, 

this enclave contains file system 

drivers and their structures. As a 

result, this enclave includes a 

minimal list of drivers and their 

structures.  

• the Default enclave contains all 

other drivers loaded before 

MemoryRanger. This enclave 

excludes all OS internal data 

structures from the Scheduler 

enclave, while drivers from the 

Default enclave are excluded from 

the Scheduler enclave.  



 

 

• the Data-Only enclave includes 

only sensitive data structures, 

which are rarely accessed by the 

OS kernel drivers, such as Token 

structures.  

• a new enclave is allocated for each 

newly loaded driver. 

This scheme could help to isolate 

sensitive OS kernel data from being 

tampered by the drivers, loaded before 

the MemoryRanger.  

Another solution to this challenge 

is to load MemoryRanger at boot time; 

it can be solved by using UEFI 

hypervisor that supports booting an 

operating system (Tanda, 2020).  

6.6.  MemoryRanger and Hyper-V  

The current version of 

MemoryRanger does not support 

concurrent execution with Hyper-V, 

which is a Windows built-in 

hypervisor.  

This issue can be solved by 

installing Windows OS in a virtual 

CPU without VT-x/EPT support and 

further enabling VT-x/EPT support to 

run MemoryRanger. Another way is to 

manually disable or uninstall Hyper-V 

to run MemoryRanger. 

However, A. Eremeev (2020) 

implemented a bare-metal hypervisor 

with VT-x/EPT support, which works 

well with enabled Hyper-V. This 

experience can be used to expand 

features of MemoryRanger.  
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