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Executive Summary

In this work we present definitive evidence, analysis, and (where needed) speculation to
answer the questions, (1) “Which concrete security measures in mobile devices meaningfully
prevent unauthorized access to user data?” (2) “In what ways are modern mobile devices
accessed by unauthorized parties?” and finally, (3) “How can we improve modern mobile
devices to prevent unauthorized access?”

We examine the two major platforms in the mobile space, iOS and Android, and for each
we provide a thorough investigation of existing and historical security features, evidence-
based discussion of known security bypass techniques, and concrete recommendations for
remediation. In iOS we find a compelling set of security and privacy controls, empowered
by strong encryption, and yet a critical lack in coverage due to under-utilization of these
tools leading to serious privacy and security concerns. In Android we find strong protections
emerging in the very latest flagship devices, but simultaneously fragmented and inconsistent
security and privacy controls, not least due to disconnects between Google and Android phone
manufacturers, the deeply lagging rate of Android updates reaching devices, and various
software architectural considerations. We also find in both platforms exacerbating factors
due to increased synchronization of data with cloud services.

The markets for exploits and forensic software tools which target these platforms are
alive and well. We aggregate and analyze public records, documentation, articles, and blog
postings to categorize and discuss unauthorized bypass of security features by hackers and
law enforcement alike. Motivated by an accelerating number of cases since Apple v. FBI in
2016, we analyze the impact of forensic tools, and the privacy risks involved in unchecked
seizure and search. Then, we provide in-depth analysis of the data potentially accessed via
law enforcement methodologies from both mobile devices and associated cloud services.

Our fact-gathering and analysis allow us to make a number of recommendations for
improving data security on these devices. In both iOS and Android we propose concrete
improvements which mitigate or entirely address many concerns we raise, and provide analysis
towards resolving the remainder. The mitigations we propose can be largely summarized as
increasing coverage of sensitive data via strong encryption, but we detail various challenges
and approaches towards this goal and others.

It is our hope that this work stimulates mobile device development and research towards
security and privacy, provides a unique reference of information, and acts as an evidence-based
argument for the importance of reliable encryption to privacy, which we believe is both a
human right and integral to a functioning democracy.
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Chapter 1

Introduction

Mobile devices have become a ubiquitous component of modern life. More than 45% of
the global population uses a smartphone [1], while this number exceeds 80% in the United
States [2]. This widespread adoption is a double-edged sword: the smartphone vastly improves
the amount of information that individuals can carry with them; at the same time, it has
created new potential targets for third parties to obtain sensitive data. The portability and
ease of access makes smartphones a target for malicious actors and law enforcement alike: to
the former, it provides new opportunities for criminality [3, 4, 5]. To the latter it offers new
avenues for investigation, monitoring, and surveillance [6, 7, 8].

Over the past decade, hardware and software manufacturers have acknowledged these
concerns, in the process deploying a series of major upgrades to smartphone hardware and
operating systems. These include mechanisms designed to improve software security; default
use of passcodes and biometric authentication; and the incorporation of strong encryption
mechanisms to protect data in motion and at rest. While these improvements have enhanced
the ability of smartphones to prevent data theft, they have provoked a backlash from the
law enforcement community. This reaction is best exemplified by the FBI’s “Going Dark”
initiative [8], which seeks to increase law enforcement’s access to encrypted data via legislative
and policy initiatives. These concerns have also motivated law enforcement agencies, in
collaboration with industry partners, to invest in developing and acquiring technical means
for bypassing smartphone security features. This dynamic broke into the public consciousness
during the 2016 “Apple v. FBI” controversy [9, 10, 11, 12], in which Apple contested an
FBI demand to bypass technical security measures. However, a vigorous debate over these
issues continues to this day [6, 7, 13, 14, 15, 16]. Since 2015 and in the US alone, hundreds
of thousands of forensic searches of mobile devices have been executed by over 2,000 law
enforcement agencies, in all 50 states and the District of Columbia, which have purchased
tools implementing such bypass measures [17].

The tug-of-war between device manufacturers, law enforcement, and third-party vendors
has an important consequence for users: at any given moment, it is difficult to know which
smartphone security features are operating as intended, and which can be bypassed via
technical means. The resulting confusion is made worse by the fact that manufacturers
and law enforcement routinely withhold technical details from the public and from each
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other. What limited information is available may be distributed across many different sources,
ranging from obscure technical documents to court filings. Moreover, these documents can
sometimes embed important technical information that is only meaningful to an expert in the
field. Finally, competing interests between law enforcement and manufacturers may result in
compromises that negatively affect user security [18].

The outcome of these inconsistent protections and increasing law enforcement access is
the creation of massive potential for violations of privacy. More than potential, technology is
already allowing law enforcement agencies around the world to surveil people [17, 19, 20, 21].
Technological solutions are only part of the path to remediating these issues, and while we
leave the policy advocacy and work to experts in those areas, we present these contributions
in pursuit of progress on the technical front.

Our contributions. In this work we attempt a full accounting of the current and historical
status of smartphone security measures. We focus on several of the most popular device
types, and present a complete description of both the available security mechanisms in these
devices, as well as a summary of the known public information on the state-of-the-art in
bypass techniques for each. Our goal is to provide a single periodically updated guide that
serves to detail the public state of data security in modern smartphones.

More concretely, we make the following specific contributions:

1. We provide a technical overview of the key data security features included in modern
Apple and Android-based smartphones, operating systems (OSes), and cloud backup
systems. We discuss which forms of data are available in these systems, and under
what scenarios this data is protected. Finally, to provide context for this description,
we also offer a historical timeline detailing known improvements in each feature.

2. We analyze more than a decade of public information on software exploits and DHS
forensic reports and investigative documents, with the goal of formulating an understand-
ing of which security features are (and historically have been) bypassed by criminals
and law enforcement, and which security features are currently operating as designed.

3. Based on the understanding above, we suggest changes and improvements that could
further harden smartphones against unauthorized access.

We enter this analysis with two major goals. The first is an attempt to solve a puzzle: despite
substantial technological advances in systems that protect user data, law enforcement agencies
appear to be accessing device data with increasing sophistication [6, 22, 23]. This implies
that law enforcement, at least, has become adept at bypassing these security mechanisms. A
major goal in our analysis is to to understand how this access is being conducted, on the
theory that any vulnerabilities used by public law enforcement agencies could also be used
by malicious actors.

A second and related goal of this analysis is to help provide context for the current
debate about law enforcement access to smartphone encrypted data [10, 11, 12, 24], by
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demonstrating which classes of data are already accessible to law enforcement today via
known technological bypass techniques. We additionally seek to determine which security
technologies are effectively securing user data, and which technologies require improvement.

Platforms examined. Our analysis focuses on the two most popular OS platforms currently in
use by smartphone vendors: Apple’s iOS and Google’s Android.1 We begin by enumerating
the key security technologies available in each platform, and then we discuss the development
of these technologies over time. Our primary goal in each case is to develop an understanding
of the current state of the technological protection measures that protect user data on each
platform.

Sources of bypass data. Having described these technological mechanisms, we then focus our
analysis on known techniques for bypassing smartphone security measures. Much of this
information is well-known to those versed in smartphone technology. However, in order to
gain a deeper understanding of this area, we also examined a large corpus of forensic test
results published by the U.S. Department of Homeland Security [22], as well as scouring
public court documents for evidence of surprising new techniques. This analysis provides
us with a complete picture of which security mechanisms are likely to be bypassed, and the
impact of such bypasses. We provide a concise, complete summary of the contents of the
DHS forensic tool test results in Appendix C.

Threat Model. In this work we focus on two sources of device data compromise: (1) physical
access to a device, e.g. via device seizure or theft, and (2) remote access to data via cloud
services. The physical access scenario assumes that the attacker has gained access to the
device, and can physically or logically exploit it via the provided interfaces. Since obtaining
data is relatively straightforward when the attacker has authorized access to the device, we
focus primarily on unauthorized access scenarios in which the attacker does not possess the
passcode or login credentials needed to access the device.

By contrast, our cloud access scenario assumes that the attacker has gained access to
cloud-stored data. This access may be obtained through credential theft (e.g. spear-phishing
attack), social engineering of cloud provider employees, or via investigative requests made to
cloud providers by law enforcement authorities. While we note that legitimate investigative
procedures differ from criminal access from a legal point of view, we group these attacks
together due to the fact that they leverage similar technological capabilities.

1.1 Summary of Key Findings
We now provide a list of our key findings for both Apple iOS and Google Android devices.

1An important caveat in our Android analysis is that in practice, the Android device-base is significantly
more fragmented than Apple’s, due to the fact that Android phones are manufactured by many different
vendors. As a consequence, our analysis concentrates mainly on “flagship” Google devices and high-end
devices that hold a significant degree of market share.
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1.1.1 Apple iOS

Apple iOS devices (iPhones, iPads2) incorporate a number of security features that are
intended to limit unauthorized access to user data. These include software restrictions,
biometric access control sensors, and widespread use of encryption within the platform. Apple
is also noteworthy for three reasons: (1) the company has overall control of both the hardware
and operating system software deployed on its devices, (2) the company’s business model
closely restricts which software can be installed on the device, and (3) Apple management
has, in the past, expressed vocal opposition to making technical changes in their devices that
would facilitate law enforcement access [10].3

To determine the level of security currently provided by Apple against sophisticated
attackers, we considered the full scope of Apple’s public documentation, as well as published
reports from the U.S. Department of Homeland Security (DHS), postings from mobile forensics
companies, and other documents in the public record. Our main findings are as follows:

Limited benefit of encryption for powered-on devices. Apple advertises the broad
use of encryption to protect user data stored on-device [27, 28, 29]. However, we
observed that a surprising amount of sensitive data maintained by built-in applications
is protected using a weak “available after first unlock” (AFU) protection class, which
does not evict decryption keys from memory when the phone is locked. The impact
is that the vast majority of sensitive user data from Apple’s built-in applications can
be accessed from a phone that is captured and logically exploited while it is in a
powered-on (but locked) state. We also found circumstantial evidence from a 2014
update to Apple’s documentation that the company has, in the past, reduced the
protection class assurances regarding certain system data, to unknown effect.

Finally, we found circumstantial evidence in both the DHS procedures and investigative
documents that law enforcement now routinely exploits the availability of decryption
keys to capture large amounts of sensitive data from locked phones. Documents acquired
by Upturn, a privacy advocate organization, support these conclusions, documenting
law enforcement records of passcode recovery against both powered-off and simply
locked iPhones of all generations [30].

Weaknesses of cloud backup and services. Apple’s iCloud service provides cloud-based
device backup and real-time synchronization features. By default, this includes photos,
email, contacts, calendars, reminders, notes, text messages (iMessage and SMS/MMS),
Safari data (bookmarks, search and browsing history), Apple Home4 data, Game Center5
data, and cloud storage for installed apps.

2Although our focus in this work is on smartphones, we mention other devices that share a common
security platform.

3It should be noted that in practice, Apple has assisted law enforcement operations as required by law,
rather than filing suit [25], and continue to provide data to U.S. and other law enforcement agencies upon
request at increasing rates, per the Apple Transparency Report [26].

4Apple Home provides integrations for Internet of Things devices.
5Game Center is Apple’s built-in gaming social media service.
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We examine the current state of data protection for iCloud, and determine (unsurpris-
ingly) that activation of these features transmits an abundance of user data to Apple’s
servers, in a form that can be accessed remotely by criminals who gain unauthorized
access to a user’s cloud account, as well as authorized law enforcement agencies with
subpoena power. More surprisingly, we identify several counter-intuitive features of
iCloud that increase the vulnerability of this system. As one example, Apple’s “Messages
in iCloud” feature advertises the use of an Apple-inaccessible “end-to-end” encrypted
container for synchronizing messages across devices [31]. However, activation of iCloud
Backup in tandem causes the decryption key for this container to be uploaded to
Apple’s servers in a form that Apple (and potential attackers, or law enforcement) can
access [31]. Similarly, we observe that Apple’s iCloud Backup design results in the
transmission of device-specific file encryption keys to Apple. Since these keys are the
same keys used to encrypt data on the device, this transmission may pose a risk in the
event that a device is subsequently physically compromised.6

More generally, we find that the documentation and user interface of these backup
and synchronization features are confusing, and may lead to users unintentionally
transmitting certain classes of data to Apple’s servers.

Evidence of past hardware (SEP) compromise. iOS devices place strict limits on
passcode guessing attacks7 through the assistance of a dedicated processor known as
the Secure Enclave processor (SEP). We examined the public investigative record to
review evidence that strongly indicates that as of 2018, passcode guessing attacks were
feasible on SEP-enabled iPhones using a tool called GrayKey. To our knowledge, this
most likely indicates that a software bypass of the SEP was available in-the-wild during
this timeframe. We also reviewed more recent public evidence, and were not able to
find dispositive evidence that this exploit is still in use for more recent phones (or
whether exploits still exist for older iPhones). Given how critical the SEP is to the
ongoing security of the iPhone product line, we flag this uncertainty as a serious risk to
consumers.

Limitations of “end-to-end encrypted” cloud services. Several Apple iCloud services
advertise “end-to-end” encryption in which only the user (with knowledge of a password
or passcode) can access cloud-stored data. These services are optionally provided
in Apple’s CloudKit containers and via the iCloud Keychain backup service. Imple-
mentation of this feature is accomplished via the use of dedicated Hardware Security
Modules (HSMs) provisioned at Apple’s data centers. These devices store encryption
keys in a form that can only be accessed by a user, and are programmed by Apple such
that cloud service operators cannot transfer information out of an HSM without user
permission [27, 28].

6Particularly, the iCloud Backup Keybag encrypts file keys with asymmetric class keys [27, 28]. Some
encrypted data is accessible to Apple [31], and other data is “end-to-end encrypted.”

7This describes an attack in which the attacker tests many (or all) possible passcodes in order to identify
the user passcode and thus derive encryption keys.
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As noted above, our finding is that the end-to-end confidentiality of some encrypted
services is undermined when used in tandem with the iCloud backup service. More
critically, we observe that Apple’s documentation and user settings blur the distinction
between “encrypted” (such that Apple has access) and “end-to-end encrypted” in a
manner that makes it difficult to understand which data is available to Apple. Finally,
we observe a fundamental weakness in the system: Apple can easily cause user data to
be re-provisioned to a new (and possibly compromised) HSM simply by presenting a
single dialog on a user’s phone. We discuss techniques for mitigating this vulnerability.

Based on these findings, our overall conclusion is that data for iOS devices is highly available
to both sophisticated criminals and law enforcement actors with either cloud or physical
access. This is due to a combination of the weak protections offered by current Apple iCloud
services, and weak defaults used for encrypting sensitive user data on-device. The impact
of these choices is that Apple’s data protection is fragile: once certain software or cloud
authentication features are breached, attackers can access the vast majority of sensitive user
data on device. Later in this work we propose improvements aimed at improving the resilience
of Apple’s security measures.

1.1.2 Google Android & Android Phones

Google’s Android operating system, and many third-party phones that use Android, in-
corporates a number of security features that are analogous to those provided by Apple
devices. Unlike Apple, Google does not fully control the hardware and software stack on
all Android-compatible smartphones: some Google Android phones are manufactured en-
tirely by Google, while other devices are manufactured by third parties. Moreover, device
manufacturers routinely modify the Android operating system prior to deployment.

This fact makes a complete analysis of the Android smartphone ecosystem more challenging.
In this work, we choose to focus on a number of high-profile phones such as Google Pixel
devices and recent-model Samsung Galaxy phones, mainly because these devices are either (1)
representative devices designed by Google to fully encapsulate the capabilities of the Android
OS, or (2) best-selling Android phones, with large numbers of active devices worldwide. We
additionally focus primarily on recent versions of Android (Android 10 and 11, as of this
writing). We note, however, that the Android ecosystem is highly fragmented, and contains
large numbers of older-model phones that no longer receive OS software updates, a diversity
of manufacturers, and a subclass of phones which are built using inexpensive hardware that
lacks advanced security capabilities. Our findings in this analysis are therefore necessarily
incomplete, and should be viewed as an optimistic “best case.”

To determine the level of security currently provided by these Android devices against
sophisticated attackers, we considered the full scope of Google’s public documentation, as well
as published reports from the U.S. Department of Homeland Security (DHS), postings from
mobile forensics companies, and other documents in the public record. Our main findings are
as follows:
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Limited benefit of encryption for powered-on devices. Like Apple iOS, Google
Android provides encryption for files and data stored on disk. However, Android’s
encryption mechanisms provide fewer gradations of protection. In particular, Android
provides no equivalent of Apple’s Complete Protection (CP) encryption class, which
evicts decryption keys from memory shortly after the phone is locked. As a consequence,
Android decryption keys remain in memory at all times after “first unlock,” and user
data is potentially vulnerable to forensic capture.

De-prioritization of end-to-end encrypted backup. Android incorporates an end-to-
end encrypted backup service based on physical hardware devices stored on Google’s
datacenters. The design of this system ensures that recovery of backups can only occur
if initiated by a user who knows the backup passcode, an on-device key protected by
the user’s PIN or other authentication factor. Unfortunately, the end-to-end encrypted
backup service must be opted-in to by app developers, and is paralleled by the opt-out
Android Auto-Backup, which simply synchronizes app data to Google Drive, encrypted
with keys held by Google.

Large attack surface. Android is the composition of systems developed by various
organizations and companies. The Android kernel has Linux at its core, but also
contains chip vendor- and device manufacturer-specific modification. Apps, along with
support libraries, integrate with system components and provide their own services to
the rest of the device. Because the development of these components is not centralized,
cohesively integrating security for all of Android would require significant coordination,
and in many cases such efforts are lacking or nonexistent.

Limited use of end-to-end encryption. End-to-end encryption for messages in Android
is only provided by default in third-party messaging applications. Native Android
applications do not provide end-to-end encryption: the only exception being Google
Duo,8 which provides end-to-end encrypted video calls. The current lack of default
end-to-end encryption for messages allows the service provider (for example, Google) to
view messages and logs, potentially putting user data at risk from hacking, unwanted
targeted advertising, subpoena, and surveillance systems.

Availability of data in services. Android has deep integration with Google services,
such as Drive, Gmail, and Photos. Android phones that utilize these services (the large
majority of them [34, 35]) send data to Google, which stores the data under keys it
controls - effectively an extension of the lack of end-to-end encryption beyond just
messaging services. These services accumulate rich sets of information on users that
can be exfiltrated either by knowledgeable criminals (via system compromise) or by law
enforcement (via subpoena power).

8According to a recent technical draft, Google is also implementing end-to-end encryption for Messages
via RCS, the replacement protocol of SMS/MMS [32, 33].
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Chapter 2

Technical Background

2.1 Data Security Technologies for Mobile Devices
Modern smartphones generate and store immense amounts of sensitive personal information.
This data comes in many forms, including photographs, text messages, emails, location
data, health information, biometric templates, web browsing history, social media records,
passwords, and other documents. Access control for this data is maintained via several
essential technologies, which we describe below.

Software security and isolation. Modern smartphone operating systems are designed
to enforce access control for users and application software. This includes restricting
input/output access to the device, as well as ensuring that malicious applications cannot
access data to which they are not entitled. Bypassing these restrictions to run arbitrary
code requires making fundamental changes to the operating system, either in memory
or on disk, a technique that is sometimes called “jailbreaking” on iOS or “rooting” on
Android.

Passcodes and biometric access. Access to an Apple or Android smartphone’s user
interface is, in a default installation, gated by a user-selected passcode of arbitrary
strength. Many devices also deploy biometric sensors based on fingerprint or face-
recognition as an alternative means to unlock the device.

Disk and file encryption. Smartphone operating systems embed data encryption at either
the file or disk volume level to protect access to files. This enforces access control to
data even in cases where an attacker has bypassed the software mechanisms controlling
access to the device. Encryption mechanisms typically derive encryption keys as a
function of the user-selected passcode and device-embedded secrets, which is designed
to ensure that access to the device requires both user consent and physical control of
the hardware.
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Secure device hardware. Increasingly, smartphone manufacturers have begun to deploy
secure co-processors and virtualized equivalents1 in order to harden devices against both
software attacks and physical attacks on device hardware. These devices are designed
to strengthen the encryption mechanisms, and to guard critical data such as biometric
templates.

Secure backup and cloud systems. Most smartphone operating systems offer cloud-
based data backup, as well as real-time cloud services for sharing information with other
devices. Historically, access to cloud backups has been gated by access controls that are
solely under the discretion of the cloud service provider,such as password authentication,
making this a fruitful target for both attackers and law enforcement to gain access to
data. More recently, providers have begun to deploy provider-inaccessible encrypted
backup systems that enforce access controls that require user-selected passcodes, with
security of the data enforced by trusted hardware at the providers’ premises.

2.2 Threat Model
In order to discuss the vulnerability of mobile devices it is pertinent to consider the threat
models which underpin our analysis. In fact, in this case the threats of the traditional remote
network adversary are relatively well-mitigated. It is with a particular additional capability
that our threat actors, namely law enforcement forensic investigators and criminal hackers,
are able to bypass the existing mitigations: protracted physical access to the mobile device.
This access facilitates data extraction in that devices can be kept charging, and mitigations
such as disabling physical data ports or remote lock or wipe can be evaded.

We consider deep physical analysis of hardware (particularly de-soldering and “de-capping”2
the silicon, often done with nitric acid to gain direct access to underlying physical logic
implementations) out of scope, as they seem to be prohibitively expensive and risk destroying
device hardware or invalidating evidence; we see no clear evidence of this occurring at scale
even in federal law enforcement offices. However, we do see evidence of some physical analysis
in the form of academic [37] and commercial [38] research, to the extent of interposing the
device’s connections to storage or power.

In some cases, law enforcement receive consent from the targets of investigation to access
mobile devices. This consent is likely accompanied with passcodes, PINs, and/or passwords.
A database of recent warrants against iOS devices shows that not only do law enforcement
agents sometimes get this consent, they also seek warrants which nullify any later withdrawal
of consent [39] and as such can use their position and access to completely compromise the
device.

In other cases, law enforcement agencies are able to execute warrants which create a
“geofence” or physical region and period of time, such that any devices which are found to
have been present therein are subject to search, usually in the form of requesting data from

1Examples include the TrustZone architecture included in many ARM processors [36].
2Removing the top physical layer of shielding which covers the chip.
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cloud providers (Apple for iOS devices, and Google for Android) [40]. Such geofence warrants
have massive reach and potential to violate the privacy of innocent passerby, but their use is
a matter of policy and thus not in scope for our analysis.

Largely, the evidence we gather and present demonstrates that this physical access is
used by law enforcement to attach commercial forensic tools which perform exploitation and
data extraction on mobile devices. This approach can provide both data directly from the
device, or cloud access tokens resident in device memory which can be further exploited to
gain access to a target’s online accounts and content. These two methods, device and cloud
extraction, can provide overlapping but different categories of sensitive personal data, and,
together or individually, represent a massive breach of a target’s privacy.

2.3 Sensitive Data on Phones
The U.S. National Institute of Standards and Technology (NIST) maintains a list of data
targets for mobile device acquisition forensic software. These are presented in Figure 2.1. The
categories of data which forensic software tests attempt to extract provide us with a notion
of what data is prioritized by law enforcement, and allow us to focus our examination of user
data protection. The importance of these categories is corroborated by over 500 warrants
against iPhones recently collected and released in the news [39, 41], and articles posted by
mobile forensics companies and investigators [6, 42].

While a useful resource, this list does not capture the extent of potential privacy loss due
to unauthorized mobile device access, primarily falling short in two ways. First, it does not
capture the long-lived nature of some identifiers, nor the potential sensitivity of each item.
Second, critically, mobile devices contain information about and from ourselves but also our
networks of peers, friends, and family, and so privacy loss propagates accordingly. Further,
due to the emerging capabilities of machine learning and data science techniques combined
with continuously increasing availability of aggregated data sets, predictions and analysis
(whether correct or not) make these potential violations of privacy nearly unbounded.
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Figure 2.1: List of Targets for NIST Mobile Device Acquisition Forensics

• Cellular network subscriber information: IMEI, MEID/ESN
• Personal Information Management (PIM) data: address book/contacts, calendar,

memos, etc
• Call logs: incoming, outgoing, missed
• Text messages: SMS, MMS (audio, graphic, video)
• Instant messages
• Stand-alone files:a audio, documents, graphic, video
• E-mail
• Web activity: history, bookmarks
• GPS and geo-location data
• Social media data: accounts, content
• SIM/UICC data: provider, IMSI, MSISDN, etc

In accordance with NIST standards, DHS tests forensic software for mobile device
acquisition of these categories of data [22, 43].

Source: NIST [43]

aThis list has evolved over time, and certain entries (such as “stand-alone files”) seem to imply a
disconnect between this list and how modern smartphones organize and store personal information,
and may be remnants of how multimedia/feature phones used to do so. Thus is is unclear if third-party
app data falls into this category.
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Chapter 3

Apple iOS

Apple devices are ubiquitous in countries around the world. In Q4 of 2019 alone, almost 73
million iPhones and almost 16 million iPads shipped [44, 45]. While Apple devices represent
a minority of the global smartphone market share, Apple maintains approximately a 48%
share of the smartphone market in the United States [46], with similar percentages in many
western nations. Overall, Apple claims 1.4 billion active devices in the world [47]. Along with
increasing usage trends, these factors make iPhones extremely valuable targets for hackers,
with bug bounty programs offering up to $2 million USD [48, 49], for law enforcement
agencies executing warrants, and for governments seeking to surveil journalists, activists, or
criminals [50].

Apple invests heavily in restricting the operating system and application software that
can run on their hardware [27, 28]. As such, even users with technical expertise are limited
in their ability to extend and protect Apple devices with their own modifications, and Apple
software development teams represent essentially the sole technical mitigation against novel
attempts to access user data without authorization. The high value of Apple software exploits
and Apple’s centralized response produces a cat-and-mouse game of exploitation and patching,
where users can never be fully assured that their device is not vulnerable. Apple undertakes
protecting user devices through numerous and varied mitigation strategies, and while these
include both technical and business approaches, the technical will be primarily and thoroughly
examined in this work.

3.1 Protection of User Data in iOS
In this section we provide an overview of key elements of Apple’s user data protection strategy
that cover the bulk of on-device and cloud interactions supported by iOS devices. This
overview is largely based on information published by Apple [27, 28], and additionally on
external (to Apple) research, product analyses, and security tests.

User authentication. Physical interaction is the primary medium of modern smartphones.
In order to secure a device against unauthorized physical access, some form of user authenti-
cation is needed. iOS devices provide two mechanisms for this: (1) numeric or alphanumeric
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passcodes and (2) biometric authentication. In early iPhones, Apple suggested a default of
four-digit numeric passwords, but now suggests a six-digit numeric passcode. Users may
additionally opt for longer alphanumeric passphrases, or (against Apple’s advice [28]) disable
passcode authentication entirely.

Because there are a relatively small number of 6-digit passcodes, iOS is designed to
rate-limit passcode entry attempts in order to prevent attackers from conducting brute-force
guessing attacks. In the event of an excessive number of entry attempts, device access may be
temporarily locked and user data can be permanently deleted. To improve the user experience
while maintaining security, Apple employs biometric access techniques in its devices: these
include TouchID, based on a capacitive fingerprint sensor, and a more recent replacement
FaceID, which employs face recognition using a depth-sensitive camera [27, 28]. The image
in Figure 3.1 demonstrates the TouchID and six-digit passcode setup interfaces on iOS.

Figure 3.1: iPhone Passcode Setup Interface

Source: Apple [51]

Apple also restricts a number of passcodes that are deemed too common, or too “easily
guessed.” For a thorough examination of this list and its effects on iOS, refer to recent works
by Markert et al. [52].

Code signing. iOS tightly restricts the executable code that can be run on the platform.
This is enforced using digital signatures [27, 28]. The mechanics of iOS require that only
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software written by Apple or by an approved developer can be executed on the device.

Trusted boot. Apple implements signatures for the software which initializes the operating
system, and the operating system itself, in order to verify its integrity [27, 28]. These signature
checks are embedded in the low-level firmware called Boot ROM. The primary purpose of
this security measure, according to Apple, is to ensure that long-term encryption keys are
protected and that no malicious software runs on the device.

App signing. Apple authorizes developers to distribute code using a combination of Apple-
controlled signatures and a public-key certificate infrastructure that allows the system to
scale [28, 53]. Organizations may also apply and pay for enterprise signing certificates that
allow them to authenticate software for specially-authorized iOS devices (those that have
installed the organization’s certificate [28, 54]). This is intended to enable companies to
deliver proprietary internal apps to employees, although the mechanism has been subverted
many times for jailbreaking [55], for advertising or copyright fraud [56], and for device
compromise [57]. The image in Figure 3.2 displays Apple documentation of the code signing
process for developers.

Figure 3.2: Apple Code Signing Process Documentation

Source: Apple Developer Documentation [58]

Sandboxing and code review. iOS enforces restrictions that limit each application’s
access to user data and the operating system APIs. This mechanism is designed to protect
against incursions by malicious third-party applications, and to limit the damage caused by
exploitation of a non-malicious application. To implement this, iOS runs each application in
a “sandbox” that restricts its access to the device filesystem and memory space, and carries a
signed manifest that details allowed access to system services such as location services. For
applications distributed via its App Store – which is the only software installation method
allowed on a device with default settings – Apple additionally performs automated and
manual code review of third-party applications [59]. Despite these protections, malicious or
privacy-violating applications have passed review [60].

iOS 141 includes additional privacy transparency and control features such as listing
1Released contemporaneously with this writing.
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privacy-relevant permissions in the App Store, allowing finer-grained access to photos, an OS-
supported recording indicator, Wi-Fi network identifier obfuscation, and optional approximate
location services [61]. However, most of these features are focused on the privacy of users
from app developers rather than from the phone itself, the relevant adversary under the
threat model of forensics.
Encryption. While software protections provide a degree of security for system and applica-
tion data, these security mechanisms can be bypassed by exploiting logic vulnerabilities in
software or flaws in device hardware. Apple attempts to address this concern through the
use of data encryption. This approach provides Apple devices with two major benefits: first,
it ensures that Apple device storage can be rapidly erased, simply by destroying a single
encryption key carried within the device. Second, encryption allows Apple to provide strong
file-based access control to files and data objects on the device, even in the event that an
attacker bypasses security controls within the operating system. The image in Figure 3.3
depicts the key hierarchy used in iOS Data Protection.

Figure 3.3: iOS Data Protection Key Hierarchy. Each arrow

Source: Washington University in St. Louis [62]

iOS employs industry-standard cryptography including AES [63], ECDH over Curve25519 [64],
and various NIST-approved standard constructions to encrypt files in the filesystem [27, 28].
To ensure that data access is controlled by the user and is tied to a specific device, Apple
encrypts all files using a key that is derived from a combination of the user-selected passcode
and a unique secret cryptographic key (called the UID key) that is stored within device
hardware. In order to recover the necessary decryption keys following a reboot the user must
enter the device passcode. When the device is locked but has been unlocked since last boot,
biometrics suffice to unlock these keys.2 To prevent the user from bypassing the encryption
by guessing a large number of passcodes, the system enforces guessing limits in two ways: (1)
by using a computationally-intensive password-based key derivation function that requires
80ms to derive a key on the device hardware [27, 28], and (2) by enforcing guess limits and
increasing time intervals using trusted hardware (see further below) and software [27, 28].
Data Protection Classes. Apple provides interfaces to enable encryption in both first-party
and third-party software, using the iOS Data Protection API [27, 28]. Within this package,

2Except in some specific cases mostly associated with disuse timeouts [65].
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Apple specifies several encryption “protection classes” that application developers can select
when creating new data files and objects. These classes allow developers to specify the
security properties of each piece of encrypted data, including whether the keys corresponding
to that data will be evicted from memory after the phone is locked (“Complete Protection”
or CP) or shut down (“After First Unlock” or AFU).

We present a complete list of Data Protection classes in Figure 3.4. As we will discuss
below the selection of protection class makes an enormous practical difference in the security
afforded by Apple’s file encryption. Since in practice, users reboot their phones only rarely,
many phones are routinely carried in a locked-but-authenticated state (AFU). This means
that for protection classes other than CP, decryption keys remain available in the device’s
memory. Analysis of forensic tools shows that to an attacker who obtains a phone in this
state, encryption provides only a modest additional protection over the software security and
authentication measures described above.

Figure 3.4: List of iOS Data Protection Classes

Complete Protection (CP): Encryption keys for this data are evicted shortly after
device lock (10 seconds).

Protected Unless Open (PUO): Using public-key encryption, PUO allows data
files to be created and encrypted while the device is locked, but only decrypted
when the device is unlocked, by keeping an ephemeral public key in memory but
evicting the private key at device lock. Once the file has been created and closed,
data in this class has properties similar to Complete Protection.

Protected Until First User Authentication (a.k.a. After First Unlock)
(AFU): Encryption keys are decrypted into memory when the user first en-
ters the device passcode, and remain in memory even if the device is locked.

No Protection (NP): Encryption keys are encrypted by the hardware UID keys
only, not the user passcode, when the device is off. These keys are always available
in memory when the device is on.

Source: Apple iOS and Platform Security Guides [27, 28]

A natural question arises: why not simply apply CP to all classes of data? This would
seriously hamper unauthorized attempts to access user data. However, the answer appears to
lie in user experience. Examining the data in Table 3.10 it seems likely that data which is
useful to apps which run in the background, including while the device is locked, is kept in
the AFU state in order to enable continuous services such as VPNs, email synchronization,
contacts, and iMessage. For example, if user’s contacts were protected using CP, then a
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locked phone would be unable to display a name associated with a phone number for an
incoming text message, and likely would just display the phone number itself.3 This would
severely impact the feature of iOS to preview sender and message content in lock screen
notifications.

Keychain. iOS provides the system and applications with a secure key-value store API called
the Keychain [27, 28] for storing sensitive secrets such as keys and passwords. The Keychain
provides encrypted storage and permissioned access to these secret items via a public API
which third-party app developers can build around. This Keychain data is encrypted using
keys that are in turn protected by device hardware keys and the user passcode, and can
optionally placed into protection classes that mirror the protection classes in Figure 3.4. In
addition to these protection classes, the Keychain also introduces an optional characteristic
called Non-Migratory (NM), which ensures that any protected data can only be decrypted
on the same device that it was encrypted under. This mechanism is enforced via the internal
hardware UID key, which cannot be transported off of the device.4

Apple selects the Data Protection classes used by built-in applications such as iMessage and
Photos, while third-party developers may choose these classes when developing applications.
If they do not explicitly select a different protection class, the default class used is Protected
Until First User Authentication, or AFU. Their documentation [27, 28] claims that, at least,
the following applications’ data falls under some degree of Data Protection: Messages, Mail,
Calendar, Contacts, Photos, and Health, in addition to all third-party apps in iOS 7 and
later. Refer to Table 3.10 for more details on Data Protection, and to Figure 3.17 for details
on data which is necessarily AFU or less protected due to its availability via forensic tools.

Backups. iOS devices can be backed up either to iCloud or to a personal computer. When
backing up to a personal computer, users may set an optional backup password. This
password is used to derive an encryption key that, in turn, protects a structure called the
“Keybag.” The Keybag contains a bundle of further encryption keys that encrypt the backup
in its entirety. A limitation of this mechanism is that the user-specified backup password
must be extremely strong: since this password is not entangled with device hardware secrets,
stored backups may be subject to sophisticated offline dictionary attacks that can guess weak
passwords, however iOS uses 10 million iterations of PBKDF2 [66] to significantly inhibit
such password cracking [27, 28].5 iOS devices may also be configured to backup to Apple
iCloud servers. In this instance, data is encrypted asymmetrically using Curve25519 [64] (so
that backups can be performed when the device is locked without exposing secret keys) [27],
and those keys are encrypted with “iCloud keys” known to Apple to create the iCloud Backup
Keybag. This means that Apple itself6 or a malicious actor who can guess or reset user
credentials can access the contents of the backup. For both types of backups, the Keychain is
additionally encrypted with a key derived from the hardware UID key to prevent restoring it

3This is indeed the behavior that phones exhibit prior to the first unlock.
4Use of this class ensures that protected data cannot be restored onto a new phone and decrypted.
5Since iOS 10.2, previously 10,000; compare iOS security guides for iOS 9 (May 2016) and iOS 10 (March

2017) [27].
6Acting on its own or under court order.
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to a new device [27, 28].
Aside from Mail, which is not encrypted at rest on the server [31], all other backup data

is stored encrypted with keys that Apple has access to. This implies that such data can
be accessed through an unauthorized compromise of Apple’s network, a stolen credential
attack, or compelled access by authorized government officials. The data classes included in
an iCloud backup are listed in Figure 3.5.

Figure 3.5: List of Data Included in iCloud Backup

• App dataa

• Apple Watch backups
• Device settings
• Home screen and app organization
• iMessage, SMS, and MMS messagesb

• Photos and videos
• Purchase history from Apple services
• Ringtones
• Visual Voicemail password

Source: Apple Support Documentation [67]

aUnless developers opt out, refer to §3.1.
biMessages are stored in iCloud, rather than in backups, if iCloud for iMessage is enabled.

iCloud. In addition to backups, iCloud can be used to store and synchronize various classes
of data, primarily for built-in default apps such as Photos and Documents. Third-party apps’
files are also included in iCloud Backups unless the developers specifically opt-out [68]. Apple
encrypts data in transit using Transport Layer Security (TLS) as is standard for internet
traffic [31]. Data at rest, however, is a more complex story: Mail is stored unencrypted on
the server (which Apple claims is an industry standard practice [31]). The data classes in
Figure 3.6 is stored encrypted with a 128-bit AES key known to Apple, and the data classes
in Figure 3.7 is stored encrypted with a key derived from the user passcode7 and is thus
protected from even Apple. There are caveats to these lists, including that Health data is
only end-to-end encrypted if two-factor authentication is enabled for iCloud [31], and that
Messages in iCloud, which can be enabled in the iOS settings, uses end-to-end encryption,
but the key is also included in iCloud backups and thus can be accessed by Apple if iCloud
backup is enabled [31].

The user experience of controlling access to iCloud data embeds relatively unpredictable
aspects: for example, disabling iCloud for the default Calendar app prevents the sending
of calendar invites via email on iOS 13.8 A variety of exceptions and special cases, like the
iMessage example above, combined with unpredictable side-effects on user experience, makes
it more difficult for users to secure a device by adjusting user-facing settings.

7Potentially also the hardware UID key, although Apple claims that this data can be recovered on a new
device using only the passcode [31].

8This was confirmed experimentally by the authors.
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Figure 3.6: List of iCloud Data Accessible by Apple

• Safari History & Bookmarksa
• Calendars
• Contacts
• Find Myb

• iCloud Drivec
• Messages in iCloudd

• Notes
• Photos
• Reminders
• Siri Shortcuts
• Voice Memos
• Wallet Passese

Source: Apple iCloud Security Guide [31]

aHistory is stored end-to-end encrypted on iOS 13 and later.
bList of devices and people enrolled in Find My, an Apple service for physically locating enrolled

devices [69].
cUsed for document storage for Apple’s office suite (Pages, Keynote, and Numbers).
dUnless iCloud Backup is disabled, refer to the text for additional details.
eItems such as ID cards, boarding passes for airlines, and other supported content.

Figure 3.7: List of iCloud Data Encrypted “End-to-End”

• Apple Card transactions
• Home data
• Health data
• iCloud Keychaina

• Maps datab

• Memojic
• Payment information

• Quicktyped Keyboard learned vocabu-
lary

• Safari History and iCloud Tabs
• Screen Time
• Siri informatione

• Wi-Fi passwords
• W1 and H1f Bluetooth keys

Source: Apple iCloud Security Guide [31]

aSee “iCloud Keychain” in this section.
bFavorite locations and other location history including searches.
cGenerated emoji-style images.
dWord suggestions above the keyboard on iOS, introduced in iOS 8 [70].
eIt is not clear what specific data this contains, the documentation is vague.
fApple product names for wireless-enabled integrated circuits.

CloudKit. Third-party developers can also integrate with iCloud in iOS applications
via CloudKit, an API which allows applications to access cloud storage with configurable
properties that allow data to be shared in real-time across multiple devices [53]. CloudKit data
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is encrypted into one or more “containers” under a key hierarchy similar to Data Protection.
The top-level key in this hierarchy is the “CloudKit Service Key.” This key is stored in the
synchronized user Keychain, inaccessible to Apple, and is rotated any time the user disables
iCloud Backup [28, 31, 71].

iCloud Keychain. iCloud Keychain extends iCloud functionality to provide two services
for Apple devices: (1) Keychain synchronization across devices, and (2) Keychain recovery in
case of device loss or failure [28].

1. Keychain syncing enables trusted devices (see below) to share Keychain data with one
another using asymmetric encryption [28]. The data available for Keychain syncing
includes Safari user data (usernames, passwords, and credit card numbers), Wi-Fi
passwords, and HomeKit9 encryption keys. Third-party applications may opt-in to
have their Keychain data synchronized.

2. Keychain recovery allows a user to escrow an encrypted copy of their Keychain with
Apple [28]. The Keychain is encrypted with a “strong passcode” known as the iCloud
Security code, discussed below.

Apple documentation [72] defines a “trusted device” as:

“an iPhone, iPad, or iPod touch with iOS 9 and later, or Mac with OS X El
Capitan and later that you’ve already signed in to using two-factor authentication.
It’s a device we know is yours and that can be used to verify your identity by
displaying a verification code from Apple when you sign in on a different device
or browser.”

In contrast with standard iCloud and iCloud backups, iCloud Keychain provides additional
security guarantees for stored data. This is enforced through the use of trusted Hardware
Security Modules (HSMs) within Apple’s back-end data centers. This system is designed by
Apple to ensure that even Apple itself cannot access the contents of iCloud Keychain backups
without access to the iCloud Security Code. This code is generated either from the user’s
passcode if Two-Factor Authentication (2FA) is enabled, or chosen by the user (optionally
generated on-device) if 2FA is not enabled. When authenticating to the Hardware Security
Modules (HSMs) which protect iCloud Keychain recovery, the iCloud Security Code is never
transmitted, instead using the Secure Remote Password (SRP) protocol [73]. After the HSM
cluster verifies that 10 failed attempts have not occurred, it sends a copy of the encrypted
Keychain to the device for decryption. If 10 attempts is exceeded, the record is destroyed and
the user must re-enroll in iCloud Keychain to continue using its features.10 As a final note,
the software installed on Apple HSMs can run must be digitally signed; Apple asserts that
the signing keys required to further alter the software are physically destroyed after HSM
deployment [28, 74], preventing the company from deliberately modifying these systems to
access user data.

9Used for control of smart home devices.
10Re-enrolling appears to be a matter of toggling the selector from off to on in Settings on an iOS device.
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Figure 3.8: Secure Enclave Processor Key Derivation

Source: Apple [28]

Trusted hardware. Apple provides multiple dedicated components to support encryption,
biometrics and other security functions. Primary among these is the Secure Enclave Processor
(SEP), a dedicated co-processor which uses encrypted memory and handles processes related
to user authentication, secret key management, encryption, and random number generation.
The SEP is intended to enable security against even a compromised iOS kernel by executing
cryptographic operations in separate dedicated hardware. The SEP negotiates keys to
communicate with TouchID and FaceID subsystems (the touch sensor or the Neural Engine
for facial recognition) [75], provides keys to the Crypto Engine (a cryptography accelerator),
and communicates with a “secure storage integrated circuit” for random number generation,
anti-replay counters, and tamper resistance [76].11 The image in Figure 3.8 documents the
encryption keys the SEP derives from the user passcode.

Apple documentation describes FaceID as leveraging the Neural Engine and the SEP:
“A portion of the A11 Bionic processor’s neural engine—protected within the Secure En-
clave—transforms this data into a mathematical representation and compares that represen-
tation to the enrolled facial data.” [75] As worded, this description fails to fully convey the
features of hardware which make this possible, and as such we must speculate as to the exact
method by which FaceID data is processed and secured. For example, it is possible that the
Neural Engine simply provides data directly to the SEP, or via the application processor
(AP). It’s also possible that, similar to TouchID, the Neural Engine creates a shared key with
the SEP and then passes encrypted data through the AP. Physical inspection of the iPhone
X (the first generation with FFaceID) suggests that the Neural Engine and SEP are inside
the A11 package [77], as in the earlier design with the SEP and A7 SoC in iPhone 5s [78].

11The “SEPOS” root task of the SEP, as well as various drivers, services, and applications which run in the
SEP were presented in-depth at Black Hat 2016 [76]; in this work the authors elucidate the inner workings,
software security mitigations implemented (with some notably absent, including ASLR and Heap metadata
protection), and attack surface of the SEP as implemented in iPhone 6S/iOS 9.
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Figure 3.9: LocalAuthentication Interface for TouchID/FaceID

Source: Apple [80]

iPhones 6 and later (among other contemporaneous devices e.g. Apple Watches and some
iPads) additionally support Apple Pay and other NFC/Suica12 communication of secrets via
the Secure Element, a wireless-enabled chip which stores encrypted payment card and other
data [79]. The image in Figure 3.9 documents the LocalAuthentication framework through
which TouchID and FaceID operate.

Restricting attack surface. A locked iOS device has very few methods of data ingress
available: background downloads such as sync (email, cloud services, etc), Push notifications,
certain network messages via Wi-Fi, Bluetooth, or the cellular network, and the physical
Lightning port on the device. Exploits delivered to a locked device must necessarily use
one of these avenues. With the introduction of USB Restricted Mode, Apple sought to
limit the access of untrusted USB Lightning devices to access or interact with iOS, such
as forensic software [81]. By reducing attack surface, iOS complicates or mitigates attacks.
This protection mode simply disables USB communication for unknown devices after the
iOS device is locked for an hour without USB accessory activity, or upon first use of a USB
accessory; known devices are remembered for 30 days [82]. If no accessories are used for
three days, the lockout period is reduced from an hour to immediately after device lock [82].
However, this protection is not complete, as discussed in §3.3.

iMessage and FaceTime. Each iPhone ships with two integrated communication pack-
ages: iMessage and FaceTime. The iMessage platform is incorporated within the Messages
application as an alternative to SMS/MMS, and provides end-to-end encrypted messaging
communications with other Apple devices. The FaceTime app provides end-to-end encrypted
audio and videoconferencing between Apple devices. iMessage messages are encrypted using
a “signcryption” scheme recently analyzed by Bellare and Stepanovs [83] with the Apple

12A Japanese contactless/wireless protocol and rough equivalent to NFC
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Identity Service serving as a trusted authority for user public keys [28]. FaceTime calls are
encrypted using a scheme that Apple has not documented, but claims is forward-secure13

based on the Secure Real-time Transport Protocol (SRTP) [84]. Although these protocols are
end-to-end encrypted and authenticated, they rely on the Apple Identity Service to ensure
that participants are authentic [28].

3.2 History of Apple Security Features
The current hardware and software security capabilities of iOS devices are many and varied,
ranging from access control to cryptography. These features were incrementally developed
over time and delivered in new versions of iOS pre-loaded on or delivered to14 devices. An
overwhelming percentage of iOS users update their devices: in June 2020, Apple found that
over 92% of recent15 iPhones ran iOS 13, and almost all the remainder (7%) ran iOS 12 [85];
iOS 13 was released 9 months prior. The implication of this is that while most users receive
the latest mitigations, users of older devices may receive only partial security against known
attacks, especially when using devices which have reached end-of-life (no longer receiving
updates from Apple). To make these limitations apparent, in Appendix A we provide a
detailed overview of the historical deployment of new security features, as described by
published Apple documents [27, 28, 31, 71, 72, 75, 79, 86, 87]. This history is summarized
in Tables 3.10 and 3.11.

13Previous call content cannot be accessed even if a device or key is compromised.
14First via iTunes, and then over-the-air via Wi-Fi since iOS 5 in 2011.
15Sold new in the last four years.
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iOSa Data Protectionb Notes
1 (2G) - 4-digit passcodes
2 (3G) - Option to erase user data after 10 failed

passcode attempts introduced
3 (3GS) DP introduced Encrypted flash storage when device off
4 (4) Mail & Attachments: PUO PUO insecure due to implementation error

on iPhone 4 until iOS 7 [86]
5 (4S) - AES-GCM replaces CBC in Keychain
6 (5) iTunes Backup: CP+NM

Location Data: CP
Mail Accounts: AFU
iMessage keys: NP+NM

Various other data at AFU or NP+NM class

7 (5S) Safari Passwords: CPc

Authentication tokens:d AFU
Default and third-party apps:
AFU

SEP and TouchID introduced in iPhone 5S
Third-party apps may opt-in to higher
classes

8 (6) App Documents: CP
Location Data: AFU?e

User passcode mixed into encryption keys
XTS replaces CBC for storage encryption

9 (6S) Safari Bookmarks: CP 6-digit passcode default introduced
10 (7) Clipboard: ?f

iCloud private key: NP+NM
-

11 (8 &
X)

- FaceID introduced in iPhone X
SEP memory adds an “integrity tree” to pre-
vent replay attacks
USB Restricted Mode introduced to miti-
gate exploits delivered over Lightning con-
nector

12 (XS) - SEP enforces Data Protection in DFU (De-
vice Firmware Upgrade) and Recovery mode
to mitigate bypass via bootloader

13 (11) - -

Table 3.10: History of iOS Data Protection

Source: Apple iOS and Platform Security Guides [27, 28]

a(Model), alternate models omitted.
bSee Figure 3.4.
cPossibly earlier, documentation ambiguous.
dSocial media accounts and iCloud.
eDocumentation includes notably weakened language.
fDocumentation ambiguous.
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SoCab Hardware Changes Notes
Samsung ARM-
32 CPU (2G)

- No dedicated hardware security compo-
nents in the early phones

Samsung ARM-
32 CPU (3G)

- -

Samsung Cortex
SoC (3GS)

- Flash storage encryption driven by appli-
cation processor (AP)

Apple A4 (4) - Shift to Apple-designed SoCs
A5 (4S) Crypto Engine Dedicated cryptography accelerator docu-

mented here, potentially included in ear-
lier generations

A6 (5) - -
A7 (5S) TouchID and Secure

Enclave Processor
(SEP)

Major change, including new UID key in-
side SEP and shared key between SEP
and TouchID sensor

A8 (6) - Significant software changes in this gener-
ation which rely on hardware changes of
A7

A9 (6S) Bus between flash and
memory “isolated via
the Crypto Engine”

Interpreting this documentation implies
that hardware changed to physically en-
force flash storage encryption

A10 Fusion (7) - -
A11 Bionic (8/X) FaceID and Neural En-

gine
Neural Engine somehow integrated with
SEP to enable facial recognition secure
against malicious AP

A12 Bionic (XS) “Secure Storage Inte-
grated Circuit”

SSIC added to bolster SEP replay protec-
tion, RNG, and tamper detection

A13 Bionic (11) - -

Table 3.11: History of iPhone Hardware Security

Source: Apple iOS and Platform Security Guides [27, 28] and iFixit Teardowns [77, 78,
88, 89, 90, 91, 92, 93, 94, 95]

aSystem-on-a-Chip.
b(Model), alternate models omitted.
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3.3 Known Data Security Bypass Techniques
As each iteration of Apple device introduces or improves on security features, the commercial
exploit/forensics and jailbreaking communities have reacted by developing new techniques to
bypass those features. Bypassing iPhone protections is an attractive goal for threat actors and
law enforcement agencies alike. Hackers can receive bug bounties amounting to six or seven
digits for viable exploits [48, 49]; rogue governments can buy or develop and use malware
to track human rights activists or political opponents [50]; and law enforcement agencies
can create or bolster cases through investigation of phone contents, with forensic software
companies signing lucrative [96] contracts to help them do so [6, 7].

Law enforcement agencies in many jurisdictions may also provide legal requests for data.
In pursuing compliance with these laws, Apple provides data to law enforcement when legal
requests are made. Figure 3.12 documents data which Apple claims to be able or not able
to provide to U.S. law enforcement [97]. This method of access requires legal process, and
certain information being provided to Apple, and some requests may be rejected under various
circumstances [26]. As such, this method of data collection may be supplemented or even
entirely superseded by commercial data forensics methods described in §3.3.2 and §3.3.3.

Jailbreaks and software exploits. The primary means to bypass iOS security features is
through the exploitation of software vulnerabilities in apps and iOS software. Jailbreaks are
a class of such exploits central to forensic analysis of iOS. The defining feature of a jailbreak
is to enable running unsigned code, such as a modified iOS kernel or apps that have not been
approved by Apple [98] or a trusted developer [54]. Other software exploits which pertain to
user data privacy (speculatively) include SEP exploits, exploits which may enable passcode
brute-force guessing and lock-screen bypasses. All of these exploits are discussed in §3.3.1.

Local device forensic data extraction. Once a device has been made accessible using a
software exploit, actors may require technological assistance to perform forensic analysis of
the resulting data. This requires tools that extract data from a device and render the results
in a human-readable form [43, 22]. This latter niche has been actively filled by a variety of
private companies, whose software is tested and used by the U.S. Department of Homeland
Security (DHS) and local law enforcement, with public reporting on its effectiveness [22]
(refer to Figure 2.1 for the data targeted by mobile forensic software). DHS evaluations of
forensic software tools reveal that, at least in laboratory settings, significant portions of the
targeted data is successfully extracted from supported devices. Refer to §3.3.2 for discussion
of the use of such tools, and to §3.4 for further examination of the history of forensic software.

Cloud forensic data extraction. Cloud integrations such as Apple iCloud enable valuable
features such as backup and sync. They also create a data-rich pathway for information
extraction, and represent a target for search warrants themselves. The various ways these
services can be leveraged by hackers or law enforcement forensics are discussed in §3.3.3.
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Figure 3.12: Apple Documentation on Legal Requests for Data

Data Apple makes available to law
enforcement:

• Product registration informationa

• Customer service records
• iTunes subscriber information
• iTunes connection logs (IP address)
• iTunes purchase and download his-

tory
• Apple online store purchase informa-

tionb

• iCloud subscriber information
• iCloud email logs (metadata)
• iCloud email content
• iCloud photos
• iCloud Drive documents
• Contacts
• Calendars
• Bookmarks

• Safari browsing history
• Maps search history
• Messages (SMS/MMS)
• Backups (app data, settings, and

other data)
• Find My [69] connections and trans-

actionsc
• Hardware address (MAC) for a given
iPhoned

• FaceTime call invitationse
• iMessage capability query logsf

Data Apple claims is unavailable:

• Find My location data
• Full data extractions/user passcodes
on iPhone 6/iOS 8.0 and later

• FaceTime call content
• iMessage content

Source: Apple Legal [97]

aIncluding name, address, email address, and telephone number.
bLinked to iCloud account.
cRemote lock or erase requests
dBy serial number or mobile subscriber information (IMEI, MEID, UDID).
eWith the caveat that these do not imply any communication took place.
fWhen an iOS device encounters a potential iMessage handle (phone number, email address, or

Apple ID), it queries Apple to determine if the contact is able to use iMessage.

3.3.1 Jailbreaking and Software Exploits

Jailbreaking. While jailbreaks are often used for customization purposes, the underlying
technology can also be used by third parties in order to bypass software protection features
of a target device, for example to bypass passcode lock screens or to forensically extract
data from a locked device. Indeed, many commercial forensics packages make use of public
jailbreaks released for this purpose [99]. A commonality among these techniques is the need

27



to deliver an “exploit payload” to a vulnerable software component on the device. Viable
delivery mechanisms include physical ports such as the device’s USB/Lightning interface
(much less viable if USB Restricted Mode is active [87]). Alternatively, exploits may be
delivered through data messages that are received and processed by iOS and app software,
for example specially-crafted text messages or web pages. In many cases, multiple separate
exploits are combined to form an “exploit chain:” the first exploit may obtain control of one
software system on the device, while further exploits may escalate control until the kernel has
been breached. Once the kernel has been exploited, jailbreaks usually deploy a patch to allow
unsigned code to run or to initiate custom behavior such as extraction of the filesystem [99].

Jailbreaking is a keystone of constructing bypasses to access user data due to the fact that
the iOS kernel is ultimately tasked with managing and retrieving sensitive data. As such, a
kernel compromise often allows the immediate extraction of any data not explicitly protected
by encryption using keys which cannot be derived from the application processor alone.
Publicly-known jailbreaks are released by a seemingly small group of exploit developers.16

Jailbreaks are released targeting a specific iOS version, and more rarely target specific
hardware (e.g. iPhone model). Apple periodically releases software updates which patch some
subset of the vulnerabilities distributed in these jailbreaks [86], and a process ensues in which
exploit developers replace patched vulnerabilities with newly discovered, still-exploitable
alternatives, until a major software change occurs (e.g. a new iOS major version). Table 3.15
provides the highlights of the history of jailbreaking in iOS, with many of these iterative
updates omitted.

Jailbreaking was relatively popular in 2009. Exact counting is nearly impossible, but it
was estimated that 10% of iOS devices in 2009 were jailbroken [100].17 In 2013, roughly 23
million devices ran Cydia [98], a popular software platform commonly used on jailbroken iOS
devices [100]. 150 million iPhones were sold that year [101] and total iPhone sales accelerated
tremendously between 2009 and 2013 [102], and as such it is speculatively likely, though
hard to measure, that the percentage of jailbroken devices declined notably. Some analysis
has been undertaken as to reasons for declining jailbreaking, if this even is a trend [100].
Around 2016 (refer to Table 3.15) there was a marked transition in jailbreaks away from
end-user usability and towards support for use by security researchers. Some of the more
well-maintained jailbreaks did include single-click functionality or re-jailbreaking after reboot
via a sideloaded18 app. It is possible that this transition took place in part due to the
commercial viability of jailbreak production. As the market is relatively inflexibly supplied,
prices for working jailbreaks increase directly with demand [49], and as such creators are less
inclined to share exploits which are necessary for jailbreaking publicly. The kinds of exploits
needed for forensics against a locked phone, specifically those which exploit an interface on
the locked phone (commonly the USB/Lightning interface and related components), would
be highly valuable to a forensics software company which at a given time did not have a
working exploit of their own.

16As seen in Table 3.15.
17Representing 10.5 to 12 million devices.
18Installed via personal computer rather than the official App Store.
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The checkm8/checkra1n jailbreak exploits seem to be widely implemented in forensic
analysis tools in 2020. These exploits work on iOS devices up to iPhone X (and any with
A11 hardware iterations) regardless of iOS version and as such are widely applicable and
thus useful [103]. Cellebrite Advanced Services (their bespoke law enforcement investigative
service) offers Before-First-Unlock access19 to iPhones X and earlier running up to the latest
iOS [7], and as such we are relatively certain they are employing checkm8.

Although they do not refer to it as jailbreaking, the exploits used in the Cellebrite UFED
Touch and 4PC products either exploit the backup system to initiate a backup despite
lacking user authorization, or exploit the bootloader to run custom Cellebrite code which
extracts portions of the filesystem [14]. We categorize these as equivalent due to the practical
implementation and impact similarities.

Passcode guessing. To access records on devices that are not in the AFU state, or to
access data that has been protected using the CP class, actors may need to recover the user’s
passcode in order to derive the necessary decryption keys.

There are two primary obstacles to this process: first, because keys are derived from a
combination of the hardware UID key and the user’s passcode, keys must be derived on
the device, or the UID key must be physically extracted from silicon.20 There is no public
evidence that the latter strategy is economically feasible. The second obstacle is that the
iPhone significantly throttles attackers’ ability to conduct passcode guessing attacks on the
device: this is accomplished through the use of guessing limits enforced (on more recent
phones) by the dedicated SEP processor, as well as an approximately 80 millisecond password
derivation time enforced by the use of a computationally-expensive key derivation function.

In older iPhones that do not include a SEP, passcode verification and guessing limits
were enforce by the application processor. Various bugs [86] in this implementation have
enabled attacks which exploit the passcode attempt counter to prevent it from incrementing
or to reset it between attempts. With four- and six-digit passcodes, and especially with
users commonly selecting certain passcodes [52], these exploits made brute-forcing the phone
feasible for law enforcement. One particularly notable example of passcode brute-forcing
from a technical perspective was contributed by Skorobogatov in 2016 [37]. In this work,
the authors explore the technical feasibility of mirroring flash storage on an iPhone 5C to
enable unlimited passcode attempts. Because the iPhonee 5C does not include a SEP with
tamper-resistant NVRAM, the essence of the attack is to replace the storage carrying the
retry counter in order to reset its value. The authors demonstrate that the attack is indeed
feasible, and inexpensive to perform. Even earlier attacks include cutting power to the
device when an incorrect passcode is entered to preempt the counter before it increments [38],
although these have largely been addressed.21

19Among other less technically challenging offerings.
20Private communications from Apple engineers claim that the UID key cannot be obtained directly by

software, and can only be used as input to the AES engine. This is claimed to be enforced through the silicon
design, rather than through software, ensuring that only expensive physical extraction can obtain the raw
UID value.

21A standard countermeasure introduced in non-SEP phones requires the device to increment the guess
counter prior to verifying the passcode, ensuring that data must be written to storage.
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For extremely strong passwords (such as random alphanumeric passcodes, although these
are relatively rarely used [52]), the 80ms guessing time may render passcode guessing attacks
completely infeasible regardless of whether the SEP exists and is operating. For lower-entropy
passcodes such as the default 6-digit numeric PIN, the SEP-enforced guessing limits represent
the primary obstacle.22 Bypassing these limitations requires techniques for overcoming the
SEP guessing limits. We provide a detailed overview of the evidence for and against the
in-the-wild existence of such exploits in §3.3. Refer to Table 3.13 for estimated passcode
brute-force times under various circumstances.

Passcode Length 4 (digits) 6 (digits) 10 (digits) 10 (all)a

Total Passcodes 104 = 10, 000 106 = 1, 000, 000 1010 3.7× 1020

Total Allowedb 9,276 997,090 - -
80 ms/attempt
in expectation

12.37 minutes
6.19 minutes

22.16 hours
11.08 hours

∼25 years
∼12 years

c

10 mins/attemptd

in expectation
∼70 days
∼35 days

∼20 years
∼10 years

∼200,000 yrs. e

Table 3.13: Passcode Brute-Force Time Estimates

A more intelligent passcode guessing strategy could succeed much more quickly.

aThe iOS US QWERTY keyboard allows around 114 character inputs.
biOS prevents users from choosing certain 4- or 6-digit passcodes considered too “easily guessed.”

For more information, refer to [52].
cRoughly 68 times the age of the universe.
dFrom an Elcomsoft article which claimed this rate using GrayKey on a before-first-unlock de-

vice [104].
eInestimable.

Exploiting the SEP. The Secure Enclave Processor is a separate device that runs with
unrestricted access to pre-configured regions of memory of the iOS device [76] and as such
a SEP exploit provides an even greater level of access than an OS jailbreak. Moreover,
exploitation of the SEP is the most likely means to bypass security mechanisms such as
passcode guessing limits. In order to interface with the SEP with sufficient flexibility, kernel
privileges are required [76], and thus a jailbreak is likely a prerequisite for SEP exploitation.
In the case that such an exploit chain could be executed, an attacker or forensic analyst
might gain unfettered access to the encryption keys and functionality used to secure the
device, and thus would be able to completely extract the filesystem.

In 2018, Grayshift,23 a forensics company based in Atlanta, Georgia, advertised and sold
a device they called GrayKey, which was purportedly able to unlock a locked or disabled
iPhone by brute-forcing the passcode. Modern iPhones allegedly exploited in leak GrayKey

22Without these limits, an attacker could guess all possible six-digit PINs in a matter of hours.
23https://www.grayshift.com/
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demonstration photos [23] included a SEP, meaning that for these phones, brute-force
protections should have prevented such an attack. As such, we speculate that GrayKey
may have embedded not only a jailbreak but also a SEP exploit in order to enable this
functionality. Other comparable forensic tools seemed only able to access a subset of the data
which GrayKey promised at the time [7, 22, 99] which provides additional circumstantial
evidence that SEP exploits, if they existed, are rare.

A 2018 article from the company MalwareBytes [23] provided an alleged screenshot of
an iPhone X (containing a SEP) running iOS 11.2.5 (latest at the time) in a before-first-
unlock state (all data in the AFU and CP protection classes encrypted, with keys evicted
from memory and thus unavailable to the kernel). The images indicate that the GrayKey
exploit had successfully executed a guessing attack on a 6-digit passcode, with an estimated
time-to-completion of approximately 2 days, 4 hours. The images also show a full filesystem
image and an iTunes backup extracted from it, which should only be possible if the passcode
was known [27, 28] or somehow extracted. As the time to unlock increases with passcode
complexity, we presume that GrayKey is able to launch a brute-force passcode guessing attack
from within the exploited iOS, necessitating a bypass of SEP features which should otherwise
prevent such an attack. Figure 3.14 depicts the Graykey passcode guessing and extraction
interfaces.

In August 2018, Grayshift unlocked an iPhone X with an unknown 6-digit passcode
given to them by the Seattle Police Department; Grayshift was reportedly able to break the
passcode in just over two weeks [17]. Further documents [30] imply extensive use of Graykey
to recover passcodes against iOS devices.

Figure 3.14: Alleged Leaked Images of the GrayKey Passcode Guessing Interface

Left: passcode guessing on an iPhone X. Right: forensic extraction. Source: MalwareBytes
SecurityWorld [105]

In January 2020, an FBI warrant application indicates that GrayKey was used to access
a visibly locked iPhone 11 Pro Max [106, 107]. The significance of this access is twofold: (1)
the iPhone 11 Pro Max, released with iOS 13, is not vulnerable to the checkm8 jailbreak
exploit [103], and (2) the iPhone 11 includes a SEP. The apparent success of this extraction
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indicates that Grayshift possessed an exploit capable of compromising iOS 13. There is
simply not enough information in these warrants to know if this exploit simply performed a
jailbreak and logical forensic extraction of non-CP encrypted data, or if it involved a complete
compromise of the SEP and a successful passcode bypass.

Also in 2020, Grayshift filed with the U.S. Federal Communications Commission (FCC)
ID program for certification of the GrayKey device [108, 109]. This filing initiated the
public release of documents detailing the Radio Frequency (RF) hardware and capabilities of
GrayKey, as well as an image of the internals. Analysis24 of these reports and images has
induced speculation that the GrayKey device first exploits iOS then gains additional access
to software systems through post-exploitation tools, potentially including by interfacing with
JTAG [110], a hardware debugging interface. The GrayKey hardware also includes Wi-Fi
and Bluetooth capabilities which could be used for updates, data exfiltration, or exploitation
of iOS devices.

24Including on Twitter: https://twitter.com/parallel_beings/status/1305554386828038146?s=20

32

https://twitter.com/parallel_beings/status/1305554386828038146?s=20


iOSa Year Jailbreakb Author(s) Notes
1.1.1-4
(2G)

2007 JailbreakMe iPhone Dev
Teamc

-

2.2-5
(3G-4)

2008- QuickPwn,
redsn0w

iPhone Dev
Team

Supported for multiple versions,
renamed redsn0w in 2009

3 (3GS) 2009 purplera1n,
blackra1n [111,
112]

geohot First “unlock,” meaning the cell
network carrier can be changed

5 (4S) 2012 Absinthe Multiple Notable collaboration of iPhone
Dev Team, Chronic Dev Team,
and others

6-7 (4S) 2013- evasi0n, evasi0n7 evad3rs -
7.1-9.3.3
(4S-6S)

2014- pangu, pangu8,
pangu9 [113, 55]

Pangu
Team

Extensively presented at hacker
conferences such as BlackHat

8.1-8.4
(6)

2014 TaiG TaiG -

10.1-
10.2
(6S)

2016-
2017

yalu +
mach_portal

Luca Tode-
sco, Marco
Grassi, Ian
Beerd

Not intended for end-user use,
usable by experts

11-
11.1.2

2017 LiberiOS Jonathan
Levin

Designed for security experts,
lacking an interface for general
usability

11-13.5 2018 unc0ver pwn20wned,
Sam
Bingner

Extensively maintained with
many bug fixes, features, per-
formance improvements, and
counter-patches against Apple
fixes

12-14 2019 checkm8 and
checkra1n [103]

Luca Tode-
sco et al

Also extensively maintained,
working for iOS 14 beta even
before its full release

Table 3.15: History of Jailbreaks on iPhone

a(Model), alternate models omitted.
bNot an exhaustive list.
cNot affiliated with Apple.
dDeveloped exploits used, not directly affiliated.

Lock screen bypass. Lock screen bypasses tend to be induced exceptional cases discovered
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seemingly often by end users who explore the lock screen interface beyond developers’ intent.
These bypasses are characterized by unexpected user inputs to some lock screen-available
application (often a camera, clock, or weather application), and tend to require some care to
be performed consistently. Table 3.16 catalogs a history of some notable lock screen bypasses.

Based on our evaluation, there is no evidence these bypasses are used by law enforcement
to access personal data. However, as the phone is in a locked state, these bypasses serve as
concrete indications of data which could be recovered without breaking encryption.

iOS Lock Screen Bypass
4.1 Access to contacts and photosa

6.1 Access to contacts and photosb

6.1.2 Access to contacts and photos, initiate iTunes syncc

7 (beta) Trivially access photosd

7.0.1 Access and share photose

9.0.1 Access to contacts and photosf

9.2.1 Multiple bypasses to access the home screen, extent of com-
promise unclearg

12.0.1 Access to photosh

12.1 Access to contactsi

13 Access to contactsj

Table 3.16: History of iOS Lock Screen Bypasses

This list is not exhaustive. Drawn from various sources, primarily [114]

ahttps://www.forbes.com/sites/andygreenberg/2010/10/25/careful-iphone-owners-
simple-backdoor-lets-anyone-bypass-password-protection/

bhttps://www.forbes.com/sites/adriankingsleyhughes/2013/02/14/ios-6-1-bug-allows-
snoopers-access-to-your-photos-and-contacts/

chttps://www.forbes.com/sites/adriankingsleyhughes/2013/02/18/new-ios-lock-
screen-vulnerability-uncovered/

dhttps://www.forbes.com/sites/andygreenberg/2013/06/12/bug-in-ios-7-beta-lets-
anyone-bypass-iphone-lockscreen-to-access-photos/

ehttps://www.forbes.com/sites/andygreenberg/2013/09/19/ios-7-bug-lets-anyone-
bypass-iphones-lockscreen-to-hijack-photos-email-or-twitter/

fhttps://appleinsider.com/articles/15/09/23/ios-9-security-flaw-grants-
unrestricted-access-to-photos-and-contacts

ghttps://seclists.org/fulldisclosure/2016/Mar/15
hhttps://appleinsider.com/articles/18/10/12/voiceover-bug-lets-hackers-view-

iphone-photos-send-them-to-another-device
ihttps://www.theverge.com/2018/11/1/18051186/ios-12-1-exploit-lockscreen-bypass-

security
jhttps://www.theverge.com/2019/9/13/20863993/ios-13-exploit-lockscreen-bypass-

security
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3.3.2 Local Device Data Extraction

Seizure of iOS devices has occurred in high-profile and common criminal cases alike. Mother-
board (the technology branch of Vice news) published a database of over 500 cases involving
iPhone unlocking, of which 295 included executed unlocking of iPhones either directly or
through federal law enforcement or commercial partners [39, 41]. The San Bernardino shoot-
ing in 2015 famously sparked the “Apple v. FBI” case when the FBI sought access to a locked
iPhone 5C [9, 11], and similar cases have occurred since [107].

In order to use forensic tools to the greatest extent, law enforcement officials seize iPhones
along with any other devices which may aid in accessing those phones such as laptops and/or
other Apple products [6, 115]. They isolate these devices, for example by placing them in
Faraday bags, preventing remote wipe or control, and keep them charged to prevent shutdown
(and thus eviction of encryption keys from memory), and in some cases to prevent iOS
USB Restricted Mode [87] from coming into effect [6, 81, 115] using inexpensive adapters.
USB Restricted Mode can also be bypassed in certain circumstances by booting the iOS
device to DFU mode and delivering an exploit [82]. Devices are often examined by officials
trained in the use of third-party forensic tools, or devices are sent to those third parties for
examination [6, 7].

In the field, many devices are likely to be seized in the After First Unlock (AFU) state,
having been unlocked once since their last boot but currently locked. This is immediately
clear when considering the alternatives: if the device has been power cycled, it is very likely to
have been used shortly after being powered on. In order to use most functionality, unlocking
is required, and thus the device transitions to AFU. In this state, many decryption keys
for data objects belonging to the AFU (or weaker) protection class will remain resident in
memory, having been decrypted by the SEP [27, 28]. iOS will automatically use these keys to
decrypt data requested by the iOS kernel on behalf of itself or of apps, including any forensic
tools that can be installed without causing a device reboot.

Through companies including Elcomsoft [6], Cellebrite [7], and Oxygen [16], law enforce-
ment agents can obtain forensic extractions of even the latest devices. These companies are
naturally vague in the details they make public as they rely on exploits which must be unmit-
igated by Apple, however they make some information available in the form of advertisements
and blogs [6, 7, 16]. Known exploits are also commonly used on older devices which no longer
receive updates or which cannot be patched, such as with hardware/firmware vulnerabilities
like checkm8 [16].25 The common goal of extraction tools is to run an extraction agent on the
device which reads any available files and exfiltrates them to an analysts device or computer.
Sometimes, this takes the form of inducing a backup of the iOS device to the investigator’s
computer. This approach generally requires either a kernel compromise or running unsigned
code, and thus a jailbreak, or exploiting/bypassing Apple’s signing infrastructure (potentially
among other exploits) to sign and execute such an agent [15].

In total, depending on the device (iPhone model), device state (e.g. AFU), types of seized
devices, iCloud settings (e.g. 2FA enabled), and operational security (e.g. passwords on

25For more information on the checkm8 jailbreak, refer to §3.3.1
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sticky notes next to laptop) of the target, law enforcement may obtain partial or complete
access to extensive categories of data as listed in Figure 3.17. It is also clear that extraction
of this depth and magnitude (all or most data categories listed) is historically the norm due
to the extent of data accessed by forensic tools for over a decade as tested by DHS following
NIST standards for forensic software testing [22, 43].

Figure 3.17: List of Data Categories Obtainable via Device Forensic Software

• Contacts
• Call metadataa

• SMS/MMS messages
• Stored files
• App datab

• Location data

• Wi-Fi networksc
• Keychain datad (authentication to-
kens, encryption keys, and pass-
words)

• Deleted datae

• iCloud authentication token(s)

Source: Elcomsoft [6] and Cellebrite [7] blogs and documentation, among others

aParticipant phone numbers, call duration, etc.
bParticularly, data from applications which are not designed to opt into higher protection classes

than AFU.
cWhich can be used to determine location history [116].
dSome Keychain data which is configured into higher protection classes may be unavailable for

extraction.
eOnly in some cases when the full filesystem was extracted

Bypassing Data Protection. The encryption implemented in Data Protection is the last
layer of defense against unauthorized device access, allowing devices to maintain data security
even in the event that an attacker compromises the OS running on the device. It is up to
app developers to opt-in to Complete Protection for sensitive data. However, this is not
always done, even when critical for user privacy or confidentiality. For example, Elcomsoft
discovered in 2020 that the iOS app for mail.ru (a Russian email provider and internet
company) elected to put email authentication tokens into the iOS Keychain at the “Always
Available” level of protection, meaning that these keys were entirely unprotected against
physical or logical extraction [99]. Because there are no known practical attacks against
modern encryption itself, current data extraction techniques (when the user is not available
or willing to cooperate) tend to follow one of the following three approaches:

Accessing devices with keys available. The most straightforward approach to bypassing
encryption is to simply obtain the device in a state where the necessary decryption keys are
loaded into the device memory. Forensic tools such as the Cellebrite UFED (see images in
Figures 3.18 and 3.19) or XRY Logical are able to connect to iOS devices and either initiate
a backup or otherwise request files and data over Bluetooth and/or a physical link via the
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Lightning port [19]. Data which is accessible by the iOS kernel (data for which keys have
been decrypted and are available in memory) can be requested and exfiltrated directly. These
forensic tools seem to work through a combination of proper use of iOS APIs and exploitation
or circumvention of access controls in iOS. Forensic software companies sell devices which
are as easy-to-use as possible [16] and then offer bespoke consultations for devices which are
inaccessible using these more basic methods [7]. Refer to Figure 3.17 for a complete list of
data categories seemingly regularly [39] extracted via forensic software.

Figure 3.18: Cellebrite UFED Touch 2

Source: Privacy International [19]
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Figure 3.19: Cellebrite UFED Interface During Extraction of an iPhone

Source: Privacy International [19]

Bypassing protections. Data which is protected under Data Protection and not available
for immediate extraction may still be accessed in some cases. GrayKey, for example, seems
to have been able to extract user passcodes by exploiting the SEP to enable passcode
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brute-force guessing [23, 106]. Documents obtained by Upturn [30]26 display records of
law enforcement agencies gaining AFU and even BFU access to iPhones, presumably using
Graykey. Figure 3.20 displays a small selection of these records.

Figure 3.20: Records from Arizona Law Enforcement Agencies Documenting Passcode
Recovery on iOS

Note passcode recovery on AFU and BFU iPhones up to X. Many rows omitted.

Source: Upturn [30]

An Elcomsoft blog article alleges that a brute-force passcode guessing strategy can only
be conducted rapidly (many passcode attempts per second) if the device is in an AFU state,
and that otherwise such guessing attacks require upwards of 70 days to brute-force a 4-digit
passcode [104]. Once the user passcode is known, law enforcement access to user data is
relatively unbounded [104], as the entire iOS filesystem, Keychain, and iCloud contents can
be extracted, among other capabilities. For example, “Significant Locations” [117] (GPS
locations which the iOS device detects are commonly occupied) could be extracted directly
from the device using GrayKey in addition to the Cellebrite Physical Analyzer product in
2018 [42].27 GrayKey in 2019 could even reportedly bypass USB Restricted Mode [19]. See
also Figure 3.21 for images of the GrayKey device from the FCC ID filing [108].

26For policy analysis of these documents and far more, see Upturn’s recent document entitled “Mass
Extraction.” [17].

27Significant Locations are end-to-end encrypted when syncing to iCloud [31] but this protection is irrelevant
for data at rest.
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Figure 3.21: GrayKey by Grayshift

Left: Interior view. Right: Exterior view. Source: FCC ID [108]

Alternate data sources. In the case that forensic tools and even privileged (law enforcement
only) consulting services such as those offered by Cellebrite and GrayKey fail to provide
desired results, it is possible for investigators (or equivalently, hackers) to access iOS device
data by other means. If a target’s laptop can be seized in a search and accessed (perhaps
with the password written nearby), access to iOS backups can render device extraction
redundant. Even when encrypted on a local computer, iOS backups have been accessible to
law enforcement due to a weak password storage mechanism enabling brute-force decryption
via password cracking [86]. Further, forensic software companies offer cloud extraction services
detailed in §3.3.3.

3.3.3 Cloud Data Extraction

iOS devices alone contain extensive personal data which law enforcement agents may seek
to extract. While devices themselves are increasingly protected from such analysis (refer to
§3.1), data is also increasingly stored or synchronized to the cloud [13, 99, 118, 119]. Thus,
cloud service data extraction can replace or even surpass the value of mobile devices from the
perspective of law enforcement. Apple complies with warrants to the extent they claim to
be able to, and offer law enforcement access to various categories of data, particularly those
stored in Apple’s iCloud. For details, see Figure 3.12. However, law enforcement agents also
use warrants to replace consent to access devices and services [39] and cut Apple out of the
loop. Speculatively, the reasons for this could be reduced legal exposure, saving cost/time, or
preventing potential notifications of targets.

Forensic software companies have followed this market and branched into developing cloud
extraction solutions [13, 119]. While a full SEP exploit could extract the entire Keychain and
thus authentication credentials for many cloud services, these tools commonly exploit iOS
devices to extract cached authentication tokens only protected at the AFU class or worse,
for services such as iCloud [27, 28], Dropbox, Slack, Instagram, Twitter, Facebook, Google
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services, and Uber [119]. These tokens seem to be stored in AFU to prevent interruptions of
service upon device lock, but this convenience poses a huge risk as it removes SEP protection,
relying only on the security of the iOS kernel.

If other Apple devices are seized (laptops, Apple TVs, etc), they may be used to aid in
authentication to iCloud, but commonly usernames and passwords can be acquired directly
during search and seizure either through technical measures such as software tools [6, 99] or
simply by searching for written passwords. Essentially, access can be incrementally increased
in combination with other access in a compounding fashion. Figure 3.22 lists data categories
potentially obtainable via cloud forensic extraction.

Figure 3.22: List of Data Categories Obtainable via Cloud Forensic Software

• iOS backups
• Search history on Safari or Chromea
• iCloud documents and app data
• Contacts
• Call metadatab

• Calendars
• Photos and videos
• Notes
• Reminders

• Find Friends and Find My datac

• Device information
• Payment card information
• Dropbox content
• Social media accounts and content
(Twitter, Facebook, Instagram)

• Google services content
• Uber account and activity

Source: Cellebrite [13], Elcomsoft [118], and Privacy International [119]

aPrior to iOS 13 [6]. Private communications additionally indicate that these records are cleared
monthly, but the authors cannot verify this claim.

bParticipant phone numbers, call duration, etc.
cThese services enable location tracking of Apple devices, whether the user’s own or their friends [69].

3.3.4 Conclusions from Bypasses

The evidence above indicates the availability of current and historic bypass mechanisms for
iOS protection measures. This strongly indicates is that, with sufficient time, money, and
fortunate circumstance (e.g. capturing a phone in an AFU state), law enforcement agents
can typically extract significant (if not all) personal data from modern iOS devices, despite
Apple’s claims around user privacy [10, 27, 28]. This is exacerbated by Apple’s failure to
widely deploy Complete Protection over user data, and its failure to more broadly secure
cloud services (particularly, the decision to store cloud authentication tokens in AFU). These
facts combine to offer extensive access to law enforcement agents, rogue governments, and
criminals.
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3.4 Forensic Software for iOS
For nearly as long as there have been iPhones, there have been forensic tools designed to
circumvent the protection measures on those phones to enable law enforcement agents to
access sensitive personal information in pursuing a case. Phone forensics is not new [120], but
with the introduction of the iPhone in 2007 the amount of personal data aggregated onto one
device that so many people began carrying every day increased massively. Additionally, it is
critical to realize the accessibility of professional forensic tools such as Cellebrite’s UFED [14],
and even of individualized consulting services such as Cellebrite’s Advanced Services [7] for
unlocking phones. Law enforcement agencies, including local departments, can unlock devices
with Advanced Services for as cheap as $2,000 USD per phone, and even less in bulk [17],
and commonly do so [17, 41, 19].

For a complete list of the forensic tools tested by DHS, as determined by publicly-available
reports as of this writing, and the data forensically extracted by those tools, see Appendix C
and archived DHS reports [22]. Unfortunately, the NIST standard for testing devices is
unclear as to whether the device should be in a locked state during testing [43]; we note,
however, that certain categories of data seem inaccessible to forensic software in various cases,
and as such we assume that this was caused by Data Protection. If false, then these tests
simply document the extent to which the tested forensic tools support iOS data transmission
and formatting. If true, then in summary these reports imply the following:

Successful extraction. In most tests, most or all of the targeted data (see Figure 2.1) is
successfully extracted against the latest iOS devices. However, there are exceptions, and
reports after January 2016 are less clear as discussed below. Simultaneously, documents
acquired by Upturn demonstrate records of law enforcement access – as extensive as Before-
First-Unlock passcode recovery – to all generations of iPhones [17, 30].

Relevance of Data Protection. The major category of such exceptions are tests against iOS
versions which include updates to Data Protection (see Table 3.10). In some cases, forensic
tools were unable to access certain data. Particularly, app data and files seem to have been
successfully protected against forensics for a time in 2015-16, coinciding with an expansion of
DP.

Limited software diversity. A small number of forensic software companies frequently iterate
their products. This is demonstrated in the DHS tests as many Cellebrite, XRY, Lantern,
Oxygen, MOBILedit, Secure View, and Lantern devices being tested between 2009 and 2019
(see Appendix C), and each generally successfully extracting data from contemporaneous
generations of iOS devices over time [22].

Reporting inconsistencies. Starting in February 2016, the quality of the reports degrades
notably, and it is unclear in many cases whether data was extracted from iOS and not
displayed properly by the forensic software, or simply not extracted at all. Some reports28

showed inconsistencies between the analysts notes on forensic performance and the summary
28For example see April 2017 “Electronic Evidence Examiner - Device Seizure v1.0.9466.18457.”
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tables in the final report (e.g. claimed extracted data in the notes, but this success not
indicated in the summary table).

GrayKey. One notable exception to the vagueness of post-January 2016 reports was the
GrayKey test in June 2019. GrayKey definitively extracted data covered by Data Protection
on iPhones 8 and X according to the report.

Based on this information and a report of over 500 forensic access warrant filings and
executions against iOS devices [39], it seems that law enforcement agencies are generally
able to pay for or collaborate to gain access to iOS device, even of the latest generations.
Particularly, federal agencies (FBI, DHS) are able to consistently extract data, and are
consulted by local law enforcement agencies for such services if consent to access a device is
not attained.

3.5 Proposed Improvements to iOS
iPhone users entrust the privacy of their communications and activities and the security of
their accounts and data to Apple. They rely on Apple’s responsiveness to vulnerabilities and
mitigation of potential attacks to keep them safe from malicious actors, including hackers,
potentially overreaching agencies, or rogue governments and corporations. However, as
the history and current landscape of iOS protection bypasses show, Apple devices are not
immune to compromise and their users are not completely protected. Impenetrable security
is of course an impossible goal, but based on our analysis we have formulated the following
recommendations for Apple software and hardware to mitigate channels of data extraction
and improve iOS security.

Leveraging Data Protection. Data Protection on iOS is a powerful tool to ensure the
encrypted storage of sensitive data. However, the AFU class is used as the default for
third-party apps, and for many built-in data categories, notably including cloud service
authentication tokens. iPhones are naturally mostly carried in an AFU state, and so this
class of protection is in fact a liability given the availability of iOS forensic software devices.
There are benefits to the AFU state: for example, keeping VPN authentication secrets
available during lock [27, 28] prevents an interruption of connectivity, and keeping contacts
accessible means that iMessages and SMS/MMS received while the phone is locked can
display the sender identity (name) rather than just a phone number or email address.29

Apple provides these features in iOS and therefore justifies their AFU classification. However,
other potentially sensitive data, most notably cloud service authentication tokens, are also
classed as AFU, putting them at risk even when not in use. We suggest two complementary
approaches: first, that Apple thoroughly review the need for AFU in each case it is applied,
and default more data into the CP class; and second, that Apple develop and deploy a system
for runtime classification of data accesses in order to determine if and how often data is
needed while locked. In such a system, data could be automatically promoted to CP if unused

29When the device is before first unlock and a text is received, the sending phone number is displayed, as
tested by the authors with iOS 13.
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during device lock. Dynamically increasing security based on app and user behavior would
result in a system more widely protected without interrupting the user experience, which
based on the amount of data currently classed as AFU is an important point for Apple in
the design of iOS security. Apple has developed a powerful framework for protecting user
data; the only limitation of Data Protection is that it is not applied in the strictest fashion
possible.

Dynamic Data Protection. In addition to strengthening usage of Data Protection and
particularly the Complete Protection class, we additionally recommend an intelligent system
which learns from user and app behavior to predict when certain file keys will be used, and
evict the encryption keys from memory of files which are unlikely to be imminently used.
The advantages of this system would be minimal user experience interruption (with a good
predictor, but with Apple’s significant developments in machine learning hardware on iOS
devices we believe this is feasible) in combination with increased protection against jailbreak
access to values in memory. Such a system could fetch keys as needed, and potentially
re-authenticate the user though FaceID if an access was considered suspect (anomalous), or a
USB device had been attached. As the user will likely be looking at their screen during use,
such FaceID re-authentication could be seamlessly woven into the user experience, or even be
opt-in to prevent user frustration or confusion.

End-to-end encrypted backups. Apple continues to hold keys which are able to decrypt
iCloud Backup data. However, there seems to be little value in maintaining Apple’s ability to
decrypt this data aside from recovery of certain data in case of complete device and account
loss [67, 31]. Google offers and end-to-end encrypted backup service [121] for Android which,
while imperfect (refer to Chapter 4), vastly improves the security of Android backups. Why
Apple, a company which markets itself around user privacy [29], has not implemented a
competing solution is an issue of curiosity and concern. Apple already has the infrastructure
and design in place to implement such a system [31]. Keys could be held in iCloud Keychain,
and backup data would thus be end-to-end encrypted, inaccessible to Apple but available to
any trusted device the user has authenticated.

End-to-end encrypted iCloud content. Apple maintains access to photos, documents,
contacts, calendars, and other highly personal data in iCloud. Similarly to backups, the
infrastructure to place these data into CloudKit containers and allow them to be end-to-end
encrypted amongst trusted devices (which can access iCloud Keychain to share encryption
keys) would massively reduce the efficacy of cloud extraction techniques. If user data loss is a
concern, recommend that users create both local and iCloud backups regularly, or automate
this process. SMS and MMS messages are immediate prime candidates for this as the iMessage
app (which manages SMS, MMS, and iMessage) already integrates with CloudKit.

Avoid special cases which bypass encryption. iMessage in iCloud uses an end-to-end
encrypted container to prevent Apple from accessing iMessage content. However, this security
is rendered moot when the encryption key is also included in an iCloud Backup to which
Apple has access. Based on Apple documentation, it seems that this feature was included
to provide an additional avenue for recovery of iMessages, but the security implications
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are significant and as such this loophole should be closed. We thus recommend that Apple
continue transitioning data into end-to-end encrypted iCloud CloudKit containers rather
than holding encrypted data and the relevant keys.

Local backup passwords. Although Apple increased the iteration count for PBKDF2, the
one-way cryptographic function which protects the password in a backup, to the point that
most brute-force attacks are infeasible, local backups have two limitations. First, because
of the nature of a local backup, guessing limits cannot be enforced. Thus, sufficiently high-
entropy passwords must be chosen by users, which may not always be the case. User education
and interface design to encourage strong backup passwords, or a system which involves an
on-device secret could strengthen this mechanism. Additionally, in iOS 11, Apple removed
the requirement to input the old backup password if a new one is to be set [122], and as such
the passcode is sufficient to initiate a new backup. Although Apple goes to great length to
protect the passcode, this represents a single point of failure where multiple layers of security
could be used instead.

Strengthening iCloud Keychain. iCloud Keychain represented a significant step forward
for the security of Apple’s cloud services, enabling strong encryption with keys isolated even
from Apple, assuming trust of the HSMs. That trust, however, creates a point of failure for
the system: users have no way of ensuring that the HSM cluster they are backing encrypted
data up to behaves in the way they expect. That is, as the device interaction with the
HSM is limited to authentication via the SRP protocol and sending encrypted data, there
is no authentication of the security or correctness of the HSM. Even if the user is enrolled
with trustworthy HSMs initially, if their iCloud Keychain record is invalidated the user can
simply re-enroll [31]; this is relevant as a targeted user could be intentionally invalidated, and
re-enroll with a compromised server rather than an HSM. As Apple seeks to provide options
for recovery of this data, it can’t be encrypted with keys on-device (as these would be lost
with device loss/failure) or with keys derived from the user passcode or passphrase (in case
of forgetting those). iCloud Keychain data could potentially be encrypted with keys derived
directly from the user biometrics, but this isn’t without risk either. Another plausible solution
for authenticating Apple HSMs to users could entail a Certificate Transparency-like [123]
solution wherein peers validate the addresses and correctness of the HSMs and publicly
broadcast or peer-to-peer share this information.30

Abstract control of the USB interface. USB Restricted Mode [87] was a step towards
securing iOS devices against invasive forensic devices which operate by attaching to the
Lightning port and transmitting exploits, data, and/or commands over the USB to Lightning
interface. However, we observe that forensic software tools are continuing to exploit this
interface [81] and further that the checkm8 jailbreak is unpatchable on iPhone X and
earlier [103]. In order to address these issues, the iOS kernel should be able to interpose
and manage the USB interface on iOS devices such that security controls can be enabled,
cryptographically-secured device authentication can occur, and perhaps even intelligent

30This solution was informally proposed by Saleem Rashid, and is reminiscent of TACK, a previous Internet
Draft by Moxie Marlinspike and Trevor Perrin [124].
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systems which recognize commonly-used Lightning devices and evict encryption keys or
authenticate the user when anomalies are detected. As part of increasing USB protections,
debugging and recovery interfaces must be hardened as well, particularly to mitigate exploits
such as checkm8.

Further restrict debugging and recovery interfaces such as DFU and JTAG. DFU
mode, short for Device Firmware Upgrade, is a low-level bare-bones operating system which
enables directly installing firmware patches. The cases in which this is required are limited,
and ideally uncommon as this mode is intended entirely for remediating software problems.
Users can place their own device in DFU mode, and exploits such as checkm8 can potentially
exploit the capabilities of this mode [103]. In order to prevent such unpatchable exploits, DFU
mode could require cryptographic authentication to access, for example using secure hardware
on a trusted Apple computer owned by the user or even by Apple. The inconvenience of such
a requirement would be offset by the rarity of its use.

Additionally, per the 2020 FCC filing by Grayshift of the GrayKey device [108], we observe
what may be JTAG hardware in the device (as shown by the interior view images, refer to
Figure 3.21). If this hardware debugging interface is vulnerable to unauthorized access, then
further (ideally cryptographic, if possible) measures should be taken to secure this interface,
particularly as end users will almost certainly have no need of it.

Increase transparency. Apple invests significant marketing effort into demonstrating their
commitment to user privacy [9, 10, 26]. However, inconsistencies in Apple’s approach to
practically implementing privacy controls disempower users of iOS device. For example, user
control over which apps can access contacts, calendars, and other built-in app data is a
powerful yet understandable tool for managing privacy, but enabling or disabling the “iCloud”
toggle in iOS settings can have dramatic privacy and even functionality implications which
are relatively opaque. Increasing transparency and empowering users through safe default
settings and informative, consistent interfaces would improve the usability and practical
privacy experienced by iOS users.

Apple could integrate the extensive work of user interface researchers, particularly those
who design for user empowerment and follow egalitarian principles. Design Justice [125, 126]
is an ongoing area of research, industrial collaboration, and outreach which promote principles
to foster equality and access in design. Opaque interfaces, such as the discussed controls
surrounding iCloud and their pertinence to privacy, could be redeveloped with the Design
Justice Principles in mind.

Leverage research constructions. In certain cases, functionality and security can create
contradictory requirements for a system. For example, it could be a requirement that location
data remain private and on-device, never synchronized to iCloud, but Apple could still seek to
provide an iCloud service which allows location-based alerts. In such cases, where user privacy
and features collide, constructions such as Secure Multiparty Computation (SMC/MPC)
could be leveraged to, for example, allow iCloud and the device to privately compute a
shared set intersection of user locations on-device to enable such alerts, or to enable some
other such functionality. The research literature has provided extensive options in the form
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of cryptographic constructions which can enable cloud functionalities without risking user
privacy.

Leverage the community. Billions of Apple devices exist in the world, and so iOS is
extremely widely used [47]. This worldwide community includes academics and profession-
als, students and experts, journalists and activists. Apple, then, has potential access to
immeasurable knowledge of the experiences and needs of their users. With the bug bounty
program [48], and through accepting externally-reported vulnerabilities in general, Apple
began connecting with this community to improve the security and privacy of their products,
and is continuing to do so with the Security Research Device program [127]. Leveraging
the wealth of ongoing research, and embracing and implementing academic constructions
can improve the security and privacy of Apple products as far as the state of the art allows.
To facilitate this research, Apple could open source critical components (filing patents to
protect their intellectual property if needed/applicable) such as the SEP and reap the benefits
of allowing this network of academic and professional researchers unfettered access to help
improve the devices they use and rely on every day.
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Chapter 4

Android

Android is the most popular smartphone platform in the world, with 74.6% of global
smartphone market share as of May 2020 [128] spread across over a dozen major device
manufacturers [129]. The technical and logistical challenges in securing Android phones and
protecting their users’ privacy are numerous, and do not fully overlap with other segments
of personal computing. hhe Android operating system is based on the open source Linux
codebase, and so derives the benefits and risks of this underlying OS as well as new risks
created by the mobile-specific features included in Android. Android’s dominant market
share also means that the impact of a new security vulnerability is acutely felt around the
world.

The base platform of Android, the Android Open Source Project (AOSP), is a collection
of open-source software developed by the Open Handset Alliance [130], an entity that is
commercially sponsored by Google. AOSP defines the baseline functionality of the Android
operating system. However, the Android ecosystem is in practice more complex, due to the
fact that most commercial Android phones also incorporate proprietary Google software
known as Google Mobile Services (GMS) [131]. GMS includes proprietary APIs and software
services, along with core Google apps such as Chrome, Drive, and Maps, and the Google
Play Store, which is used for app distribution [132]. There exist non-Google forks of Android
such as Amazon’s FireOS [133], but most of the Android devices in the United States [34]
are manufactured by Google’s partners [35] and use GMS. For the purposes of this chapter,
we will consider “Android” to be the combination of the Android Open Source Project and
Google Mobile Services.

4.1 Protection of User Data in Android
Android devices employ an array of precautions to protect user data: user authentication,
runtime verification, data encryption, and application sandboxing. This overview is based on
documentation released by the Android Open Source Project [134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152].

User authentication. Android provides numeric passcode and alphanumeric passphrase
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Figure 4.1: PIN Unlock on Android 11

authentication options for users, using an interface illustrated in Figure 4.1. Android
additionally provides an authentication mode known as pattern unlock, wherein a user
authenticates by drawing a pattern on a grid of points [137]. The security of the latter scheme
has been called into question [153], with one academic study noting that effective security
may be equivalent to a 2 or 3-digit numeric passcode [154]. Many Android devices also
deploy biometric authentication sensors; fingerprint authentication in particular is natively
supported by the AOSP operating system [141].1 A new biometric authentication feature,
Face Authentication, is currently under development in AOSP [155]. Android biometric
authentication is deployed by manufacturers, and is not required by the Android OS.

Android devices support an additional set of authentication features known collectively
as Smart Lock. These use information about a phone’s environment as criteria to keep it
unlocked under certain conditions. Critically, this is a method of keeping devices unlocked,
which is distinct from a method of unlocking a locked device, which can only be done with a
PIN/password/pattern or a biometric. For example, Smart Lock will keep a device unlocked
while it is on-body or in a specific location (such as at home) [156]. One of the Smart Lock
features, Trusted Face (formerly known as Face Unlock), allowed users to use their face (via
the device camera) to unlock a device. This feature was removed in Android 10 [157], as it
was easy to fool using static images [158], and is being replaced with the more general Face

1Most fingerprint readers are implemented either as external capacitive sensors or within the screen of the
device.
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Authentication biometric framework [155].

Application sandboxing. The Android systems utilizes application sandboxing as a
mechanism to prevent apps from compromising each other or the OS as a whole. The
basic sandboxing mechanism is provided through discretionary access control (DAC): files
have permissions based on Linux user IDs, which are enforced in the Linux kernel. Each
Android app has its own Linux user ID, and by default only has access to its own files, so
any attempted direct access to the files of other apps or the core OS will result in an error.
DAC is enforced by the Linux kernel [135]. Theoretically, bypassing this mechanism would
require a kernel exploit in order to escalate privileges. However, the Android OS provides
many other avenues for inter-application communication, which creates further opportunities
for privilege escalation [159].

To enhance the limited security provided by DAC, Android also employs Security Enhanced
Linux (SELinux), which allows granular control of the privileges granted to an application [148,
159]. For example, in the traditional DAC model, a compromise of a root-owned process2
would be tantamount to compromise of the whole system. With SELinux, polices are
configured so that a process is allocated only the specific privileges it needs to function; this
is known as mandatory access control (MAC). In this setting, compromise of a root-owned
process would not necessarily lead to full system compromise, since the kernel would prevent
the process from performing actions outside of its capability set [160]. In Android, SELinux
is enforced between the system and individual apps: apps are confined to the permissions
available in their domains (process groups), and any violations result in an error at the kernel
level [148].

Encryption. There are two forms of user data encryption on Android: full-disk, a direct
parallel to Linux disk encryption, and file-based, which enables more granular categorizations
of encrypted data.

Full-disk encryption is the original encryption mechanism on Android, introduced in Android
4.4 [143]. It is based on the Linux kernel’s dm-crypt module [161], and uses a master key
to encrypt block devices with AES-128 in CBC mode with ESSIV [143]. The master key in
turn is encrypted using a key derived from the user authentication credential: a numeric
passcode, alphanumeric passphrase, or pattern. However, because the same key is used for
the entire disk partition, Android requires the master encryption key to be available on boot
in order to activate core system functionality: specifically, subsystems such as telephony,
alarms, and accessibility services remain unavailable until the user unlocks their phone. Once
entered, the master key is never evicted from device memory, as it is needed for all block
device operations on the data partition [143].

File-based encryption is a more recent development, and provides more granular control than
full-disk encryption. The underlying mechanism for this encryption is the Linux kernel’s
fscrypt module [162], and uses AES-256 in XTS mode for file data encryption, and CBC
mode to encrypt file metadata such as names [143]. File-based encryption segregates user

2“Root” in the context of traditional Linux/Unix refers to a special user account that enjoys super-user
privileges over the entire system.
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files into two categories: Credential Encrypted (CE) and Device Encrypted (DE). CE data
is encrypted using a key derived from the user’s passcode, and is thus available only after
the device is unlocked. DE data is based only on device-specific secrets and is available both
during the initial boot and after device unlock [163]. Because of this separation, file-based
encryption allows the user to access important functionality prior to user authentication.
CE is the default for all applications, and DE is reserved for specific system applications
(Dialer, Clock, Keyboard, etc). Filesystem metadata (such as directory structure and DAC
permissions) is not covered by this mechanism; a different encryption subsystem, metadata
encryption [145] encrypts this information. The combination of file-based encryption and
metadata encryption protects all content on the device as a result.

Outside of the CE and DE storage in file-based encryption, Android has no analogue to
the iOS Complete Protection protection class: keys remain in memory at all time following
the first device unlock [163].3 Thus, an attacker who can logically gain access to the memory
of a device following boot and first unlock can directly access encrypted data and keys.

Mandatory application of an iOS-style Complete Protection would be beneficial to privacy:
this would reduce the possibility of live acquisition of encryption keys for a device. On the
other hand, it would create large development and usability problems for Android phones
and existing applications. Currently, the Android application lifecycle [164] distinguishes
processes in a hierarchy of four categories based on importance: from high to low importance,
those in the foreground (actively shown), those visible but in the background, those handling
a background service, and those that are not needed anymore and can be killed. The current
lifecycle does not incorporate the device’s “locked” state into the paradigm, which means
that an encryption scheme that evicts keys on lock may require a retooling of the Android
process lifecycle. Enabling CE/DE storage itself required such a modification to application
logic [163], and it is unclear how complex the additional changes would be in order to achieve
complete protection as an option.

Removable storage. Android has first-class support for expandable storage, such as SD
cards; Android allows applications to install to and hold data on an SD card. Media, such
as photos and videos, can also be stored on the SD card. Originally, the “external storage”
directory was considered to be removable storage – Android would have limited control over
the access to files on the SD card (since the card could be removed anyway). Android 6
introduced adoptable storage [134], which allows the system to consider the SD card as a
part of its own internal storage, which in turn allows the system to perform encryption and
access control on the external medium. The downside of using this mode is that the SD card
becomes tied to a specific device; since encryption keys are stored on the device, the SD card
cannot be trivially moved to a different device [134].

Trusted hardware. Many security features are enforced by hardware mechanisms in modern
Android phones. This is frequently implemented by through the use of a Trusted Execution
Environment (TEE), which is a dedicated software component that runs in a special isolated
mode on the application processor. This component enables, among other features, the secure

3This makes Android CE protection equivalent to Apple’s AFU protection class, whereas DE protection is
analogous to Apple’s not protected (NP) class.
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Figure 4.2: Flow Chart of an Android Keymaster Access Request

Source: Android Open Source Project Documentation [144]

storage and processing of cryptographic secrets in a form that is logically isolated from the
operating system and application software.

Because the Android operating system is developed separately from the actual hardware on
which it runs, Android cannot guarantee the presence of hardware support for the protection
features it implements. In practice, a large majority of Android phones use the ARM
architecture [165], and these system-on-chip (SoC) models (with ARMv7-A, ARMv8-A, and
ARMv8-M [36]) include a mechanism called ARM TrustZone. Generically, ARM TrustZone
partitions the system into two “worlds”, each backed by a virtualized processor: a secure
world for trusted applications, and a normal world for all remaining functionality. The secure
world portion is used as a trusted execution environment for computing on sensitive data,
such as key material [166]. Unlike Apple’s SEP, TrustZone makes use of the same processor
hardware on the SoC as is used by the Android OS and applications, and does not utilize a
co-processor for trusted operations, but still provides a number of security properties for the
Android system.

In particular, three standard trusted applications (TAs) are defined by AOSP to run in an
Android TEE: Keymaster, Gatekeeper, and Fingerprint. The Keymaster TA is the backing
application for Android’s Keystore functionality, which allows apps to load, store, and use
cryptographic keys. Clients outside of the TEE communicate with Keymaster through a
hardware abstraction layer (HAL), which then passes the request to the TEE via the kernel;
this flow is seen in Figure 4.2. The Gatekeeper and Fingerprint TAs are used to authenticate
to the Keymaster, showing that a user has enter the correct passcode, password, or pattern
(Gatekeeper) or has provided a correct fingerprint biometric (Fingerprint) before a Keymaster
request is serviced [144].

Some Android manufacturers have begun to include additional dedicated security pro-
cessors. For example, Samsung includes a Secure Processor in its Galaxy S line [167] and
Google’s includes a Titan M chip in its Pixel line [168]. This type of module, known as a
secure element, is an analogue to the Secure Enclave Processor in iOS: a dedicated crypto-
graphic co-processor, separate from the primary processor, for computation on secret data.
In these systems, Keymaster keys are offloaded to the secure element, and all key-related
actions occur off the main processor [146]. This offloading is in an effort to improve the
security of key material, thus reducing the risk of e.g. side channel attacks on a TrustZone
TEE [169, 170, 171].
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Figure 4.3: Android Boot Process Using Verified Boot

Source: Android Open Source Project Documentation [172]

Android Verified Boot. Android can optionally use the TEE to validate the integrity of
the initial boot of the system, via its Android Verified Boot (AVB) process. The verification
module, known as dm-verity, is designed to verify block devices using a cryptographic hash
tree. Each hash node is computed as the device mapper loads in block data from a partition,
with a final tree computed [139]. If this root hash value does not match an expected value
stored in trusted hardware, verification fails and the device is placed into a non-functional
error state. AVB additionally uses tamper-evident storage to prevent software rollbacks i.e.
use of a prior version of Android that has vulnerabilities but is otherwise valid and trusted
by the hardware root [151]. Figure 4.3 depicts the AVB boot process.

AVB can be disabled via a process known as “unlocking.” An unlocked bootloader does
not perform dm-verity checks on the boot partition, allowing untrusted code to execute on
device boot [138]. This has legitimate use cases: for instance, unlocking can be useful for
developers of Android modifications, and for users who wish to gain root access to their phones
for additional customization and control. More information about rooting and bootloader
unlocking can be found in §4.3.1.

Google Mobile Services. Thus far we have described options and security features that
are directly available in the AOSP. However, many additional security features are tied to
Google Mobile Services (GMS), which requires a software license from Google and is not part
of the AOSP. GMS includes a number of Google-branded apps, including Drive for storage,
Gmail for email, Duo for video calls, Photos for image storage, and Maps for navigation,
as well as the Google Play Services background task, which implements additional APIs
and security features. AOSP has some equivalents of these apps – such as generic “Email”
and “Gallery” apps – but the GMS apps are generally higher quality [173] and are directly

53



supported by Google, with updates delivered through the Play Store [131]. A device that is
approved to use GMS and passes compatibility tests is known as “Play Protect certified” [174].
Several manufacturers, like Samsung, LG, and HTC, partner with Google to have GMS
included [35]; the few exceptions include those for business (Amazon FireOS [133]) and
geopolitical (Huawei [175]) reasons.

Google services utilize the Google Cloud, which enforces network encryption (TLS) for
communications between a client and the server. All data stored in the Google Cloud is
encrypted at rest using keys known to Google [176, 177]. Core Google services such as Gmail
(for email), Drive (for files), Photos (for pictures), and Calendar (for scheduling) also store
data on the Google Cloud. This implies that data backed up using Android Auto-Backups
(which use Drive) along with some forensically-relevant pieces of user data (as defined in
Figure 2.1) are available to Google. Currently, the only GMS app that is known to use end-
to-end encryption is Google Duo [178, 179], which is used for real-time video communication,
though Google Messages may add end-to-end encryption soon [32].

Figure 4.4: Relationship Between Google Play Services and an Android App

Source: Google APIs for Android [180]

Application developers integrate with GMS via the Play Services APIs. Any Android app
that wishes to integrate with the GMS on Android must do so through Play Services, which
persistently runs in the background [180]. App access to Google Account information, Mobile
Ads, and Location information, among others, are all handled through Play Services [181],
as seen in Figure 4.4. Of particular note is the SafetyNet API [182], which is a validation
service for Android phones. Play Services monitors a device, and records whether an Android
system is rooted or potentially compromised by malware; developers can then request this
information for a device. Applications can chose to disable access to certain features based
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Figure 4.5: Signature location in an Android APK

Source: Android Open Source Project Documentation [187]

on the result of the SafetyNet check [183, 184]. For example, Google Pay, an electronic
payment platform akin to Apple Pay, is disabled on devices that do not pass SafetyNet
validation [185, 186]. An app for a non-GMS Android device (e.g. for Amazon Fire OS)
cannot use these features, as Play Services is only available through a GMS license with
Google [131].

Package signing, app review, and sideloading. AOSP Android requires that any
application that runs is signed by its developer [188]. The actual mechanism involves
verifying that the signature over the APK (Android PacKage) binary matches the public
key distributed with the binary. The APK Signing Block contains all of the information
required to validate the binary: a certificate chain and tuples of (algorithm, digest, signature).
This block is embedded in the binary distributed to devices, as in Figure 4.5. Starting with
Android 11, Android also provides support for fs-verity, Linux kernel feature that allows
continuous verification of read-only files on a filesystem at the kernel level [189]. In Android,
fs-verity is used to continuously validate APK files beyond the initial signing check [142].
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Figure 4.6: Installing Unknown Apps on Android

Allowing Chrome to install apps from unknown sources, also known as “sideloading.”

The AOSP signature checks do not verify if the developer is legitimate or approved by
Google, but simply acts as an authenticity check on the distributed binary itself. Google
reviews apps submitted to the Play Store [190], and Android devices that use GMS incorporate
an additional check to ensure that an application is downloaded from the Google Play
Store [174, 191]. GMS-enabled Android phones have additional the option of installing apps
from “unknown sources” by modifying a setting [192]. This allows users to “sideload”, or install
apps that are not distributed on the Play Store. Sideloading is required for the installation
of applications from alternative (non-Google approved) developers or storefronts [193, 194].
Figure 4.6 illustrates an example of this setting, allowing Chrome to download and install
unknown apps. This feature is off by default, and enabling it comes with a stern warning in
the system, as applications distributed outside of Google’s approved channels can be a vector
for malware [195, 196, 197].

Backups. GMS provides transport for application data backups for Android devices. Appli-
cation developers can choose to have their application’s data backed up in either of two ways.
The original method, available since the GMS in Android 2.2, is a Key/Value Backup (also
known as the Android Backup Service) [198]. As the name implies, it allows apps to backup
key and value pairs corresponding to a user’s configuration. Use of Key/Value Backup is
opt-in, and must be manually configured by the application developer [199]. The GMS in
Android 6 introduced Android Auto-Backup [200], which automatically synchronizes app
data to a user’s Google Drive. This service requires no configuration from the application
developer; developers must opt-out of the service on behalf of their users [199]. Both types of
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Figure 4.7: Android Backup Flow Diagram for App Data

Source: Android Developer Documentation [201]

backups – Key/Value Backup and Auto-Backup – are stored on the Google Cloud [201]. The
transfer of a backup from a device occurs via GMS [201]. Data flows for these two methods
are summarized in Figure 4.7.

Since 2018, Google has provided end-to-end encryption for application data backups
stored on the Android Backup Service (Key/Value Backup data) [121]. Devices can generate
an decryption key on-device for its backups, and use a user’s authentication factor (PIN,
password, or pattern) to encrypt this key. To protect this key, Google deploys a Google
Titan HSM [202] as part of Google’s Cloud Key Vault service [203], and device-generated
backup encryption keys are held by this device. The Titan HSM is configured to reveal the
backup key when presented with the correct authentication from the client (in the form
of user’s passcode). It also provides brute-force attack prevention and software rollback
prevention. However, this end-to-end encryption is only provided for the opt-in Key-Value
Backup service [121]. We find no indication that the automatic Android Auto-Backup service
is covered by these guarantees, and it is additionally unclear how many developers manually
opt-in to the Key-Value service rather than simply using Android Auto-Backup.

These backup services operate over application-local data only; other forms of personal
data on an Android device are separately backed-up to Google services, as shown in Figure 4.9.
This data is stored on the Google Account associated with a device, synchronized to Google
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Figure 4.8: Android Backup Interface

Drive (similar to the data in Android Auto-Backup). Android support documentation [204]
mentions that this data is encrypted, either with Google Account password information or
with the user authentication factor (PIN/password/pattern). Google has access to encryption
keys derived from the user password. However, the documentation is not specific as to what
data is or is not covered by the different encryption methods. Refer to Figure 4.8 for an
example backup configuration for a Pixel 3 running Android 11.

Some device manufacturers implement their own backup services [205, 206, 207]. AOSP
provides password-protected backups [208] to a local computer via the Android Debug
Bridge [209], Android’s USB debugging tool. There are also a number of third-party backup
tools [210, 211, 212].
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Figure 4.10: Google Messages RCS Chat Features

Figure 4.9: List of Data Categories Included in Google Account Backup

• Contacts
• Google Calendar events and settings
• SMS text messages (not MMS)
• Wi-Fi networks and passwords
• Wallpapersa
• Gmail settings

• Apps
• Display settings (brightness and sleepb)
• Language and input settings
• Date and timec
• Settings and data for apps not made by

Google (varies by app)

Source: Android Support Documentation [204]

aIn general, photos and videos can be backed up to Google Photos, a separate Google offering.
bIt is not clear from the documentation what other display settings are stored.
cThe documentation does not specify what exactly this category entails.

Messages & Duo. Android provides support for standard carrier-based SMS and MMS
messaging with a front-end provided from AOSP. While information is encrypted on-
device [143, 140], these messages are not end-to-end encrypted in transit and are thus
vulnerable to both eavesdropping and spoofing attacks [213, 214]. Moreover, carriers maintain

59



copies of both metadata and content on their back-ends [215]. The GSMA carrier associate
has developed the more modern Rich Communication Services (RCS) [216] as an alternative
to legacy SMS/MMS. RCS is a communication protocol that adds features such as typing
indicators and read receipts to standard text messages. Individual providers (such as a carrier)
deliver messages to each other on behalf of their customers [217]. Google Messages, a part of
the GMS, supports RCS on Android under the term “Chat features”, as seen in Figure 4.10.
Google also provides Jibe Cloud, which allows users that do not have an carrier support for
RCS to use it [218]. RCS support is currently unavailable in AOSP alone, although work is
being done to provide system-level support for it [219]. RCS communication is secure between
individual service providers [217] but is not end-to-end encrypted [220, 217]. Developer builds
of Google Messages provide evidence that Google is preparing for such an enhancement [32],
and a recent technical draft from Google confirms this [33].

Google Messages also has a web client, wherein messages pass through from the browser
through Google’s servers to the user’s device for sending [221]. Our testing shows that the
web client for Messages does not work without a connection to a phone. We turned on
Airplane Mode on a Pixel 3 device running Android 11, and noted that the web client was
unable to send messages. The error message shown on the web client is found in Figure 4.11.
There is no mention of end-to-end encryption between the browser and the device in the
documentation, which implies that Google is able to see a user’s messages as they pass
through Google’s infrastructure. Google claims to not keep any RCS messages on their
backend [217] via data retention policies.

Duo is a GMS-provided video calling app that allows for end-to-end encryption by default.
Devices participating in a Duo call perform key-exchange with each other to create a shared
secret, and use that to encrypt the audio and video streams of the data [179]. In a one-on-one
call, calls are peer-to-peer, i.e., audio and video data from one device is sent to the other
without passing through a server in the middle; only call setup is routed through a Google
server initially. This flow is shown in Figure 4.12. For group communications (and for
one-on-one calls that block a peer-to-peer connection), calls are routed through a Google
server. Audio and video is still end-to-end encrypted (via pairwise key-exchange between
each of the participants), but the server learns metadata about the participants as it sets up
the public keys and routes the encrypted communication between the participants [178].

4.2 History of Android Security Features
The previous section highlights key concepts in the current state of Android device security.
Android has evolved significantly, however, from its original release in 2008, with major
revisions of the operating system adding additional security features. Table 4.13 highlights
the security features added in each release of the AOSP. Appendix B goes into detail about
each item.

Update adoption. Operating system software updates have been historically slow to
propagate to end devices [222]. Although Android is developed by Google, manufacturers
often customize the AOSP source code [223], both to better match their target hardware
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Figure 4.11: Google Messages Web Client Connection Error

Figure 4.12: Google Duo Communication Flow Diagram

Source: Google Duo End-to-End Encryption Whitepaper [179]
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and to add vendor-specific features. For example, Samsung modifies Android to provide
its Bixby virtual assistant on its Samsung Galaxy series of Android devices [224]. These
modifications introduce added complexity to the development of update images, which slows
update adoption rates [225]. Compounding this is the shorter support lifecycle for Android.
There is a broad array of Android phones, offered at different price levels. Those phones in
the entry-level and mid-market segments rarely receive updates, if at all [129].

In an effort to reduce this additional hurdle to update deployment, Android 8.0 (2017)
introduced Project Treble [222], which allows for updates to the Android OS without changing
the underlying vendor implementation. Treble decouples the Android framework from the
device-specific software that runs on a smartphone. This has improved update adoption
rates [225], especially in the United States [226]. Update adoption still lags worldwide; as of
May 2019, 42.1% of users worldwide were running version 5.0 (2014) or earlier, translating to
around one billion Android devices in use that do not receive security updates [227].

4.3 Known Data Security Bypass Techniques
Android’s large user base has created a market for exploits that bypass its security features.
Even though Android’s security has improved over the years (see Table 4.13), bypasses
continue to be developed both in public and by private groups. The payoff for these bypasses
can be substantial: for individuals and groups, large sums in the forms of bug bounties
(both from Google [228] and others [49]), and for governments and law-enforcement agencies,
significant access into the lives of individuals under investigation.

Rooting and software exploitation. Software exploits form the core of bypass techniques
on Android, especially given the open-source nature of the AOSP. The usual end-goal of
this category of exploits is to attain superuser access, a process known as “rooting”. A
rooted device can be used for non-malicious customization or development [229], but access
to superuser capabilities allows for near-total control of a device, making it attractive for
forensics [230]. Non-rooting software exploits include compromises of individual applications
and capabilities that bypass the trusted hardware capabilities on a device, among others.
These exploits are discussed in Sections 4.3.1 and 4.3.2.

Data extraction. Forensic examiners have several strategies to perform security bypasses.
If an examiner has access to a user’s password already, none of the Android protections
matter and they can typically extract all of the data from both the device and the Google
cloud. An examiner that actually has to perform a local device bypass can either do so
manually, using available exploits on the internet, or they can do so by contracting the work
to a forensics company. For cloud data, law enforcement can either procure information
through a legal process with Google or by accessing Google services with tokens extracted
from a local device. Local data extraction techniques are discussed in Section 4.3.3 and cloud
extraction in Section 4.3.4.
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Android Highlights of New Security Features
2.1 (2010) APK signing v1 (JAR)
4.0 (2011) Keychain credential storage for non-system apps
4.2 (2012) Application verification (outside of AOSP)
4.3 (2012) SELinux logging policies
4.4 (2013) Verified Boot 1 (warning only)

SELinux enforcing (blocking) policies
Full-disk encryption

5.0 (2014) SELinux MAC between system and apps
Full-disk encryption by default with TEE-backed storage

6.0 (2015) Runtime permissions (instead of install-time permissions)
Trusted keystore for symmetric keys
APK validation (manifest-based)

7.0 (2016) Stricter DAC file permissions on app storage (751 → 700)
Verified Boot 1 (stronly enforced)
Keymaster 2 (key attestation & version binding)
File-based encryption
Uniform system CAs
StrictMode file access (removal of file://)

8.0 (2017) Verified Boot 2 (AVB)
seccomp-bpf system call filtering
Project Treble/HIDL abstraction layer
Google Play Protect (anti-malware)
Keymaster 3 (ID attestation)

9.0 (2018) APK signing (v3)
All “non-privileged” apps run in individual SELinux sandboxes
Keymaster 4 (key import)
Metadata encryption (things not encrypted by File-based)
Stricter seccomp

10.0 (2019) Limited raw view of FS (no access to /sdcard)
Removal of full-disk encryption
Location access only in foreground
Block access to device identifiers
Mandatated storage encryption

11.0 (2020) File-based encryption enhancements
Package-visibility filtering
Scoped storage enforcement

Table 4.13: History of Android (AOSP) Security Features

This is not an exhaustive list of features. Some Android versions have been omitted.
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Figure 4.14: Legitimate Bootloader Unlock on Android

Source: Android Open Source Project Documentation [172]

4.3.1 Rooting

Rooting on Android allows a standard user to gain superuser permission on a device, with “a
root” being the term for a process that does so successfully. This is analogous to jailbreaking
on iOS, as it allows modification of the underlying operating system. Unlike iOS, however,
installation of unauthorized (non-Google Play) Android applications is supported (see Sec-
tion 4.1), making rooting for this reason less likely. Moreover, some devices explicitly support
rooting and bootloader modification [231] for non-malicious development purposes [138, 232].

Most roots on Android are related to state of the device bootloader. In locked mode,
the bootloader prevents modification to the boot partition, preventing unverified code from
running [150, 151], but when in unlocked mode, boot images can be modified, allowing for
the application of a root or even the installation of a custom operating system [138, 172, 232].
As a security measure, the process of unlocking the bootloader deletes all personal data on
an Android device; the system can no longer trust the bootloader, which means it can no
longer assure the data in its storage [150, 232]. Figure 4.14 shows the default message in
AOSP when a bootloader is unlocked through this method. Common roots [233, 234] operate
under this assumption, and do not attempt to circumvent such a data wipe. However, there
are some roots that do not require any kind of bootloader unlock, loading the rooting code
via an exploit in the operation system. Some of these roots are publicly available [235], and
can be directly sideloaded into an Android device. Other roots must be manually developed
for individual devices, which we discuss below.
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Figure 4.15: Kernel Hierarchy on Android

Source: Android Open Source Project Documentation [223]

Android rooting has been around since the earliest days of the operating system: the
first Android device, the HTC Dream (or T-Mobile G1), had a jailbreak found months
after its release [236, 237]. At the time, manufacturers and carriers would restrict features
(such as USB tethering [238]) behind payment, or install unwanted applications [239]. Users
circumvented disabled these features by rooting their devices. However, as manufacturers
started to improve software, rooting became less critical [240]. Roots continue to be developed,
however [233, 234].

Manufacturers have also moved to reduce the incentives surrounding rooting for non-
malicious purposes. Samsung includes the Knox warranty bit, a one-time programmable
electronic fuse, in its devices starting in 2013 [241]. This fuse “trips” [242] when it detects a
unapproved kernel, and can only be “replaced” with a total teardown of the system board [242].
Moreover, Google’s SafetyNet attestation service, which validates if a system can be trusted
or not, fails on rooted devices [183]. Passing a SafetyNet check is required for certain services
such as Google Pay [185, 186]. Anecdotally [233], Google SafteyNet has been difficult to
circumvent. As of 2017, SafetyNet data shows that only 5.6% of active Android devices
are rooted (either by consent or maliciously) [196]. Google is currently testing hardware
attestation for SafetyNet in some devices, which could further disincentivize legitimate
rooting [243],

For the purposes of this discussion, we focus on manual, exploit-based roots. These are
roots that are achieved as a result of a vulnerability in Android, and do not trigger an erase
of data on the phone, and are potentially more valuable in forensics, as a result. We consider
exploitation at two levels: the core operating system (kernel) and device-specific code (SoC
vendor and OEM code).

Exploiting the core operating system. An Android device kernel is the combination of
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several patches and drivers from various sources, as shown in Figure 4.15. Underlying the
entire system is a kernel from the long-term support branch of Linux with Android-specific
changes (the Android Common Kernel). On top of this, the system-on-chip vendor can make
modifications to better support its hardware, and the final OEM manufacturer of the device
can add even more patches [223]. Software vulnerabilities can appear at any of these levels
and compromise the entire system. Although Google and others make several patches to the
Android kernel, the kernel is still Linux at its core. From a security standpoint, this means
that exploits that provide superuser access on Linux may have impact on Android as well.
For example, Dirty CoW was a general Linux vulnerability that used a race condition to
write to system files [244]; this vulnerability was then applied to Android, and developers
created a root exploit based around it [245]. There are also vulnerabilities that were originally
discovered on Android that actually impacted the Linux kernel at-large. An example of this
is PingPongRoot, a use-after-free vulnerability used in an Android root that required a kernel
patch upon disclosure [246].

Zero-day Android root vulnerabilities are still being actively found and exploited [247,
248, 249]. These operating system-level vulnerabilities are attractive for forensics because
they are more or less device-agnostic. The fragmented state of Android hardware means that
a common operating system exploit can be applied to more devices.

Device-specific bypasses. This class of vulnerabilities is specific to properties associated
with a particular device. These vulnerabilities may require more expertise and time to
properly exploit, but can completely ignore the protections provided by the Android system.
Generally, these bypasses look at a lower level of abstraction, such as system-on-chip firmware.

A high-profile [250, 251] example of this is Qualcomm EDL. Qualcomm devices have
an “Emergency Download Mode” (EDL) [252] that allow OEM-signed programmers to
flash changes onto the system. When placed into EDL mode (usually by hardware circuit
shorts [252]), an Android device boots into a debug interface rather than the usual Android
Bootloader. Then, using the tools of a programmer, an attacker can flash data onto the
Android partition. These programmers are ostensibly guarded by an OEM, but are often
publicly available [252]. By flashing the partition with such a programmer, attackers have
been able to attain root and exfiltrate data, even on encrypted devices. For example, EDL
can be used to flip the bootloader lock bit on some devices, which can then boot into a custom
image with a root shell, which can in turn be used to dump the data from a device [253].

Qualcomm EDL is not the only low-level bypass on Android. Certain MediaTek-based
devices can be rewritten (or “flashed”) without a bootloader unlock, using the publicly-available
SP-Flash-Tool [254]. There is also work on using AT modem commands to circumvent
protections on Android [255]. This is not an exhaustive list of all possible bypasses, but a
reflection of the security issues that arise due to the complexity and fragmentation in the
Android space.
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Figure 4.16: Distribution of PHAs for Apps Installed Outside of the Google Play Store

Source: Android Year-in-Review 2018 [197]

4.3.2 Alternative Techniques

Root-level access for an Android device, while a sufficient condition to bypass Android
permissions checks, is not a necessary one. We briefly discuss alternative methods of
bypassing Android security controls that do not strictly rely on rooting the phone as an
attack strategy.

Malware and app compromise. Android malware is rare, but has not been eradicated.
According to Google-released data, 0.68% of devices that allowed installations from unknown
sources had some form of PHA, compared to 0.08% of devices that allowed installation from
the Google Play Store exclusively [197]. Google’s PHA definition is broad: categories include
“click fraud”, a form of adware that generates clicks on ads surreptitiously [197] – not a form
of PHA that would lead directly to data bypass – as well as rooting apps, even if they were
user-wanted. Figure 4.16 is a chart of all PHAs on Android found outside of the Google
Play Store. In general, an attacker who has spyware or another form of malware installed
already on a device has a clear advantage from a bypass standpoint one that does not. It is
non-trivial to have an app installed before forensic analysis, though; an examiner would have
to either fool the user into installing a PHA or coerce them to do so.

A second, but related, bypass technique is to leverage insecurities in existing app to bypass
protections. An app already on the device may have some kind of open interface or remote
code execution vulnerability that can be leveraged to bypass security protections and retrieve
information. For example, a double-free vulnerability in WhatsApp could be used to remotely
gain a shell and steal from the WhatsApp message database [256]. Compromising an app
only allows a limited exploit context, as the regular Android sandboxing protections are still
in place. But, it does provide access all of the information of an app and an opportunity to
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pivot into the rest of the system.

Trusted hardware attacks. Exploitation of trusted components on Android either target
the trusted hardware itself or on the TEEs that run on them. Researchers have found several
issues with TrustZone and TrustZone-enabled TEEs over the years [257]. Some TrustZone
exploits (as described in [257]) require existing access to the device, in the form of an app
installed on the device already. These exploits are less useful for forensics, as the threat model
there involves data recovery for systems without prior access. Still, these kinds of attacks
could be used as a part of an exploit chain instead, gaining a foothold in the system first,
and then attacking TrustZone and the TEE. As of this writing, there are no public security
exploits for the Samsung Secure Processor and Google Titan M secure element co-processors,
making them valuable targets: Google in particular offers $1,000,000 for a successful exploit
of Titan M [228].

Passcode guessing. If an Android device using file-based encryption or full-disk encryption
is rebooted, it will request a passcode for decryption. A six-digit PIN or simple pattern
can be brute-forced in a manner of minutes on commodity hardware, so Android employs
Gatekeeper as a protection mechanism. There are two components of Gatekeeper: a hardware-
abstraction layer (HAL), which is an API for clients to enroll and verify passwords, and
a trusted application (TA), which actually runs on a TEE. Gatekeeper creates an HMAC
for every passcode that it has approved; this HMAC also includes a User Secure Identifier
(SID), which is generated by a secure random number generator upon enrollment with
Gatekeeper. It validates that HMAC of passcode attempts matches that of the approved
passcode. The HMAC key that Gatekeeper uses for this purpose does not leave the TEE. As
a brute-force prevention mechanism, Gatekeeper enables request throttling: the TA does not
respond to service requests if a timeout is in place [152]. Circumventing Gatekeeper would
involve breaking the Gatekeeper TA as implemented in a specific TEE OS, exploiting the
entire TEE/TrustZone architecture as discussed above, or finding a loophole that skips the
Gatekeeper check entirely. We discuss evidence of such circumvention in Section 4.3.3.

Lock screen bypasses. Lock screen bypasses are cases wherein a user can unlock a phone
or gain access to functionality normally restricted while the phone is locked without the user
authentication factor or biometric. While Google’s Smart Lock feature [156] bypasses the
lock screen in some cases, this is by design. We did not find evidence that unauthorized
UI-driven lock screen bypasses are commonplace, or relevant to Android forensics.

4.3.3 Local Device Data Extraction

Once an Android device is seized, an examiner can proceed with extracting the data on it.
If a device is seized while it was in use, it should have all of its encryption keys in memory
already: in full-disk mode [143], the system’s user data partitions would already be unlocked,
and in file-based mode [140], the credential-encrypted (CE) keys would have to be in use. Of
course, in the best case (for law enforcement), the user could have their PIN or password
written nearby. With this, a forensics examiner can simply unlock the phone, and use the
Android Debug Bridge [209] to pull a backup off the device via USB, obviating the need for
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Figure 4.18: Extracting Data on a Rooted Android Device Using dd

Source: Andrea Fortuna [230]

any cracking of the Android device. Also, if the device has an SD card (that is not adopted
or encrypted by the system [134]), an examiner can simply pull it out of the system and
analyze it directly for data.

Figure 4.17: Autopsy Forensic Analysis for an Android Disk Image

Source: Andrea Fortuna [230]

If the device is indeed protected, an examiner has several options. The end goal is
to extract all of the information off of a device, typically by using some kind of forensic
explorer to read organize information. If the device is not secured or has an easily-exploitable
vulnerability, (and if the agency has sufficient expertise), they may run exploits directly
against the target, and run a tool (such as the open-source Autopsy [258], Figure 4.17) against
the device. Many of the roots discussed in Section 4.3.1 were created by members of the
Android development community for personal use [233, 234], but can be re-purposed to gain
access onto a device and attain a root shell [259]. The shell can then be used to clone the
system (using dd, Figure 4.18) for analysis off the phone [230].

If additional assistance is required, law enforcement examiners can hire a forensics company,
like Cellebrite, Oxygen, or Magnet. These organizations are secretive about their proprietary
methodologies, but do leave hints about their methods in marketing documentation [7, 16, 260].
Often, these forensics tools draw from a library of exploits. For example, Cellebrite, Oxygen,
and Magnet all employ Qualcomm EDL programmers (described in Section 4.3.1) to extract
data [19]. A procedure to put an Alcatel 5044R device in EDL mode for Cellebrite’s UFED
software can be found in Figure 4.19. EDL programmers must be signed by the vendor,
but many of them have been leaked online [252]. It is unknown if forensics organizations
are legally allowed to use these binaries for this purpose. Once the bypass is run, forensics
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Figure 4.19: Cellebrite EDL Instructions for an Encrypted Alcatel Android Device

Source: Privacy International [19]

software typically analyze and exfiltrate data; example output from Cellebrite UFED is found
in Figure 4.20.

4.3.4 Cloud Data Extraction

Android has tight integration with Google services, and as a result Android devices store
significant amount of information on Google’s servers. GMS apps such as Gmail, Google
Drive, and Google Photos store data on the Google Cloud backend with no guarantees of
end-to-end encryption. This means that Google has unfettered access to this information,
and is able give this information to law enforcement upon request. The only exception to this
(according to available information) would be Key/Value Backup data stored in the Android
Backup Service [121], which is end-to-end encrypted.

Google complies with law enforcement requests for information, processing 20,000 search
warrants for information in the United States in 2019 [261]. Unlike Apple’s iCloud, Google’s
cloud offerings are platform agnostic, and as such Google has information about iPhone users
in addition to Android users. Law enforcement has expressed particular interest in Google’s
store of location data for users [262]. If law enforcement does not wish to go through Google
(and potentially have to pay to service their request [263]), forensic software can attempt to
recover cloud authentication tokens on a device and then use it to manually download data
from an individual’s Google account [13, 119].
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Figure 4.20: Cellebrite UFED Interface During Extraction of an HTC Desire Android Device

Source: Privacy International [19]
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4.3.5 Conclusions from Bypasses

The primary takeaway from this discussion is that there are many techniques to bypass user
data protections on Android. Lacking an analogue to iOS Complete Protection, decryption
keys for user data remain available in memory at all time after the first unlock of the device;
live extraction then becomes a question of breaking security controls instead of breaking
cryptography or hardware. Additionally, the extent of Google’s data collection affords law
enforcement and rogue actors alike considerable user data, acquirable either through the legal
system or through a device bypass. We discuss further improvements to Android in greater
detail in Section 4.5.

4.4 Forensic Software for Android
As Android phones have gained market share, so have Android forensics tools. As with
iOS, it is critical to realize the accessibility of professional forensic tools such as Cellebrite’s
UFED [14], and even of individualized consulting services such as Cellebrite’s Advanced
Services [7] for unlocking phones. Law enforcement agencies, including local departments,
can unlock devices with Advanced Services for as cheap as $2,000 USD per phone, and even
less in bulk [17], and commonly do so [17, 41, 19].

For a complete list of the forensic tools tested by DHS, as determined by publicly-available
reports as of this writing, and the data forensically extracted by those tools, see Appendix C
and archived DHS reports [22]. Again unfortunately, the NIST standard for testing devices
is unclear as to whether the device should be in a locked state during testing [43]; we note,
however, that certain categories of data seem inaccessible to forensic software in various cases,
which we attribute to Android security controls. It is possible that these failures occur due
to the forensic tools inability to correctly extract and display data they should have access
to, but based on the patterns of inaccessible data in the reports we consider this unlikely. If
this assumption holds, in summary these reports imply the following:

Successful extraction. In most tests, most or all of the targeted data (see Figure 2.1) is
successfully extracted against the latest Android devices. One notable omission, however, is
location data: while forensic tools were largely able to extract data from Android phones,
we speculate that since Maps and Location is a GMS component, this data may be stored
exclusively in the cloud, leaving none for local extraction.

Limited software diversity. A small number of forensic software companies frequently iterate
their products. This is demonstrated in the DHS tests as many Cellebrite, XRY, Oxygen,
MOBILedit, Secure View, and Lantern devices being tested between 2009 and 2019 (see Ap-
pendix C), and each generally successfully extracting data from contemporaneous generations
of Android devices over time [22].

Slow adoption of new test devices. The tests for Android show results for a number of different
Android versions, with subsequent tests either remaining on an old version, or skipping over
several major versions. Studies would continue to use older Android versions years after they
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were released. Even in 2019, the latest version tested in one report was 7.1.1 – a version
of Android first tested in 2017 – even though less than 9% of U.S. Android users were on
Android 7 at the time [226].

Reporting inconsistencies. Beginning in February 2016, the quality of the reports degrades
notably, and it is unclear in many cases whether data was extracted from Android and not
displayed properly by the forensic software, or simply not extracted at all. Some reports4
showed inconsistencies between the analysts notes on forensic performance and the summary
tables in the final report (e.g. claimed extracted data in the notes, but this success not
indicated in the summary table).

Regardless of irregularities in methodology, it is likely given these reports that agencies
such as FBI and DHS that have access to these tools are largely able to bypass Android
protections and exfiltrate data from Android devices.

4.5 Proposed Improvements to Android
Android security has improved significantly over the years, with modern Android using more
cryptography and security controls than ever before. However, forensics experts are still able
to compromise the Android system and bypass its protections. Below, we briefly describe
some potential improvements that Google can make to Android to make it more resilient
against bypass.

Encrypt user data on screen lock. The most important improvement Android can make
would be to encrypt user data with a key that is evicted in memory after the screen is locked.
File-based encryption with device and credential-encrypted storage types was a step in the
right direction, but adding this protection will ensure cryptographically that personal data is
unavailable while the user is not using the device. This is not a trivial change, as it would
require modifications to the Android process lifecycle [164] to notify apps that the screen
was locked and that their processes no longer have access to their data. This, in turn, would
force app developers to adapt their application to the new lifecycle, or risk losing users due
to app failures. However, if implemented correctly (and throughout the Android system),
such a file encryption mechanism would significantly improve the privacy guarantees of the
Android system, and make root exploits less effective.

Implement end-to-end encryption for messaging. Currently, Google is deploying RCS
as a part of its Google Messenger app on Android [217]. Adding end-to-end encryption (as
they plan to [33]) will improve security for Android users, and using a platform-independent
protocol may help increase end-to-end encryption adoption worldwide. This will also allow
Google to provide stronger guarantees of security for the Messages web application, as
end-to-end encryption would ensure message security between the web client and the mobile
device using encryption rather than relying on a retention policy.

4For example see April 2017 “Electronic Evidence Examiner - Device Seizure v1.0.9466.18457.”
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Provide end-to-end security for more Google products. The only offering that offers
end-to-end security in the Google service ecosystem is Duo for real-time video calls. Google
should add end-to-end encryption for more information in its cloud, especially for data
generated or stored by GMS apps on Android. This is a harder ask for Google, as its
services run sophisticated machine learning over user data to improve the quality of its
service [264]. However, at the very least, Google should extend its end-to-end encryption
guarantees from the Android Backup Service to the Android Auto-Backup service as well.
Automatic end-to-end security for users and their app data may create tension with law
enforcement agencies [9, 11] but would be a boon for the privacy of users.

Secure the low-level firmware programming interface. Low-level exploits bypass the
careful Android security model Google has developed. Firmware programmers are widely
available; this makes attacks practical [252, 253], with forensics software [19] employing these
methods to bypass security controls. As such, SoC vendors and device OEMs should work
on securing access to firm. One option is to distribute programmers as hardware devices
with tamper-resistant components. In this way, vendors can keep track of programmers and
ensure they are not easily leaked. Another option is to consider revoking the certificates of
compromised programmers. Phones would flash their firmware with these revocations, and
would not respond to firmware mode if it detects a programmer on its revocation list.

Leverage strong trusted hardware. Secure element co-processors add additional security
over shared-processor designs such as TrustZone. More parts of Android should tie itself to a
secure element, as the separate hardware is more resistant to hardware and software-bound
attacks. Android is a worldwide platform, however, and there may be situations where a
secure processor cannot be added to a device for price constraints. TrustZone, while not as
robust as a secure element, should be used as a fallback. Recommendations like reducing TEE
size and bolstering hardware against side-channel attacks [257] are sensible improvements to
improve TrustZone security for devices that do not support a secure element.

Expand update efforts. The latest Android devices seem to employ relatively strong data
protection techniques. However, Android phones run older software versions in massive
numbers [265]. For devices which are capable of receiving the latest updates, increased efforts
for user education and incentivization could improve update numbers, especially paired with
improved manufacturer outreach. Devices which have reached end-of-life and cannot receive
the latest updates must be clear to users about the risks entailed.

Derive mutual benefit from shared code. As we discuss, Android is based on the Linux
kernel, and as such derives both the benefits and drawbacks of such sharing. The open-source
Linux kernel is a widely used, deeply analyzed operating system, and Google is a powerful
force for vulnerability discovery and mitigation [266]. By dedicating time, resources, and
engineering effort toward the betterment of the Linux kernel, Google immediately reaps the
benefits of such efforts through improvements to Android. Similarly, Google may benefit
immediately from the open-source efforts of improving the security and performance of the
Linux kernel.

Embrace the federated nature of Android. One of the greatest strengths of Android is
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that it is an open ecosystem of several manufacturers. While this can create fragmentation,
this also allows for the opportunity to design secure systems that do not rely on a single
party (Google) to function. Google should use Android to champion open protocols and
manufacturer interoperability through common standards. This will provide end users with
thoughtfully and securely designed systems while still maintaining the level of choice they
come to expect from the Android ecosystem.
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Chapter 5

Conclusion

Privacy is critical to a free and open society. For one, people behave differently when they
know they might be surveilled [267, 268, 269, 270], and so privacy-preserving communication
channels can alone enable truly democratic discussion of ideas. As more of our data is
gathered and our interactions occur on (particularly mobile) devices, these considerations
become more important. Worse, harms from violations of privacy are concentrated among
some of the most vulnerable, chronically disenfranchised populations in our societies such as
the Uighur population in China [20] and Indigenous protesters in the United States [21].

Smartphones have the potential to fundamentally change the balance of privacy in our
lives. Not only do they contain our daily schedules and locations, they store and deliver our
communications, rich media content documenting our activities, and are a gateway to the
Internet. Our devices also contain information about our families and peers, meaning that
compromise of their privacy affects our entire interpersonal network. With the rapid advances
of data science, machine learning, and the industry of data aggregation, the potential privacy
loss due to phone compromise is difficult to overstate. When we fail to protect our data, we
are making privacy decisions not only for ourselves but on behalf of anyone with whom we
communicate and interact.

The questions we raise in this work are primarily technical. But they stand for a larger
question: how do we improve privacy for users of mobile devices? In this work we demonstrate
significant limitations in existing systems, and show the existence of bypasses to security
controls which protect our. We also present ideas which we hope can be adopted, extended,
and improved towards the overall goal of improving privacy. Policy and legislative solutions
are also very relevant toward this end; we leave this analysis for experts in the respective
fields [17], but to summarize their work, meaningful opportunities for change include limiting
law enforcement rights to search devices, requiring robust data sealing and deletion standards,
and increasing transparency through audits and logging.

Many of these limitations are centered around what data is encrypted when, and where
encryption keys are stored. Encryption, unlike any operating systems security control,
lacks the complex state space which contributes to vulnerabilities in software. Whereas
the operating system must contend with and manage various user and system contexts,
and correctly provide access control and handling from even potentially malicious sources,
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encryption can be summarized in brief: is the data encrypted using a strong cipher, and where
are the keys? We find that while much data on iOS and Android is stored encrypted, the
keys are often available in memory. This creates an opportunity for a compromised OS kernel
to exfiltrate data as we see in various forensic tools and bypasses. Further, in Android we find
that many widely-used but outdated versions of Android offer even more limited coverage
of encryption, up to as weak as only encrypting data when the device is off. While modern
versions offer strong and more granular file-based encryption, older models are relegated to
disk encryption; disk encryption is wholly unprepared for the stronger adversaries we consider
in our threat model, where running devices may be seized at any time. In the cloud, both
platforms extensively store user data on behalf of devices, and while there are options for
end-to-end encrypted content such as app developer opt-in backups on Android and certain
data categories on iOS, this coverage is limited due to design decisions by Apple and Google.

Secure hardware offers compelling security benefits on both mobile platforms, particularly
by giving the devices a place to store encryption keys without risking their immediate
compromise. It is these components, whether the Secure Enclave on iOS or TrustZone on
Android, which allow mobile devices to contend in our stronger threat model, far beyond
what for example most laptop computers could hope to. Secure hardware is the only reliable
method of storing encryption keys on-device and protecting them that we find in the industry,
modulo potential bypasses of Secure Enclave technology (e.g. by GrayKey) and vulnerabilities
in TrustZone.

Going beyond the current state of the art, there are exciting possibilities to create
novel methods for increasing the coverage of encryption without limiting performance. This
is a deeply technical challenge which may draw in research from cryptography, systems
security, and even machine learning in the example of creating prediction systems for limiting
available decryption keys. There are also compelling questions about update distribution
and synchronization to be answered. Both platforms could benefit greatly from the work of
secure multi-party computation researchers in developing privacy-preserving replacements
for sensitive but desirable cloud services such as backup, data aggregation, and predictive
systems. Additionally, extensive usable security research and other sociological studies can
answer questions about how people expect security and privacy controls to work, and compare
any gaps with how they are truly implemented. User studies are difficult and expensive,
but also have great potential to aid development research by informing them with a human
perspective. Follow-up analysis of the effectiveness of security awareness and education works
are also critical in this regard.1

Privacy lies at the crossroads of technology and policy, of academic and engineering interest,
and of producer and consumer effort. Effective privacy controls can be mandated through
legislative efforts [272] as well as through technical design considerations [29, 168]. Thus there
is much opportunity for improvement, but these intersections complicate solutions due to
differences in understanding, language, and motivations amongst policymakers and technology
designers. The challenges we highlight in this work, then, can largely be solved through
mutually informed efforts in the policy and technical domains. We urge researchers and

1A relevant example can be found in [271].
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engineers to collaborate with policymakers, advocates, and experts in these efforts. Towards
improved usage norms, towards efficient secure protocols to enable sensitive use-cases, and
towards mobile device privacy by default for all people.
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Appendix A

History of iOS Security Features

A.1 iOS Security Features Over Time

A.1.1 Encryption and Data Protection over time

In 2009, iOS 3 was released on the iPhone 3GS with the first iteration of Data Protection,
which entailed encrypting the flash storage of the device when powered off, primarily to
facilitate rapid erasure of the device. In this initial release, the user passcode was not mixed
into the encryption key and thus was not necessary for decryption. In 2014, iOS 8 (released
along with the iPhone 6 and 6+) increased the coverage of data encrypted using a key
derived from the user’s passcode, protecting significantly more data with keys unavailable
without the user’s consent. This decision drew significant criticism from law enforcement,
most notably in an early speech by former FBI Director James Comey [8]. Since its inception,
Data Protection classes have been introduced and applied to various data as summarized in
Table 3.10. With Data Protection, when files are deleted, their keys are evicted and as such
this data is unrecoverable, however, in some cases user-initiated delete options simply move
data to a “deleted” section of a SQL database on-device which may remain recoverable [115].

A.1.2 Progression of passcodes to biometrics

In early versions of iOS, passcodes defaulted to four digits and were enforced by software
running on the application processor. This provided a superficial layer of security, which could
potentially be bypassed through a software exploit against the operating system. With the
iPhone 5S and iOS 9 in 2015, Apple increased the default for new passcodes to 6 digits while
also introducing TouchID, a capacitive fingerprint sensor. In 2017 with the iPhone X, some
models of iPhone replaced TouchID with FaceID, a facial recognition biometric, similarly
authenticated through the SEP. Apple argues that these ease-of-use features improve security
by enabling users to employ higher-quality passcodes (as the biometric sensor reduces the
frequency at which they must be entered) [75]; the efficacy of this decision has questioned in
the scientific literature [273].
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A.1.3 Introduction of the Secure Enclave

Early iOS devices performed most security functions solely using the application processor,
which is the same processor that runs the operating system and all application software. As
of the iPhone 5S in 2013, Apple began shipping an additional component in iOS devices:
the Secure Enclave Processor, or SEP [27, 28]. The SEP architecture and hardware has
undergone a few improvements over time as documented in Tables 3.10 and 3.11.

A.1.4 Hardware changes for security

Just as the software, iOS, has evolved year to year, so too has iPhone hardware. Early
generations integrated commodity components. However, recent iPhone and iOS devices
employ custom hardware and processor designs [95]. Table 3.11 summarizes changes to
iPhone hardware over time which are directly security-relevant, and the remainder of this
section covers these changes in detail.

From iPhone 2G to 3GS (2007–2009), Apple sourced hardware from Samsung, LG, and
other manufacturers to make their phone. Few if any security-specific hardware features were
present in these early phones, and this remained true even as Apple transitioned to in-house
designed System-on-Chips (SoCs) with the A4 and continued with the A5 and A6 [88, 89, 90].
These early iterations encrypted the boot NOR memory with a hardware-fused AES key
(UID key), driven by a cryptographic accelerator known as the Crypto Engine.1 The A7 in
iPhone 5S introduced the Secure Enclave Processor (SEP) and a new fingerprint sensor in
the home button to enable TouchID. The SEP at this iteration included its own UID key
used for encryption. Enclave memory is encrypted with a key derived from both the UID
key and an ephemeral key stored in the enclave, and enclave memory is authenticated on
A8 and later. The A9 SoC in the iPhone 6S/6S+ connected the path between flash storage
and memory directly via the Crypto Engine, in order to improve file encryption security
and performance, and allows the SEP to generate its UID key rather than be fused with
it. SEP key generation also has the advantage that not even the manufacturers know the
SEP UID key. The A10 SoC uses the SEP to protect filesystem class keys in Recovery Mode.
The A11 SoC present in the iPhone X added the Neural Engine, a CPU component which
accelerates neural network computation, and enables FaceID by allowing facial recognition
authentication in the SEP to directly access the Neural Engine [75]. A11 also introduces the
“integrity tree” for stronger authentication of enclave memory. The A12 in XS, XS Max, and
XR adopted a version of Pointer Authentication Codes (PAC) from ARM v8.3 [274] with the
relevant hardware support as an additional defense against memory corruption exploits, and
added a “secure storage integrated circuit” for the SEP to use for replay counters, tamper
detection, and to aid cryptography and random number generation. Apple notes that the
enclave communicated with the secure storage IC via a “secure protocol.” The A12 also
extended Recovery Mode protections to DFU mode.

1The Crypto Engine is documented as early as the A5 SoC, but may have been included earlier
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A.1.5 Moving secrets to the cloud

iCloud Keychain was announced in 2016 [74], and then in 2017 with iOS 11 on iPhones 8, 8
Plus, and X CloudKit containers extended an API to third-party developers for them to store
arbitrary data encrypted with keys in the user iCloud Keychain (thus not decrypt-able by
Apple) called CloudKit [53]. Apple additionally introduced the use of CloudKit for iMessage
in this time range [28, 31].2 The historical development of iCloud security is not extensively
documented by Apple, but §3.1 provides an overview of the current documented architecture
in depth.

2With the aforementioned caveat regarding iCloud Backup
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Appendix B

History of Android Security Features

B.1 Android Security Features Over Time

B.1.1 Application sandboxing

The original sandbox on Android was filesystem-based, with applications sandboxed from
each other via user IDs and permissions. The filesystem on Android has historically been
divided into “internal” (device-specific) and “external” (non-device-specific). The external
storage, also known by its directory name of /sdcard, holds arbitrary files, such as music,
photos, and documents, that the user can use across several apps or even off the device itself.
Internal storage is controlled closely by the Android system – each app gets access to its own
part of internal storage – but external storage has fewer controls, because of its intention as
a shared resource. Traditionally, external storage was a removable flash memory device (such
as an SD Card), but the term has evolved to encompass all shared storage on Android, even
for those devices without a removable memory slot [275].

Android 7.0 began locking down access to /sdcard, changing directory access control
(DAC) permissions from 751 (Unix rwxr-x--x) to 700 (Unix rwx------) and removing the
ability for apps to request explicit URIs to other app’s files. Android 10 took this a step
further, deprecating raw access to /sdcard and only allowing the system explicit access to
only files that it has created. All other views of the file system are mediated by the operating
system, and require user intervention [135]. Android 11 enforces scoped storage, eliminating
/sdcard access entirely [147].

An augmentation to the existing filesystem-based sandbox came in the form of SELinux,
which was first added to the Linux kernel with Android 4.3 in permissive (logging) mode,
and Android 4.4 in enforcing (blocking) mode. Originally, only a subset of domains (SELinux
protection types) were utilized for critical system functions; Android 5.0 pushed SELinux
enforcement to the rest of the system. Android 6.0 and 7.0 continued to strengthen the
SELinux sandbox, tightening the scope of domains and breaking up services to isolate
permissions to specific subsystems. Android 8.0 adds updates for Android’s Project Treble
hardware abstraction initiative, and 9.0 requires that all apps run in individual SELinux
sandboxes (and thus preventing apps from making data world-accessible) [148, 135].

98



Dovetailing with SELinux is seccomp-bpf, another sandboxing feature Android inherits
from the upstream Linux kernel. This facility, added to Android in version 8.0, prevents
applications from making syscalls explicitly whitelisted. This whitelist was built from syscalls
available to applications (via the Bionic C interface), syscalls required for boot, and syscalls
required for popular apps [276]. Android 9.0 further improves on the filter, paring down the
whitelist even further [277].

Application permissions to media, dialer, messages, etc., are important to the security of
the Android system, but not relevant to the discussion of this work.

B.1.2 Data storage & encryption

On release, Android did not employ any encryption mechanisms to protect user data. Android
4.4 introduced full-disk encryption, but it would not be until Android 5.0 that it would
become the default. Full-disk encryption uses the PIN/password (4.4) or pattern (5.0) to
encrypt the encryption key, and stores it in a secure hardware location if available (5.0). Note
that this encryption provides protection only for lost or stolen devices, as once the device is
powered on, the device remains decrypted [143]. Android 7.0 introduced file-based encryption,
discussed above, and Android 10 made it mandatory for all devices going forward [140].
File-based encryption allows devices to Direct Boot, allowing critical system functions to run
without the phone unlocking [163]. The prior full-disk encryption used the Linux kernel’s
dm-crypt block-level encryption, meaning that the user’s passcode was required before any
data could be unlocked. Encryption of file metadata was integrated into Android 9,0. The
combination of file-based encryption and metadata encryption is thus equivalent to full-disk
encryption [145].

B.1.3 Integrity checking

Starting in version 4.4, Android validated boot code via the dm-verity Linux kernel module,
which uses a secure hardware-backed hash tree to validate data on a partition. Any device
corruption would be detected and presented to the user as a warning, but the device would
still be allowed to boot. It would not be until Android 7.0 that Verified Boot would be
strictly enforced, preventing boot if the dm-verity check fails. A new version of Verified
Boot, known as Android Verified Boot, was introduced in version 8.0 alongside the changes
for Project Treble. AVB also added rollback protection via features in the TEE [150]. Note
that this integrity check is disabled when a user roots their device via an unlocked bootloader.

In addition to the checks performed at boot time, the Android system validates the APK
(Android Package) of an app before installation; if the signature on the APK does not verify
with its public key, Android refuses to install it. Android 2.1 introduced the first version APK
verification, using the basic Java JAR verification mechanism. Android 7.0 introduced an
APK-specific signing scheme, and Android 9.0 improved upon it by allowing for key rotation
on APK updates [136]. Note that this is separate from the installation of apps from trusted
sources (such as Google Play), which is a separate mechanism [188].
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Google has since introduced App Bundles, which consist of pre-compilation code and
resources. Google has mandated that all new Android apps on the Play Store use App
Bundles some time in 2021 [278]. Before an app is published on Google Play, Google builds
and signs the final APK bundle. Rather than allowing developers to directly sign APKs,
App Bundles shift control of final signing keys to Google. This move has raised questions
from app developers who protest that Google is now empowered to modify apps before
distributing them, potentially to inject Google advertising, or at the request of overreaching
governments [279].

B.1.4 Trusted hardware

The history of trusted hardware on Android is inherently more complex, as the Open Handset
Alliance does not mandate the use of any specific hardware for Android [280], and there is no
requirement in Android that the TEE be an ARM TrustZone OS, just that it supports the
relevant hardware features [280]. However, Qualcomm’s QSEE environment meets Android
requirements [281], and Google provides a reference TEE, Trusty, for general use [149].

One of the early uses of TEEs in Android was for key material. Starting in version 4.1,
Android provided a Keymaster Hardware Abstraction Layer (HAL) to store keys and perform
signing and verifying operations in a trusted application (Keymaster TA). Successive Android
versions increased the capabilities of the Keymaster TA. Android 6.0 added symmetric features
(AES and HMAC) and key usage control. Keymaster 2, released with Android 7.0, added key
attestation, allowing remote clients to verify that a key was stored in a Keymaster TEE, as
well as version bindings, preventing version rollbacks. Keymaster 3 (Android 8.0) extended
the attestation features provided by the underlying TEE to also provide ID attestation using
the phone’s IMEI and hardware serial number. Keymaster is not the only Android system
that uses the TEE: the Gatekeeper and Fingerprint user authenticator, mentioned previously,
are also implemented in trusted applications. The authentication components use TEE
features to store passwords and authentication data [144].

Recent years have seen Android manufacturers adding additional hardware security
modules to their devices. This module, known as a secure element, is an analogue to
the Secure Enclave in iOS: a dedicated cryptographic module, separate from the primary
processor, for computation on secret data. The Android OS view of the use of secure elements
is through StrongBox Keymaster interface, added in Android 9. This extends the Keymaster
TA functions to support cryptographic operations off the main system processor [146].
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Appendix C

History of Forensic Tools

The tables in Appendix C.1 summarize the DHS forensic software tests [22]. They are
organized by year, mirroring the tables in Appendix C.2 which provide additional details
including full software names and versions.

C.1 Forensic Tools Access

Figure C.1: Legend for Forensic Access Tables

X successful extraction: data was accessed and displayed to the investigator

F partial extraction

7 extraction failure

- not applicable

For these tables, we display results for the latest available hardware and software iteration
of a flagship (iPhone, Google Pixel, Google Nexus, Samsung Galaxy) device. Note that this
is commonly not the latest available device/running the latest software.

Importantly, it is not always clear from the reports whether ‘extraction failure’ implies
the inaccessibility of data due to encryption; it seems that often this implies a simple failure
of the forensic tool to clearly document and display the accessed data to the investigator.
Commonly, ‘not applicable’ implies that the forensic tool does not advertise or claim to be
able to access the data in question, although in some cases it indicates that circumstances
inhibited testing of the data category. The rows labeled iOS and Android aggregate access
across the table. That is, if any tool was able to access a particular data category on the
platform, this row will contain X. If no tool achieved better than partial access, F. If all
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tools failed or were not applicable, 7 and -, respectively.

Table C.2: iOS and Android Forensic Tool Access (2019)
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iOS X X X X X X X X X X X X X X X
UFED Kiosk X - X F F X X F X - F - - - X

Device Seizure X - X X X X X X X X X F X X 7

GrayKey X X X X X X X X X X X X X X X
UFED 4PC X X X X X X X X X X F X X - X

Android X - X X X X X X X X 7 7 7 - X
UFED Kiosk X - X F X X X X X X - - - - X

Device Seizure X - X X X - X X X X 7 7 7 - 7

GrayKey - - - - - - - - - - - - - - -
UFED 4PC X - X F X 7 X X X 7 - - - - 7
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Table C.3: iOS and Android Forensic Tool Access (2018)

Forensic Tool IM
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iOS X - X X X X X X X X X X X 7 X
Blacklight X - X X X X X X F X F X X - 7

Mobilyze X - X F X 7 X F F X F X X - X
XRY X - X X X X X X X X F X X - X

XRY Kiosk X - X X X X X X X X F X X - X
Magnet AXIOM 7 - 7 F F X X F X X F X X - X

Final X - X F F X X X X - F X X - 7

Device Seizure X - X F X X X X X - F X X - X
Katana Triage X - X F X 7 X X X - - X X - 7

MD-NEXT/RED X - X F X X X X X 7 F X X - X
Oxygen X - X X X F X X F 7 X X X - 7

MOBILEdit X - X X F X X X X X F X X - X
UFED Touch X - X X X X X X X X F X X 7 X

Android X - X X X X X X X X X X X X X
Blacklight X - X X X X X F X X F 7 7 7 7

Mobilyze X - X F 7 7 X F F 7 7 7 7 7 7

XRY X - X X 7 X X X X X F 7 7 7 X
XRY Kiosk X - X X 7 X X X X X F 7 7 7 X

Magnet AXIOM 7 - 7 7 X 7 7 7 F 7 7 7 7 7 7

Final 7 - X F X 7 X F X X 7 X X X 7

Device Seizure X - X X X - X F X X 7 7 7 - 7

Katana Triage 7 - 7 F X - X X X X - - - - 7

MD-NEXT/RED X - X X X X X X X X X X X X X
Oxygen X - X X 7 X X F X X X 7 7 7 7

MOBILEdit X - X X X 7 X F X X 7 7 7 7 7

UFED Touch X - X F X F X X X X 7 7 7 7 X
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Table C.4: iOS and Android Forensic Tool Access (2017)
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iOS X - X X X X X X X X F X X X X
Blacklight X - X X X X X F F 7 F X X 7 X
Mobilyze X - X F X 7 X F F 7 7 X X 7 7

Secure View X - X F X F X F X 7 F X X - X
MOBILEdit X - X X X F X F X X F X X - 7

UFED 4PC X - X F X F X F X X F X X X X
XRY Kiosk X - X X X X X X X 7 F X X - X

XRY X - X X X X X X X 7 F X X - X
Lantern 7 - X F X X X F X - - X X - X

Final X - X F X F X X F 7 F F X 7 X
Device Seizure X - X F X F X X X X F X X - X

MPE+ X - 7 X X F X X X 7 F X X 7 X
MOBILEdit X - 7 X X F X X X 7 F X X 7 X
XRY Kiosk X - X X X X X X X - F X X - X

Android X - X X X X X X X X F X X 7 X
Blacklight X - X F F F X F F F F 7 7 7 7

Mobilyze X - X F 7 7 X F F 7 7 X X 7 7

Secure View 7 - 7 F X 7 X F X X F 7 7 7 7

MOBILEdit X - X X X 7 X F X X F 7 7 7 X
UFED 4PC X - X F X X X X X X F 7 7 7 X
XRY Kiosk X - X F X X X X X X 7 7 7 7 X

XRY X - X F X X X X X X 7 7 7 7 X
Lantern 7 - 7 F X - X X X X - 7 7 - X

Final 7 - 7 F X 7 X F X X 7 7 7 7 7

Device Seizure X - X X X 7 X F X X F X X - X
MPE+ X - X F 7 7 X F X 7 7 X 7 7 7

MOBILEdit X - 7 X X 7 X X X X F X 7 7 X
XRY Kiosk X - X X X - X X X X F 7 7 7 7
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Table C.5: iOS Forensic Tool Access (2010–2016)

Forensic Tool IM
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iOS X X X X X X X X X X X X X 7 X
MOBILEdit X - 7 X X X X X X 7 F X X 7 X

XRY X - X X X X X X X - F X X - X
Oxygen X - X X X X X X F 7 F X X - X

Secure View 7 - 7 7 X 7 X X F 7 F 7 7 - 7

UFED Touch X - X F X X F X X X F X X - -
Device Seizure 7 - X F X X X X F 7 F 7 7 7 7

BlackLight 7 - X 7 7 7 7 7 F 7 7 7 7 7 7

UFED 4PC - X X X X X X X X 7 X X X - -
MOBILEdit X - 7 X X X X F X 7 X 7 7 - -
PF Express X - 7 7 7 7 7 F X 7 F 7 7 - -

Device Seizure X - X F X F F F F X F X X - -
EnCase - 7 7 X X X X X X X F X X - -
Lantern - X X 7 7 7 7 7 X 7 F 7 7 - -
Oxygen - X X X X X X X X X X X X - -

Secure View - - - F X 7 F X X X 7 X X - -
Crime Lab - X X X X X X X X X X X X - -

MPE+ - X X F 7 X 7 X X 7 X X X - -
UFED PA - X X F F X X F X F 7 7 7 - -

XRY/XACT - X X X X X X F X X X X X - -
EnCase - - - X X X X X X - - X X - -

Device Seizure 7 7 F F X X F F F - - X X - -
XRY 7 7 - X X X X X X X - X X - -

Lantern 7 7 - F X X X X X - - X X - -
Secure View - - - F X X X X X - - X X - -

MPE+ 7 - 7 X X X X X X - - X X - -
UFED X X X F X X X X X - - X X - -

Mobilyze X X X F X X X F X - - - - - -
Zdziarski X X X X X X X X X X - X X - -

iXAM X X X X X X X X X X - X X - -
Secure View X X X - - - X X - - - - - - X

XRY X X X X X X X X X - - X X - -
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Table C.6: Android Forensic Tool Access (2010–2016)

Forensic Tool IM
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Android X X X X X X X X X X X X X 7 X
MOBILEdit X - 7 X X 7 X F X X 7 7 7 7 7

XRY X - X X X - X X X X F 7 7 7 7

Oxygen X - 7 X X 7 X F X X F 7 7 7 7

Secure View X - X F X 7 X F X X 7 7 7 7 7

UFED Touch X - X X X 7 X X X X F X X - -
Device Seizure X - X X X 7 X F X X 7 7 7 7 7

BlackLight X - X X 7 7 X F X X F X X 7 X
UFED 4PC 7 - 7 X X 7 X X X X X X X - -
MOBILEdit - X 7 X X 7 X F X X F X X - -
PF Express X - 7 X X 7 X X X X F F 7 - -

Device Seizure X - 7 X X 7 X X X X F X X - -
EnCase X - 7 X X 7 X X X X 7 7 X - -
Lantern - - - - - - - - - - - - - - -
Oxygen - X 7 F X F X F X X F X X - -

Secure View - - - F - 7 X X X X X F X - -
Crime Lab - - - - - - - - - - - - - - -

MPE+ X - X F - - X X 7 7 - F X - -
UFED PA X - X F X 7 X X X 7 7 7 7 - -

XRY/XACT X - 7 F X 7 X X X 7 X X X - -
EnCase X X X X X X X X - X - X X - -

Device Seizure X X - X F F X X 7 7 - X X - -
XRY X X - X X X X X X X - X X - -

Lantern - - - - - - - - - - - - - - -
Secure View - - - F X X X X 7 - - X X - -

MPE+ 7 7 7 X X X X X - X - - - - -
UFED X X - F X X X F X - - - - - -

Mobilyze - - - - - - - - - - - - - - -
Zdziarski - - - - - - - - - - - - - - -

iXAM - - - - - - - - - - - - - - -
Secure View - - - X 7 7 X X - - - - - - -

XRY - - - - - - - - - - - - - - -
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C.2 Forensic Tools Listing
In the following tables C.7, C.8, C.9, and C.10, we enumerate the forensic software tools
evaluated by DHS as of this writing. These tables are divided by year for readability.

Date iPhone
(iOS)a

Androidb Forensic Tool Version

Sep ’19 7 Plus (10.2) 7.1.1 UFED InField Kiosk 7.5.0.875
Jun ’19 X and 8 Plus

(11)c
- Paraben’s Electronic Evi-

dence Examiner – Device
Seizure

2.2.11812.15844

Jun ’19 X and 8 Plus
(11)d

N/Ae GrayKey OS/App Bundle 1.4.2/1.11.2.5

Apr ’19 X and 8 Plus
(11)f

8.1.0 UFED 4PC/Physical Ana-
lyzer

7.8.0.942

Table C.7: History of Forensic Tools (2019)

Source: DHS [22]

aLatest model/version included in test.
bLatest version included in test.
cThe iPhone X ran iOS 11.3.1, the iPhone 8 ran 11.4.1.
dX (11.3.1), 8 (11.4.1).
eiOS-only tool.
fX (11.3.1), 8 (11.4.1).
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Date iPhone
(iOS)a

Androidb Forensic Tool Version

Nov ’18 7 Plus (10.2) 7.1.1 Blacklight 2018 1.1
Nov ’18 7 Plus (10.2) 7.1.1 Mobilyze 2018.1
Nov ’18 7 Plus (10.2) 7.1.1 XRY 7.8.0
Nov ’18 7 Plus (10.2) - XRY Kiosk 7.8.0
Oct ’18 7 Plus (10.2) 7.0 Magnet AXIOM 1.2.1.6994
Jul ’18 7 Plus (10.2) 6.0.1 Final Mobile Forensics 2018.02.07
Jun ’18 7 Plus (10.2) 7.1.1 Electronic Evidence Examiner -

Device Seizure
1.7

May ’18 7 (10.2) 7.1.1 Katana Forensics Triage 1.1802.220
Apr ’18 7 Plus (10.2) 7.1.1 MD-NEXT/MD-RED 1.75/2.3
Apr ’18 7 Plus (10.2) 7.1.1 Oxygen Forensics 10.0.0.81
Jan ’18 7 Plus (10.2) 7.1.1 MOBILedit Forensics 9.1.0.22420
Jan ’18 7 Plus (10.2) 7.1.1 UFED Touch/Physical Ana-

lyzer
6.2.1.17

Table C.8: History of Forensic Tools (2018)

Source: DHS [22]

aLatest model/version included in test.
bLatest version included in test.
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Date iPhone
(iOS)a

Androidb Forensic Tool Version

Dec ’17 7 Plus (10.2) 7.1.1 Blacklight 2016.3.1
Dec ’17 7 Plus (10.2) 7.1.1 Mobilyze 2017.1
Nov ’17 7 (10.2) 7.1.1 Secure View 4.3.1
Nov ’17 7 Plus (10.2) 7.1.1 MOBILedit Forensics Express 4.2.1.11207
Sep ’17 7 Plus (10.2) 7.1.1 UFED 4PC/Physical Analyzer 6.2.1
Aug ’17 7 Plus (10.2) 7.1.1 XRY Kiosk 7.3.0
Aug ’17 7 Plus (10.2) 7.1.1 XRY 7.3.1
Jul ’17 7 (10.2) 7.1.1 Lantern 4.6.8
Jun ’17 7 (10.2) 7.1.1 Final Mobile Forensics 2017.02.06
Apr ’17 6S (9.2.1) 5.1.1 Electronic Evidence Examiner

Device Seizure
1.0.9466.18457

Mar ’17 6S (9.2.1) 5.1.1 Mobile Phone Examiner Plus 5.6.0
Mar ’17 6S (9.2.1) 5.1.1 MOBILedit Forensic Express 3.5.2.7047
Jan ’17 6S (9.2.1) 5.1.1 XRY Kiosk 7.0.0.36568

Table C.9: History of Forensic Tools (2017)

Source: DHS [22]

aLatest model/version included in test.
bLatest version included in test.
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Date iPhone (iOS)a Androidb Forensic Tool Version
Dec ’16 6S (9.2.1) - MOBILedit Forensic 8.6.0.20354
Nov ’16 6S (9.2.1) 5.1.1 MOBILedit Forensic 8.6.0.20354
Nov ’16 6S (9.2.1) - XRY 7.0.1.37853
Aug ’16 6S (9.2.1) 5.1.1 Oxygen Forensics 8.3.1.105
Jul ’16 6S (9.2.1) - Secure View 4.1.9
Jul ’16 5S (7.1) - UFED Touch 4.4.0.1
May ’16 6S (9.2.1) - Device Seizure 7.4
May ’16 6S (9.2.1) 5.1.1 BlackLight 2016.1
Jan ’16 5S (7.1) - UFED 4PC/Physical Analyzer 4.2.6.4-5
Dec ’15 5S (7.1) - MOBILedit Forensic 7.8.3.6085
Dec ’15 5S (7.1) - Phone Forensics Express 2.1.2.2761
Jun ’15 5S (7.1) - Device Seizure 6.8
Apr ’15 5S (7.1) - EnCase Smartphone Examiner 7.10.00.103
Jun ’15 5S (7.1) - Lantern 4.5.6
Mar ’15 5S (7.1) - Oxygen Forensic Analyst 7.0.0.408
Feb ’15 5S (7.1) - Secure View 3.16.4
Dec ’14 5S (7.1) N/A iOS Crime Lab 1.0.1
Dec ’14 5S (7.1) - Mobile Phone Examiner Plus 5.3.73
Oct ’14 5S (7.1) - UFED Physical Analyzer 3.9.6.7
Sep ’14 5S (7.1) - XRY/XACT 6.10.1
Apr ’13 4 (5.0.1) - EnCase Smartphone Examiner 7.0.3
Feb ’13 4 (5.0.1) 2.2.1 Device Seizure 5.0
Feb ’13 4 (5.0.1) - Micro Systemation XRY 6.3.1
Feb ’13 4 (5.0.1) N/A Lantern 2.3
Feb ’13 4 (4.3.3) 2.1.1 Secure View 3 3.8.0
Sep ’12 4 (4.3.3) 2.1.1 Mobile Phone Examiner Plus 4.6.0.2
Sep ’12 4 (4.3.3) 2.1.1 CelleBrite UFED 1.1.8.6
Jan ’11 3GS (3.0) N/A Mobilyze 1.1
Dec ’10 3GS (3.0) N/A Zdziarski’s Method N/A
Dec ’10 3GS (3.0) N/A iXAM 1.5.6
Nov ’10 3GS (3.0) 1.5 Secure View 2.1.0
Nov ’10 3GS (3.0) 1.5 XRY 5.0.2

Table C.10: History of Forensic Tools (2010–2016)

Source: DHS [22]

aLatest model/version included in test.
bLatest version included in test.
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