

WINDOWS KERNEL HIJACKING IS NOT AN OPTION:

MEMORYRANGER COMES TO THE RESCUE AGAIN

Igor Korkin, PhD

Independent Researcher

Moscow, Russian Federation

igor.korkin@gmail.com

ABSTRACT

The security of a computer system depends on OS kernel protection. It is

crucial to reveal and inspect new attacks on kernel data, as these are used by

hackers. The purpose of this paper is to continue research into attacks on

dynamically allocated data in the Windows OS kernel and demonstrate the

capacity of MemoryRanger to prevent these attacks. This paper discusses three

new hijacking attacks on kernel data, which are based on bypassing OS security

mechanisms. The first two hijacking attacks result in illegal access to files open in

exclusive access. The third attack escalates process privileges, without applying

token swapping. Although Windows security experts have issued new protection

features, access attempts to the dynamically allocated data in the kernel are not

fully controlled. MemoryRanger hypervisor is designed to fill this security gap.

The updated MemoryRanger prevents these new attacks as well as supporting the

Windows 10 1903 x64.

Keywords: hypervisor-based protection, Windows kernel, hijacking attacks

on memory, memory isolation, Kernel Data Protection.

1. INTRODUCTION

The security of users’ data and

applications depends on the security of

the OS kernel code and data. Modern

operating systems include millions of

lines of code, which makes it

impossible to reveal and remediate all

vulnerabilities. Attackers can exploit

the OS vulnerabilities to perform

malicious actions. Windows OS kernel

remains one of the most desired targets

for hackers.

Another big challenge of OS

kernel protection is the third-party

kernel-mode drivers, which execute at

the same high privilege level as the OS

kernel, and they also include a variety

of vulnerabilities. Researchers

consider that “kernel modules (drivers)

introduce additional attack surface, as

they have full access to the kernel’s

address space” (Yitbarek and Austin,

2019).

At the recent DEF CON hacking

conference researchers from

Eclypsium released a list of more than

40 drivers from Microsoft-certified

hardware vendors, which are prone to

privilege escalation attacks (Jesse and

Shkatov, 2019).

Another vulnerability in a signed

third-party driver was presented at the

Blue Hat IL conference by security

experts from the Microsoft Defender

ATP Research Team. The vulnerable

driver uses a watchdog mechanism

based on user APC injection, which

can also be exploited by attackers to

bypass driver signature enforcement

and gain escalated privileges.

(Rapaport, 2019).

Recently revealed Banking trojan

“Banload”, which targets bank

customers in Brazil and Thailand,

applied a malicious kernel-mode

component to fight with anti-malware

and banking protection programs. This

digitally signed malware driver is

designed “to remove software drivers

and executables belonging to anti-

malware and banking protection

programs”, such as AVG, Avast, IBM

Trusteer Rapport (Bisson, 2019;

Kremez, 2019).

Kernel-mode drivers were also

used during the recent RobbinHood

ransomware attack. Hackers installed a

legitimate driver and exploited its

vulnerability to temporarily disable the

Windows OS driver signature

enforcement. Finally, they installed a

malicious kernel driver (Cimpanu,

2020).

Notorious cryptocurrency mining

malware also applies kernel-mode

rootkits to prevent them from being

terminated. Windows-based crypto

miner infected more than 50000

servers from 90 countries (Harpaz and

Goldberg, 2019; O'Donnell, 2019).

The Microsoft Security team do

their best to maintain a high level of

OS kernel protection by issuing

various security features, for example,

Microsoft Kernel Patch Protection

(KPP) aka PatchGuard etc. At the

same, time security researchers and

rootkit developers are discovering

different techniques to bypass

PatchGuard. The most notable of them

was GhostHook, which abused the

Intel Processor Trace (PT) feature to

overcome PatchGuard and patch the

kernel. Cimpanu (2019) underlines that

two recently published bypassing

techniques InfinityHook and ByePg

“establish a permanent foothold in the

kernel itself and open the door for the

return of rootkits on Windows 10”.

We can see that on the one hand,

all drivers and the OS kernel share the

same memory space, and on the other

hand, there are no built-in mechanisms

to restrict access to the kernel memory.

All drivers have full access to the

system and can be used by attackers.

Windows security features provide

limited kernel memory protection.

Threat model

Let us assume that using various

approaches, intruders are able to

execute malicious kernel code. This

paper analyses two types of attacks on

kernel data, which result in the

following, see Figure 1:

• gaining access to the files open

in an exclusive mode (Handle

Hijacking and Hijacking NTFS

data structures);

• escalating process privileges

without using the token

swapping technique (Token

Hijacking).

For the attacks on files, a legal

driver creates a file via ZwCreateFile

with zero flag ShareAccess, which

gives the caller exclusive access to the

open file. While the file remains

opened all attempts to gain access to

this file via ZwCreateFile are in vain.

Windows OS detects this illegal access

and returns a status sharing violation

code (0xC0000043), which indicates

that “a file cannot be opened because

the share access flags are

incompatible” (Microsoft, 2019).

This research reveals two different

attacks, which bypass Windows

security features and successfully gain

unauthorized access to the files opened

without shared access by patching OS

internal data structures, related to the

Object Manager and NTFS driver

components.

The third attack escalates process

privileges by patching the static and

the variable portions of _TOKEN

structure, without using token

swapping or token stealing techniques.

This type of attack is mapped to

MITRE ATT&CK (2020) under

Access Token Manipulation. The type

of escalation privilege attack based on

SeImpersonatePrivilege function is out

of the scope of this paper (Bisht,

2020).

All newly proposed attacks are

working transparently on Windows 10

1903 64 bit as well as for its security

features, such as Patch Guard, Device

Guard, and Security Reference

Monitor.

Figure 1. The following attacks will be considered: attacks on files and a privilege

escalation attack.

OS structures

Secret Formula

OS process

structures

Researcher s

Driver

Attacker s

Driver

Open file without

sharing access

To prevent all these attacks on

Windows OS kernel data the updated

MemoryRanger hypervisor will be

presented.

MemoryRanger prevents attacks

on files by running newly loaded

drivers in separated kernel spaces as

well as restricting access to the

corresponding sensitive memory areas.

The newest key feature of

MemoryRanger allows it to run a

special data enclave for sensitive OS

kernel data, such as _TOKEN

structures. This enclave includes these

sensitive OS structures, OS kernel

core, and a limited number of OS

kernel built-in drivers. This new

scheme prevents illegal access from all

drivers whether loaded before and after

MemoryRanger.

The remainder of the paper is as

follows.

Section 2 provides the details of

the control flow and corresponding

internal data structures involved during

file operations in kernel mode. Two

examples of hijacking attacks on files

will be given.

Section 3 presents the details of

access control issues in the Windows

OS kernel and shows how attackers

can hijack the corresponding structure

in order to escalate the process

privileges.

Section 4 contains the details of

adapting MemoryRanger to prevent

these attacks.

Section 5 and Section 6 focus on

the main conclusions and further

research directions respectively.

2. TWO HIJACKING ATTACKS

ON THE FILES OPENED

WITHOUT SHARED ACCESS

This section describes the

internals of file operations in the

Windows OS kernel: data structures

and correlations between them. Two

given hijacking attacks make it

possible to illegally read and overwrite

the content of the file opened in an

exclusive mode. These two hijacking

attacks are based on modifying the OS

internal data structures involved in file

operations.

2.1. Control Flow and Internal Data

Structures Involved in Read and

Write File Operations

Windows OS provides four main

kernel API routines to create,

read/write, and close files:

ZwCreateFile, ZwReadFile,

ZwWriteFile, ZwClose.

During file operations, several OS

kernel components are involved

(Russinovich, Solomon, and Ionescu,

2012; Tanenbaum and Bos, 2014).

Each time a driver calls ZwCreateFile

the control goes to the following OS

kernel subsystems: I/O manager,

Object Manager, Security Reference

Monitor, NTFS driver, and finally, the

control goes to the low-level drivers,

such as Disk Filter Driver and Disk

Class Driver. These are in charge of

access to the physical disk.

The key features revealed by

Korkin (2019) are that Security

Reference Monitor checks access

rights to the file for ZwCreateFile

routine, while routines ZwReadFile,

ZwWriteFile are uncontrolled by the

Security Reference Monitor.

Once a file is created via calling

ZwCreateFile, the OS creates a file

handle, adds an entry to the Handle

Table, allocates file object, NTFS data,

and other structures. The created file

handle is returned to the caller and is

used as a key to read and write the

open file using functions ZwReadFile

and ZwWriteFile.

The details of the control flow and

internal data structures involved in

read and write file operations are given

in Figure 2. Using a file handle, the OS

traverses through the handle table to

acquire the file object. By reading file

object fields the OS locates control

block structures (NTFS data

structures) and moves to them. Disk

drivers access the opened file on a disk

by using NTFS data structures.

OS kernel treats read and write

file access by traversing through these

structures without any checks by

Security Reference Monitor.

This vulnerability can be used to

gain full illegal access to the files

opened without shared access. To

achieve it, intruders can create a file

hijacker and patch any of the

structures, see Figure 2.

As a result, all intruders’ access

attempts using the file hijacker handle

will be redirected by the OS to the

secret file, see Figure 3. This is the key

point of all hijacking attacks on files.

Intruders can modify the

following data to change the control

flow, the corresponding attacks are in

brackets:

• handle table entries (Handle

Table Hijacking);

• file object (Hijacking

FILE_OBJECT);

• NTFS data structures

(Hijacking NTFS structures).

A File Object Hijacking attack

was presented by Korkin (2019).

The next two subsections will

describe the details of Handle

Hijacking and Hijacking NTFS

structures.

Figure 2. OS subsystems and corresponding data structures involved during read and write file

operations.

(Russinovich, Solomon, and Ionescu, (2012), part2, pp 441).

ZwReadFile/ ZwWriteFile

I/O Manager

Object Manager

Security Reference Monitor

NTFS driver

File handle

File Object

Handle Table

Handle Table Entry Object Header

Disk driversDisk drivers Other structures

Files on the disk

Handle Table Hijacking

Hijacking FILE_OBJECT

Structure

Hijacking NTFS
Data Structures

Handle Table Entry

Handle Table Entry

Control block

Structures

Figure 3. An attacker creates a file hijacker and applies three different hijacking

attacks: Handle Table Hijacking, Hijacking FILE_OBJECT structure, Hijacking

NTFS structures, which are based on patching handle table entries, file object, and

NTFS data structures.

2.2. Handle Table Hijacking

This section describes the details

of the Kernel Handle Table and how

attackers can hijack its values to gain

illegal access to the files.

Handle Table Basics

The security issue with access to

the files, locked by an application from

another application is typical for

Windows OS. Sysnap (2011) describes

the details of illegal access to the

locked file by modifying the handle

table, belonging to the application. The

author’s approach is designed for the

user-mode handles and process for

Windows XP and 2003. This section

describes how to adapt Sysnap’s idea

of patching the handle table for kernel

case in the most recent Windows OS.

A way for patching handle table

entries for user process in order to

change handle access rights is

implemented in Blackbone by

DarthTon (2019-a).

Attacker s Driver

ZwReadFile/ ZwWriteFile

I/O Manager

Object Manager

Security Reference Monitor

NTFS driver

Handle Table

 Entry

Object Header

NTFS data structures

Disk driversDisk drivers Other structures

Files on the disk

 Entry Entry

File Object

File handle

 Entry

Object Header

NTFS data structures

Other structures

File Object

...

Secret File File Hijacker

Handle Table

Hijacking

Hijacking FILE_OBJECT

Structure

Hijacking NTFS
Data Structures

 Entry

Researcher s Driver

File handle

The Kernel Handle Table is used

by the Windows OS to store the

mapping from the handles to the

corresponding object structures

(Tanenbaum and Bos, 2014; Probert,

2010; Schreiber, 2000). Using a

handle, the OS traverses through

Kernel Handle Table to acquire the

object. Exported symbol

nt!ObpKernelHandleTable points to

this table. The address of this table can

also be gained by reading the field

EPROCESS.ObjectTable for

SYSTEM:4 process. Kernel Handle

Table is involved each time a driver

reads and writes a file. This handle-

based mechanism manipulates various

objects, such as files, processes,

threads, or registry keys.

The presented research is focused

only on handles related to the file

system, but the achieved results can be

applied to all kernel objects as well.

For each newly created file, the

kernel handle table has an entry and an

index of each entry equals the returned

handle value (Hale-Ligh, M. Case, A,

Levy, J., Walters, 2014). Each entry is

defined in a

HANDLE_TABLE_ENTRY structure,

which includes access rights granted to

the object (field GrantedAccessBits)

and the link to the created object (field

ObjectPointerBits). The field

ObjectPointerBits includes 44 low bits

of OBJECT_HEADER address, which

can be used to gain the FILE_OBJECT

address (Monnappa, 2018;

CodeMachine, 2019).

Tanenbaum and Bos (2014) found

that “system calls, like ZwReadFile

and ZwWriteFile, use the kernel

handle table created by the object

manager to translate a handle into a

referenced pointer on the underlying

object, such as a file object, which

contains the data that is needed to

implement the system calls” (pp 899).

Handle table can have several

levels, the number of levels and the

number of entries in each level

depends on which Windows version is

being used (Suma, Dija, Thomas,

2014; Probert, 2010; Schreiber, 2000).

Windows OS provides a function

ExEnumHandleTable to enumerate all

the valid handles in a handle table.

ExEnumHandleTable specifies an

enumeration callback function, which

is called for each valid handle in the

handle table (DarthTon, 2019-b;

Treadwell, 1989). The enumeration

procedure needs to release implicit

locks for each handle via call

ExUnlockHandleTableEntry

(ReactOS, n.d.; WRK. n.d.). The

enumeration procedure returns a bool

value. To stop the enumeration the

procedure needs to return a TRUE

value and as a result

ExEnumHandleTable also returns

TRUE. To continue the enumeration,

the procedure needs to return FALSE.

Using ExEnumHandleTable

intruders can access the handle table

entry, which belongs to the file

hijacker, and patch it.

a)

b)

Figure 4. The control flow between files structures: a) before and b) after Handle

Table Hijacking

Object Header

FILE_OBJECT

Secret File

Handle Table

File handle

File Hijacker

File handle

ObjHeader

Bits

Object Header

FILE_OBJECT

ObjHeader

Bits

...

...

...

...

Object Header

FILE_OBJECT

Secret File

Handle Table

File handle

File Hijacker

File handle

ObjHeader

Bits

Object Header

FILE_OBJECT

ObjHeader

Bits Copy
content

The Algorithm of Handle Table

Hijacking

The research reveals that during

read and write access OS traverses

through the kernel handle table and

acquires the file object, without any

checks. Attackers can use this

vulnerability to gain illegal access to

the exclusively open file in this way:

1. Reveal OBJECT_HEADER

address of the secret file.

2. Create a file hijacker and locate

a corresponding entry in the

handle table entry.

3. Overwrite the

ObjectPointerBits field in this

entry using the

OBJECT_HEADER address of

the secret file.

After this handle hijacking attack

all read and write access using a

hijacked file handle will be redirected

to the secret file, see Figure 4.

This hijacking attack requires

overwriting just 44 bits of dynamically

allocated data, which is enough to gain

illegal access to the exclusively opened

file. This redirection will be carried out

by the Windows OS automatically and

transparently for the built-in security

features.

On the one hand, intruders can

tamper with entries of the kernel

handle table in order to exploit the

translation mechanism, and on the

other hand, Windows security features

do not check the integrity of this table

and cannot reveal this attack.

2.3. Hijacking NTFS data structures

This section describes the details

of the attack called “Hijacking NTFS

data structures”.

This attack is an improvement of

the attack presented by Korkin (2019),

which was based on Hijacking

FILE_OBJECT. Let us assume, that a

security service continuously provides

integrity and confidentiality for all

FILE_OBJECT structures. As a result,

only OS kernel has access to the

FILE_OBJECT structures, while

access attempts from all other drivers

are forbidden.

In this new situation, attackers

cannot use FILE_OBJECT hijacking

attack and they need to prepare a new

attack. Attackers decide to organize a

new lower-level attack on control

block structures or NTFS data

structures, which FILE_OBJECT

fields point to, see Figure 4 b).

FILE_OBJECT structure includes

fields FsContext and FsContext2,

which point to the control block

structures: FsContext member points

to the File Control Block, FCB

(Stream Control Block, SCB) and

FsContext2 points to the Context

Control Block, CCB. Each file stream

is uniquely represented in memory by

an FCB structure. CCB structure is

created by file system drivers to

represent an open instance of a file

stream (Nagar, 1997). This mechanism

is deeply integrated into the Windows

OS kernel and is very rarely updated.

FsContext and FsContext2

represent the physical stream context

and the user handle stream context.

FsContext2, is used to point to the

Channel Control Block or CCB

(Miller, 1991; Probert, 2004).

Let us move on to the details of

FCB and CCB structures. These

structures pointed by FsContext and

FsContext2 are only partially

documented, but at the same time, the

research has revealed the following

details.

The definition of the SCB, FCB

and CCB for Windows NT 4.0 are in

the file “ntfsstru.h” (Microsoft, n.d.-a).

The definition of these structures can

also be found in file “cdstruc.h” from

ReactOS (ReactOS, n.d.-a). These

definitions can be used for

understanding some basic file

principles because the structures are

partially updated in the most recent

Windows.

According to the MSDN file

object's FsContext member stores a

pointer to the

FSRTL_ADVANCED_FCB_HEADE

R structure, which uniquely identifies

the file stream to the file system

(MSDN, 2018-a, MSDN, 2018-b,

MSDN, 2018-c).

The research shows that an

appropriate target for this new attack is

a

FSRTL_ADVANCED_FCB_HEADE

R structure, which FsContext fields

from a FILE_OBJECT structure points

to.

In addition, the research has

revealed that fields FsContext and

FsContext2 point to the contiguous

memory blocks and, when using a

hijacking attack, intruders can copy

and overwrite the content of these two

structures simultaneously.

Structures

FSRTL_ADVANCED_FCB_HEADE

R are not protected by the OS security

features, and their patching does not

cause any kernel security check failure

errors, such as BSOD.

In a nutshell, Hijacking NTFS

data structures is based on locating

internal file object structures from

FsContent and FsContent2 fields,

copying their content to the

corresponding memory areas pointed

by the fields of file object hijacker and

additional patching. Without this

patching during read or write

operation, the OS detects

aforementioned copying and causes

BSOD with

RESOURCE_NOT_OWNED

(0x000000E3) bug check.

The Algorithm of Hijacking

NTFS data

To implement Hijacking NTFS

data structures, intruders have to locate

the NTFS data structures, which

correspond to the secret file and to the

file hijacker, and engage in the

following three steps:

Step 1. Overwrite the content of

attackers’

FSRTL_ADVANCED_FCB_HEADE

R structure using the data from the

FSRTL_ADVANCED_FCB_HEADE

R structure, which belongs to the

secret file.

However, this overwriting is not

enough, because Windows OS reveals

that a malware driver’s thread tries to

release a resource it did not own and

Windows OS causes BSOD with

RESOURCE_NOT_OWNED bug

check. To overcome this BSOD

attackers move to the second step.

Step 2. Set attackers’ thread ID

gained by PsGetCurrentThread to the

following fields in

FSRTL_ADVANCED_FCB_HEADE

R structure:

• Resource-

>OwnerEntry.OwnerThread;

• PagingIoResource-

>OwnerEntry.OwnerThread.

This patching helps malware

driver to overcome BSOD with

RESOURCE_NOT_OWNED bug

check.

Windows OS kernel changes the

content of

FSRTL_ADVANCED_FCB_HEADE

R structure while returning the result

of reading and writing to the driver and

if attackers try to access the file using

previously modified structure the

Windows OS will cause BSOD again.

If attackers want to access the secret

file several times, they move on to

Step 3.

Step 3. Repeat Step 1 and Step 2

before each read and write access

attempt during every hijacking attack.

Attackers have to repeat Step 1

and Step 2 before each unauthorized

read and write access attempt, thus

preventing the aforementioned BSOD.

As a result, each time attackers

read and write a file using a hijacked

file handle, OS walks through patching

structure and provides illegal read and

write access to the secret file, without

BSOD.

a)

b)

Figure 5. The control flow between files structures: a) before and b) after

hijacking the NTFS control block structures, e.g.

FSRTL_ADVANCED_FCB_HEADER

FILE_OBJECT

ERESOURCEFAST_MUTEX

etc...

Secret File

Control Block

Structures

FILE_OBJECT

ERESOURCEFAST_MUTEX

etc...

Control Block

Structures

File Hijacker

FILE_OBJECT

ERESOURCEFAST_MUTEX

etc...

Secret File

Control Block

Structures

FILE_OBJECT

ERESOURCEFAST_MUTEX

etc...

File Hijacker

Control Block

Structures

Copy content

3. TOKEN HIJACKING ATTACK:

WHAT AND HOW

The process privilege mechanism

is crucial for OS security. This section

describes the process privileges

mechanism and how it can be hijacked

by modifying the content of

dynamically allocated memory.

For each newly created process,

Windows OS allocates a new

EPROCESS structure and adds it to

the list. This structure includes internal

information about this process: its

name and ID, threads and handles

details, etc. (Monnappa, 2018;

Tanenbaum and Bos, 2014). _TOKEN

structure describes the process access

token, which contains the

security-related information about the

process: user’s and group SIDs,

process privileges, etc. (Hoglund and

Butler, 2006). The _TOKEN structure

is pointed by the field Object, which is

located in Token _EX_FAST_REF in

_EPROCESS structure, see Figure 6.

Windows OS provides

discretionary access control, which is

governed by two main parts (Ismail,

Aboelseoud, and Senousy, 2014;

Johnson, 2015):

• an access token associated with

each process;

• a security descriptor associated

with each object, such as a file.

According to the Russinovich

(1998) and Stallings (2002) each time

a process tries to access the object; the

Security Reference Monitor reads the

SIDs and group SIDs from _TOKEN

structure to determine whether or not

this access is allowed.

Attackers apply various

techniques to elevate privileges for the

malware process (Chebbi, (2019).

API-based approach to steal

tokens in Windows was proposed by

Barta (2009). The author leverages

several kernel API routines, which

makes it difficult to apply this

approach via the malware payload.

The ideas of applying direct

kernel object manipulation (DKOM) to

the process token in order to gain

elevated access were discussed by

Hoglund and Butler (2006) more than

10 years ago.

On the Black Hat USA 2004 for

the first time, they proposed an idea of

adding groups to Token structure using

DKOM (Hoglund and Butler, 2004).

The authors’ idea is based on patching

UserAndGroups array so that the

required high privileges will be

enabled for the process.

To prevent these manipulations

Windows experts moved one step

ahead and since Windows kernel 6.x

several fields such as SidHash and

RestrictedSidHash have been added

into the _TOKEN structure to provide

the integrity of this structure. OS

checks these hashes to ensure that the

SID list is not patched. These new

fields prevent attackers from directly

modifying the SID list.

Perla and Oldani (2010, pp. 295)

underlined three alternatives to bypass

this security hash-based barricade. One

of them is token stealing or token

swapping and it is based on

overwriting the Object field in the

_EPROCESS structure from the

malware process. This uses the value

from the _EPROCESS structure

corresponding to the higher-privileged

process, for example, SYSTEM:4

(Perla and Oldani, 2010, pp 305).

However, newly updated Microsoft

Windows Defender Antivirus detects

such escalation by monitoring token-

swapping attempts (Oh, 2017; Singh,

Kaplan, Feng, and Sanossian, 2019).

Bui (2019) shows that access token

manipulation can be detected using

auditpol, which is based on ETW, but

this detection approach can also be

tampered with due to attacks on ETW.

A New Token Hijacking Attack

I propose a new Token Hijacking

Attack, which is a development of

ideas of Hoglund and Butler (2006). In

a nutshell, attackers need to escalate

privileges so that the calculated

SidHash value will be corrected and

the integrity check will not reveal any

changes.

Attackers can achieve this by

overwriting the following whole three

fields using the corresponding values

from the Token structure

corresponding to the higher-privileged

process:

• UserAndGroupCount;

• UserAndGroups array:

Attributes and Sid structures;

• SidHash structure;

The key feature is to completely

copy the UserAndGroups array with

updated internal structure

arrangement from the Token for

higher privilege process, while

Hoglund and Butler (2006) proposed

to overwrite just a few fields.

During this attack copying

UserAndGroupCount field and

SidHash structure is trivial because

they have the same size while copying

a variable part pointed by

UserAndGroups is quite complicated.

The number of entries in

UserAndGroups and sizes of SID

structures are not the same for various

processes with different credentials,

Figure 6.

The following two facts make this

attack possible. Firstly, this updating is

more than enough to gain elevated

privileges yet not being detected by the

OS. Secondly, TOKEN structure for

common processes always has enough

space, because a variable portion of

_TOKEN structure for System:4

process is less than the corresponding

structure for a common one.

This attack has been successfully

tested on the newest Windows 10 1903

x64, the source code and demo in this

paper (Korkin, 2020).

a)

b)

Figure 6. The content of _EPROCESS and _TOKEN structures for SYSTEM:4

and malware processes: a) before and b) after Token Hijacking

_EPROCESS

...

Token _EX_FAST_REF

_TOKEN
Object

UserAndGroups

UserAndGroupCount

SID
U

s
e

rA
n

d
G

ro
u

p
C

o
u

n
t

...

SID

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

Variable
size

SID_AND_ATTRIBUTES_HA

SH SidHash

_EPROCESS

...

Token _EX_FAST_REF

_TOKEN
Object

UserAndGroups

UserAndGroupCount

SID

SID

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

SID_AND_ATTRIBUTES_HA

SH SidHash

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

SID

SID

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

SID

...

_EPROCESS

...

Token _EX_FAST_REF

_TOKEN
Object

UserAndGroups

UserAndGroupCount

SID

...

SID

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

SID_AND_ATTRIBUTES_HA

SH SidHash

_EPROCESS

...

Token _EX_FAST_REF

_TOKEN
Object

UserAndGroups

UserAndGroupCount

SID_AND_ATTRIBUTES_HA

SH SidHash

SID

...

SID

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

_SID_AND_ATTRIBUTES:

PSID Sid ULONG Attributes

Copy static and dynamic parts

...
...

4. MEMORYRANGER

PREVENTS KERNEL

HIJACKING STRUCTURES

This section describes the details

of how the updated MemoryRanger

hypervisor prevents hijacking attacks

(Korkin, 2018; Korkin, 2019).

4.1. MemoryRanger Overview

MemoryRanger is a hypervisor-

based solution (a bare-metal

hypervisor), designed to provide

integrity and confidentiality for

kernel-mode code and data.

MemoryRanger leverages Intel VT-x

technology and Extended Page

Tables (EPT).

MemoryRanger protects kernel

memory by using isolated kernel

enclaves with specified memory

access restrictions.

By running kernel drivers in

separate memory enclaves

MemoryRanger protects kernel

memory from being tampered with:

• It prevents attacks on OS

kernel code and data from

newly loaded drivers;

• It protects the code and data

of newly loaded drivers from

the attacks from each other.

After loading, MemoryRanger

allocates the default kernel enclave:

OS kernel and all drivers loaded

before are running inside this

enclave.

Newly loaded drivers are

running in separate enclaves.

MemoryRanger traps the loading of

each new driver and allocates an

isolated kernel enclave for this

driver. Each newly loaded kernel

driver is running only inside the

corresponding allocated kernel

memory enclave.

MemoryRanger updates the

memory access restrictions for each

enclave in run-time, which makes it

possible to protect sensitive memory

areas. MemoryRanger can monitor

access to the kernel-mode memory

and redirect the illegal access to the

fake page.

4.2. MemoryRanger: Key

components

MemoryRanger has the

following key components:

• A kernel-mode driver;

• DdiMon;

• MemoryMonRWX;

• Memory Access Policy

(MAP).

All the details about

MemoryRanger components are

given by Korkin (2019).

MemoryRanger does the

following:

• registers a driver-supplied

callback that is notified

whenever a new process is

created/deleted and an image

is loaded;

• hooks kernel API by using

DdiMon component;

• restricts memory access even

to a byte by using

MemoryMonRWX;

• provides dynamically

updated access control rules

using MAP.

4.3. Main Updates of

MemoryRanger to Block New

Hijacking Attacks

In order to prevent the newly

presented hijacking attacks, the

following modifications have been

added to the MemoryRanger.

MemoryRanger prevents Handle

Hijacking and Hijacking NTFS data

structures by doing the following:

• it hooks ZwCreateFile() and

ZwClose routines to locate

the involved data structures

in memory;

• To prevent Handle Hijacking,

it locates the

HANDLE_TABLE_ENTRY

structure corresponding to the

opened file using the

ExEnumHandleTable routine;

• To prevent Hijacking NTFS

Data, it locates the

FSRTL_ADVANCED_FCB_

HEADER structure using the

pointers from

FILE_OBJECT.

• MemoryRanger restricts

access to the structures in the

corresponding enclaves.

To prevent Token Hijacking

MemoryRanger implements a new

technique, which is based on

allocating a special isolated enclave,

which includes only sensitive kernel

data, see Figure 7.

The details of these prevention

techniques are given below. The

source code of updated

MemoryRanger, attacker, and

allocator drivers as well as video

demos are here (Korkin, 2020).

4.4. Details of Prevention of

Handle Hijacking Attack

Preventing Handle Hijacking

requires a fine-grained approach.

MemoryRanger prevents Handle

Hijacking by blocking only write

access to ObjHeader field, which has

6 bytes and corresponds to the file

object header, see Figure 7. Neither

does MemoryRanger restrict read

access for ObjHeader, nor does it

prevent any access to other fields of

this entry, because they are used by

the OS. In fact, some fields of these

entries have to be accessed for write

attempts due to synchronization

issues and their restriction causes

BSOD.

MemoryRanger is notified about

creating a new file by hooking

ZwCreateFile routine and next it

locates handle table entry by using

file handle and the

ExEnumHandleTable routine.

4.5. Details of Prevention of

Hijacking NTFS data structures

For Hijacking NTFS data

structures intruders modify the

control block structures

(FSRTL_ADVANCED_FCB_HEA

DER), which correspond to the file

hijacker.

To prevent this attack

MemoryRanger implements a similar

approach based on locating control

block structures and restricting

access to them.

4.6. Details of Prevention of Token

Hijacking

Token Hijacking Attack is

tampering with static and dynamic

parts of _TOKEN structures, which

results in local privilege escalation.

To block Token Hijacking a

special isolated kernel enclave is

allocated to host sensitive data. This

new enclave includes only sensitive

kernel data, such as _TOKEN

structures, Windows kernel core

(ntoskrnl.exe), and a limited number

of trusted Windows drivers. All other

drivers will be excluded from this

enclave, see Figure 7.

This new scheme isolates token

structures from all drivers loaded

after and even before

MemoryRanger without restricting

the OS kernel.

MemoryRanger is notified about

creating a new process by registering

a callback routine via call

PsSetCreateProcessNotifyRoutineEx.

4.7. Empirical Test Results

All these attacks and their

prevention have been successfully

tested on Windows 10 1903 x64,

details are in (Korkin, 2020).

4.8. Performance Impact

MemoryRanger causes

affordable performance degradation.

Switching between kernel enclaves is

the main problem of this

performance degradation. Changing

the EPT pointer causes the flushing

of TLB and further filling the TLB.

Details about measuring the

performance were given previously

by Korkin (2018). I can conclude

that MemoryRanger is suitable to

protect the rarely accessed safe areas.

To avoid this degradation, the new

version will support VPID, which is

designed to meet this need.

4.9. MemoryRanger vs. Virtual

Secure Mode

One of the global security

challenges for modern operating

systems is to prevent illegal access to

the kernel data from drivers, while

all drivers and OS share the same

memory space.

MemoryRanger is designed to

tackle this issue by isolating newly

loaded drivers inside allocated

separated memory enclaves from the

rest of the OS kernel. This drivers’

isolation can prevent attacks from

kernel rootkits as well as providing

exploit mitigation.

MemoryRanger can be applied

to protect Unix-based systems

running on AMD and ARM CPUs.

MemoryRanger includes a

kernel driver, which allows it to trap

and parse OS-related events. Using a

hypervisor component

MemoryRanger restricts access to

the memory transparently for the OS

kernel. MemoryRanger is protected

from kernel attacks, due to running

in ring -1)

Windows OS comprises a new

technology called Virtual Secure

Mode (VSM), which is designed to

maintain a secure Windows

environment. VSM provides a

particular case of enclave-based

protection with only two memory

partitions called VTL0 and VTL1,

while MemoryRanger implements a

general case with an infinite number

of kernel enclaves. MemoryRanger

has been tested using three (Korkin,

2019), four (Figure 7), and five

separate enclaves (Korkin, 2018).

5. CONCLUSION

To sum up I would like to

highlight the following:

1. Windows OS kernel manipulates

dynamically allocated data,

which can be tampered with by

intruders during cyberattacks.

Windows security features

provide integrity only for limited

memory areas, while others are

becoming susceptible.

2. Two new presented attacks on

files: Handle Hijacking and

Hijacking NTFS structures make

it possible to gain illegal access

to the files opened in an

exclusive mode bypassing

Security Reference Monitor.

3. Hijacking Attack on NTFS data

structures has never been

presented before.

4. A new Token Hijacking attack

results in process privilege

escalation via copying SID with

their attributes as well as SID

hashes from a higher privileges

process. This attack gains

elevated privileges with the

correct hash value.

5. Updated MemoryRanger

prevents attacks on files by

running drivers inside isolated

enclaves and restricting access to

the corresponding data structures.

6. To prevent Token Hijacking,

updated MemoryRanger

implements a new special

enclave, which includes only

sensitive data and a part of the

Windows OS kernel; all other

drivers as well as newly loaded

ones are not able to tamper with

this data.

7. All new attacks on files and

tokens have been successfully

tested on the most recent

Windows 10 1903. Updated

MemoryRanger can prevent all

mentioned hijacking attacks.

8. Various cybersecurity solutions

will benefit from applying

MemoryRanger. The source code

and all demos are uploaded here

(Korkin, 2020).

Figure 7. MemoryRanger prevents Handle Hijacking and Token Hijacking

Entry for secret file
read = true read = true
write = true write = true

Entry for file hijacker
read = true read = true
write = true write = true

Handle Hijacking

Token Hijacking
Enclaves for Newly Loaded DriversEnclaves for sensitive OS kernel data

Token
Structures

Handle Table

Situation without MemoryRanger

Non-sensitive
data

THE
SECRET

FILE

THE FILE
HIJACKER

Earlier Loaded
Drivers NT OS kernel

Trusted Driver Malware Driver

Token
Structures

Handle Table

The Default Enclave

Non-sensitive
data

Earlier Loaded
Drivers NT OS kernel

Trusted Driver Malware Driver

Entry for secret file
read = false read = false
write = false write = false

Entry for file hijacker
read = false read = false
write = false write = false

Token
Structures

Handle Table

The Token Enclave

Non-sensitive
data

Earlier Loaded
Drivers NT OS kernel

Trusted Driver Malware Driver

Entry for secret file
read = false read = false
write = false write = false

Entry for file hijacker
read = false read = false
write = false write = false

Token
Structures

Handle Table

The Enclave for Trusted Driver

Non-sensitive
data

Earlier Loaded
Drivers NT OS kernel

Trusted Driver Malware Driver

Entry for secret file

Entry for file hijacker
read = true read = true
write = true write = true

Token
Structures

Handle Table

The Enclave for Malware Driver

Non-sensitive
data

THE FILE
HIJACKER

Earlier Loaded
Drivers NT OS kernel

Trusted Driver Malware Driver

Entry for secret file
read = true read = true
write = true write = true

Entry for file hijacker

Entry for file hijacker
read = true read = true
write = false write = true

Entry for secret file
read = true read = true
write = false write = true

Entry for file hijacker
read = true read = true
write = false write = true

Entry for file hijacker
read = true read = true
write = false write = true

MemoryRanger

THE
SECRET

FILE

6. FUTURE PLANS

Updated MemoryRanger is a very

promising project and the following

future directions can be outlined.

6.1. Prevent patching of OS Internal

Structures by Intel Memory

Protection Keys (MPK)

Prakash, Venkataramani, Yin, and

Lin (2013) revealed the following

examples of how attackers can patch

the OS internal structures to gain

ongoing and undetectable access to the

target system:

• Hackers can prevent a

malicious process from

terminating by changing the

corresponding

EPROCESS.Flags to

0xFFFFFFFF value;

• Hackers can make a file

completely inaccessible by

changing the file name field in

FILE_OBJECT to an empty

string;

• Hackers can hide a program

from the process list in the

Task Manager by changing the

corresponding

EPROCESS.UniqueProcessId

to 0.

Despite the fact that the results

were checked on Windows XP, the

similar principles can be expanded on

the most recent Windows 10 and for

more OS internal structures.

A recently issued key-based

permission control called Intel

Memory Protection Keys (MPK) can

be leveraged to maintain and enforce

memory access permission. MPK has

several key benefits over the page-

table mechanism (Park, Lee et al.

2019).

6.2. MemoryRanger can do Deep

Inspection of Memory Access

The current version of

MemoryRanger checks access rights

using only the address of the module,

which implements this access. As a

result, malware can gain illegal access

to sensitive data by exploiting any

vulnerable function in the trusted

module.

The idea is to verify the function

call stack additionally to check which

sequence of functions leads to access

this sensitive memory area.

This new check helps to inspect

memory access a bit deeper and

prevent the mentioned attack.

Finally, intruders have to exploit

not only the function which accesses

sensitive data but also the whole

sequence of functions, which is very

difficult and time-consuming.

6.3. MemoryRanger vs. Mimikatz

One more advanced direction is to

analyze and prevent activities of

Mimikatz, which is an effective post-

exploitation tool (Delpy, 2020).

Mimikatz applies its driver to

provide various commands to play

with kernel memory:

• read and write kernel-mode

memory from user-mode

applications;

• disable Protected Process Light

(PPL) mode;

• duplicate process token;

• set all privileges for a process.

6.4. MemoryRanger vs. Privilege

Escalation by using buggy StopZilla

driver

Security researchers have revealed

that StopZilla AntiVirus Software

includes a vulnerable driver, which can

be used to elevate process privilege.

For this attack hackers need to

have SeLoadDriverPrivilege to load a

vulnerable driver and launch the

exploit to patch TOKEN structure.

Ideas and details of such attacks

were discussed by Pierini (2019) at

Hack In Paris conference and by

Cocomazzi and Pierini (2020) at the

HITBSecConf2020.

Protection of the OS kernel from

vulnerable signed third-party drivers is

a serious security problem, because

these drivers run in the kernel memory

without any restrictions.

MemoryRanger can be updated to

run StopZilla’s driver in isolated

enclaves and prevent the overwriting

of the sensitive data, such as TOKEN

structures. We cannot reveal all

vulnerabilities, but we can protect the

sensitive data, which is usually the top

target of attacks by hackers.

6.5. Isolated Enclave for the OS

Scheduler: Unikernels Based

Protection

The current version of

MemoryRanger has an issue with the

protection of data from being tampered

with by drivers loaded before it.

MemoryRanger protects rarely

accessed data with acceptable

performance degradation, while

protection of frequently accessed data

causes significant performance

degradation.

To overcome this performance

degradation and protect sensitive OS

kernel data, such as EPROCESS

structures from all drivers,

MemoryRanger can allocate the

following enclaves:

• the Scheduler enclave includes

sensitive OS structures, such as

EPROCESS, ETHREAD etc.,

which are frequently used by OS

kernel scheduler. OS scheduler is

located in this enclave. Likewise,

this enclave contains file system

drivers and their structures. As a

result, this enclave includes a

minimal list of drivers and their

structures.

• the Default enclave contains all

other drivers loaded before

MemoryRanger. This enclave

excludes all OS internal data

structures from the Scheduler

enclave, while drivers from the

Default enclave are excluded from

the Scheduler enclave.

• the Data-Only enclave includes

only sensitive data structures,

which are rarely accessed by the

OS kernel drivers, such as Token

structures.

• a new enclave is allocated for each

newly loaded driver.

This scheme could help to isolate

sensitive OS kernel data from being

tampered by the drivers, loaded before

the MemoryRanger.

Another solution to this challenge

is to load MemoryRanger at boot time;

it can be solved by using UEFI

hypervisor that supports booting an

operating system (Tanda, 2020).

6.6. MemoryRanger and Hyper-V

The current version of

MemoryRanger does not support

concurrent execution with Hyper-V,

which is a Windows built-in

hypervisor.

This issue can be solved by

installing Windows OS in a virtual

CPU without VT-x/EPT support and

further enabling VT-x/EPT support to

run MemoryRanger. Another way is to

manually disable or uninstall Hyper-V

to run MemoryRanger.

However, A. Eremeev (2020)

implemented a bare-metal hypervisor

with VT-x/EPT support, which works

well with enabled Hyper-V. This

experience can be used to expand

features of MemoryRanger.

7. REFERENCES

[1] Barta, C. (2009). Access token

stealing on Windows. Retrieved

from

https://docplayer.net/20917850-

Access-token-stealing-on-

windows-csaba-barta.html
[2] Bisht, S. (2020). Understanding and

Abusing Process Tokens — Part II.

Retrieved from

https://securitytimes.medium.com/un

derstanding-and-abusing-access-

tokens-part-ii-b9069f432962

[3] Bisson, D. (March 6, 2019).

Fileless Malware Targeting

Brazilian and Thai Bank

Customers With Multiple Threats.

Security Intelligence. Retrieved

from

https://securityintelligence.com/ne

ws/fileless-malware-targeting-

brazilian-and-thai-bank-

customers-with-multiple-threats/
[4] Bui, J. (2019). Understanding and

Defending Against Access Token

Theft: Finding Alternatives to

winlogon.exe. Retrieved from

https://posts.specterops.io/understandi

ng-and-defending-against-access-

token-theft-finding-alternatives-to-

winlogon-exe-80696c8a73b

[5] Chebbi, C. (2019, April 24).

Windows Kernel exploitation:

Elevation of privilege (EoP) with

Token stealing. Retrieved from

https://www.peerlyst.com/posts/wi

ndows-kernel-exploitation-

elevation-of-privilege-eop-with-

token-stealing-chiheb-chebbi

[6] Cimpanu, C. (2019, November

22). New bypass disclosed in

Microsoft PatchGuard (KPP).

https://securitytimes.medium.com/understanding-and-abusing-access-tokens-part-ii-b9069f432962
https://securitytimes.medium.com/understanding-and-abusing-access-tokens-part-ii-b9069f432962
https://securitytimes.medium.com/understanding-and-abusing-access-tokens-part-ii-b9069f432962
https://securityintelligence.com/news/fileless-malware-targeting-brazilian-and-thai-bank-customers-with-multiple-threats/
https://securityintelligence.com/news/fileless-malware-targeting-brazilian-and-thai-bank-customers-with-multiple-threats/
https://securityintelligence.com/news/fileless-malware-targeting-brazilian-and-thai-bank-customers-with-multiple-threats/
https://securityintelligence.com/news/fileless-malware-targeting-brazilian-and-thai-bank-customers-with-multiple-threats/
https://posts.specterops.io/understanding-and-defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-80696c8a73b
https://posts.specterops.io/understanding-and-defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-80696c8a73b
https://posts.specterops.io/understanding-and-defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-80696c8a73b
https://posts.specterops.io/understanding-and-defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-80696c8a73b

https://www.zdnet.com/article/ne

w-bypass-disclosed-in-microsoft-

patchguard-kpp/

[7] Cimpanu, C. (2020, February 7).

Ransomware installs Gigabyte

driver to kill antivirus products.

ZDNet. Retrieved from

https://www.zdnet.com/article/ran

somware-installs-gigabyte-driver-

to-kill-antivirus-products/

[8] Cocomazzi, A. & Pierini, A.

(2020). Windows Privilege

Escalations: Still Abusing Local

Service Accounts to Get SYSTEM

Privileges. HITBSecConf2020,

Amsterdam. Retrieved from
https://conference.hitb.org/hitbseccon

f2020ams/sessions/windows-

privilege-escalations-still-abusing-

local-service-accounts-to-get-system-

privileges/

[9] CodeMachine. (2019). Windows 7

Object Headers. Articles on

Windows Internals, Programming,

Security and Debugging.

Retrieved from

https://codemachine.com/article_o

bjectheader.html

[10] DarthTon. (2019-a) Blackbone

Windows memory hacking library.

Blackbone source code. Retrieved

from

https://github.com/DarthTon/Blac

kbone

[11] DarthTon. (2019-b).

BBGrantAccess function. Change

handle granted access. Blackbone

source code. Retrieved from

https://github.com/DarthTon/Blac

kbone/blob/master/src/BlackBone

Drv/Routines.c

[12] Delpy, B. (2020). A little tool to

play with Windows security.

Source Code of Mimikatz.

GitHub. Retrieved from

https://github.com/gentilkiwi/mim

ikatz

[13] Eremeev, A. (2020). The Kernel-

Bridge Framework. Windows

kernel hacking framework, driver

template, hypervisor and API

written on C++. Github. Retrieved

from
https://github.com/HoShiMin/Kernel-

Bridge/blob/master/Kernel-

Bridge/API/Hypervisor.cpp
[14] Hale-Ligh, M. Case, A, Levy, J.,

Walters, A. (2014, July 28). The

Art of Memory Forensics:

Detecting Malware and Threats in

Windows, Linux, and Mac

Memory (1st ed.). Indianapolis,

Indiana: Wiley.

[15] Harpaz, O. and Goldberg, D.

(2019, May 29). The Nansh0u

Campaign: Hackers Arsenal

Grows Stronger. Retrieved from

https://www.guardicore.com/2019/

05/nansh0u-campaign-hackers-

arsenal-grows-stronger/

[16] Hoglund, G., Butler. J. (2006).

Rootkits: Subverting the Windows

Kernel (1st ed.). Token Privilege

and Group Elevation with DKOM.

New Jersey, US: Addison-Wesley

Professional.

[17] Ismail, M., A., Aboelseoud H.,

Senousy, M., B. (2014). An

Investigation into Access Control

in Various Types of Operating

Systems. International Journal of

Computer Applications. Retrieved

https://www.zdnet.com/article/ransomware-installs-gigabyte-driver-to-kill-antivirus-products/
https://www.zdnet.com/article/ransomware-installs-gigabyte-driver-to-kill-antivirus-products/
https://www.zdnet.com/article/ransomware-installs-gigabyte-driver-to-kill-antivirus-products/
https://conference.hitb.org/hitbsecconf2020ams/sessions/windows-privilege-escalations-still-abusing-local-service-accounts-to-get-system-privileges/
https://conference.hitb.org/hitbsecconf2020ams/sessions/windows-privilege-escalations-still-abusing-local-service-accounts-to-get-system-privileges/
https://conference.hitb.org/hitbsecconf2020ams/sessions/windows-privilege-escalations-still-abusing-local-service-accounts-to-get-system-privileges/
https://conference.hitb.org/hitbsecconf2020ams/sessions/windows-privilege-escalations-still-abusing-local-service-accounts-to-get-system-privileges/
https://conference.hitb.org/hitbsecconf2020ams/sessions/windows-privilege-escalations-still-abusing-local-service-accounts-to-get-system-privileges/
https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://github.com/HoShiMin/Kernel-Bridge/blob/master/Kernel-Bridge/API/Hypervisor.cpp
https://github.com/HoShiMin/Kernel-Bridge/blob/master/Kernel-Bridge/API/Hypervisor.cpp
https://github.com/HoShiMin/Kernel-Bridge/blob/master/Kernel-Bridge/API/Hypervisor.cpp

from

https://pdfs.semanticscholar.org/6

035/d4420f6038aefc511d970fc63

0a41cf40df3.pdf

[18] Jesse, M. and Shkatov, M. (2019).

Screwed Drivers – Signed, Sealed,

Delivered. Retrieved from

https://eclypsium.com/2019/08/10/

screwed-drivers-signed-sealed-

delivered/

[19] Johnson, M. H. (2015, October 1).

Windows System Programming

(4th ed.). Chapter 15. Securing

Windows Objects. Massachusetts,

US: Addison-Wesley Professional.

[20] Korkin, I. (2018, December 5-6).

Divide et Impera: MemoryRanger

Runs Drivers in Isolated Kernel

Spaces. In Proceedings of the

BlackHat Europe Conference,

London, UK. Retrieved from

https://www.blackhat.com/eu-

18/briefings/schedule/#divide-et-

impera-memoryranger-runs-

drivers-in-isolated-kernel-spaces-

12668

[21] Korkin, I. (2019, May 15-16).

MemoryRanger Prevents

Hijacking FILE_OBJECT

Structures in Windows Kernel.

Paper presented at the Proceedings

of the 14th annual Conference on

Digital Forensics, Security and

Law (CDFSL), Embry-Riddle

Aeronautical University, Daytona

Beach, Florida, USA. Retrieved

from

https://commons.erau.edu/adfsl/20

19/paper-presentation/7/

[22] Korkin, I. (2020). MemoryRanger

source code. GitHub repository.

Retrieved from

https://github.com/IgorKorkin/Me

moryRanger

[23] Kremez, V. (May 13, 2019).

Cybercrime: Groups Behind

“Banload” Banking Malware

Implement New Techniques.

Security Research. SentinelLabs.

Retrieved from

https://labs.sentinelone.com/cyber

crime-banload-banking-malware-

fraud/

[24] Microsoft. (2019). 2.3.1

NTSTATUS Values. Windows

Protocols. Retrieved from

https://docs.microsoft.com/en-

us/openspecs/windows_protocols/

ms-erref/596a1078-e883-4972-

9bbc-49e60bebca55

[25] Microsoft. (n.d.-a). NTFS File

System Data Structures. Microsoft

Corporation. Retrieved from

https://github.com/ZoloZiak/Win

NT4/blob/master/private/ntos/cntf

s/ntfsstru.h

[26] Miller, T. (1991, October 31).

Portable Systems Group Caching

Design Note. Revision 1.3.

Copyright (c) Microsoft

Corporation. File: cache.doc.

Retrieved from

Windows_Research_Kernel(sourc

es)\NT_Design_Workbook\Get_

Workbook
[27] MITRE ATT&CK. (2020). Access

Token Manipulation.

[28] Monnappa, K. (2018). Learning

Malware Analysis: Explore the

Concepts, Tools, and Techniques

to Analyze and Investigate

Windows Malware (1st ed.),

https://labs.sentinelone.com/cybercrime-banload-banking-malware-fraud/
https://labs.sentinelone.com/cybercrime-banload-banking-malware-fraud/
https://labs.sentinelone.com/cybercrime-banload-banking-malware-fraud/

Birmingham, United Kingdom:

Packt Publishing.

[29] MSDN. (2018-a).

FsRtlGetPerStreamContextPointer

Macro. Programming reference for

Windows Driver Kit. Retrieved

from

https://docs.microsoft.com/en-

us/windows-

hardware/drivers/ddi/ntifs/nf-ntifs-

fsrtlgetperstreamcontextpointer

[30] MSDN. (2018-b).

FSRTL_COMMON_FCB_HEAD

ER structure. Programming

reference for Windows Driver Kit.

Retrieved from

https://docs.microsoft.com/en-

us/windows-

hardware/drivers/ddi/ntifs/ns-ntifs-

_fsrtl_common_fcb_header

[31] MSDN. (2018-c).

FSRTL_ADVANCED_FCB_HE

ADER structure. Programming

reference for Windows Driver Kit.

Retrieved from

https://docs.microsoft.com/en-

us/windows-

hardware/drivers/ddi/ntifs/ns-ntifs-

_fsrtl_advanced_fcb_header

[32] Nagar, R. (1997). Windows NT

File System Internals: A

Developer's Guide. Publisher:

O'Reilly Media.

[33] O'Donnell, L. (2019, May 29). 50k

Servers Infected with

Cryptomining Malware in

Nansh0u Campaign. Retrieved

from https://threatpost.com/50k-

servers-infected-with-

cryptomining-malware-in-

nansh0u-campaign/145140/

[34] Oh, M. (2017). Detecting and

mitigating elevation-of-privilege

exploit for CVE-2017-0005.

Retrieved from

https://www.microsoft.com/securit

y/blog/2017/03/27/detecting-and-

mitigating-elevation-of-privilege-

exploit-for-cve-2017-0005/
[35] Park, S., Lee, S., Xu, W., Moon, H.,

Kim, T. (2019). libmpk: Software

Abstraction for Intel Memory

Protection Keys (Intel MPK). Id in

the Proceedings of the 2019 USENIX

Annual Technical Conference. July

10–12, 2019 • Renton, WA, USA.

Retrieved from

https://www.usenix.org/system/files/a

tc19-park-soyeon.pdf

[36] Perla, E. and Oldani, M. (2010). A

Guide to Kernel Exploitation:

Attacking the Core (1st ed.).

Massachusetts, US: Syngress.

[37] Pierini, A. (2019). Whoami priv -

show me your privileges and I will

lead you to SYSTEM. Hack in

Paris. Retrieved from

https://hackinparis.com/archives/2

019/#talk-2019-whoami-priv-

show-me-your-privileges-and-i-

will-lead-you-to-system

[38] Prakash, A., Venkataramani, E.,

Yin, H., Zhiqiang, L. (2013).

Manipulating Semantic Values in

Kernel Data Structures: Attack

Assessments and Implications.

43rd Annual IEEE/IFIP

International Conference on

Dependable Systems and

Networks (DSN), Budapest.

Retrieved from

http://web.cse.ohio-

https://www.usenix.org/system/files/atc19-park-soyeon.pdf
https://www.usenix.org/system/files/atc19-park-soyeon.pdf

state.edu/~lin.3021/file/DSN13.pd

f

[39] Probert, D. (2010). Windows

Kernel Architecture Internals.

MSRA/UR Workshop – Beijing,

China. Retrieved from

https://repo.zenk-

security.com/Linux%20et%20syst

emes%20d.exploitations/Windows

%20Kernel%20Architecture%20I

nternals.pdf

[40] Probert, D. (2010). Windows

Kernel Architecture Internals.

Retrieved from https://repo.zenk-

security.com/Linux%20et%20syst

emes%20d.exploitations/Windows

%20Kernel%20Architecture%20I

nternals.pdf

[41] Probert, D. B. (2004). Windows

Kernel Internals: Cache Manager.

Windows Kernel Development

Microsoft Corporation. Retrieved

from https://www.i.u-

tokyo.ac.jp/edu/training/ss/lecture/

new-documents/Lectures/15-

CacheManager/CacheManager.pdf

[42] Rapaport, A. (2019, March 25).

From alert to driver vulnerability:

Microsoft Defender ATP

investigation unearths privilege

escalation flaw. Retrieved from

https://www.microsoft.com/securit

y/blog/2019/03/25/from-alert-to-

driver-vulnerability-microsoft-

defender-atp-investigation-

unearths-privilege-escalation-flaw/

[43] ReactOS. (n.d.).

ExUnlockHandleTableEntry.

ReactOS Kernel. Retrieved from

https://doxygen.reactos.org/de/d51

/ntoskrnl_2ex_2handle_8c_source.

html#l00887

[44] ReactOS. (n.d.-a). CDFS File

System Data Structures. Microsoft

Corporation. Retrieved from

https://doxygen.reactos.org/de/dc7

/cdstruc_8h.html

[45] Russinovich, M. (1998, March

31). Windows NT Architecture,

Part 2. ItProToday. Retrieved from
https://www.itprotoday.com/compute

-engines/windows-nt-architecture-

part-2
[46] Russinovich, M., Solomon, D.,

and Ionescu, A. (2012, September

25). Windows Internals (6th ed.).

Parts 1 and 2. Redmond,

Washington: Microsoft Press.

[47] Schreiber, S. B. (2000).

Undocumented Windows 2000

Secrets. Object Handles.

WINDOWS 2000 OBJECT

MANAGEMENT. pp 411.

Retrieved from

http://users.du.se/~hjo/cs/common

/books/Undocumented%20Windo

ws%202000%20Secrets/sbs-w2k-

7-windows-2000-object-

management.pdf

[48] Singh, A., Kaplan, D., Feng, C.,

and Sanossian, H. (2019). How

Windows Defender Antivirus

integrates hardware-based system

integrity for informed, extensive

endpoint protection. Retrieved

from

https://www.microsoft.com/securit

y/blog/2019/07/31/how-windows-

defender-antivirus-integrates-

hardware-based-system-integrity-

https://www.itprotoday.com/compute-engines/windows-nt-architecture-part-2
https://www.itprotoday.com/compute-engines/windows-nt-architecture-part-2
https://www.itprotoday.com/compute-engines/windows-nt-architecture-part-2
http://users.du.se/~hjo/cs/common/books/Undocumented%20Windows%202000%20Secrets/sbs-w2k-7-windows-2000-object-management.pdf
http://users.du.se/~hjo/cs/common/books/Undocumented%20Windows%202000%20Secrets/sbs-w2k-7-windows-2000-object-management.pdf
http://users.du.se/~hjo/cs/common/books/Undocumented%20Windows%202000%20Secrets/sbs-w2k-7-windows-2000-object-management.pdf
http://users.du.se/~hjo/cs/common/books/Undocumented%20Windows%202000%20Secrets/sbs-w2k-7-windows-2000-object-management.pdf
http://users.du.se/~hjo/cs/common/books/Undocumented%20Windows%202000%20Secrets/sbs-w2k-7-windows-2000-object-management.pdf

for-informed-extensive-endpoint-

protection/

[49] Stallings, W. (2014). Operating

System Security. Computer

Security Handbook edited by

Bosworth, S., Kabay, M. E.,

Whyne, E, New Jersey: John

Wiley & Sons. Retrieved from

http://index-

of.co.uk/Networking/Computer%2

0Security%20Handbook%204th.p

df

[50] Suma, G. S., Dija, S., Thomas, K.

L. (2014). A Novel Methodology

for Windows 7 x64 Memory

Forensics. DOI:

10.1109/ICCIC.2014.7238400

[51] Sysnap. (2011). Hijacking Kernel

Handle. 0tutorials: Unpacking

Tutorials, Programming Tutorials,

Kernel Tutorials, Reverse

Engineering Tutorials Retrieved

from

http://0tutorials.blogspot.com/201

1/08/hijacking-kernel-handle.html

[52] Tanda, S. (2020). The research

UEFI hypervisor that supports

booting an operating system.

Retrieved from
https://github.com/tandasat/MiniViso

rPkg

[53] Tanenbaum, A. and Bos., H.

(2014, March 20). Modern

Operating Systems (4th ed.). New

Jersey: Pearson Prentice-Hal.

[54] Tango. (2018, January 14). A

Light on Windows 10's

“OBJECT_HEADER-

>TypeIndex”. Retrieved from

https://medium.com/@ashabdalhal

im/a-light-on-windows-10s-

object-header-typeindex-value-

e8f907e7073a

[55] Treadwell, D. (1989). Windows

NT Executive Support Routines

Specification. Manage Object

Handles and Handle Tables.

Retrieved from

“Windows_Research_Kernel(sour

ces)\NT_Design_Workbook\Get_

Workbook\execsupp.doc”

[56] WRK. (n.d.).

ExUnlockHandleTableEntry. The

Windows Research Kernel

Retrieved from

https://github.com/Aekras1a/Labs/

blob/9c9121da3fcc34f840a3f67e1

4fcc2a76d4aa053/Labs/WRK/base

/ntos/ex/handle.c

[57] Yitbarek, S. F., and Austin, T.

(2019). Neverland: Lightweight

Hardware Extensions for

Enforcing Operating System

Integrity. Retrieved from
https://arxiv.org/pdf/1905.05975.pdf

https://github.com/tandasat/MiniVisorPkg
https://github.com/tandasat/MiniVisorPkg
https://arxiv.org/pdf/1905.05975.pdf

	1. INTRODUCTION
	2. Two Hijacking attacks on the files opened without shared access
	2.1. Control Flow and Internal Data Structures Involved in Read and Write File Operations
	2.2. Handle Table Hijacking
	2.3. Hijacking NTFS data structures

	3. Token Hijacking attack: WHAT AND HOW
	4. memoryranger prevents kernel hijacking structures
	4.1. MemoryRanger Overview
	4.2. MemoryRanger: Key components
	4.3. Main Updates of MemoryRanger to Block New Hijacking Attacks
	4.4. Details of Prevention of Handle Hijacking Attack
	4.5. Details of Prevention of Hijacking NTFS data structures
	4.6. Details of Prevention of Token Hijacking
	4.7. Empirical Test Results
	4.8. Performance Impact
	4.9. MemoryRanger vs. Virtual Secure Mode

	5. Conclusion
	6. Future PlanS
	6.1. Prevent patching of OS Internal Structures by Intel Memory Protection Keys (MPK)
	6.2. MemoryRanger can do Deep Inspection of Memory Access
	6.3. MemoryRanger vs. Mimikatz
	6.4. MemoryRanger vs. Privilege Escalation by using buggy StopZilla driver
	6.5. Isolated Enclave for the OS Scheduler: Unikernels Based Protection
	6.6. MemoryRanger and Hyper-V

	7. References

