arXiv:2104.02231v1 [cs.LG] 6 Apr 2021

IoT Security: Botnet detection in IoT using
Machine learning

Satish Pokhrel, Robert Abbas, Bhulok Aryal
satish.pokhrel @students.mq.edu.au, robert.abbas@mgq.edu.au ,bhulok.aryal @students.mq.edu.au
Macquarie University, Sydney, Australia

Abstract—The acceptance of Internet of Things (IoT) applica-
tions and services has seen an enormous rise of interest in IoT.
Organizations have begun to create various IoT based gadgets
ranging from small personal devices such as a smart watch to
a whole network of smart grid, smart mining, smart manufac-
turing, and autonomous driver-less vehicles. The overwhelming
amount and ubiquitous presence have attracted potential hackers
for cyber-attacks and data theft. Security is considered as one of
the prominent challenges in IoT. The key scope of this research
work is to propose an innovative model using machine learning
algorithm to detect and mitigate botnet-based distributed de-
nial of service (DDoS) attack in IoT network. Our proposed
model tackles the security issue concerning the threats from
bots. Different machine learning algorithms such as K- Nearest
Neighbour (KNN), Naive Bayes model and Multi-layer Perception
Artificial Neural Network (MLP ANN) were used to develop
a model where data are trained by BoT-IoT dataset. The best
algorithm was selected by a reference point based on accuracy
percentage and area under the receiver operating characteristics
curve (ROC AUC) score. Feature engineering and Synthetic
minority oversampling technique (SMOTE) were combined with
machine learning algorithms (MLAs). Performance comparison
of three algorithms used was done in class imbalance dataset and
on the class balanced dataset.

Index Terms—IoT, IoT threat, Botnet, malware, machine
learning, DDoS, SMOTE.

I. INTRODUCTION

Internet of things is an interconnection of billions of smart
devices being able to communicate over the internet [I1]].
Over the past few years, the number of everyday machines
embedded with sensors and can communicate over the internet
are rising to a great extent. According to the article published
in IoT Business News, Devices connected to the IoT world
is increasing day by day which is expected to be around
24.1 billion by 2030 [2]. The internet of things makes the
world smarter by merging the physical devices with the
digital intelligence. International standardization sector (ITU-
T) define the Internet of Things as an international structure
consisting of interconnected devices based on information and
communication technologies [3|]. There is large flow of data
in between the interconnected devices and the security is the
major concern in IoT.

As ToT connect the things to the internet and those things
communicate with each other without any human involvement,
IoT devices are susceptible to cyber-attacks of varying nature.
To ensure the security of IOT network and devices proper
security requirements should be identified at very beginning
stages of design and deployment of IoT devices [4]]. As IoT

concept is in an emerging phase, it still lacks robust security
infrastructure/mechanism which create a risk on the valuable
information. Modern security tactics must be adopted on IoT
network to keep IoT entities, organizations, and individuals
safe. The major security challenge in IoT is botnet-based
DDoS attack where hackers infect the devices with script.

In this paper, a methodology for botnet detection is pre-
sented that comprises of data collection, data pre-processing,
and SMOTE technique to balance the data-set class. Also,
feature engineering was done upon analyzing machine learn-
ing algorithms for classification. We presented the effect of
imbalance data and its impact on machine learning.

II. RELATED WORK

Botnet network is a sophisticated network of bots used
by cyber criminals to launch malicious activities over the
internet. Botnet based attack is one of the major challenges
of IoT. Detection of attack in IoT network is notably distinct
since it requires specific requirements for instance low
latency, mobility, and distributed nature [5]]. There are many
researches which have been carried out to design effective
botnet detection system, some of the previous work on botnet
detection using different MLAs are discussed in this section.

The paper presented by author Rudy Hartanto et.al [6]]
proposed a botnet detection model based on artificial neuron
network in which author implement data resampling technique
that is SMOTE to resample real-time data into class balance
data. Authors use BoT-IoT dataset with artificial neural
network (ANN). Authors use ANN and SMOTE to model
detection system. The proposed system is effective to detect
DDoS attack with basic configuration with ANN.

Author Muhammad Aamir et.al [7] proposed a machine
learning model applying feature engineering to detect DDoS
attacks. Authors combine feature engineering with different
machine learning algorithms, k-nearest neighbors (KNN),
Naive bayes (NB), support vector machine (SVM), Random
forest (RF) and artificial neural network (ANN) to benchmark
performance of different algorithms. Authors use feature
selection methods of chi2 and information gain scores
on supervised Machine learning algorithms (MLAs) for
optimum tuning of features. The result obtained showed that
the dimension of feature reduction is possible to improve
the detection model performance. Authors validate the
performance of proposed model with ROC AUC analyses
and cross-validation technique. From evaluation on different

MLAs author achieve best performance from KNN algorithms
and analyses the accuracy scores of datasets with a smaller
number of features. This paper demonstrate that feature
reduction is possible with very less impact on accuracy, to
reduce processing overhead in the system. Another similar
research conducted by author [§] on dimensionality reduction
for Machine learning. Author stated that reducing the
dimensionality of the required features overcome scalability
and reduce computational overhead problems. In the paper
author applied feature selection technique to select best
features and use fewer features in decision tree algorithm.
The paper present comprehensible results that verify that that
fewer features helps to achieve higher accuracy rates.

Author Vishwakarma et.al [9] proposed a honeypot-based
botnet detection model that uses machine learning algorithms
for botnet detection. Authors use IoT honeypot generated
data to train machine learning model. Honeypot is used for
tempting an attacker to study attack launching techniques
by analyzing information about the malware that is used to
launch botnet attack. This information is used to train machine
learning model. Authors use honeypot to allow attacker to
gain access through open port with an intention to capture
record of each activities between our device and attacker. This
captured record gives the information about new malware
families. Authors extract packet length, inter-packet intervals,
and protocol features and implement them in different MLAs
namely, random forest, K-nearest neighbors, SVM, decision
tree and neural network and benchmark their performance.
The advantage of this approach is the ability to detect new
malware family used in botnet attack.

A. Research gap

There are numerous research on botnet detection model,
however, very few apply feature engineering so that complete
evaluation would be possible to evade the problems with
large datasets such as duplication and multicollinearity. Simply
applying the traditional dataset without feature engineering
may be problem solving but introduce over-fitting of the
module.

Most of the research are carried out with the traditional
dataset which lack IoT-traces and they are not effective to
detect modern botnet problem in IoT. Furthermore, most
research carried out in the botnet detection model use real-time
datasets which is highly imbalanced dataset. Researchers focus
on finding high accuracy by using different MLAs on those
imbalanced datasets. They overlook the effect of imbalance
dataset in training module. The accuracy provided by that
imbalanced dataset may be illusory. Also, for evaluating the
performance of MLAs researchers calculate accuracy after
training algorithm. This gives the accuracy of training dataset
and does not provide information about the skill of model
on the unseen data. Accuracy percentage from such procedure
may be illusory and there is possibility of over fitting or under-
fitting of data. Furthermore, class imbalance dataset model is
biased towards majority class, in such case accuracy might be
impractical.

We combined the feature engineering and machine learning
methods along with SMOTE resampling technique on real-
time imbalanced dataset. We used latest released dataset i.e.,
BoT-IoT dataset, created in IoT environment which includes
DDoS attack traffic records. This dataset is also highly class
imbalanced, so we used SMOTE technique to make it class
balanced. Data training was done on all MLAs with both
imbalanced datasets and class balanced datasets and the effect
of imbalanced dataset in algorithms were analyzed and bench-
marked the performance of algorithms to select best MLAs
for our detection model. Also, to get clear information about
the performance of our model, cross-validation technique was
used that split the training data into number of folds (k) and for
each time a subset of data is used as a test set and remaining
(k-1) subset form a training set. This removed the problem of
over-fitting or under-fitting of data and provided clear infor-
mation about the performance of model for unforeseen data
while training. Also, the model’s performance was evaluated
using ROC AUC curve and accuracy.

III. BACKGROUND METHODOLOGY

In this section a brief descriptive overview of Botnet,
security vulnerabilities in IoT, botnet malware, botnet life-
cycle, different botnet detection methods and the concept of
machine learning and machine learning algorithms used in this
project is discussed.

A. Botnet

Botnet is a network of numerous bots designed to perform
malicious activities on the target network which are controlled
using command and control protocol by the single unit called
botmaster [10]. Bots are the infected computers controlled
remotely by the botmaster without any sign of being hacked
and are used to perform malicious activities. Botnet size varies
from small botnet consists of few hundred bots to the large
botnets with 50,000 hosts. Hackers spread botnet malware
and operate secretly without any noticeable indication of their
presence and can remain effective and functioning for years.
The botnet command and control architectures are shown in
the Fig. 1. The main element in botnet is the communication

N
/

Spam

generation Victim

[

——
Infect Victim
Botmaster bot Systems
—>| bot
Phishing
»{ Dot " Victim

Malicious Activities

Fig. 1: Botnet Architecture

of botmaster with its associated bots. Communication with
bots is essential to deliver commands to the bots to carry
out malicious activities [11]]. Botmaster always stays hidden
using low bandwidth and provide hidden services in the botnet

network. Botmaster always communicate through command
and control server with bots. The main goal of bots is to
remain hidden until they are required to carry out assigned
tasks. The hidden nature of bots makes it harder to identify
as they do not disrupt the normal operation on the host and
remain silent until they receive command from botmaster to
execute allocated activities. The life cycle of botnet consists of
several stages which involve spread and infection, secondary
injection, connection, malicious command and control, update,
and maintenance [12].

B. DDoS attack

DDoS attack is the most common cyber-attack in which
attacker’s computers send large number of malicious traffic to
the target server at the same time to overwhelms the target
network [13]. DDoS attacks intend to significantly interrupt
normal functioning of target server by flooding the target
device with massive traffic such as fraudulent request to over
saturate its capacity causing a disruption or denial of service
to the legitimate traffic [[14]. DDoS attacks affect the server’s
system resources such as CPU, memory and can also cause
the network bandwidth to saturate with large number of traffic,
as a result, legitimate computers are going to be denied
service because the server is pre occupied in dealing with
DDoS attack. Hackers use botnet to launch DDoS attack. IoT
devices get involved in DDoS attack after they gets infected
by the malicious software that the attacker distributes over the
internet. Infected IoT devices acts as a bot and they are used
by the attacker to launch DDoS attacker.

Malicious Traffic
Attacker PC
Clean Traffic —)

Target Computer

Fig. 2: DDoS Attack

C. Security vulnerabilities in loT

Smart devices are employed in various public and private
sectors and its dynamically turning out to be basic objects of
regular day to day living.This lead to high risk in data privacy.
In such scenario, computerized security system utilizing the
concept of Machine learning algorithms will be fated [15].
Automated Security system using machine learning is critical
to prevent threats like DDoS attack, Man-in-the-middle attack,
botnet attack, eavesdropping and so on in an optimum way
[16]. Also, most of the low-end IoT devices have weak security
system, and henceforth are target or even used as a botnet for
various security attack.

IV. MACHINE LEARNING

Current security systems greatly depend on mathematical
models which often do not signify the systems accuracy and
appropriate security in wireless environment requires hefty
mathematical solutions which causes long computational time
and create complexity [17]]. Machine learning algorithms will
therefore undertake a crucial part in IoT security system, since
it is effective in modelling systems that cannot be introduced
by a mathematical equations. Machine learning is the field
of computer science that enable the machines to learn from
previous examples and experience. Machine learning based
anomaly detection system is the formation of groundbreaking
new anomaly detection model to discover unusual traffic based
on learning algorithm that might indicate an attempt of intru-
sions in the network [18]]. There are various machine learning
algorithms (MLAs) to create a mathematical model formulated
on sample data that add the ability on computers to decide
without being explicitly programmed [19]. The MLAs are of
three types of categories based on nature of supervision in
training. They are supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning [20].

A. Supervised learning:

In basic terms, supervised learning refers to learning ap-
proaches that enlist the assistance of supervisor. It consists of
sample data labelled by defined outcome that simplifies the
algorithm’s transition from input to output, as well as learning
and prediction [21]. Classification approaches such as KNN,
SVM, Naive Bayes, Decision tree and Random forest, are all
examples of supervised learning [22]].

B. Unsupervised learning:

Unsupervised learning refers to the method of analyzing
with unlabeled data. It is also known as clustering. It is
like self-guided learning process. The goal of unsupervised
learning is to find the unusual data points [21]].

C. Semi-supervised learning:

Semi-supervised approach is a category of learning method
in Machine learning that combines the limited amount of
labeled data with larger set of unlabeled data [21]]. These
learning falls somewhere between training data with labels
and training data with no labels. These algorithms do better
when dealing with large amounts of unlabelled data and fewer
labeled data [22].

D. Re-enforcement learning:

Reinforcement learning is the field of ML that based on
agent, action, state, reward, and environment [22]. It do
not assume learning of any exact mathematical model, train
an agent which consists of policy and learning algorithms
through trial and error in an anonymous environment.

Each machine learning technique have their own application
area. In this report, we implemented few supervised learning
techniques in botnet detection.

V. SUPERVISED MACHINE LEARNING ALGORITHMS

A. Gaussian Naive bayes machine learning algorithm

Naive bayes algorithm is one of the supervised machine
learning algorithms that is founded on Bayes theorem. Bayes’
theorems apply the technique of maximum likelihood of case
happening based on the previous learning [20] . In simple
language Bayesian probability can be expressed as:

PX/Y) = (P(Y/X)P(X))/(P(Y))

Where X and Y are occurrence and P(Y) is not equal to zero,

P(X/Y): Likelihood of X case happening given that Y is
true,

P(Y/X): Likelihood of Y case happening given that X is
true,

P(X) and P(Y) are likelihood of observing case X and Y,
respectively.

B. KNN

K Nearest Neighbor algorithms works based on Euclidean
distance calculation and object is categorized by majority of
vote of its K neighbors with the entity of different classes [23].
The value of K is positive and usually small. The accuracy of
KNN algorithm depend on the number of neighbors chosen
that is the value of K. Usually the value of K is chosen odd
number for binary classification to evade the possibility of two
classes labels acquiring the same count. If the value of K is
chosen 1 then the entity is simply assigned to its single nearest
class. Value of K chosen should be optimal, if the value of K
is small, then it could be under-fitting as well as larger value
can cause over-fitting of the model. The Euclidean distance
between two points (X, Y) in Euclidean n-space is expressed
as:

C. MLP ANN

Multilayer perception is an artificial neural network consist-
ing of three layers of nodes which are input layer, hidden layer,
and output layer [24]]. Hidden and output nodes in MLP is a
neuron that utilized nonlinear activation function. Nonlinear
activation transfer functions are the mathematical equation
which will be in different forms for example binary step
function, Gaussian functions, identity function. MLP ANN
is a supervised machine learning algorithm that uses back
propagation technique. Each neuron in MLP is connected to
its neighbors with variable weights. The weighted summation
of the input is passed to the hidden neurons. Activation
function in hidden neuron transformed the weighted sum and
then passes to the output neuron. Again, in output neuron
there undergoes another transformation by nonlinear activation
transfer function in output layer and yields an outcome [38].

VI. RESEARCH APPROACH

In this section we describe the procedures followed during
the botnet detection model creation including dataset used,
data preprocessing, experimental scenario, results, and expla-
nations. Different supervised MLAs were used on different
combination of Botnet dataset and benchmarked the result to
select a best algorithm for our model. At first, we analyzed
the botnet behavior by examining the packet information.
And the dataset was divided into two parts; one with normal
traffic and other containing the botnet traffic and studied the
behavior of botnet. This analysis helped to select features that
contain more reliable information. Along with manual analysis
we used feature selection and extraction technique to select
appropriate features based on top F-score.

SMOTE
Technique

—

DataPre-
Feature
processing K
Engineering

Testing
Data

Botnet detection and ‘

Training
Data
Train Model

Performance Evaluation

Fig. 3: Proposed model

A. Experimental dataset (BoT-10T)

Most of the available datasets lack recent attacks data and
are not for IoT network. As our project is botnet detection
in IoT environment, it requires dataset containing enough
information about IoT traces. BoT-IoT dataset was created in
the lab of UNSW Canberra cyber centre. This dataset collab-
orates the normal and botnet traffic with label. The researcher
creates many virtual machines on internal network to simulate
different malicious attacks with the intention to capture normal
and malicious traffic. They capture more than 72 million
records to create BoT-IoT dataset [25]. The dataset includes
traffic from different malicious attacks namely, DDoS, DoS,
OS, Data exfiltration and Keylogging attacks with additional
DDoS and DoS attacks set up on protocol used [26]]. BoT-
IoT dataset is realistically designed in IoT network using
different tools to create various botnet scenarios [[26]. BoT-IoT
dataset have realistic testbed and organized captured traffic
based on attack types [6]. BoT-IoT entire dataset contains
74 .csv files with altogether 72 million records with each
file containing approximately 1 million records combining
botnet and normal traffic. We selected one of the .csv files
for my model preparation which contains 999,610 records with

o)

Firewall

VMWare Cluster

=7
e HBM Kali 1H h kali 2 H H Bot kali 3

VM setup

Internal Network

Ubuntu Server

Ubuntu Tap Metasploitable *

Fig. 4: Testbed environment of BoT-IoT Dataset

994,828 botnet traffic and remaining normal traffic because the
system we used took a lot of execution time in our device with
limited system capability. The major contrast in this dataset is
that it contains more than 99% of botnet traffic while less than
1% normal traffic. We created another dataset after processing
real-time BoT-IoT dataset through SMOTE technique which
provided class balance dataset with equal number of botnet
traffic and normal traffic.

B. Data preprocessing

Data preprocessing is the first and one of the most important
stages in building machine learning model. Bad data can
produce inaccurate result. To get correct output at very first
stage, dataset is analyzed, and formatting is done. It involved
data cleansing, normalization, and transformation to create
reliable dataset. This enriched the data quality for training
of machine learning module and supports precise decision-
making.

1) Data Cleansing: Data cleansing is the process to fix
and remove incomplete information. We undergo through data
cleaning process to identify missing values and delete those
rows. We drop the rows containing null value in BoT-IoT
dataset using dropna() function of pandas.

2) Normalization: Normalization is done to get common
scale in the dataset. As some feature in our BoT-IoT dataset
have data of variant range which make complex for the model
to learn and will cause model learning problem taking it more
time to decide to converge to result. Normalization helps the
model to converge quickly, and this will increase the model
performance. The normalization technique we used in our
model is min-max feature scaling that transfer multiple scale
feature to a fixed scale range of [0,1]. The mathematical
expression of min-max feature scaling is:

Yo,orm = (Y — Yyin)/(Yiaz — Y,,in)

We get Ymin and Ymax by using .min() and .max() functions
of pandas.

3) Transformation: Data transformation is the process of
converting data from one format to another. In our BoT-IoT
dataset there are many categorical features containing non-
numeric data which needed to be converted into numeric
format for the MLAs to process it as the MLAs we were using
were in algebraic format. Data transformation was done to
convert non-numeric data of categorical features into numeric
format. The values in BoT-IoT dataset contain protocol types
which is converted into numeric format by assigning each
individual protocol type with numeric value.

C. Feature Engineering

Feature engineering technique is applied as a part of
machine learning approach which helped in dimensionality
reduction which thereby minimized the problem of over-fitting.
This improved accuracy, and significantly reduced processing
time. Also, it was beneficial in selecting appropriate features
that contain most important information about target variable
and helped to improve the performance of model. Appropriate
feature was selected based on the chi-square (chi2) value
which is calculate by using the equation below.

Chi2 = Z(Ac — Ep)?/Ep

Here,

Ac indicate actual value and Ep is expected value.

Chi2 value, also known as feature score (F-score) gives the
discriminating power of feature for the prediction of target
variable.

For this paper, we calculated f-score for each features. Only
the features that have a f-score greater than mean value were
used. We found out that there were eight features that have a
f-score greater than mean value and those were selected for
training and testing of model.

Feature engineering reduces complication in model and
improve the performance of MLAs. Using all the features
of dataset can cause over-fitting of model and can lead to
excessive computing time which result in poor performance
of model.

The detail of feature selection procedure is shown in Fig 5.

[Load Dataset J

Calculate F-Score (Score value from Chi2 test) for

each feature

If F-Score > Mean value

[Select the feature for model]

Fig. 5: Feature Engineering

D. Synthetic Minority over-sampling technique (SMOTE)

SMOTE is one of the effective techniques to make class
balance dataset. Imbalanced dataset may cause misclassifying
problems which effect on the performance of machine learning
algorithms. Synthetic Minority over-sampling technique over-
sample the minority class. SMOTE technique chooses nearest
neighbors, calculate the differences, and then multiply the
difference value with random number between 0 and 1 to get
more sample points [6].

Original

dataset

Majority
Class

Find Nearest neighbour and

Calculate difference

¥
[Multiply the difference by random

number

Balanced

Dataset

Fig. 6: SMOTE Technique

E. Experimental Scenario

Hardware plays a vital role in the model performance. The
system we used throughout the process of model creation and
testing is constant. We used a laptop running windows 10,
64-bit operating system with 8GB RAM. The processor is 8th
generation core i5 with 1.83GHz clock speed. The GPU is
NVIDIA GeForce MX130. The storage is 488GB SSD.

For training and testing, we used BoT-IoT dataset. The
model is trained KNN, MLP ANN and Naive Bayes algorithms
with the training datasets (D1 and D2) and the accuracy is the
benchmarked to select the best algorithm for our detection
system. Most of the real-word dataset are class imbalanced.
The latest dataset for IoT with IoT traces is BoT-IoT dataset
but it is highly imbalanced with more than 90 percent botnet
traffic and just a few thousands normal traffic in each .csv
file. To make our BoT-IoT dataset we used Synthetic Minority
over-sampling technique also referred to as SMOTE. We
implemented MLAs on datasets D1 and D2 and benchmarked
performance of algorithm on unbalanced dataset(D1) and on
class balanced dataset (D2).

For programming, we use Spyder platform running python
3.7. To process the dataset and implement machine learning,
I use numerous python libraries.

1) Python Libraries: We mainly used Sklearn, imblearn,
matplotlib and pandas.

* Sklearn: Sklearn library is mainly used to create confusion
matrix, to construct machine learning models, for splitting

dataset, to perform data preprocessing and for feature engi-
neering procedure.

* Imblearn: Imblearn library support data sampling technology.
In this project we use Imblearn library to over sample minority
class data to make dataset class balance.

* Matplotlib: Matplotlib library is used to visualize data in
graphical format. This library support bar plot, scatter plot
and many other plots that help in clear understanding of packet
patterns.

* Pandas: Pandas library support data analysis. we use panda’s
library to import dataset in .CSV file format and for data
manipulating.

F. Machine Learning Model Evaluation and Cross validation

Performance evaluation of machine learning model is done
by generating confusion matrix for each MLAs. We generate
confusion matrix for each machine learning algorithms to gain
insight into the type of error committed by machine learning
model which help to understand the other metric such as
accuracy that are derived from it. We derived accuracy, pre-
cision, recall and F1-Score from confusion matrix to evaluate
the performance of model. The dataset used was unbalanced
and in case of unbalance dataset due to excessive variation
in number of observations in different classes accuracy may
lead to false result. In the dataset there are more samples of
botnet traffic and very few normal traffic. Based on accuracy,
precision, recall, F1-Score and ROC AUC, the performance of
the model was evaluated.

TABLE I: Table layout of confusion matrix

‘ Confusion Matrix
Actual

False Positives
(FPs)

True Negatives
(INs)

True Positives
(TPs)

False Negatives
(ENs)

Predicted

1) Accuracy:: Accuracy is the ratio of number of correctly
predicted class to the total predictions. It’s presented in per-
centage. Accuracy is analyzed when True Positives (TPs) and
True Negative (TNs) are crucial.

Accuracy = ((TPs+TNs)/(TPs+TNs+FPs+FNs)x100)%

2) Precision:: Precision is the ratio of number of correctly
predicted positives to the total predicted positives. Precision
is analyzed to minimized false positives.

Precision = (T'Ps/(TPs+ FPs) x100)%

3) Recall:: Recall is the ratio of number of correctly
predicted positives to all positive examples. Recall is analyzed
to minimized false negatives.

Recall = (TPs/(TPs+ FNs)*100)%

4) Fl-Score:: F-Score metric combine precision and recall
giving a single score value to balance both the concerns
of precision and Recall. F1-Score is analyzed when false
positives and false negatives are important.

F1Score = ((2«precisionxRecall) /(Precision+ Recall)x100)%

5) ROC AUC:: ROC stands for receiver operating charac-
teristics and AUC is Area under ROC curve. ROC AUC is
popular among class imbalanced dataset. My BoT-IoT real
dataset is highly imbalance with 994,828 Botnet traffic and
4728 Normal traffic in 999,556 total data. This is 99.527
percentage botnet traffic and just 0.473 percentage Normal
traffic. Classifier always predicting each traffic as botnet traffic
will still have more than 90 percentage accuracy. So, for
effective evaluation of model, analysis of ROC AUC curve
is prefered. ROC is a graph with X-axis false positive rate
(FPR) and Y-axis true positive rate (TPR).

FPR=FP/((FP+TN))
TPR =TP/((TP + FN))

In this project we were using millions of data to train the
model. Splitting entire data to train and test is not enough
to give complete information about the performance of our
system. Cross-validation technique splits the training dataset
into multiple subsets which is called folds(k). The number
of subsets depend on the value of k chosen. The value of k
should be optimum. Higher value of k means more variance
and less bias but may cause computational overhead and
require more time whereas low value means low variance
and high bias. Generally, value of k is selected 5 or 10.
In our project we choose 5. cross-validation is simply a re-
sampling procedure. In cross-validation technique each time
a subset of data is used as a test set and remaining(k-1)
subset form a training set. This technique gives much more
information about the MLAs performance and mitigate the
problem of over-fitting. It gives assurance about the stability
of model performance and most important its low on bias
and variance. Commonly, accuracy calculation is done after
training which estimate the skill of Machine learning model on
training data. There is possibility of overfitting or underfitting
of data. Traditional performance evaluation technique does not
give any knowledge about the model performance on unseen
data set. Cross validation technique provides skill of model on
real data.

VII. EXPERIMENT AND DISCUSSION

To benchmark the performance of MLAs, we implemented
classifier algorithms on two set of BoT-IoT dataset, D1 and D2.
D1 is real time BoT-IoT dataset where D2 is class balanced
dataset created by using SMOTE technology in real dataset.
The very first step in experiment is analysis of dataset. Entire
dataset is divided into two parts i.e., normal traffic and botnet
traffic to observe the count of normal and botnet traffic in the
dataset. It can be more clarified from Fig 7 and Fig 8..

The Fig. 7 show that the dataset consists of 29 columns
(features) and 999,610 rows. Among 999,610 data, 4782
belongs to normal traffic and remaining 994,828 belongs to
botnet traffic. It shows that the dataset is highly imbalance.
Then data preprocessing was done to get reliable data. In order
to get this I drop the rows containing null values using dropna()
function of pandas. As this dataset contains many non-numeric
values. We assign numeric values to protocol names and state

Size of dataset
CEEG L)
attack

e 4782
1 994828

Fig. 7: Size of class in dataset

Count (Traffic)

1000000

800000

600000

Count

400000

200000

— (=)
Traffic {1:Botnet Traffic,0:Normal Traffic)

Fig. 8: Bar graph showing class imbalance in data-set

values. For proto feature, we assign numbers starting from
1 and for state feature we assign each value with a number
starting from 10.

A. Transformation

The below picture shows the first 5 rows of the dataset
before transformation.

pkSeqID state proto pkts rate
1000001 RST tcp
1000062 RST tcp %
1000003 RST tcp 2
1000004 RST tcp 2
1000005 RST tcp 2

srate drate dur spkts dpkts \
2 23.86 s .6 0.04 1 il
23.87 | .0 0.e4

23.87 . .6 0.04

23.86 . .6 0.04

23.87 .0 .0 0.e4

bytes sbytes dbytes
120
120
120
120
120

Fig. 9: First 5 rows of dataset before transformation

The below picture shows the first 5 rows of the dataset after
transformation.

pkSeqID state proto pkts rate drate
1600001 1 2 23.86
16000082 23.87
1600003 23.87
1600004 23.86

1080085 23.87

dur spkts \
0.64 1
0.64

0.e4

0.e4

0.64

dpkts

bytes sbytes dbytes
120
120
120
120
120

Fig. 10: First 5 rows of dataset after transformation

B. Analyzing the behavior of Normal and Botnet Traffic

We analyze the statistics of botnet traffic and normal traffic
to get information about the behavior of botnet.

Clean Packet

attack pkSeqID proto
count 4782.0 4.78e+83 4782.00
mean . 1.59e+06 2.01
std .8 2.10e+85 8.46

srate drate
4782.0 4782.00

pkts rate
4782.00 4782.00
1509.39 31.23 . ©.40
12898.51 214.92 . 4.9

min - 1.08e+06 1.00 1.00 0.00 = @.e0
25% 7 1.52e+06 2.00 2.00 0.20 H ©.00
50% . 1.63e+06 2.00 2.900 0.40 . .00
75% o 1.74e+06 2.00 2.00 6.95 - ©.e0
max B 1.86e+086 7.00

322677.00 7751.94 25000 162.41

spkts
4782.00
1106.28

dpkts bytes
4782.00 4.78e+03
483.11 1.29e+06
1.21e+07
6.00e+01
1.76e+02
1.76e+02
2.27e+02
3.14e+08

sbytes
4.78e+03
9.80e+05
8.28e+06
6.00e+01
8.60e+01
1.72e+02
1.76e+02
2.25e+08

dbytes
4.78e+03
3.95e+05
5.12e+06
0.00e+00
©.00e+00
0.00e+00
1.51e+02
1.52e+08

count 4782.00
mean 72.85
std 391.57 9235.97 5209.88
min .00 1.00 .00
25% e.14 1.00 .08
50% 2.50 2.00 0.00
75% 5.e5 2.00 1.0
max 3536.89 234653.00 161338.00

Fig. 11: Statistics of Normal Traffic.

Infected Packet

attack pkSeqID proto pkts rate
count 994828.0 9.95e+05 994828.00 994828.00 9.95e+05
LCED 1.0 1.50e+06 1.e3 3.61 7.45e+03 598.38
std = 2.89e+05 0.29 183.96 2.98e+04 3366.20
min = 1.00e+06 1.0 1.00 ©.00e+00@ ©.e0
25% = 1.25e+06 1.0 2.00 1.84e+01 ©.e0
50% - 1.50e+06 1.0 2.00 1.45e+02 ©.e0
75% 2 1.75e+06 1.00 4.00 6.67e+03 0.09
max < 2.00e+06 5.00 148354.00 1.33e+06 666666.62

srate
994828.00

drate dur
count 994828.00 9.95e+05
mean 440.84
std 2684.17
min ©.00
25% 0.00
50% 0.00
75% 0.00
max 5060000.00

spkts
994828.00
6.79e+00 2.15 1.46

dpkts
994828.00

bytes sbytes
.95e+05 9.95e+05
.87e+03 1.13e+03
.29e+06 6.32e+05
.00e+0l ©.00e+00Q
.20e+02 6.00e+01
.20e+02 6.00e+01
5.48e+02 3.44e+02
8.19e+08 4.75e+08

dbytes
9.95e+05
1.74e+03
1.12e+06
©.00e+00
6.00e+01
6.00e+01
6.00e+01
8.18e+08

3.48e+01 90.06 121.42
©.00e+00 .00 ©.00
1.92e-04 1.e0 1.00
3.88e-03 1.e0 1.00
5.05e-02 3.e0 1.00
1.69e+03 82836.00 118168.00

Fig. 12: Statistics of Botnet Traffic

Mean values of few important features of Normal and botnet
traffic are presented below in the tabular form:

Feature | Normal Traffic (Value) Botnet Traffic (Value)
pkts 1509.39 3.61

rate 31.23 7.45¢+03

srate 84.1 598.38

drate 0.40 440.84

dur 72.85 6.79

spkts 1106.28 2.15

dpkts | 403.11 1.46

Fig. 13: Mean values of few important features of Normal and
Botnet traffic

Major distinguishing behavior observed from statistics of
Normal and botnet traffic:

1) Total count of packets in transaction (pkts):: Mean value
of pkts of Normal traffic is 1509.39 while for botnet traffic its
3.61. This shows that the number of packets in transaction of
botnet traffic is very less. This indicate that botnet traffic uses
small size and a smaller number of packets in the transaction,
which are not encrypted by most secure protocol. Normal
traffic contains large payload content thus have large packet
size. Average value of MTU in internet is 1400bytes.

2) Total packet per second in transaction (rate):: Mean
value of rate of Normal traffic observed is 31.23 while of

botnet traffic is 7.45e+03. This indicate rate of flow of packet
of botnet traffic is much higher than normal traffic.

3) Source to destination packet per second (srate):: Mean
value of srate of Normal traffic and botnet traffic observed are
84.1 and 598.38. This indicate source to destination packet
flow per second of botnet traffic is higher than of normal
traffic.

4) Destination to source packet per second (drate):: Mean
value of drate of Normal traffic and botnet traffic observed
are 0.40 and 440.84. This indicate destination to source packet
flow per second of normal traffic is very low while of botnet
traffic is high. If we analyze srate and drate, source to
destination packet rate and destination to source packet rate of
botnet traffic, we see that there is not much difference in the
packet flow rate from source to destination and vice-versa.

5) Record total duration (dur):: Mean value of ‘dur’ of
normal and botnet traffic observed are 72.85 and 6.79, re-
spectively. This indicate that record total duration of packet
exchange of normal traffic is higher than botnet traffic. From
this mean value it is clear that attacker send large number of
packets in short duration time to attack on the target.

6) Source to destination packet count (spkts):: Mean value
of spkts of normal and botnet traffic observed are 1106.28
and 2.15, respectively. This indicate that number of sources
to destination packet of normal traffic is higher than of botnet
traffic.

7) Destination to source packet count (dpkts):: Mean value
of dpkts of Normal and botnet traffic are 403.11 and 1.46. This
indicate that dpkts of normal traffic is larger than of botnet
traffic.

C. Oversampling minority class

The below pictures illustrate the implementation of SMOTE
technique used to over-sample minority class.

Before SMOTE Technology
14)

CEEEECN
attack
e 4782

1 994828

dtype: inteée4d

Size After SMOTE Technology
(1989656, 14)

attack

(=] 994828

1 994828

Fig. 14: Size of dataset before and after SMOTE technique.

Real time BoT-IoT dataset contains 999,610 data, out of
which 4782 belong to Normal traffic and 994,828 belong to
Botnet traffic. After processing data through SMOTE tech-
nique, we get 1,989,656 data containing equal number of
botnet and Normal traffic, that is 994,828. This makes the
dataset class balanced.

D. Feature Score

After analyzing the dataset, feature engineering was used to
select the correct features based on the calculated feature score
value for this model which provide the feature importance in

Count (traffic)

1000000

800000

BO0000

Count

400000 -

200000

o 4

— =
Traffic (1:Botnet Traffic,0:Normal Traffic)

Fig. 15: Bar graph showing class balanced dataset after SMOTE
technique

distinguishing the classes. Top 8 features in accordance with
the feature engineering in accordance with feature scores are
presented below. bytes, sbytes, dbytes, rate, pkts, spkts, srate

Score
1.26e+12
8.81le+11
3.80e+11
7 .33e+09
1.46e+09
1.87e+09
4.51e+08
4.37e+08

Fig. 16: Top 8 respective feature score

Features
bytes
sbytes
dbytes

rate
pkts
spkts
srate
drate

and drate are the top 8 features based on chi2 value that were
used to train the model.

E. Train-Test Split

The dataset was splitted into train and test to evaluate
the performance of model. 80 percent of data were used for
training and 20 percent for test.

FE. Comparison of performance of Machine learning algo-
rithms

In this Botnet detection model, we combined feature en-
gineering, SMOTE technology, and machine learning algo-
rithms. In addition to that, we analyzed the performance
of algorithms using cross-validation technique which divides
the training set into number of subsets which gives real
performance of model. The dataset we used in this model
has class imbalance containing less than 1% Normal traffic
while there are more than a 99% botnet traffic. The prob-
lem with unbalanced dataset is MLAs have poor predictive
performance on minority class. If the training data is highly
unbalanced, the algorithms may predict the majority class
without examining comprehensive features. It may still have
higher accuracy which is illusive. Imbalanced data problems

can be mitigated by simply oversampling the minority class
by duplicating data of minority class. However, this does not
add additional information to the system. Synthetic minority
Oversampling technique (SMOTE) is one of the simpler and
effective approach to oversample imbalanced datasets. For the
evaluation of this model, we used the cross-validation method.
We evaluated true positive rate, false positive rate, precision,
and recall.

1) Results with Gaussian Naive bayes model: As seen in
Fig 17, for real BoT-IoT dataset, with Gaussian Naive bayes
algorithm, we observed nearly 100% accuracy but 60.9%
ROC-AUC, and very low value in recall and fl-score. This
evidently showed that accuracy is generally not helpful in
imbalanced data. As we have more than 99 percent botnet
traffic and less than 1 percent normal traffic in this dataset,
this classifier may possibly classify all samples as 1. Thus,
we get high accuracy but low ROC AUC (around 60 percent).

Fig 18 shows ROC AUC graph of Gaussian model obtained
from real-time dataset and class balanced dataset.

Train size: (799688, 9), Test size: (199922, 9)

GaussianNB output

confusion matrix confusion matrix

[[29 895] [[5840 193161]

[8 198998]] [2 198989]]

classification report classification report
precision precision

Train size: (1591724, 9), Test size: (397932,
GaussianNB output

recall fl-score support recall fl-score support

0.8 1.08 8.03 8.06 924 0.0 1.00 9.93 9.06
1.0 1.08 1.e8 1.e8 198998 1.0 8.51 1.00 0.67

198941
198991

199922
199922
199922

accuracy 1.60
macro avg 1.00 0.52 0.53
weighted avg 1.00 1.00 0.99

accuracy 0.51
macro avg 8.75 9.51 0.37
weighted avg 0.75 0.51 0.37

397932
397932
397932

[©.99561329 ©.99525815 ©.99524314 ©.99526315 0.99041626]
Accuracy: 0.994 (+/- ©.004)
[©.65846621 0.16709283 ©.94390716 ©.96615563 0.30981046]
ROC_AUC: 0.609 (+/- 0.649)

Fig. 17: Gaussian Naive bayes model performance

[0.51487189 ©.5148958 ©.51484303 ©.51489831 0.51742387]
Accuracy: 0.515 (+/- 0.002)
[0.63701833 @.28103298 0.94651957 0.96652003 @.20833048]
ROC_AUC: 0.608 (+/- 0.639)

ROC Curve from real time data in Gaussian NB model ~ ROC Curve combining SMOTE technique for Gaussian NB model
10 ROC s 10 ROC 7
=== AUC=052 7 === AUC=051 “
o /r
08 7 08
-} 7 Y
g @ 7
Y 06 /,' Y 06
2 3 B ¥
S04 P i ’
E " E ~
F 4 s
02 rd 02 P
v yd
// ’1'
/
00 001 “
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
False Positive Rate False Positive Rate

Fig. 18: ROC AUC graph from Gaussian NB model

From the ROC-AUC curve it is clearly seen that AUC score
from Gaussian is 0.51. This denotes the gaussian algorithm is
not effective to distinguish botnet and normal traffic.

2) Results with KNN model: Fig. 19 shows KNN model
performance on real-time class imbalance data and Class bal-
ance dataset is good. The accuracy and ROC AUC we get on
BoT-IoT unbalanced data is 99.6% and 99.2% respectively and
from class balanced data is 92.1% and 92.2% respectively. For
the BoT-IoT dataset, the accuracy result from KNN is good.
This indicates that the KNN classifier is effective algorithm in
botnet detection system.

Train size: (799688, 9), Test size: (199922, 9)
KNN output
confusion matrix confusion matrix
[[%8 16 [l198928 13]
[3 198995]] [60 198931]]
classification report classification report
precision precision

Train size: (1591724, 9), Test size: (397932, 9)
KNN output

recall fl-score support recall fl-score support

0.0 100 098 0.9 924 0.0 1.60 1.0 1.60 198941
1.6 1.60 1.e0 1.9 138998 1.6 1.60 1.00 1.60 198991

accuracy 1.08 199922
macro avg 1.8 8.99 8.39 199922
weighted avg 1.00 1.80 1.88 199922

aceuracy 1.80 397932
macro avg 1.60 1.0 1.80 397932
weighted avg 1.60 1.00 1.0 397932

[©.98331349 ©.99991997 @.99992597 9.95997499 0.93539821]
Accuracy: 8.996 (+/- 0.€13)

[©.97303247 ©.99947667 ©.9989462 9.9947712 0.9306967]
ROC_AUC Score: 8.992 (+/- 8.62€)

[.99132013 ©.99985927 0.99945719 8.9997286 0.6135913]
Accuracy: 0.921 (+/- ©.307)

[6.99151683 0.99998741 8.99962794 8,999909696 0.61992842]
ROC_AUC Score: 8,922 (+/- 8.362)

Fig. 19: KNN model performance

ROC Curve from real time data in KNN Model ROC Curve of KNN combining SMOTE technique

True Positive Rate
True Positive Rate

Pl ROC RoC
/ - AUC=089 | gl b -+ AUC=100

% 02 04 06 08 10 W 02 04 06 08 10
False Positive Rate False Positive Rate

Fig. 20: ROC AUC graph from KNN model

ROC AUC curve of KNN model for botnet imbalanced
dataset and class balanced dataset is almost 1 as seen in Fig
20. This indicates that KNN model effectively distinguishes
botnet and normal traffic. KNN is better algorithm to use in
botnet detection system.

3) MLP ANN model: As presented Fig. 21, it is clearly
seen that MLP ANN accuracy is 87.4 percent but low value in
precision, recall, fl1-score, and ROC AUC score. This showed
that the accuracy value we got from the class imbalanced
dataset is illusory. After integrating SMOTE technology, we
got better value in precision, recall, fl1-score, and ROC AUC.
This validate that accuracy percentage is not enough to validate
the model performance. Accuracy that we got from MLP ANN
model combining SMOTE technique in BoT-IoT dataset is
85.8. This validates that MLP ANN algorithm is better to
classify botnet and normal traffic.

Train size: (799588, 9), Test size: (199922, 9) Train size: (1591724, 9), Test size: (397932, 9)
Multilayer percestron classifier - class of ANN classifier| [l Multilayer perceptron classi - class of ANN classifier
output output

confusion matrix confusion matrix

[32 89 [[197911 1638]

[1013 157985]] [37444 161547]]

classification raport classification report

pracision recall fl-score support precision recall fl-score support
6.63 8.03 0.03 924 § 0.34 8.9 8.91 198341

8.99 1.60 198998 y 0.9 0.81 0.89 198991

accuracy 0.99 199922
nacro avg 0. 8.51 0.51 199922
weighted avg 0.9 0.99 0.99 199922

accuracy 0.98 397932
macro avg 8.92 0.9 8.96 397932
weighted avg 0.92 0.9 8.99 397932

[€.99343244 0.99523314 0.99521814 9.9€526815 0.39328838]
Accuracy: €.874 (+/- 8.481)
[6.55642082 0.51450884 0.49557688 9.52398167 0.26255175]
ROC_AUC: 8.471 (+/- 8.212)

[€.95378859 0.96863275 0.88040892 ©.93515207 0.55650247]
Accuracy: 0.858 (+/- 8.313)
[6.99627498 8.97659024 B.94797298 8.96952025 0.43908511]
ROC_AUC: 8.865 (+/- 0.426)

Fig. 21: MLP ANN model performance

AUC score from MLP ANN before implementing SMOTE

ROC Curve of MLP from real time data in ANN Model ROC Curve of MLP-ANN combining SMOTE technique

10 RC] 10 o
=== AUC=050 g pad
08 Py 08 o

=
N,
N,

o
N\,

True Positive Rate
True Positive Rate
\

o
\,
\,

7 > ROC
001 7 00d b == AUC=090

W 02 o0 06 08 10 0 02 04 05 08 10
False Positive Rate False Positive Rate

Fig. 22: ROC AUC graph showing MLP ANN model performance

technique was 0.50 and after combining SMOTE technique
on BoT-IoT dataset was 0.90 which can be seen in Fig. 22.
This shows that MLP ANN is not effective enough on highly
class imbalanced dataset. MLP ANN is good on class balanced
dataset. It is also effective on botnet detection system.

G. Observations

While going through the process of botnet detection using
gaussian ML algorithm we observed unexpected, and even
surprising, results. We got accuracy of 99% but the recall and
ROC AUC scores were very low. After getting this undesired
result, we analyzed the model performance on imbalanced and
class-balanced data by implementing SMOTE technique on
class imbalanced dataset and used feature selection method to
reduce the dimension of feature to reduce the computation
overhead of machine learning algorithm. Instead of using
all the features, we used features with high feature score
that improved the algorithm accuracy as well as reduced
computational overhead. Table below shows the results from
different MLASs on two set of datasets, D1 and D2. D1: Real
time BoT-IoT dataset D2: Dataset obtained after processing
BoT-IoT dataset through SMOTE technique.

TABLE II: Comparison of MLAs performance

MLAs DI (Real-time data) D2 (After SMOTE)
Accuracy (%) | ROC_AUC (%) | Accuracy (%) | ROC AUC (%)
Gaussian Naive | 99.4 60.9 51.5 60.8
Bayes
KNN 99.6 99.2 92.1 92.2
MLP ANN 87.4 47.1 85.8 86.5

From the above comparison, we get good and stable ac-
curacy from KNN model. We got 92.1% accuracy and 92.2%
ROC AUC from KNN algorithm. Also, KNN algorithm works
good on highly imbalanced real-time data. KNN is effective
to use in botnet detection system. Among different machine
algorithms we get higher accuracy from KNN algorithm. From
these overall comparisons on different evaluation metrics of
machine learning algorithms, KNN algorithm was found to be
the best for BoT-IoT dataset.

VIII. CONCLUSION

In this paper, we propose K-nearest neighbors’ algorithm
as an effective botnet detection model and its performance

CHART TITLE

M Gaussian Naive Bayes mKNN MLP ANN

b
-
&

99.4
99.6
874
92.1
85.8
92.2
86.5

60.9
47.1
515
60.8

ACCURACY (%) ROC_AUC (%) ACCURACY (%) ROC AUC (%)

D1 (REAL-TIME DATA) D2 (AFTER SMOTE)

Fig. 23: Graphical presentation of machine learning performance
comparison

is evaluated against available methods and algorithms to
detect and mitigate botnet-based DDoS attack in IoT network.
Our comparison of botnet detection models on real time
imbalanced dataset and balanced dataset considerably help
to enrich our research. It revealed us how and why the real
time imbalanced datasets were not optimum, how it affects
the metrics such as precision, recall, accuracy, fl-score, and
ROC AUC and how the dataset should be improved. The usage
of imbalanced dataset, despite showed us the good accuracy,
recall and fl-score were low. This shows that accuracy we
got from imbalanced dataset maybe illusory. After combining
SMOTE technology, we got more stable accuracy and ROC
AUC with similar range of values on precision, recall and
fl-score. This proves that with implementation of SMOTE
technology we can get more reliable performance of the
model. Based on the findings, KNN algorithm was found to
be the most reliable in botnet detection.

IX. FUTURE WORK

Future work of this paper would concentrate on simulation
of the proposed model for real-time comparison for effective-
ness. This model can be implemented with Software Defined
Network (SDN). Addition of botnet detection and mitigation
measure that detect the botnet and block the host that sending
botnet packet over the network can be used on the controller of
SDN. This will help to monitor traffic flow in all the connected
host and thereby effectively mitigate the botnet attacks in
server.

REFERENCES

[1] K. Chopra, K. Gupta, and A. Lambora, “Future Internet: The Internet of
Things-A Literature Review,” in Proc. Int. Conf. Mach. Learn. Big Data,
Cloud Parallel Comput. Trends, Prespectives Prospect. Com. 2019,
pp. 135-139, Institute of Electrical and Electronics Engineers Inc., feb
2019.

[2] Parker2005, “The IoT in 2030: 24 billion connected things generating
$1.5 trillion,”

[3] “Internet of Things Global Standards Initiative.”

[4] M. Dibaei, X. Zheng, K. Jiang, R. Abbas, S. Liu, Y. Zhang, Y. Xiang,
and S. Yu, “Attacks and defences on intelligent connected vehicles: a
survey,” Digit. Commun. Networks, vol. 6, no. 4, pp. 399-421, 2020.

[5] C.D. McDermott, F. Majdani, and A. V. Petrovski, “Botnet Detection in
the Internet of Things using Deep Learning Approaches,” in Proc. Int.
Jt. Conf. Neural Networks, vol. 2018-July, Institute of Electrical and
Electronics Engineers Inc., oct 2018.

[6]

[7]

[8]

[9]

(10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

Y. N. Soe, P. I. Santosa, and R. Hartanto, “DDoS Attack Detection Based
on Simple ANN with SMOTE for IoT Environment,” Proc. 2019 4th
Int. Conf. Informatics Comput. ICIC 2019, pp. 0—4, 2019.

M. Aamir and S. M. A. Zaidi, “DDoS attack detection with feature
engineering and machine learning: the framework and performance
evaluation,” Int. J. Inf. Secur., vol. 18, no. 6, pp. 761-785, 2019.

H. Bahsi, S. Nomm, and F. B. La Torre, “Dimensionality Reduction for
Machine Learning Based IoT Botnet Detection,” 2018 15th Int. Conf.
Control. Autom. Robot. Vision, ICARCV 2018, pp. 1857-1862, 2018.
C. Dietz, R. L. Castro, J. Steinberger, C. Wilczak, M. Antzek, A. Sper-
otto, and A. Pras, “IoT-Botnet Detection and Isolation by Access
Routers,” in Proc. 2018 9th Int. Conf. Netw. Futur. NOF 2018, pp. 88—
95, Institute of Electrical and Electronics Engineers Inc., dec 2018.

S. Almutairi, S. Mahfoudh, S. Almutairi, and J. S. Alowibdi, “Hybrid
Botnet Detection Based on Host and Network Analysis,” J. Comput.
Networks Commun., vol. 2020, 2020.

G. Vormayr, T. Zseby, and J. Fabini, “Botnet Communication Patterns,”
IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2768-2796, 2017.
S. F. Shetu, M. Saifuzzaman, N. N. Moon, and F. N. Nur, “A survey of
botnet in cyber security,” 2019 2nd Int. Conf. Intell. Commun. Comput.
Tech. ICCT 2019, pp. 174-177, 2019.

V. Kansal and M. Dave, “DDoS attack isolation using moving target
defense,” in Proceeding - IEEE Int. Conf. Comput. Commun. Autom.
ICCCA 2017, vol. 2017-January, pp. 511-514, Institute of Electrical
and Electronics Engineers Inc., dec 2017.

M. Dibaei, X. Zheng, K. Jiang, S. Maric, R. Abbas, S. Liu, Y. Zhang,
Y. Deng, S. Wen, J. Zhang, Y. Xiang, and S. Yu, “An overview of attacks
and defences on intelligent connected vehicles,” arXiv, pp. 1-36, 2019.
F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella,
“IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities
in Real IoT Devices,” IEEE Internet Things J., vol. 6, no. 5, pp. 8182—
8201, 2019.

Y. Section, A. Gurtov, L. Mucchi, and I. Oppermann, “6G-White-Paper-
Trust-Security-Privacy,” 2020.

S. Ali, W. Saad, N. Rajatheva, K. Chang, D. Steinbach, B. Sliwa,
C. Wietfeld, K. Mei, H. Shiri, H. J. Zepernick, T. M. C. Chu, I. Ahmad,
J. Huusko, J. Suutala, S. Bhadauria, V. Bhatia, R. Mitra, S. Amuru,
R. Abbas, B. Shao, M. Capobianco, G. Yu, M. Claes, T. Karvonen,
M. Chen, M. Girnyk, and H. Malik, “6G White paper on machine
learning in wireless communication networks,” arXiv, pp. 1-29, 2020.
J. Lam and R. Abbas, “Machine learning based anomaly detection for
5G networks,” arXiv, pp. 1-12, 2020.

X. D. Hoang and Q. C. Nguyen, “Botnet detection based on machine
learning techniques using DNS query data,” Futur. Internet, vol. 10,
p. 43, may 2018.

S. Ray, “A Quick Review of Machine Learning Algorithms,” in Proc.
Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput. Trends,
Prespectives Prospect. Com. 2019, pp. 35-39, Institute of Electrical and
Electronics Engineers Inc., feb 2019.

R. Schwitter, “COMP8220: Machine Learning What is Machine Learn-
ing?,” 2020.

G. Shaheamlung, H. Kaur, and M. Kaur, “A Survey on machine learning
techniques for the diagnosis of liver disease,” Proc. Int. Conf. Intell. Eng.
Manag. ICIEM 2020, pp. 337-341, 2020.

J. Huang, Y. Wei, J. Yi, and M. Liu, “An improved knn based on
class contribution and feature weighting,” Proc. - 10th Int. Conf. Meas.
Technol. Mechatronics Autom. ICMTMA 2018, vol. 2018-Janua, pp. 313—
316, 2018.

E. Heidari, M. A. Sobati, and S. Movahedirad, “Accurate prediction
of nanofluid viscosity using a multilayer perceptron artificial neural
network (MLP-ANN),” Chemom. Intell. Lab. Syst., vol. 155, pp. 73—
85, 2016.

“The BoT-IoT Dataset.”

N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the Internet of Things
for network forensic analytics: Bot-IoT dataset,” Futur. Gener. Comput.
Syst., vol. 100, pp. 779-796, 2019.

	I Introduction
	II Related work
	II-A Research gap

	III Background Methodology
	III-A Botnet
	III-B DDoS attack
	III-C Security vulnerabilities in IoT

	IV Machine learning
	IV-A Supervised learning:
	IV-B Unsupervised learning:
	IV-C Semi-supervised learning:
	IV-D Re-enforcement learning:

	V Supervised Machine learning algorithms
	V-A Gaussian Naïve bayes machine learning algorithm
	V-B KNN
	V-C MLP ANN

	VI Research approach
	VI-A Experimental dataset (BoT-IoT)
	VI-B Data preprocessing
	VI-B1 Data Cleansing
	VI-B2 Normalization
	VI-B3 Transformation

	VI-C Feature Engineering
	VI-D Synthetic Minority over-sampling technique (SMOTE)
	VI-E Experimental Scenario
	VI-E1 Python Libraries

	VI-F Machine Learning Model Evaluation and Cross validation
	VI-F1 Accuracy:
	VI-F2 Precision:
	VI-F3 Recall:
	VI-F4 F1-Score:
	VI-F5 ROC AUC:

	VII Experiment and Discussion
	VII-A Transformation
	VII-B Analyzing the behavior of Normal and Botnet Traffic
	VII-B1 Total count of packets in transaction (pkts):
	VII-B2 Total packet per second in transaction (rate):
	VII-B3 Source to destination packet per second (srate):
	VII-B4 Destination to source packet per second (drate):
	VII-B5 Record total duration (dur):
	VII-B6 Source to destination packet count (spkts):
	VII-B7 Destination to source packet count (dpkts):

	VII-C Oversampling minority class
	VII-D Feature Score
	VII-E Train-Test Split
	VII-F Comparison of performance of Machine learning algorithms
	VII-F1 Results with Gaussian Naïve bayes model
	VII-F2 Results with KNN model
	VII-F3 MLP ANN model

	VII-G Observations

	VIII Conclusion
	IX Future work
	References

