
RFQuack: A Universal Hardware-Software Toolkit
for Wireless Protocol (Security) Analysis and Research

Federico Maggi
Trend Micro Research
federico@maggi.cc

Andrea Guglielmini
Politecnico di Milano

andrea.guglielmini@mail.polimi.it

Abstract
Software-defined radios (SDRs) are indispensable for signal
reconnaissance and physical-layer dissection, but despite we
have advanced tools like Universal Radio Hacker, SDR-based
approaches require substantial effort. Contrarily, RF dongles
such as the popular Yard Stick One are easy to use and guaran-
tee a deterministic physical-layer implementation. However,
they’re not very flexible, as each dongle is a static hardware
system with a monolithic firmware.

We present RFQuack, an open-source tool and library
firmware that combines the flexibility of a software-based
approach with the determinism and performance of embedded
RF frontends. RFQuack is based on a multi-radio hardware
system with swappable RF frontends, and a firmware that
exposes a uniform, hardware-agnostic API. RFQuack focuses
on a structured firmware architecture that allows high- and
low-level interaction with the RF frontends. It facilitates the
development of host-side scripts and firmware plug-ins, to
implement efficient data-processing pipelines or interactive
protocols, thanks to the multi-radio support. RFQuack has an
IPython shell and 9 firmware modules for: spectrum scanning,
automatic carrier detection and bitrate estimation, headless
operation with remote management, in-flight packet filtering
and manipulation, MouseJack, and RollJam (as examples).

We used RFQuack to setup RF hacking contests, analyze
industrial-grade devices and key fobs, on which we found and
reported 11 vulnerabilities in their RF protocols.

1 Introduction
The increased adoption of wireless communication puts se-
curity research on the front line. Previous work has showed
that both legacy [7] and newer-generation protocols (e.g., Lo-
RaWAN [5]) require in-depth security auditing of the RF
protocols. The impact of vulnerabilities on legacy protocols
are particularly relevant, because they can affect industrial
devices, which have long life spans (decades), and thus may
never be patched until replacement.

After an almost-mandatory, blind replay-attack test with an
SDR, the typical workflow to analyze an unknown wireless

protocol begins with a quick assessment using RF dongles
(embedded RF transceivers), trying to sniff messages and
"play around" with them. If the RF dongle fully supports the
lower communication layers of our target protocol, then we
have immediate access to the payload for further analysis.
However, there exist many low-layer implementations, each
with their own peculiarities, especially if we’re looking at
industrial applications. At this point we need an SDR to cap-
ture the signal and analyze it offline, with the goal of reverse
engineering most of the lower communication layers. Once
we have complete knowledge of the protocol, we can start
looking for flaws. At this point it is not uncommon to bring
RF dongles back in the game, because when the protocol is
fully known, it’s much more reliable to use a hardware trans-
mitter to forge messages. Or maybe we need to quickly build
a custom dongle, because we need a peculiar transceiver that
supports a very uncommon modulation scheme.

Even if offline signal analysis is easier than in the past—
thanks to advanced SDR tools like URH [11]—it’s still quite
challenging and error-prone to develop full, dynamic, precise,
reliable transceivers. We wish we had flexible RF dongles that
can be quickly reconfigured and adapted to support virtually
any protocol, like with SDRs. This is what motivated us to
develop and release RFQuack1, which we like to think of as
"the Arduino for RF researchers."

RFQuack is a RF dongle system with an extensible hard-
ware and software platform that provides a solid foundation to
develop custom RF dongles (see Figure 1) for wireless reverse
engineering. While allowing full manual control, RFQuack in-
cludes ready-to-use RF-analysis features such as an automatic
frequency and bitrate estimation that detects and clamps on
transmissions in real time (in under 33 ms, with a 20 kHz ac-
curacy). It supports multiple radios simultaneously, including
mixed sub-GHz and 2.4GHz ones, and virtually any embedded
radio. Also, RFQuack makes it easy to program interactive RF
protocols without changing the firmware: It includes a packet
filtering and modification engine that runs on the dongle and

1https://github.com/rfquack

1

ar
X

iv
:2

10
4.

02
55

1v
1

 [
cs

.C
R

]
 6

 A
pr

 2
02

1

https://github.com/rfquack

Figure 1: Two RFQuack modular dongles with main board
(ESP32 and Teensy 3.2) and two RF daughterboards each
(nRF24 + RF69 and two LoRa RF96, at 433 and 868 MHz).

can be scripted from the host.
We verified with practical use cases that the modular

firmware makes it easy to implement new functionalities.
This makes RFQuack suitable not only for security research,
but also for hacking contests and trainings. In addition to and
advanced IPython shell that leverages a robust Protobuf-based
RPC, we believe that its open API will ease its integration
with software such as URH, to offer a hybrid RF-analysis
platform based on SRD and equally-flexible RF transceivers.

In summary, we make the following contributions:

• A complete and extensible open hardware and software
system that makes hardware-assisted RF analysis flexible
and easier to approach.

• We implement 9 firmware modules both to show how
to use RFQuack’s API and to provide the essential func-
tionalities to RF analysis and red-team tasks. Among
these modules we include a signal-clamping routine that
automatically decodes sub-GHz signals.

• Through a series of case studies on real consumer and
industrial RF devices, we demonstrate RFQuack’s func-
tionalities and provide a practical reference to its inter-
nals, to help future developers to extend it.

2 State of the Art and Motivation
The essential functionality of any RF-analysis system is to
correctly "translate" a bit stream into its analog representation,
by modulating the carrier waveform signal (or vice versa),
and let users to easily "tap" into (or control) this process.

Currently available research tools can broadly divided into
SDRs and RF dongles. These approaches have opposite bene-
fits and drawbacks, which motivated us in creating RFQuack
to bridge this gap.

2.1 Software-defined Radios (SDRs)
To receive or transmit data with SDRs, we must implement
most of the wireless protocol, down to the physical layer.

Hardware vs. Emulation. Traditional radio systems have
hardware parts such as filters, converters, modulators, and
demodulators, connected together to process any signal re-
ceived by the antenna, and translate it into a different form

(e.g., audio)—and vice versa. In SDRs, such components are
emulated in software, so they can implement any (wireless)
communication stack without changing hardware.

High-end SDRs. While basic SDRs are essentially analog-
to-digital converters (like the popular RTL2832U DVB-T
receiver), professional SDRs integrate advanced digital signal
processors (DSPs), field programmable gate arrays (FPGAs),
and other dedicated, programmable hardware, that run the
intensive tasks. The pure software part of such SDRs just
configures the board and emulates the remainder components
not available on the board.

Signal Sampling. Once tuned at a given frequency and band-
width, an SDR board captures sample values of any received
electric current, which is an analog, alternating signal (also
known as waveform). These samples form a time series of
complex values—often known as "I/Q data," where I and Q
are, respectively, the real and imaginary parts. SDRs capture
(or generate) millions of samples per second (sps), producing
a high-resolution digital representation of an analog signal
waveform.

Post-processing. The received I/Q samples are transferred to
the host via Ethernet or USB links for processing, with tools
such as GNU Radio [3] or URH, which facilitate demodulat-
ing, interpreting, and decoding any (digital) data carried by
the waveform. Regardless of the methodology, the outcome
is a bit stream, which can be parsed for higher-level protocol
dissection.

2.2 Embedded RF Dongles
To receive or transmit data with RF dongles, one must obtain
or create a dongle that matches (i.e., implements) the physical
layer of the target signal or device.

True Radios. RF dongles are small embedded systems with
a host interface (typically serial, via USB or BLE), a micro-
controller unit (MCU), and a digital transceiver module. The
first and most-popular hacker-friendly RF dongle is the Yard
Stick One [10], based on the Texas Instrument CC1111 chip,
which integrates, within a single package, an MCU and the
CC1101 sub-GHz radio module. The MCU runs a firmware
that let host client software change RF parameters and trans-
mit or receive data, by interacting with the registers on the
MCU and the RF module. Unlike SDRs, RF dongles imple-
ment a protocol’s physical layer in hardware, which processes
the analog signals received by the antenna into bit streams—
and vice versa—exposing a digital communication interface
to the host.

Decoding Capabilities. The capabilities of an RF dongle
is bound to its transceiver, which cannot be changed since
its soldered or integrated. For example, the Yard Stick One,
makes it straightforward to decode data modulated with ASK
or FSK, but PSK is simply not supported by the CC1101.
Unlike with SDRs, the analyst must know the RF parameters

2

Table 1: Feature comparison of SDR-based vs. RF-dongle-based approaches and tools, discussed in Section 2.3
SDR RF Dongles

GNU Radio URH Single Radio Multi Radio RFQuack
Spectrum Coverage 103 to 106Hz, continuous Only specific bands Arbitrary bands, discrete

RF Parameters Any (custom physical layer) Hardware bound All (modular)
Host Interfaces Wired (USB, Ethernet) USB, BLE USB, BLE, WiFi, Cellular Any (modular)
API Uniformity High (established project) Very low High

Extensibility Very high High Very low (SW) High (HW, SW)
Main Target Layers Physical Logic Logic Hybrid Hybrid

Focus Research Research, RE, Fuzzing Red-teaming Red-teaming Research, RE, Fuzzing
Development Effort High (DSP) Medium (UI, Scripting) Low (Scripting) Low (UI, Scripting) Medium (Scripting, C)

Transceiver Performance Medium (Latency) Very high (IC) High (SPI) High (SPI)
Hardware cost $20–15,000 $10-200

(i.e., modulation scheme, carrier frequency, and bitrate) a
priori, as the (de)modulation happens in hardware.

Post-processing. The firmware running on an RF dongle
"talks" with a companion client tool on the host, typically
a mobile application or command-line interface (CLI) that
makes the dongle actually usable. RfCat [2] is the first
and most-popular CLI for CC1111-based RF dongles such
as the Yard Stick One or the PandwaRF [12]. Without go-
ing into further details, there exist similar solutions for the
2.4GHz bands: The nRF24 is a popular hacker-friendly
radio transceiver, which has inspired the creation of vari-
ous RF dongles, firmware, and utilities (e.g., nRF Research
Firmware [8]).

2.3 Motivation: The Best of Both Worlds
The diverse characteristics of SDRs vs. RF dongles sum-
marized in Table 1 have motivated researchers and hard-
ware developers to create feature-rich boards with multiple
transceivers that cover the most common bands. For instance,
the HackCube integrates an SDR receiver, WiFi, Bluetooth,
NFC, and a 2.4GHz and sub-GHz transceiver. While tools
such as the HackCube have merit, they are still monolithic (for
miniaturization reasons). Without an open, flexible design,
it’s hard for the community to maintain and contribute to the
development of such devices: Adding hardware or software
modules to devices like the HackCube is possible by only
patching it, as it’s not designed for extensibility.

The framed text in this section indicates an observation
or design principle beneath RFQuack.

Spectrum Coverage and RF Parameters. The main char-
acteristic of SDRs is their wide spectrum coverage (or band-
width). Even a $20 SDR can tune at any frequency between
300MHz and 1.5GHz. By design, RF dongles can only tune to
a very limited, discrete set of bands (e.g., 125kHz, 315MHz,
433MHz, 2.4GHz) because their RF frontends have a basic
frequency synthesizer.

Since the physical layer is implemented in hardware,
RF dongles can only support a finite set of modulation
schemes, synchronization words, packet formats, and CRC
algorithms.

Adding new frontends for RF dongles to support new bands
and physical layers should be as easy as connecting the
right hardware module, like in advanced SDR systems
(e.g., Ettus USRP), which come with a variety of daugther-
boards.

Host Interfaces. SDRs need high-bandwidth interfaces such
as USB or Ethernet. The most popular RF dongle (Yard Stick
One) is based on USB, while the more recent PandwaRF,
WHID Elite, or HackCube, have BLE, WiFi or cellular inter-
faces, mostly because they are conceived with a red-teaming
purpose (e.g., physical security), so they can launch attacks
remotely, in a headless fashion.

If RF the many dongles had a uniform connectivity layer on
top of such interfaces—instead of custom, undocumented
protocols—researchers would be empowered to develop
with these platforms and benefit from their diverse features.

API Uniformity. GNU Radio offers a uniform, documented
API. While performance-critical signal-processing blocks can
be written in C++, GNU Radio allows to develop radio ap-
plications in Python, and compose them with a GUI. URH
exposes a plugin API to extend its signal-processing, decod-
ing, and fuzzing capabilities.

The only effort to provide a uniform API in the RF dongles
world is PandwaRF’s Android API and SDK. However, be-
ing the PandwaRF a commercial, single-radio product, its
firmware is not open source and the hardware capabilities
are bound to the fixed RF frontend. Similar efforts should
be embraced by open source RF dongle systems.

Extensibility and Development Effort. Research tools like
URH make RF reverse engineering accessible, although im-
plementing complex protocols is challenging: Despite GNU
Radio offers a high-level experience with fine-grained con-
trol over the processing pipeline, RF protocol design calls for
in-depth DSP knowledge.

While it is easy to extend and port software across different
SDR hardware thanks to the uniform API exposed by toolkits
like GNU Radio or URH, the RF world is very different: Each
system has its own custom firmware. As a result, even when

3

the firmware is open sourced, it is hard to extend unless by
patching it.

Extending the firmware of an RF dongle should be facili-
tated by a consistent API, which allows the developers to
focus on adding new functionalities, rather than reinventing
custom abstraction layers.

Main Target Layers. SDRs allow to work at any protocol
layer. Although tools like GNU Radio are meant primarily
to work at the physical layer, they have support to parse the
logic of digital protocols (e.g., packet format). Instead, URH
is focused on supporting the reverse engineering of the logic
layer.

RF dongles only allow to interact with the logic layer of
protocols. Depending on the RF frontend, some RF dongles
may allow partial access to lower layers. For instance, some
RF dongles allow to consume RSSI2 samples fast enough to
estimate the spectrum density. In Section 3.4 we show how
we use these samples to implement the auto-tuning feature
of RFQuack. The HackCube even includes a simple SDR re-
ceiver, although creating custom receivers is still constrained
by the MCU computational power.

Focus. Both SDRs and RF dongles can be used for research
purposes, but there are some small differences. Out of the box,
GNU Radio is less fit for offensive tasks, although it does not
prevent to develop custom, even very advanced, physical-
layer fuzzing routines. URH is conceived with a clear RE
orientation: Besides the UI that assists protocol parsing, URH
has ready-to-use functions to create fuzzing templates and
them directly against the targets.

RF dongles are optimized for offensive and red-team activ-
ities. For example, the PandwaRF has rolling-code-cracking
routines, WHID Elite [4] comes with a modem (to simulate
remote attackers) and a USB port (for HID exploits).

To draw an analogy, RFQuack is more inspired by URH
than by the available RF dongles: It facilitates the exten-
sion of its firmware to support custom protocol parsing,
complex tasks such as fuzzing or interactive logics, and to
test for known vulnerabilities (e.g., RollJam, MouseJack).

Development Effort. It is not only hard to develop physical-
layer protocols (e.g., with GNU Radio), but it requires in-
depth knowledge in analog and digital signal processing, in-
formation theory, and cryptography. Frameworks like GNU
Radio are very sophisticated and focused on technical ad-
vances rather than on user documentation and usability, which
make them not easy to approach. URH has made a step for-
ward, by providing a modern UI that works out of the box,
a plug-in API, and scripting capabilities. RF dongles make
"quick" tasks very easy to approach, as they offer a simple
UI and Python scripting, but it is not immediate to develop

2The receiver signal strength indicator is the measured power of a received
signal at a given carrier frequency.

firmware extensions, and nearly impossible to change their
hardware (most RF modules are integrated or embedded on
the board).

Transceiver Performance. Single-radio RF dongles can em-
bed the radio frontend and the MCU in a single, integrated
SoC package, which minimizes latency on the bus. While
SDRs can be optimized with FPGA or hardware DSPs, a
non-negligible portion of the protocol consists of native or
interpreted (Python) code running on the host computer, on
top of a general-purpose OS, which cannot comply with the
determinism and real-time constrains required to implement
accurate, efficient, and reliable transceivers.

While RFQuack’s design imposes some latency due to the
detachable RF frontends, the physical layer is implemented
in hardware, which guarantees far more precision and re-
liability than any SDR implementation. Some protocols—
especially in the 2.4GHz bands and above—simply cannot
be conveniently developed with an SDR, if not with very
expensive hardware and FPGA offloading.

3 RFQuack High-level Overview

Both hardware and software of RFQuack are fully modular.
This ensures that we can always leave convenient "tapping"
points for users to customize, while relying on a uniform
interface to multiple radio transceivers.

In addition to using the built-in IPython shell, we make it
easy for users to build firmware modules to implement signal-
reconnaissance tasks, transmit or receive (post-processed)
data, discard packets not matching filters (e.g., selective pro-
tocol sniffing), as well as interacting at the low level with the
MCU and the transceiver (e.g., read and write registers).

3.1 The Journey of a Wireless Transmission

Reading Figure 2 from left to right, (1) when a target de-
vice (e.g., an IoT embedded system) transmits packets, the
signal is received by one or more of the daughterboard ra-
dios. An interrupt request from daughterboard (2) invokes
onPacketReceived(pkt) of all loaded module, in a user-
configurable order. For example, if enabled, (3) the packet-
filtering module ignores packets not matching a set of user-
provided regular-expression patterns, and enqueues the ac-
cepted ones for further processing. If enabled, (4) the packet-
manipulation module pulls packets from such queue, (5) pipes
them through a set of user-provided modification rules, and
(6) enqueues them again. The repeater module, if enabled,
(7) consumes any enqueued packet and (8) pushes them to
another queue. Depending on the settings, (9) packets can
be serialized and proceed towards the host. Alternatively, the
user may set RFQuack to (11) forward the (modified) packets
to the repeater module, which immediately transmits them.

4

A
 Arduino

R
ad

io
D

riv
er

R
ad

io
D

riv
er

MCU
SoC

RF
module

RF
module

U
se

r M
od

ul
e

N

U
se

r M
od

ul
e

2

U
se

r M
od

ul
e

1

API

Pr
ot

ob
uf

 R
PC

Pr
ot

ob
uf

 R
PC

In
sp

ec
to

r

IP
yt

ho
n

Custom

Stacking boards

Main board

Daughter
board 2

Daughter
board 1

MQTT

Serial

Modular HW dongle system Extensible firmwareHW Abstraction Cross-platform RPC

Host

onPacketReceived(pkt)
onUserCommand()

onLoop()

afterPacketReceived(pkt)

onInit()

Ta
rg

et
 Io

T
D

ev
ic

e

Signal reconnaissance
RX/TX and post-processing
Protocol fuzzying
Protocol sniffing
User-level scripting
Regex filters configuration
Registry introspection

Firmware module hooks

Ad
ap

te
r

Ad
ap

te
r R

ad
io

 P
ro

xy

Figure 2: The high-level architecture of RFQuack presented in Section 3.1 with details in Section 4.

3.2 Modular Hardware Design
It is possible to swap RFQuack daughterboards because
they’re connected with simple pin headers. Multiple boards,
with up to 4 RF daughterboards each, can be stacked using a
simple pin header. Each daughterboard needs a serial periph-
eral interface (SPI) bus, plus some optional GPIO pins. The
3 SPI bus lines (SI, SO, CLK) are shared across all daugh-
terboards (SPI slaves). To allow the MCU (SPI master), to
selectively talk to a specific transceiver, each RF daughter-
board independently routes 1 slave-select (SS) line to the
main board, plus 1 or more GPIO lines (e.g., for interrupts).
The MUC triggers the SS to notify a specific transceiver that
there is data on the SPI bus. The transceivers can start a SPI
transaction by triggering an interrupt on a GPIO.

3.3 Modular Firmware Design
As shown Figure 2, the module API exposes 5 meth-
ods, which allow to implement user modules that can
tap into the data-processing pipeline: onInit(), when the
module is first loaded; onLoop(), at each MCU cycle;
onUserCommand(), when a valid command is received via the
RPC; on/afterPacketReceived(pkt), called upon and after
a packet is received from the transceiver. Each functional-
ity of RFQuack is implemented as a module. For example,
the radio-management module receives and dispatches users
commands (onUserCommand()) such as set/get registers and
set/get RF parameters. The packet-filtering module, instead,
is triggered on the onPacketReceived(pkt) event, and calls
onLoop() to flush any received or manipulated packet as soon
as possible. In Section 5.5 and 5.4 we showcase the module
API by implementing RollJam and MouseJack, two popular
RF attacks.

Transceiver-agnostic, Uniform API. Like with GNU Ra-
dio sink blocks RFQuack’s abstracts different transceivers
via the same API, which provides functions to change the
radio mode (RX, TX, idle, jam, promiscuous), RF parameters
(carrier, bitrate, deviation, bandwidth), packet format, output
power, to get-set registers, and to send-receive binary data.

The list of exposed functions is in Appendix B. Optionally, it
exposes transceiver-specific functions (e.g., the CC1120 has
16 bit extended registers).

Connectivity and Headless Operation. To meet red-
teaming operational requirements—although more compact
RF dongles exist—RFQuack is designed with an open connec-
tivity model in mind. RFQuack has built-in support for serial
(USB) and MQTT transport (for remote, distributed setups),
and the client side supports deserialization and automatic type
inference.

3.4 Automatic Signal Clamping
In addition to the precise carrier frequency of the target com-
munication, we must know its data rate (or bitrate, bits/sec)
to correctly interpret a demodulated signal into bits. Usually,
when short of luck at inspecting FCC (leaked) documents, we
employ an SDR and a spectrum analyzer to measure the power
value at each frequency, and visually identify the highest peak.
Similarly, if the bitrate is unknown, the only option available
when using RF dongles is to set the bitrate to the highest
value, set the radio in promiscuous mode (i.e., do not filter
incoming packets based on preamble length or sync-word),
and post-process any captured data to downsample it to the
correct bitrate. This is not ideal, because it does not allow the
user to fully leverage on-board filters and other functionalities
of the firmware.

RFQuack has a frequency-finder module that listens on
a range and, as soon as it detects a new transmission, tunes
to that frequency and triggers the bitrate-estimator module.
For example, if a car’s key fob is pressed within range, the
modules infers carrier frequency and bitrate, and present the
user with the payload. This happens in real time, entirely on
the dongle, without interfering with other tasks. It is impor-
tant to clamp on the signal before its preamble ends, so that
RFQuack will be able to synchronize and decode the trans-
mitted payload. Although RFQuack supports multiple radios,
these modules uses a single transceiver, leaving any spare
transceiver available to work on other frequencies.

5

While the PandwaRF supports similar functionalities, we’re
the first to implement it as a module and, most importantly,
release it as open source code.

4 Implementation Details
RFQuack modular hardware is based on Adafruit’s Feather
system, as it comes with stacking boards with up to 4 slots
each. We tested early versions of RFQuack on the ESP32
and ESP8266 SoCs (MCU + WiFi), the RFM69 and CC1120
RF modules (sub-GHz bands), and the SIM800 cellular mo-
dem. We provide the open-hardware schematics for a CC1120
adapter and a compact nRF24 FeatherWing. The most recent
version supports the CC1101 and nRF24 RF modules3, work-
ing simultaneously, with up to 5 radios (a shared SPI bus plus
2 GPIOs are required for each radio), and we tested it with
the Teensy 3.2. Thanks to the Arduino and similar abstraction
frameworks, RFQuack could run on virtually any of the 800
boards supported by PlatformIO4.

4.1 Loop, Dataflow and Queues
RFQuack’s firmware runs a high- and a low-priority loop.
Any new packet goes through all the high priority tasks and
then, via a decoupling queue, through the low priority ones.
Each module may implement different—high or low priority—
hooks to interact with the underlying framework.

For better compatibility, we do not to leverage hardware
parallelism, since it is supported only by few boards (e.g.,
ESP32 has two cores, while ESP8266 is single core). How-
ever, if a user wants to trade off compatibility for speed, they
can just change RFQuack’s main loop() to assign the high-
and low-priority loops to two distinct cores.

4.2 Multi-radio Abstraction Layer
RFQuack abstracts each RF frontend and exposes a proxy
API. Instead of writing our own native drivers for each RF
frontend, we use a decoupling driver adapter that wraps the
native driver. We treat native drivers as external dependencies
(we mainly use RadioLib [1]), which can evolve indepen-
dently from RFQuack. As RFQuack supports multiple radios
simultaneously, the proxy forwards each request to the correct
driver. For example, setModulation(OOK, RadioB) sets
the modulation of the second frontend to OOK. Since each
RF frontend may have unique features, not covered by the
proxy API, we still allow direct access to the native driver.

4.3 Carrier Frequency Detection
Many transceivers provide the RSSI value, an estimate of the
power received, in decibel. Samples of the RSSI can be used to
draw a low-resolution spectrum (e.g., the PandwaRF Android
mobile application provides that) and detect peaks, in order
to spot transmitting devices nearby. A naïve approach would

3We’re currently porting from RadioLib the wrapping code to support the
RFM2x, RFM69, and RFM9x LoRa modules.

4https://platformio.org/boards

be to simply loop through all the frequencies in a target range
and collect RSSI samples. We measured that it takes no less
than 1ms for the CC1101 to tune and provide a reliable RSSI
sample, which means at least 5s to scan the 432–437MHz
range with a kHz resolution.

Scan by Region. Instead of tuning to all the frequencies, we
use a scan-by-region approach, leveraging the programmable
receiver bandwidth filter available on any modern transceiver,
which let us narrow the range of frequencies that influence
the RSSI.

We set the filter bandwidth to the maximum value, Bmax,
take RSSI samples in the middle of each of the N regions, and
identify the most active one.

We tune to the center, fi, of each region, starting from a
given offset, fo, is then:

fi = fo + i · (1− c)
2
·Bmax i ∈ {0,1,2, . . . ,N},

where c ∈ (0,1) is the region-overlap ratio. As shown in
Figure 3, the regions must overlap to avoid corner cases due
to the natural attenuation of the non-ideal bandpass filters.
A guiding criterion to set the value of c is that it should be
proportional to the filter slope, which can be obtained from
the filter response reported on the transceiver datasheet. We
obtained reliable results by setting c = 0.25 on the CC1101.

Trichotomic Search. We run a fine-grained search within
the most active region to find the peak frequency, by halving
the receiver’s bandwidth at each iteration. To avoid ties while
keeping efficiency, after halving the bandwidth, we split the
resulting search domain in 3 sub-regions. This narrows down
the theoretical search time—within a 5MHz range—to 21ms,
while a linear search of each of the 87 regions5 would take
87ms.

Tuning Time Optimization. To limit the time ttune required
by the transceiver to tune and provide stable RSSI readings,
we pre-compute and cache the calibration registry values.

Most transceivers include self-calibration routines, which
must be run before tuning to a frequency (or channel). For
instance, the CC1101 can hop to a frequency in thop = 75µs
and calibrate in tcal = 712µs. The radio driver also introduces
a latency when sending the calculated registry values on the
SPI bus. We instrumented the firmware, tuned the radio 100
times on different frequencies and measured tdriver = 320±
20µs.

Since the range of frequencies is known in advance, we
precompute and cache the calibration registry values for each
frequency. Overall, ttune = thop +��tcal + tdriver + tRSSI = 75+
��712 +320+600ms≤ 1ms, where tRSSI is the minimum time
for the radio to provide a stable RSSI value.

5The widest receiver passband filter on the CC1101 is 812kHz, which
means 9 regions for the first pass and 87 iterations with progressively nar-
rower filters, down to 58kHz.

6

https://platformio.org/boards

Figure 3: Carrier frequency peak detection (Section 4.3).

4.4 Automatic Bitrate Estimation
By default, RFQuack sets the receiver to its highest supported
bitrate, thus oversampling any incoming transmission. The
Nyquist–Shannon sampling theorem implies that an analog
signal must be sampled at least twice its bitrate to recon-
struct the rectangular wave6. Any digital signal (especially
in the sub-GHz bands) always starts with a preamble (i.e., a
sequence of alternating 0s and 1s) to "wake up" the receiver,
which will use it to synchronize to the incoming packet. At
this point, as soon as RFQuack has received enough over-
sampled alternating symbols with repetitions (e.g., four 1s
followed by four 0s, repeated 3 times), it uses this array of
symbols to estimate the true bitrate. The estimated bitrate, r̂,
is such that the received array (oversampled at ro) has only
one repetition of each symbol. We approximate this with the
(weighted) average of the number of consecutive 1s (or 0s)
found in the preamble P:

r̂ =
ro ∑i wi

∑i |pi| ·wi
(1)

Where |pi| is the number of consecutive 1s within the pream-
ble P and wi is the number of occurrences of pi in P. For exam-
ple, P = 1|00|111|000|11|000|111 counts as 1 ·1+3 ·2+2 ·1
divided by the sum of weights, 1+2+1. Since the preamble
does not carry any information, we accept to lose it during
this operation, with the advantage of not requiring to store
the packet for downsampling: We adjust the correct bitrate
before the preamble ends, so any subsequent incoming data
is captured at the correct bitrate.

For simplicity, we assumed a 2-symbols OOK scheme:
Section 7 explains how to extend this to other modulation
schemes. The 2.4GHz is very different and this functionality
is not really needed: The nRF24 transceiver, and most of
the 2.4GHz transceivers, only support 2–3, very high, bitrate
values.

Runtime Estimation. The only operation run on the MCU
is a loop over a fixed-length bit stream, P, to count the repe-
titions in pi. The upper bound is determined by the chosen
oversampling bitrate, ro, and minimum expected preamble
length, after which an estimation is available.

For example, to capture signals up to 15 kbps, we set ro =
30kbps and stop after 32 bytes (half the size of the CC1101’s
FIFO), which translates into roughly 8.53ms = 1

30kbps · 32 ·
8bits.

6This limits any bitrate-estimation technique to half of the receiver’s
maximum bitrate.

Table 2: Key fobs used in our first case study.
Car Model Key fob Model Freq. (MHz) Bitrate (kbps) Transm. len. (ms)
Fiat RX2TRF198 433.92 9.6 295
Nissan TWB1G766 433.92 5.0 370
Audi HELLA FS12A70 434.42 3.4 183

5 Real-World Case Studies
The goal of this section is to showcase how RFQuack applies
to various scenarios, from fuzzing unknown protocols to cre-
ating custom modules that implement (known) exploits. We
have presented some these case studies as PoCs of RFQuack
at the CanSecWest conference and at the Armory of Hack In
The Box.

5.1 Sniffing Key Fobs and Opening a Car
We started with cars key fobs, since they are widely available
RF transmitters, they operate on the ISM bands, they are
interesting targets (since they protect valuable assets from
theft and robbery), and transmit a rolling code, so the payload
content changes while the structure is fixed. We used the
3 key fobs listed in Table 2. Also, we used a BladeRF to
capture the signals emitted by these transmitters and used
them as a baseline to validate the auto-clamping modules (see
Section 6).

Using the IPython shell connected via serial to a RFQuack
dongle, we configured the system in promiscuous mode. De-
spite the RF noise, and even if we didn’t know the sync word
in advance, we quickly setup the packet-filtering module to
discard any packet without a valid preamble. Using the con-
sole it was easy to transmit some packets back to the receiver,
which were discarded because of the rolling-code mecha-
nism7. It was during this experiment that we discovered that
the receiver of one the cars was vulnerable to replay attack8:
We were able to deterministically open the doors despite the
code was rolling at any transmission.

5.2 Vulnerable Industrial Devices
We analyzed the protocol of 5 sub-GHz industrial radio de-
vices used to automate and control manufacturing and logistic
processes9.

In addition to sniffing packets for analysis, we used
RFQuack to implement a loop to find the correct rolling code,
given a rolling code we knew from another, same-vendor
device.

q.packet_filter.add(pattern="^aaaa", negate=False)
q.radioA.rx(); q.radioB.tx()

for pkt in q.data:
we knew rcode0 from another, same-vendor device

7Video of this demo: https://youtu.be/jLI-oby2mu0
8We’re reaching out to the car manufacturer for responsible disclosure,

because the car model and brand is current and very popular.
9We cannot explicitly mention the vendor names without indirectly reveal-

ing our names, because we are the only research group that looked at those
devices and there was quite extensive media coverage. In case of acceptance
we will include all the identifying details.

7

https://youtu.be/jLI-oby2mu0

pkt[2:4] ^= rcode0 # XOR with known rolling code
q.radioB.send(pkt) # transmit

Once we heard the receiver accepting our command, we knew
that we had used the correct rolling code. This allowed us
to exhaustively build a table of valid rolling codes. Knowing
valid rolling codes and the packet structure, we configured
the filter, manipulator, and repeater modules of RFQuack to
wait for one valid transmission, change some specific bytes
in the packet, and transmit the modified packet.

q.packet_filter.add(pattern="^aaaa", negate=False)
q.radioA.reset_packet_mods() # reset module

XOR byte 7 with 0x04, byte 10 with 0x08, etc.
q.radioA.add_packet_mod(i=7, val=0x04, op=XOR)
q.radioA.add_packet_mod(i=10, val=0x08, op=XOR)
q.radioA.add_packet_mod(i=12, val=0x04 + 0x08, op=XOR)

As a result, the vulnerable target receiver executed a command
of our choice. Moreover, since the routine was reactively
executing the same loop in a headless and continuous fashion,
we were able to keep the target in to a persistent denial-of-
service state, by repeatedly sending "shut down" commands.
Note that the packet-modification routine runs on the MCU,
and could be used to implement multi-radio scenarios like the
one just presented.

5.3 Sniffing 2.4GHz Protocols
The two most challenging aspects of 2.4GHz protocols are
that the spectrum is very crowded (e.g., cellular, WiFi, Blue-
tooth) and protocols can use frequency hopping. This makes
a pure SDR approach quite impractical. We conducted this
experiment outside a Faraday cage, in challenging conditions:
In addition to cellular traffic, there was a WiFi AP and a Blue-
tooth smartwatch. Knowing only the bitrate from the public
FCC database, we were able to identify the exact frequency
of a Microsoft wireless mouse and narrow down its address in
seconds, with only 6 minutes of manual work on the command
line (see Appendix D.3).

By generating several packets (i.e., by moving the mouse
excessively nearby the receiver) we isolated its sync word
(and confirmed it from FCC database)10. Then, by looping
once again through all the frequencies, we isolated only the
traffic coming from that mouse, given that we knew the sync
word. The same experiment would have required hours of
SDR development.

5.4 MouseJack Attack Implementation
MouseJack is a well-known attack against non-Bluetooth
2.4GHz HID devices such as mice and keyboards, which
has recently enjoyed quite some attention [9], because many
vulnerable, unpatched devices are still sold an used. We have
taken this popular attack as a representative example to show
how to create a custom user module that implements the

10Video of this demo: https://youtu.be/c4OSh3jQNsY

exploit. The disarmed source code (i.e., without payload) is
available at RFQuack’s repository, so we hereby focus on how
the implementation leveraged RFQuack’s module API.

The MouseJack module overrides the onUserCommand() to
react on "start/stop" commands sent over serial or MQTT,
to receive the attack payload (e.g., HID commands) from
the user. The "start" command puts the radio in promiscuous
mode (using the built-in setPromiscuousMode() method) and
starts receiving (setMode(RX) and setFrequency(2400)).

The MouseJack module overrides the
onPacketReceived(pkt) function, to check if the scan-
ning loop has captured a valid payload, by checking that the
packets contain a valid sync-word and pass the CRC. Based
on the received valid packets, the module continues and
fingerprints the transmitting victim device (e.g., Microsoft,
Logitech). The resulting module has under 350 lines of code,
while the reference standalone implementation has over 470
lines, plus libraries.

5.5 RollJam Attack Implementation
In the sub-GHz range, RollJam is a very popular rolling-code-
cracking attack. The inventor [6] used a custom-made device
with two transceiver: One is to jam the legitimate receiver (i.e.,
on the car), and the second to listen for packets from the key
fob, to capture rolling codes—which will never be received
by the legitimate, jammed receiver. Last, RollJam stops the
jamming loop and transmits the captured still-fresh rolling
code, which will be accepted by the receiver that couldn’t see
such code while blinded. We have taken this popular attack
as a second, representative example to show how to develop
custom modules by leveraging RFQuack’s firmware API to
multiple radios. The source code is available at RFQuack’s
repository, so we hereby focus on how the implementation
leveraged RFQuack’s module API.

Totaling 139 lines of code, the RollJam module imple-
ments the onUserCommand() function to handle "start/stop"
commands, and to allow the user to configure the num-
ber of packet repetition, and which radio to use for jam-
ming and which one for listening. The "start" command
puts the listening radio in receive mode (setMode(RX,
listenRadio)) and calls the setMode(JAM, jamRadio) on
the jamming radio. Any valid incoming packets will trig-
ger the onPacketReceived(pkg) function, implemented by
the module. If enough valid data is received, the jamming
radio is idled and the listening radio is used to repeat the last
valid rolling code (listRadio->transmit(pkt)).

5.6 RF Hacking Contests and Trainings
Capture the flag (CTF) competitions have fully embraced
RF hacking challenges, to the point that we can participate to
RF-only contests, with Capture the Signal11 and Hack-a-Sat12

being the most recent ones.

11https://cts.ninja
12https://www.hackasat.com/

8

https://youtu.be/c4OSh3jQNsY
https://cts.ninja
https://www.hackasat.com/

While reverse engineering offline signal captures is a useful
learning experience, real-world targets will always be physi-
cal, interactive devices with real radio transceivers. RFQuack
makes it easy to provision interactive devices thanks to its
scripting capabilities and firmware modularity, while main-
taining fine-grained control on the RF protocol, which is an
essential aspect for contests and trainings, because they re-
quire progressively more difficult challenges.

For example, we used RFQuack to build a remotely-
programmable, battery-powered beaconing device that we hid
in a conference room, activated it during a presentation, and
asked the attendees to start inspecting the spectrum "around
a certain frequency". We asked them to locate the beacon,
on which we physically printed a secret key, which they to
transmit to the same device to unlock the next-level challenge.

Thanks to its cross-platform backend protocols (e.g.,
MQTT, including AWS IoT’s MQTT), it is very easy to inte-
grate RFQuack nodes into a web service, for example to emu-
late a complex IoT device with a web frontend. RFQuack’s
firmware is already delivered via automated, "dockerized"
builds, which make it suitable for automated, scalable deploy-
ments on multiple, distributed notes.

6 Experimental Evaluation
While that the most useful aspect of RFQuack is its flexibility,
the system must be robust in order to be usable. Our first
goal was to show that RFQuack can automatically capture
sub-GHz transmissions in real time. Then, we investigated
the accuracy the automatic signal clamping feature, so that
users know what to expect from it.

6.1 End-to-end Experiment
We used a key fob to generate a reference signal, which we
captured with a BladeRF SDR and decoded it with URH
to know the baseline RF parameters. Among the key fobs
in Table 2, we choose the Audi’s HELLA FS12A70, be-
cause it transmits the shortest packet, which will put our auto-
clamping module under time pressure13.

We pressed the key fob button 50 times while the dongle
was actively searching for valid transmissions. We used a
regular expression to parse the log and extracted the running
time for both the frequency finder and the bitrate-estimation
modules, and the recovered frequency and bitrate values. We
correctly identified and decoded 43 over 50 transmitted pack-
ets, which is a very positive result outside a Faraday cage. The
remaining 7 packets were wrongly decoded due to wrongly
inferred parameters.

Results. The results in Table 3 are aligned to our theoretical
estimations. The measured time for frequency estimation is
about 1.5 ms greater than the expected. We traced this back
to the native radio driver performing some additional SPI

13Video demo using the frequency and bitrate recovery on various key
fobs: https://youtu.be/36Bt8un_Y-Y

transactions to handle special configurations. For example,
every time a packet is received, the driver queries the radio
for the CRC configuration. We optimized some of these trans-
actions and we plan to review the rest of the native drivers for
optimization. The overall running time is ≤ 33 ms, which is
shorter than the preamble.

The mean values are affected by the 7 incorrect estimations.
We experimentally validated that a standard deviation up to
0.2 MHz is not posing issues to the decoding phase. Thus
any estimated frequency between 434.2 and 434.6 MHz is
considered valid.

The estimated mean bitrate is affected by outliers because
this step runs after the frequency estimation. For this reason,
an incorrectly estimated frequency almost always implies a
wrong bitrate value. This explains the high standard deviation
value despite the accurate mode. Moreover, we experimentally
validated that a bitrate deviation up to 0.3 kbps does not affect
the decoded signal.

6.2 Frequency Recovery Accuracy
We first focused on the frequency recovery part, using the
second embedded radio to transmit the reference signal. Al-
though the transmitted payload is irrelevant for this experi-
ment, we used the packet of one of our key fobs in order to
have something realistic in terms of preamble length, sync-
word, and total packet length.

To run the experiment we wrote a small script (see Ap-
pendix D.1) that tunes both radios at 432–437 Mhz, transmits
with the first radio and collects any packets received by the
second radio, along with the exact, detected carrier frequency.

Results. The results shown in Figure 4 (left) show that the
algorithm is able to detect the frequency accurately, with an
average error of 0.02 MHz, and an average standard deviation
of 30 kHz. This result is in line with our expectation since the
narrowest receiver filter bandwidth for the CC1101 is 58 kHz.
It follows that the error decreases while approaching the cen-
ter of the receiver bandwidth, and increases up to 30 kHz when
moving away from it. Note that a 30 kHz error is acceptable:
Recall that the RollJam attack works by jamming the receiver
at 50 kHz off the exact tuning frequency.

6.3 Bitrate Recovery Accuracy
We used once again a script (see Appendix D.2) to auto-
mate the TX/RX of packets from 1 to 15 kbps. Follow-
ing Nyquist–Shannon theorem, we oversampled at 30 and

t f req [ms] tbr [ms] Freq [MHz] Br [kbps]
Baseline 434.42 3.40

Mean 22.55 10.26 434.48 3.80
Mode 22.56 10.21 434.45 3.43

First Quartile 22.53 10.19 434.42 3.38
Third Quartile 22.57 10.35 434.46 3.45

Standard Deviation 0.08 0.13 0.10 1.52

Table 3: Speed and accuracy on key fobs (Section 6.1).

9

https://youtu.be/36Bt8un_Y-Y

432 433 434 435 436 437
−0.1

−5 ·10−2

0

5 ·10−2

0.1

Carrier Frequency [MHz]

E
rr

or
[M

H
z]

0 2 4 6 8 10 12 14 16
−1

−0.3

0

0.3

1

True Bitrate [kbps]

E
rr

or
[k

bp
s]

Figure 4: Carrier frequency peak detection and bitrate recov-
ery accuracy (oversampling at 30kbps and 60kbps).

60 kbps, so obtaining the data plotted in Figure 4 (right).

Results. We obtained good precision at low bitrates and a
slightly higher precision overall at 60 kbps, as expected. We
manually validated that the CC1101 can successfully decode
signal with up to 0.3 kbps estimation error. Therefore, over-
sampling at 60 kbps guarantees no data loss, up to 15 kbps.

The reason why it almost seems that Nyquist-Shannon
doesn’t hold is twofold. First, from Equation (1) recall that
shorter sequences of consecutive 1s (or 0s) have greater influ-
ence on the estimated bitrate. The limit is exactly the Nyquist
frequency, where the number of consecutive symbols tends to
1, determining wide oscillations of the estimated value. The
greater is the resolution, the less influence a single error has.

Secondly, after clamping to a signal, most transceivers (in-
cluding the CC1110) internally estimate the clock from the
incoming symbols, using a re-synchronization routine, which
run continuously to eliminate small discrepancies between the
chosen and real bitrate. Thus, if oversampling bitrate is not an
integer multiple of the incoming signal bitrate, the transceiver
will automatically try to adjust the bitrate to compensate for
unexpected symbols. This feature, which cannot be disabled,
influences our estimation. We were not aware of such feature
and we will search if it can be disabled in some transceivers.

7 Limitations and Future Work
Like most community-driven projects, RFQuack also is meant
to be a complete, final solution. We focused on providing solid
foundations and a flexible firmware for people to build upon.
There are, however, some limitations that we think should be
addressed in the near future.

Scanned Bandwidth Limit. The first phase of the frequency
recovery algorithm loops through all regions in the configured
band. It’s still far more efficient than looping on the single
frequencies, because it splits the spectrum in to a number
of regions, thus reducing the number of iterations, but if the
range is very wide, the running time may be incompatible
with an online signal capture scenario. This is a technical
limitation, so the easy solution is to just use a transceiver with
a wider filtering bandwidth. Alternatively, the algorithm could
be extended to shard the band across multiple transceivers.

Better Modulation Guessing. The bitrate estimation algo-
rithm assumes OOK modulation. To support other modula-

Figure 5: A single 2-FSK transmission, or two complementary
OOK transmissions.

tions such as 2- or 4-FSK, we foresee two solutions. The
frequency finder should look for the strongest RSSI on N
frequencies, to infer the number of occupied frequencies. For
example, a single occupied frequency may denote OOK, while
2 or 4 occupied frequencies indicate 2- or 4-FSK.

Alternatively, one can demodulate 2-FSK as if it was OOK,
by using offset tuning. FSK encodes symbols as discrete fre-
quency changes, but this can be seen as two independent,
complementary OOK transmissions on two distinct frequen-
cies, as shown in Figure 5. Thus, once one of the two peak
frequencies is found, the algorithm should tune "on the side"
of just a few kHz and set the narrowest filter bandwidth in
order to "see" only one of the two transmissions. A second
radio can be used to parallelize this task.

8 Conclusions
We presented the first truly modular RF system for security
analysis of RF protocols. RFQuack is midway between SDRs
and RF dongles, by providing uniform high-level APIs to
reconfigure an easy-to-customize hardware system, as well
as the advanced features typically found in RF dongles such
as the Yard Stick One.

We hope that it will encourage the community to implement
new features, as we think that RFQuack can really change
how we approach RF research and training.

References
[1] Universal wireless communication library for Arduino.

“RadioLib.” URL: https://github.com/jgromes/
RadioLib.

[2] Atlas. “RfCat - swiss-army knife of ISM band radio.”
URL: https://github.com/atlas0fd00m/rfcat.

[3] Eric Blossom. “GNU Radio: Tools for Exploring the
Radio Frequency Spectrum.” In: Linux journal 122
(2004), p. 4.

[4] Luca Bongiorni. WHID Elite. 2019. URL: https://
whid.ninja.

[5] Cesar Cerrudo, Esteban Martinez Fayo, and Matias Se-
queira. Do You Blindly Trust LoRaWAN Networks for
IoT? Feb. 13, 2020. URL: https://ioactive.com/
do- you- blindly- trust- lorawan- networks-
for-iot/.

10

https://github.com/jgromes/RadioLib
https://github.com/jgromes/RadioLib
https://github.com/atlas0fd00m/rfcat
https://whid.ninja
https://whid.ninja
https://ioactive.com/do-you-blindly-trust-lorawan-networks-for-iot/
https://ioactive.com/do-you-blindly-trust-lorawan-networks-for-iot/
https://ioactive.com/do-you-blindly-trust-lorawan-networks-for-iot/

[6] Samy Kamkar. “Drive it like you hacked it: New at-
tacks and tools to wirelessly steal cars.” 2015. URL:
https://samy.pl/defcon2015/2015-defcon.
pdf.

[7] Federico Maggi et al. “A Security Evaluation of In-
dustrial Radio Remote Controllers.” In: Proceedings
of the 16th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment
(DIMVA). Ed. by Roberto Perdisci and Magnus Alm-
gren. Vol. 11543. Gothenburg, Sweden: Springer Inter-
national Publishing, June 19, 2019. ISBN: 978-3-030-
22037-2. DOI: 10.1007/978-3-030-22038-9_7.

[8] Bastille Networks. “Firmware and research tools
for Nordic Semiconductor nRF24LU1+ based USB
dongles and breakout boards.” URL: https : / /
github.com/BastilleResearch/nrf-research-
firmware.

[9] Mark Newlin. “Injecting keystrokes into wireless mice.”
2016. DOI: https://doi.org/10.5446/36268#t=
00:09,01:30. URL: https://av.tib.eu/media/
36268.

[10] Michael Ossmann and Great Scott Gadgets. Rapid
radio reversing. Tech. rep. Tech. rep, 2016. URL:
https://pdfs.semanticscholar.org/cc6d/
fe7689e8eb1e1804776d111f9659818076b5.pdf.

[11] Johannes Pohl and Andreas Noack. “Universal Ra-
dio Hacker: A Suite for Analyzing and Attacking
Stateful Wireless Protocols.” In: Proceedings of the
12th USENIX Conference on Offensive Technologies.
WOOT’18. Baltimore, MD, USA: USENIX Associa-
tion, 2018, p. 6. URL: https://www.usenix.org/
system / files / conference / woot18 / woot18 -
paper-pohl.pdf.

[12] ComThings SAS. PandwaRF. URL: https : / /
pandwarf.com/.

11

https://samy.pl/defcon2015/2015-defcon.pdf
https://samy.pl/defcon2015/2015-defcon.pdf
https://doi.org/10.1007/978-3-030-22038-9_7
https://github.com/BastilleResearch/nrf-research-firmware
https://github.com/BastilleResearch/nrf-research-firmware
https://github.com/BastilleResearch/nrf-research-firmware
https://doi.org/https://doi.org/10.5446/36268#t=00:09,01:30
https://doi.org/https://doi.org/10.5446/36268#t=00:09,01:30
https://av.tib.eu/media/36268
https://av.tib.eu/media/36268
https://pdfs.semanticscholar.org/cc6d/fe7689e8eb1e1804776d111f9659818076b5.pdf
https://pdfs.semanticscholar.org/cc6d/fe7689e8eb1e1804776d111f9659818076b5.pdf
https://www.usenix.org/system/files/conference/woot18/woot18-paper-pohl.pdf
https://www.usenix.org/system/files/conference/woot18/woot18-paper-pohl.pdf
https://www.usenix.org/system/files/conference/woot18/woot18-paper-pohl.pdf
https://pandwarf.com/
https://pandwarf.com/

A Screenshots

Figure 6: RollJam implementation on top of RFQuack in
action, taken from durin presentation at CanSecWest.

Figure 7: Spectrum slicing to find peaks and detect transmit-
ting frequency, as described in Section 4.3.

B Transceiver-agnostic, Uniform API
RFQuack’s support for multiple radios allows to use the func-
tionalities of many different transceivers using the same API,
which exposes the following groups of functions:

Radio Mode. Put the transceiver in standby, receiving, trans-
mit, promiscuous, or jamming mode. In promiscuous mode,
the radio will receive anything with RSSI above a user-
configurable threshold (to avoid receiving pure noise), regard-
less of the preamble or sync-word values. The jamming mode
just keeps transmitting, optionally leveraging transceiver-
specific features to avoid busy loops (e.g., the CC11xx will
keep transmitting as long as its TX FIFO is not empty).

RF Parameters. Set the carrier frequency, frequency devia-
tion (for FSK modulations), RX bandwidth, and bitrate.

Packet Format. Set the fixed or variable packet length for-
mat, preamble length, sync-word value, and CRC check.

Carrier. Set the output power, get the last RSSI, determine
if there is carrier at the tuned frequency.

TX and RX:. transmit a byte array or receive onto a byte
array or queue. Optionally, activate RX loop and enqueue any
received packet.

Register Access. Read or write values from or to the
transceiver registers.

C Serialization and Transport Protocol
Protobuf is Google’s cross-platform serialization protocol,
which support most of the mainstream languages such as
Python, Go, C, C++, Java. It allows to create truly interoper-
able protocols and makes it easy to interface systems across
very different languages and architectures.

To show an example of the type system of RFQuack, we
describe the PacketModification type, which is the core of
RFQuack’s packet-matching and modification engine.

// Tell the tool how to modify a byte of a packet.
message PacketModification {

// position in the packet
optional uint32 position = 1;

// pos = all indexOf(content)
optional uint32 content = 2;

enum Op {
// pkt[pos] = pkt[pos] & operand
AND = 1;

// pkt[pos] = pkt[pos] | operand
OR = 2;

// pkt[pos] = pkt[pos] ^ operand
XOR = 3;

// pkt[pos] = ~pkt[pos]
NOT = 4;

// pkt[pos] = pkt[pos] << operand
SLEFT = 5;

// pkt[pos] = pkt[pos] >> operand
SRIGHT = 6;

// pkt = payload + pkt
PREPEND = 7;

// pkt = pkt + payload
APPEND = 8;

// pkt = pkt[0 : pos] + payload + pkt[pos:pkt.size]
INSERT = 9;

}

optional Op operation = 3;
optional uint32 operand = 4;

// Apply only to packets matching a pattern
optional string pattern = 5;

// Bytes to append / prepend for OP = PREPEND | APPEND
optional bytes payload = 6;

}

The default RFQuack IPython shell has automatic auto-
completion based on introspection of the Protobuf types. This
means that new Protobuf types are automatically "added" and
supported by the console, without changing any code.

To achieve RPC functionalities, the Protobuf messages are
prepended by a URI that identifies the command (similarly to
MQTT topics) exchanged between the host and the dongle.
The resulting binary messages are transported over a serial
connection (USB) and over MQTT for WiFi (and cellular).

12

D Console Scripting
In this section we provide some examples of RFQuack’s
IPython shell scripting capabilities, which we used in the case
studies and experiments described in Section 5 and 6.

D.1 Frequency Recovery Experiment
This script, mentioned in Section 6.2, tunes both radios at
432–437 Mhz, transmits with the first radio and collects any
packets received by the second radio, along with the detected
carrier frequency.

q.radioA.rx() # set first radio in RX mode
q.guessing.start_freq = 432
q.guessing.end_freq = 437
q.guessing.start()
values = dict()
for i in range(4320, 4373, 3):

freq = i/10
values[freq] = list()
q.radioB.set_modem_config(carrierFreq=freq)
q.radioB.tx() # second radio in TX mode
time.sleep(1)
for times in range(0, 50):

q.data = [] # Clear recv packets buffer
q.radioB.send(data=bytes.fromhex("aaa[....]666"))
time.sleep(0.5) # Wait for decoding
values[freq].append(q.data[0].carrierFreq)

D.2 Bitrate Recovery Experiment
This script, mentioned in Section 6.3, sets one radio in RX
mode and enables the bitrate recovery loop. Then it transmits
the same packet at varying bitrate values, for 50 times each,
letting the first radio clamp on the signal and estimate the
bitrate.

q.radioA.rx() # set first radio in RX mode
q.guessing.sampling_bitrate = 30 #Then, 60
q.guessing.start()
values = dict()

for i in range(10, 150, 3):
br = i/10
values[br] = list()
q.radioB.set_modem_config(bitRate=br)
q.radioB.tx()
q.sleep(1)
for times in range(0, 50):

q.data = [] # Clear received packets
q.radioB.send(data=bytes.fromhex("aaa[....]666"))
time.sleep(0.5) # Wait for decoding
Decoded packets get stored in q.data
values[br].append(q.data[0].bitRate)

D.3 Isolate 2.4GHz Valid Frames
This script set the nRF24 2.4GHz frontend in promiscuous
mode at 2000 kbps, collects all the sync words and count their
occurrences. Using the most frequent sync words, we queried
the FCC database and found a lead that helped us isolate the
traffic of the target device.

q.radioA.set_modem_config(bitRate=2000, isPromiscuous=True)

q.radioA.set_packet_len(isFixedPacketLen=True, packetLen=32)
max

q.radioA.rx()

capture anything within the range
for freq in range(2405, 2474):

q.radioA.set_modem_config(carrierFreq=freq)

isolate all sync word and rank
sw = list(map(lambda x: x.data.hex()[0:10], q.data))
counter = Counter(sw)

13

	1 Introduction
	2 State of the Art and Motivation
	2.1 Software-defined Radios (SDRs)
	2.2 Embedded RF Dongles
	2.3 Motivation: The Best of Both Worlds

	3 RFQuack High-level Overview
	3.1 The Journey of a Wireless Transmission
	3.2 Modular Hardware Design
	3.3 Modular Firmware Design
	3.4 Automatic Signal Clamping

	4 Implementation Details
	4.1 Loop, Dataflow and Queues
	4.2 Multi-radio Abstraction Layer
	4.3 Carrier Frequency Detection
	4.4 Automatic Bitrate Estimation

	5 Real-World Case Studies
	5.1 Sniffing Key Fobs and Opening a Car
	5.2 Vulnerable Industrial Devices
	5.3 Sniffing 2.4GHz Protocols
	5.4 MouseJack Attack Implementation
	5.5 RollJam Attack Implementation
	5.6 RF Hacking Contests and Trainings

	6 Experimental Evaluation
	6.1 End-to-end Experiment
	6.2 Frequency Recovery Accuracy
	6.3 Bitrate Recovery Accuracy

	7 Limitations and Future Work
	8 Conclusions
	A Screenshots
	B Transceiver-agnostic, Uniform API
	C Serialization and Transport Protocol
	D Console Scripting
	D.1 Frequency Recovery Experiment
	D.2 Bitrate Recovery Experiment
	D.3 Isolate 2.4GHz Valid Frames

